llvm-project/clang/lib/Sema/SemaTemplateInstantiate.cpp

1666 lines
68 KiB
C++

//===------- SemaTemplateInstantiate.cpp - C++ Template Instantiation ------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template instantiation.
//
//===----------------------------------------------------------------------===/
#include "clang/Sema/SemaInternal.h"
#include "TreeTransform.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/LangOptions.h"
using namespace clang;
using namespace sema;
//===----------------------------------------------------------------------===/
// Template Instantiation Support
//===----------------------------------------------------------------------===/
/// \brief Retrieve the template argument list(s) that should be used to
/// instantiate the definition of the given declaration.
///
/// \param D the declaration for which we are computing template instantiation
/// arguments.
///
/// \param Innermost if non-NULL, the innermost template argument list.
///
/// \param RelativeToPrimary true if we should get the template
/// arguments relative to the primary template, even when we're
/// dealing with a specialization. This is only relevant for function
/// template specializations.
///
/// \param Pattern If non-NULL, indicates the pattern from which we will be
/// instantiating the definition of the given declaration, \p D. This is
/// used to determine the proper set of template instantiation arguments for
/// friend function template specializations.
MultiLevelTemplateArgumentList
Sema::getTemplateInstantiationArgs(NamedDecl *D,
const TemplateArgumentList *Innermost,
bool RelativeToPrimary,
const FunctionDecl *Pattern) {
// Accumulate the set of template argument lists in this structure.
MultiLevelTemplateArgumentList Result;
if (Innermost)
Result.addOuterTemplateArguments(Innermost);
DeclContext *Ctx = dyn_cast<DeclContext>(D);
if (!Ctx)
Ctx = D->getDeclContext();
while (!Ctx->isFileContext()) {
// Add template arguments from a class template instantiation.
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Ctx)) {
// We're done when we hit an explicit specialization.
if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization &&
!isa<ClassTemplatePartialSpecializationDecl>(Spec))
break;
Result.addOuterTemplateArguments(&Spec->getTemplateInstantiationArgs());
// If this class template specialization was instantiated from a
// specialized member that is a class template, we're done.
assert(Spec->getSpecializedTemplate() && "No class template?");
if (Spec->getSpecializedTemplate()->isMemberSpecialization())
break;
}
// Add template arguments from a function template specialization.
else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Ctx)) {
if (!RelativeToPrimary &&
Function->getTemplateSpecializationKind()
== TSK_ExplicitSpecialization)
break;
if (const TemplateArgumentList *TemplateArgs
= Function->getTemplateSpecializationArgs()) {
// Add the template arguments for this specialization.
Result.addOuterTemplateArguments(TemplateArgs);
// If this function was instantiated from a specialized member that is
// a function template, we're done.
assert(Function->getPrimaryTemplate() && "No function template?");
if (Function->getPrimaryTemplate()->isMemberSpecialization())
break;
}
// If this is a friend declaration and it declares an entity at
// namespace scope, take arguments from its lexical parent
// instead of its semantic parent, unless of course the pattern we're
// instantiating actually comes from the file's context!
if (Function->getFriendObjectKind() &&
Function->getDeclContext()->isFileContext() &&
(!Pattern || !Pattern->getLexicalDeclContext()->isFileContext())) {
Ctx = Function->getLexicalDeclContext();
RelativeToPrimary = false;
continue;
}
} else if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Ctx)) {
if (ClassTemplateDecl *ClassTemplate = Rec->getDescribedClassTemplate()) {
QualType T = ClassTemplate->getInjectedClassNameSpecialization();
const TemplateSpecializationType *TST
= cast<TemplateSpecializationType>(Context.getCanonicalType(T));
Result.addOuterTemplateArguments(TST->getArgs(), TST->getNumArgs());
if (ClassTemplate->isMemberSpecialization())
break;
}
}
Ctx = Ctx->getParent();
RelativeToPrimary = false;
}
return Result;
}
bool Sema::ActiveTemplateInstantiation::isInstantiationRecord() const {
switch (Kind) {
case TemplateInstantiation:
case DefaultTemplateArgumentInstantiation:
case DefaultFunctionArgumentInstantiation:
return true;
case ExplicitTemplateArgumentSubstitution:
case DeducedTemplateArgumentSubstitution:
case PriorTemplateArgumentSubstitution:
case DefaultTemplateArgumentChecking:
return false;
}
return true;
}
Sema::InstantiatingTemplate::
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
Decl *Entity,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind = ActiveTemplateInstantiation::TemplateInstantiation;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(Entity);
Inst.TemplateArgs = 0;
Inst.NumTemplateArgs = 0;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
}
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
TemplateDecl *Template,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind
= ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(Template);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
}
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
FunctionTemplateDecl *FunctionTemplate,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
ActiveTemplateInstantiation::InstantiationKind Kind,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind = Kind;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(FunctionTemplate);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
if (!Inst.isInstantiationRecord())
++SemaRef.NonInstantiationEntries;
}
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
ClassTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = false;
ActiveTemplateInstantiation Inst;
Inst.Kind = ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(PartialSpec);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
assert(!Inst.isInstantiationRecord());
++SemaRef.NonInstantiationEntries;
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
ParmVarDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation, InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind
= ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(Param);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
}
}
Sema::InstantiatingTemplate::
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
NonTypeTemplateParmDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange) : SemaRef(SemaRef) {
Invalid = false;
ActiveTemplateInstantiation Inst;
Inst.Kind = ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Template = Template;
Inst.Entity = reinterpret_cast<uintptr_t>(Param);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
assert(!Inst.isInstantiationRecord());
++SemaRef.NonInstantiationEntries;
}
Sema::InstantiatingTemplate::
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
TemplateTemplateParmDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange) : SemaRef(SemaRef) {
Invalid = false;
ActiveTemplateInstantiation Inst;
Inst.Kind = ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Template = Template;
Inst.Entity = reinterpret_cast<uintptr_t>(Param);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
assert(!Inst.isInstantiationRecord());
++SemaRef.NonInstantiationEntries;
}
Sema::InstantiatingTemplate::
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
NamedDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange) : SemaRef(SemaRef) {
Invalid = false;
ActiveTemplateInstantiation Inst;
Inst.Kind = ActiveTemplateInstantiation::DefaultTemplateArgumentChecking;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Template = Template;
Inst.Entity = reinterpret_cast<uintptr_t>(Param);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
assert(!Inst.isInstantiationRecord());
++SemaRef.NonInstantiationEntries;
}
void Sema::InstantiatingTemplate::Clear() {
if (!Invalid) {
if (!SemaRef.ActiveTemplateInstantiations.back().isInstantiationRecord()) {
assert(SemaRef.NonInstantiationEntries > 0);
--SemaRef.NonInstantiationEntries;
}
SemaRef.ActiveTemplateInstantiations.pop_back();
Invalid = true;
}
}
bool Sema::InstantiatingTemplate::CheckInstantiationDepth(
SourceLocation PointOfInstantiation,
SourceRange InstantiationRange) {
assert(SemaRef.NonInstantiationEntries <=
SemaRef.ActiveTemplateInstantiations.size());
if ((SemaRef.ActiveTemplateInstantiations.size() -
SemaRef.NonInstantiationEntries)
<= SemaRef.getLangOptions().InstantiationDepth)
return false;
SemaRef.Diag(PointOfInstantiation,
diag::err_template_recursion_depth_exceeded)
<< SemaRef.getLangOptions().InstantiationDepth
<< InstantiationRange;
SemaRef.Diag(PointOfInstantiation, diag::note_template_recursion_depth)
<< SemaRef.getLangOptions().InstantiationDepth;
return true;
}
/// \brief Prints the current instantiation stack through a series of
/// notes.
void Sema::PrintInstantiationStack() {
// Determine which template instantiations to skip, if any.
unsigned SkipStart = ActiveTemplateInstantiations.size(), SkipEnd = SkipStart;
unsigned Limit = Diags.getTemplateBacktraceLimit();
if (Limit && Limit < ActiveTemplateInstantiations.size()) {
SkipStart = Limit / 2 + Limit % 2;
SkipEnd = ActiveTemplateInstantiations.size() - Limit / 2;
}
// FIXME: In all of these cases, we need to show the template arguments
unsigned InstantiationIdx = 0;
for (llvm::SmallVector<ActiveTemplateInstantiation, 16>::reverse_iterator
Active = ActiveTemplateInstantiations.rbegin(),
ActiveEnd = ActiveTemplateInstantiations.rend();
Active != ActiveEnd;
++Active, ++InstantiationIdx) {
// Skip this instantiation?
if (InstantiationIdx >= SkipStart && InstantiationIdx < SkipEnd) {
if (InstantiationIdx == SkipStart) {
// Note that we're skipping instantiations.
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_instantiation_contexts_suppressed)
<< unsigned(ActiveTemplateInstantiations.size() - Limit);
}
continue;
}
switch (Active->Kind) {
case ActiveTemplateInstantiation::TemplateInstantiation: {
Decl *D = reinterpret_cast<Decl *>(Active->Entity);
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
unsigned DiagID = diag::note_template_member_class_here;
if (isa<ClassTemplateSpecializationDecl>(Record))
DiagID = diag::note_template_class_instantiation_here;
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
DiagID)
<< Context.getTypeDeclType(Record)
<< Active->InstantiationRange;
} else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
unsigned DiagID;
if (Function->getPrimaryTemplate())
DiagID = diag::note_function_template_spec_here;
else
DiagID = diag::note_template_member_function_here;
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
DiagID)
<< Function
<< Active->InstantiationRange;
} else {
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_template_static_data_member_def_here)
<< cast<VarDecl>(D)
<< Active->InstantiationRange;
}
break;
}
case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation: {
TemplateDecl *Template = cast<TemplateDecl>((Decl *)Active->Entity);
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
Active->TemplateArgs,
Active->NumTemplateArgs,
Context.PrintingPolicy);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_default_arg_instantiation_here)
<< (Template->getNameAsString() + TemplateArgsStr)
<< Active->InstantiationRange;
break;
}
case ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution: {
FunctionTemplateDecl *FnTmpl
= cast<FunctionTemplateDecl>((Decl *)Active->Entity);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_explicit_template_arg_substitution_here)
<< FnTmpl
<< getTemplateArgumentBindingsText(FnTmpl->getTemplateParameters(),
Active->TemplateArgs,
Active->NumTemplateArgs)
<< Active->InstantiationRange;
break;
}
case ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution:
if (ClassTemplatePartialSpecializationDecl *PartialSpec
= dyn_cast<ClassTemplatePartialSpecializationDecl>(
(Decl *)Active->Entity)) {
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_partial_spec_deduct_instantiation_here)
<< Context.getTypeDeclType(PartialSpec)
<< getTemplateArgumentBindingsText(
PartialSpec->getTemplateParameters(),
Active->TemplateArgs,
Active->NumTemplateArgs)
<< Active->InstantiationRange;
} else {
FunctionTemplateDecl *FnTmpl
= cast<FunctionTemplateDecl>((Decl *)Active->Entity);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_function_template_deduction_instantiation_here)
<< FnTmpl
<< getTemplateArgumentBindingsText(FnTmpl->getTemplateParameters(),
Active->TemplateArgs,
Active->NumTemplateArgs)
<< Active->InstantiationRange;
}
break;
case ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation: {
ParmVarDecl *Param = cast<ParmVarDecl>((Decl *)Active->Entity);
FunctionDecl *FD = cast<FunctionDecl>(Param->getDeclContext());
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
Active->TemplateArgs,
Active->NumTemplateArgs,
Context.PrintingPolicy);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_default_function_arg_instantiation_here)
<< (FD->getNameAsString() + TemplateArgsStr)
<< Active->InstantiationRange;
break;
}
case ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution: {
NamedDecl *Parm = cast<NamedDecl>((Decl *)Active->Entity);
std::string Name;
if (!Parm->getName().empty())
Name = std::string(" '") + Parm->getName().str() + "'";
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_prior_template_arg_substitution)
<< isa<TemplateTemplateParmDecl>(Parm)
<< Name
<< getTemplateArgumentBindingsText(
Active->Template->getTemplateParameters(),
Active->TemplateArgs,
Active->NumTemplateArgs)
<< Active->InstantiationRange;
break;
}
case ActiveTemplateInstantiation::DefaultTemplateArgumentChecking: {
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_template_default_arg_checking)
<< getTemplateArgumentBindingsText(
Active->Template->getTemplateParameters(),
Active->TemplateArgs,
Active->NumTemplateArgs)
<< Active->InstantiationRange;
break;
}
}
}
}
bool Sema::isSFINAEContext() const {
using llvm::SmallVector;
for (SmallVector<ActiveTemplateInstantiation, 16>::const_reverse_iterator
Active = ActiveTemplateInstantiations.rbegin(),
ActiveEnd = ActiveTemplateInstantiations.rend();
Active != ActiveEnd;
++Active)
{
switch(Active->Kind) {
case ActiveTemplateInstantiation::TemplateInstantiation:
case ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation:
// This is a template instantiation, so there is no SFINAE.
return false;
case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation:
case ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution:
case ActiveTemplateInstantiation::DefaultTemplateArgumentChecking:
// A default template argument instantiation and substitution into
// template parameters with arguments for prior parameters may or may
// not be a SFINAE context; look further up the stack.
break;
case ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution:
case ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution:
// We're either substitution explicitly-specified template arguments
// or deduced template arguments, so SFINAE applies.
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===/
// Template Instantiation for Types
//===----------------------------------------------------------------------===/
namespace {
class TemplateInstantiator : public TreeTransform<TemplateInstantiator> {
const MultiLevelTemplateArgumentList &TemplateArgs;
SourceLocation Loc;
DeclarationName Entity;
public:
typedef TreeTransform<TemplateInstantiator> inherited;
TemplateInstantiator(Sema &SemaRef,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc,
DeclarationName Entity)
: inherited(SemaRef), TemplateArgs(TemplateArgs), Loc(Loc),
Entity(Entity) { }
/// \brief Determine whether the given type \p T has already been
/// transformed.
///
/// For the purposes of template instantiation, a type has already been
/// transformed if it is NULL or if it is not dependent.
bool AlreadyTransformed(QualType T);
/// \brief Returns the location of the entity being instantiated, if known.
SourceLocation getBaseLocation() { return Loc; }
/// \brief Returns the name of the entity being instantiated, if any.
DeclarationName getBaseEntity() { return Entity; }
/// \brief Sets the "base" location and entity when that
/// information is known based on another transformation.
void setBase(SourceLocation Loc, DeclarationName Entity) {
this->Loc = Loc;
this->Entity = Entity;
}
/// \brief Transform the given declaration by instantiating a reference to
/// this declaration.
Decl *TransformDecl(SourceLocation Loc, Decl *D);
/// \brief Transform the definition of the given declaration by
/// instantiating it.
Decl *TransformDefinition(SourceLocation Loc, Decl *D);
/// \bried Transform the first qualifier within a scope by instantiating the
/// declaration.
NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc);
/// \brief Rebuild the exception declaration and register the declaration
/// as an instantiated local.
VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, QualType T,
TypeSourceInfo *Declarator,
IdentifierInfo *Name,
SourceLocation Loc, SourceRange TypeRange);
/// \brief Rebuild the Objective-C exception declaration and register the
/// declaration as an instantiated local.
VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *TSInfo, QualType T);
/// \brief Check for tag mismatches when instantiating an
/// elaborated type.
QualType RebuildElaboratedType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, QualType T);
ExprResult TransformPredefinedExpr(PredefinedExpr *E);
ExprResult TransformDeclRefExpr(DeclRefExpr *E);
ExprResult TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E);
ExprResult TransformTemplateParmRefExpr(DeclRefExpr *E,
NonTypeTemplateParmDecl *D);
QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL,
QualType ObjectType);
ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm);
/// \brief Transforms a template type parameter type by performing
/// substitution of the corresponding template type argument.
QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL,
QualType ObjectType);
ExprResult TransformCallExpr(CallExpr *CE) {
getSema().CallsUndergoingInstantiation.push_back(CE);
ExprResult Result =
TreeTransform<TemplateInstantiator>::TransformCallExpr(CE);
getSema().CallsUndergoingInstantiation.pop_back();
return move(Result);
}
};
}
bool TemplateInstantiator::AlreadyTransformed(QualType T) {
if (T.isNull())
return true;
if (T->isDependentType() || T->isVariablyModifiedType())
return false;
getSema().MarkDeclarationsReferencedInType(Loc, T);
return true;
}
Decl *TemplateInstantiator::TransformDecl(SourceLocation Loc, Decl *D) {
if (!D)
return 0;
if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(D)) {
if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
// If the corresponding template argument is NULL or non-existent, it's
// because we are performing instantiation from explicitly-specified
// template arguments in a function template, but there were some
// arguments left unspecified.
if (!TemplateArgs.hasTemplateArgument(TTP->getDepth(),
TTP->getPosition()))
return D;
TemplateName Template
= TemplateArgs(TTP->getDepth(), TTP->getPosition()).getAsTemplate();
assert(!Template.isNull() && Template.getAsTemplateDecl() &&
"Wrong kind of template template argument");
return Template.getAsTemplateDecl();
}
// Fall through to find the instantiated declaration for this template
// template parameter.
}
return SemaRef.FindInstantiatedDecl(Loc, cast<NamedDecl>(D), TemplateArgs);
}
Decl *TemplateInstantiator::TransformDefinition(SourceLocation Loc, Decl *D) {
Decl *Inst = getSema().SubstDecl(D, getSema().CurContext, TemplateArgs);
if (!Inst)
return 0;
getSema().CurrentInstantiationScope->InstantiatedLocal(D, Inst);
return Inst;
}
NamedDecl *
TemplateInstantiator::TransformFirstQualifierInScope(NamedDecl *D,
SourceLocation Loc) {
// If the first part of the nested-name-specifier was a template type
// parameter, instantiate that type parameter down to a tag type.
if (TemplateTypeParmDecl *TTPD = dyn_cast_or_null<TemplateTypeParmDecl>(D)) {
const TemplateTypeParmType *TTP
= cast<TemplateTypeParmType>(getSema().Context.getTypeDeclType(TTPD));
if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
QualType T = TemplateArgs(TTP->getDepth(), TTP->getIndex()).getAsType();
if (T.isNull())
return cast_or_null<NamedDecl>(TransformDecl(Loc, D));
if (const TagType *Tag = T->getAs<TagType>())
return Tag->getDecl();
// The resulting type is not a tag; complain.
getSema().Diag(Loc, diag::err_nested_name_spec_non_tag) << T;
return 0;
}
}
return cast_or_null<NamedDecl>(TransformDecl(Loc, D));
}
VarDecl *
TemplateInstantiator::RebuildExceptionDecl(VarDecl *ExceptionDecl,
QualType T,
TypeSourceInfo *Declarator,
IdentifierInfo *Name,
SourceLocation Loc,
SourceRange TypeRange) {
VarDecl *Var = inherited::RebuildExceptionDecl(ExceptionDecl, T, Declarator,
Name, Loc, TypeRange);
if (Var)
getSema().CurrentInstantiationScope->InstantiatedLocal(ExceptionDecl, Var);
return Var;
}
VarDecl *TemplateInstantiator::RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *TSInfo,
QualType T) {
VarDecl *Var = inherited::RebuildObjCExceptionDecl(ExceptionDecl, TSInfo, T);
if (Var)
getSema().CurrentInstantiationScope->InstantiatedLocal(ExceptionDecl, Var);
return Var;
}
QualType
TemplateInstantiator::RebuildElaboratedType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
QualType T) {
if (const TagType *TT = T->getAs<TagType>()) {
TagDecl* TD = TT->getDecl();
// FIXME: this location is very wrong; we really need typelocs.
SourceLocation TagLocation = TD->getTagKeywordLoc();
// FIXME: type might be anonymous.
IdentifierInfo *Id = TD->getIdentifier();
// TODO: should we even warn on struct/class mismatches for this? Seems
// like it's likely to produce a lot of spurious errors.
if (Keyword != ETK_None && Keyword != ETK_Typename) {
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
if (!SemaRef.isAcceptableTagRedeclaration(TD, Kind, TagLocation, *Id)) {
SemaRef.Diag(TagLocation, diag::err_use_with_wrong_tag)
<< Id
<< FixItHint::CreateReplacement(SourceRange(TagLocation),
TD->getKindName());
SemaRef.Diag(TD->getLocation(), diag::note_previous_use);
}
}
}
return TreeTransform<TemplateInstantiator>::RebuildElaboratedType(Keyword,
NNS, T);
}
ExprResult
TemplateInstantiator::TransformPredefinedExpr(PredefinedExpr *E) {
if (!E->isTypeDependent())
return SemaRef.Owned(E->Retain());
FunctionDecl *currentDecl = getSema().getCurFunctionDecl();
assert(currentDecl && "Must have current function declaration when "
"instantiating.");
PredefinedExpr::IdentType IT = E->getIdentType();
unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
llvm::APInt LengthI(32, Length + 1);
QualType ResTy = getSema().Context.CharTy.withConst();
ResTy = getSema().Context.getConstantArrayType(ResTy, LengthI,
ArrayType::Normal, 0);
PredefinedExpr *PE =
new (getSema().Context) PredefinedExpr(E->getLocation(), ResTy, IT);
return getSema().Owned(PE);
}
ExprResult
TemplateInstantiator::TransformTemplateParmRefExpr(DeclRefExpr *E,
NonTypeTemplateParmDecl *NTTP) {
// If the corresponding template argument is NULL or non-existent, it's
// because we are performing instantiation from explicitly-specified
// template arguments in a function template, but there were some
// arguments left unspecified.
if (!TemplateArgs.hasTemplateArgument(NTTP->getDepth(),
NTTP->getPosition()))
return SemaRef.Owned(E->Retain());
const TemplateArgument &Arg = TemplateArgs(NTTP->getDepth(),
NTTP->getPosition());
// The template argument itself might be an expression, in which
// case we just return that expression.
if (Arg.getKind() == TemplateArgument::Expression)
return SemaRef.Owned(Arg.getAsExpr()->Retain());
if (Arg.getKind() == TemplateArgument::Declaration) {
ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
// Find the instantiation of the template argument. This is
// required for nested templates.
VD = cast_or_null<ValueDecl>(
getSema().FindInstantiatedDecl(E->getLocation(),
VD, TemplateArgs));
if (!VD)
return ExprError();
// Derive the type we want the substituted decl to have. This had
// better be non-dependent, or these checks will have serious problems.
QualType TargetType = SemaRef.SubstType(NTTP->getType(), TemplateArgs,
E->getLocation(),
DeclarationName());
assert(!TargetType.isNull() && "type substitution failed for param type");
assert(!TargetType->isDependentType() && "param type still dependent");
return SemaRef.BuildExpressionFromDeclTemplateArgument(Arg,
TargetType,
E->getLocation());
}
return SemaRef.BuildExpressionFromIntegralTemplateArgument(Arg,
E->getSourceRange().getBegin());
}
ExprResult
TemplateInstantiator::TransformDeclRefExpr(DeclRefExpr *E) {
NamedDecl *D = E->getDecl();
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) {
if (NTTP->getDepth() < TemplateArgs.getNumLevels())
return TransformTemplateParmRefExpr(E, NTTP);
// We have a non-type template parameter that isn't fully substituted;
// FindInstantiatedDecl will find it in the local instantiation scope.
}
return TreeTransform<TemplateInstantiator>::TransformDeclRefExpr(E);
}
ExprResult TemplateInstantiator::TransformCXXDefaultArgExpr(
CXXDefaultArgExpr *E) {
assert(!cast<FunctionDecl>(E->getParam()->getDeclContext())->
getDescribedFunctionTemplate() &&
"Default arg expressions are never formed in dependent cases.");
return SemaRef.BuildCXXDefaultArgExpr(E->getUsedLocation(),
cast<FunctionDecl>(E->getParam()->getDeclContext()),
E->getParam());
}
QualType TemplateInstantiator::TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL,
QualType ObjectType) {
// We need a local instantiation scope for this function prototype.
LocalInstantiationScope Scope(SemaRef, /*CombineWithOuterScope=*/true);
return inherited::TransformFunctionProtoType(TLB, TL, ObjectType);
}
ParmVarDecl *
TemplateInstantiator::TransformFunctionTypeParam(ParmVarDecl *OldParm) {
return SemaRef.SubstParmVarDecl(OldParm, TemplateArgs);
}
QualType
TemplateInstantiator::TransformTemplateTypeParmType(TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL,
QualType ObjectType) {
TemplateTypeParmType *T = TL.getTypePtr();
if (T->getDepth() < TemplateArgs.getNumLevels()) {
// Replace the template type parameter with its corresponding
// template argument.
// If the corresponding template argument is NULL or doesn't exist, it's
// because we are performing instantiation from explicitly-specified
// template arguments in a function template class, but there were some
// arguments left unspecified.
if (!TemplateArgs.hasTemplateArgument(T->getDepth(), T->getIndex())) {
TemplateTypeParmTypeLoc NewTL
= TLB.push<TemplateTypeParmTypeLoc>(TL.getType());
NewTL.setNameLoc(TL.getNameLoc());
return TL.getType();
}
assert(TemplateArgs(T->getDepth(), T->getIndex()).getKind()
== TemplateArgument::Type &&
"Template argument kind mismatch");
QualType Replacement
= TemplateArgs(T->getDepth(), T->getIndex()).getAsType();
// TODO: only do this uniquing once, at the start of instantiation.
QualType Result
= getSema().Context.getSubstTemplateTypeParmType(T, Replacement);
SubstTemplateTypeParmTypeLoc NewTL
= TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
// The template type parameter comes from an inner template (e.g.,
// the template parameter list of a member template inside the
// template we are instantiating). Create a new template type
// parameter with the template "level" reduced by one.
QualType Result
= getSema().Context.getTemplateTypeParmType(T->getDepth()
- TemplateArgs.getNumLevels(),
T->getIndex(),
T->isParameterPack(),
T->getName());
TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
/// \brief Perform substitution on the type T with a given set of template
/// arguments.
///
/// This routine substitutes the given template arguments into the
/// type T and produces the instantiated type.
///
/// \param T the type into which the template arguments will be
/// substituted. If this type is not dependent, it will be returned
/// immediately.
///
/// \param TemplateArgs the template arguments that will be
/// substituted for the top-level template parameters within T.
///
/// \param Loc the location in the source code where this substitution
/// is being performed. It will typically be the location of the
/// declarator (if we're instantiating the type of some declaration)
/// or the location of the type in the source code (if, e.g., we're
/// instantiating the type of a cast expression).
///
/// \param Entity the name of the entity associated with a declaration
/// being instantiated (if any). May be empty to indicate that there
/// is no such entity (if, e.g., this is a type that occurs as part of
/// a cast expression) or that the entity has no name (e.g., an
/// unnamed function parameter).
///
/// \returns If the instantiation succeeds, the instantiated
/// type. Otherwise, produces diagnostics and returns a NULL type.
TypeSourceInfo *Sema::SubstType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &Args,
SourceLocation Loc,
DeclarationName Entity) {
assert(!ActiveTemplateInstantiations.empty() &&
"Cannot perform an instantiation without some context on the "
"instantiation stack");
if (!T->getType()->isDependentType() &&
!T->getType()->isVariablyModifiedType())
return T;
TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
return Instantiator.TransformType(T);
}
/// Deprecated form of the above.
QualType Sema::SubstType(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity) {
assert(!ActiveTemplateInstantiations.empty() &&
"Cannot perform an instantiation without some context on the "
"instantiation stack");
// If T is not a dependent type or a variably-modified type, there
// is nothing to do.
if (!T->isDependentType() && !T->isVariablyModifiedType())
return T;
TemplateInstantiator Instantiator(*this, TemplateArgs, Loc, Entity);
return Instantiator.TransformType(T);
}
static bool NeedsInstantiationAsFunctionType(TypeSourceInfo *T) {
if (T->getType()->isDependentType() || T->getType()->isVariablyModifiedType())
return true;
TypeLoc TL = T->getTypeLoc();
if (!isa<FunctionProtoTypeLoc>(TL))
return false;
FunctionProtoTypeLoc FP = cast<FunctionProtoTypeLoc>(TL);
for (unsigned I = 0, E = FP.getNumArgs(); I != E; ++I) {
ParmVarDecl *P = FP.getArg(I);
// TODO: currently we always rebuild expressions. When we
// properly get lazier about this, we should use the same
// logic to avoid rebuilding prototypes here.
if (P->hasInit())
return true;
}
return false;
}
/// A form of SubstType intended specifically for instantiating the
/// type of a FunctionDecl. Its purpose is solely to force the
/// instantiation of default-argument expressions.
TypeSourceInfo *Sema::SubstFunctionDeclType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &Args,
SourceLocation Loc,
DeclarationName Entity) {
assert(!ActiveTemplateInstantiations.empty() &&
"Cannot perform an instantiation without some context on the "
"instantiation stack");
if (!NeedsInstantiationAsFunctionType(T))
return T;
TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
TypeLocBuilder TLB;
TypeLoc TL = T->getTypeLoc();
TLB.reserve(TL.getFullDataSize());
QualType Result = Instantiator.TransformType(TLB, TL, QualType());
if (Result.isNull())
return 0;
return TLB.getTypeSourceInfo(Context, Result);
}
ParmVarDecl *Sema::SubstParmVarDecl(ParmVarDecl *OldParm,
const MultiLevelTemplateArgumentList &TemplateArgs) {
TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
TypeSourceInfo *NewDI = SubstType(OldDI, TemplateArgs, OldParm->getLocation(),
OldParm->getDeclName());
if (!NewDI)
return 0;
if (NewDI->getType()->isVoidType()) {
Diag(OldParm->getLocation(), diag::err_param_with_void_type);
return 0;
}
ParmVarDecl *NewParm = CheckParameter(Context.getTranslationUnitDecl(),
NewDI, NewDI->getType(),
OldParm->getIdentifier(),
OldParm->getLocation(),
OldParm->getStorageClass(),
OldParm->getStorageClassAsWritten());
if (!NewParm)
return 0;
// Mark the (new) default argument as uninstantiated (if any).
if (OldParm->hasUninstantiatedDefaultArg()) {
Expr *Arg = OldParm->getUninstantiatedDefaultArg();
NewParm->setUninstantiatedDefaultArg(Arg);
} else if (Expr *Arg = OldParm->getDefaultArg())
NewParm->setUninstantiatedDefaultArg(Arg);
NewParm->setHasInheritedDefaultArg(OldParm->hasInheritedDefaultArg());
CurrentInstantiationScope->InstantiatedLocal(OldParm, NewParm);
// FIXME: OldParm may come from a FunctionProtoType, in which case CurContext
// can be anything, is this right ?
NewParm->setDeclContext(CurContext);
return NewParm;
}
/// \brief Perform substitution on the base class specifiers of the
/// given class template specialization.
///
/// Produces a diagnostic and returns true on error, returns false and
/// attaches the instantiated base classes to the class template
/// specialization if successful.
bool
Sema::SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs) {
bool Invalid = false;
llvm::SmallVector<CXXBaseSpecifier*, 4> InstantiatedBases;
for (ClassTemplateSpecializationDecl::base_class_iterator
Base = Pattern->bases_begin(), BaseEnd = Pattern->bases_end();
Base != BaseEnd; ++Base) {
if (!Base->getType()->isDependentType()) {
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
// Make sure to set the attributes from the base.
SetClassDeclAttributesFromBase(Instantiation, BaseDecl,
Base->isVirtual());
InstantiatedBases.push_back(new (Context) CXXBaseSpecifier(*Base));
continue;
}
TypeSourceInfo *BaseTypeLoc = SubstType(Base->getTypeSourceInfo(),
TemplateArgs,
Base->getSourceRange().getBegin(),
DeclarationName());
if (!BaseTypeLoc) {
Invalid = true;
continue;
}
if (CXXBaseSpecifier *InstantiatedBase
= CheckBaseSpecifier(Instantiation,
Base->getSourceRange(),
Base->isVirtual(),
Base->getAccessSpecifierAsWritten(),
BaseTypeLoc))
InstantiatedBases.push_back(InstantiatedBase);
else
Invalid = true;
}
if (!Invalid &&
AttachBaseSpecifiers(Instantiation, InstantiatedBases.data(),
InstantiatedBases.size()))
Invalid = true;
return Invalid;
}
/// \brief Instantiate the definition of a class from a given pattern.
///
/// \param PointOfInstantiation The point of instantiation within the
/// source code.
///
/// \param Instantiation is the declaration whose definition is being
/// instantiated. This will be either a class template specialization
/// or a member class of a class template specialization.
///
/// \param Pattern is the pattern from which the instantiation
/// occurs. This will be either the declaration of a class template or
/// the declaration of a member class of a class template.
///
/// \param TemplateArgs The template arguments to be substituted into
/// the pattern.
///
/// \param TSK the kind of implicit or explicit instantiation to perform.
///
/// \param Complain whether to complain if the class cannot be instantiated due
/// to the lack of a definition.
///
/// \returns true if an error occurred, false otherwise.
bool
Sema::InstantiateClass(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK,
bool Complain) {
bool Invalid = false;
CXXRecordDecl *PatternDef
= cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
if (!PatternDef) {
if (!Complain) {
// Say nothing
} else if (Pattern == Instantiation->getInstantiatedFromMemberClass()) {
Diag(PointOfInstantiation,
diag::err_implicit_instantiate_member_undefined)
<< Context.getTypeDeclType(Instantiation);
Diag(Pattern->getLocation(), diag::note_member_of_template_here);
} else {
Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
<< (TSK != TSK_ImplicitInstantiation)
<< Context.getTypeDeclType(Instantiation);
Diag(Pattern->getLocation(), diag::note_template_decl_here);
}
return true;
}
Pattern = PatternDef;
// \brief Record the point of instantiation.
if (MemberSpecializationInfo *MSInfo
= Instantiation->getMemberSpecializationInfo()) {
MSInfo->setTemplateSpecializationKind(TSK);
MSInfo->setPointOfInstantiation(PointOfInstantiation);
} else if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Instantiation)) {
Spec->setTemplateSpecializationKind(TSK);
Spec->setPointOfInstantiation(PointOfInstantiation);
}
InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation);
if (Inst)
return true;
// Enter the scope of this instantiation. We don't use
// PushDeclContext because we don't have a scope.
ContextRAII SavedContext(*this, Instantiation);
EnterExpressionEvaluationContext EvalContext(*this,
Sema::PotentiallyEvaluated);
// If this is an instantiation of a local class, merge this local
// instantiation scope with the enclosing scope. Otherwise, every
// instantiation of a class has its own local instantiation scope.
bool MergeWithParentScope = !Instantiation->isDefinedOutsideFunctionOrMethod();
LocalInstantiationScope Scope(*this, MergeWithParentScope);
// Pull attributes from the pattern onto the instantiation.
InstantiateAttrs(TemplateArgs, Pattern, Instantiation);
// Start the definition of this instantiation.
Instantiation->startDefinition();
Instantiation->setTagKind(Pattern->getTagKind());
// Do substitution on the base class specifiers.
if (SubstBaseSpecifiers(Instantiation, Pattern, TemplateArgs))
Invalid = true;
llvm::SmallVector<Decl*, 4> Fields;
for (RecordDecl::decl_iterator Member = Pattern->decls_begin(),
MemberEnd = Pattern->decls_end();
Member != MemberEnd; ++Member) {
Decl *NewMember = SubstDecl(*Member, Instantiation, TemplateArgs);
if (NewMember) {
if (FieldDecl *Field = dyn_cast<FieldDecl>(NewMember))
Fields.push_back(Field);
else if (NewMember->isInvalidDecl())
Invalid = true;
} else {
// FIXME: Eventually, a NULL return will mean that one of the
// instantiations was a semantic disaster, and we'll want to set Invalid =
// true. For now, we expect to skip some members that we can't yet handle.
}
}
// Finish checking fields.
ActOnFields(0, Instantiation->getLocation(), Instantiation,
Fields.data(), Fields.size(), SourceLocation(), SourceLocation(),
0);
CheckCompletedCXXClass(Instantiation);
if (Instantiation->isInvalidDecl())
Invalid = true;
// Exit the scope of this instantiation.
SavedContext.pop();
if (!Invalid) {
Consumer.HandleTagDeclDefinition(Instantiation);
// Always emit the vtable for an explicit instantiation definition
// of a polymorphic class template specialization.
if (TSK == TSK_ExplicitInstantiationDefinition)
MarkVTableUsed(PointOfInstantiation, Instantiation, true);
}
return Invalid;
}
bool
Sema::InstantiateClassTemplateSpecialization(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK,
bool Complain) {
// Perform the actual instantiation on the canonical declaration.
ClassTemplateSpec = cast<ClassTemplateSpecializationDecl>(
ClassTemplateSpec->getCanonicalDecl());
// Check whether we have already instantiated or specialized this class
// template specialization.
if (ClassTemplateSpec->getSpecializationKind() != TSK_Undeclared) {
if (ClassTemplateSpec->getSpecializationKind() ==
TSK_ExplicitInstantiationDeclaration &&
TSK == TSK_ExplicitInstantiationDefinition) {
// An explicit instantiation definition follows an explicit instantiation
// declaration (C++0x [temp.explicit]p10); go ahead and perform the
// explicit instantiation.
ClassTemplateSpec->setSpecializationKind(TSK);
// If this is an explicit instantiation definition, mark the
// vtable as used.
if (TSK == TSK_ExplicitInstantiationDefinition)
MarkVTableUsed(PointOfInstantiation, ClassTemplateSpec, true);
return false;
}
// We can only instantiate something that hasn't already been
// instantiated or specialized. Fail without any diagnostics: our
// caller will provide an error message.
return true;
}
if (ClassTemplateSpec->isInvalidDecl())
return true;
ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate();
CXXRecordDecl *Pattern = 0;
// C++ [temp.class.spec.match]p1:
// When a class template is used in a context that requires an
// instantiation of the class, it is necessary to determine
// whether the instantiation is to be generated using the primary
// template or one of the partial specializations. This is done by
// matching the template arguments of the class template
// specialization with the template argument lists of the partial
// specializations.
typedef std::pair<ClassTemplatePartialSpecializationDecl *,
TemplateArgumentList *> MatchResult;
llvm::SmallVector<MatchResult, 4> Matched;
llvm::SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
Template->getPartialSpecializations(PartialSpecs);
for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
ClassTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
TemplateDeductionInfo Info(Context, PointOfInstantiation);
if (TemplateDeductionResult Result
= DeduceTemplateArguments(Partial,
ClassTemplateSpec->getTemplateArgs(),
Info)) {
// FIXME: Store the failed-deduction information for use in
// diagnostics, later.
(void)Result;
} else {
Matched.push_back(std::make_pair(Partial, Info.take()));
}
}
if (Matched.size() >= 1) {
llvm::SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
if (Matched.size() == 1) {
// -- If exactly one matching specialization is found, the
// instantiation is generated from that specialization.
// We don't need to do anything for this.
} else {
// -- If more than one matching specialization is found, the
// partial order rules (14.5.4.2) are used to determine
// whether one of the specializations is more specialized
// than the others. If none of the specializations is more
// specialized than all of the other matching
// specializations, then the use of the class template is
// ambiguous and the program is ill-formed.
for (llvm::SmallVector<MatchResult, 4>::iterator P = Best + 1,
PEnd = Matched.end();
P != PEnd; ++P) {
if (getMoreSpecializedPartialSpecialization(P->first, Best->first,
PointOfInstantiation)
== P->first)
Best = P;
}
// Determine if the best partial specialization is more specialized than
// the others.
bool Ambiguous = false;
for (llvm::SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
PEnd = Matched.end();
P != PEnd; ++P) {
if (P != Best &&
getMoreSpecializedPartialSpecialization(P->first, Best->first,
PointOfInstantiation)
!= Best->first) {
Ambiguous = true;
break;
}
}
if (Ambiguous) {
// Partial ordering did not produce a clear winner. Complain.
ClassTemplateSpec->setInvalidDecl();
Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
<< ClassTemplateSpec;
// Print the matching partial specializations.
for (llvm::SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
PEnd = Matched.end();
P != PEnd; ++P)
Diag(P->first->getLocation(), diag::note_partial_spec_match)
<< getTemplateArgumentBindingsText(P->first->getTemplateParameters(),
*P->second);
return true;
}
}
// Instantiate using the best class template partial specialization.
ClassTemplatePartialSpecializationDecl *OrigPartialSpec = Best->first;
while (OrigPartialSpec->getInstantiatedFromMember()) {
// If we've found an explicit specialization of this class template,
// stop here and use that as the pattern.
if (OrigPartialSpec->isMemberSpecialization())
break;
OrigPartialSpec = OrigPartialSpec->getInstantiatedFromMember();
}
Pattern = OrigPartialSpec;
ClassTemplateSpec->setInstantiationOf(Best->first, Best->second);
} else {
// -- If no matches are found, the instantiation is generated
// from the primary template.
ClassTemplateDecl *OrigTemplate = Template;
while (OrigTemplate->getInstantiatedFromMemberTemplate()) {
// If we've found an explicit specialization of this class template,
// stop here and use that as the pattern.
if (OrigTemplate->isMemberSpecialization())
break;
OrigTemplate = OrigTemplate->getInstantiatedFromMemberTemplate();
}
Pattern = OrigTemplate->getTemplatedDecl();
}
bool Result = InstantiateClass(PointOfInstantiation, ClassTemplateSpec,
Pattern,
getTemplateInstantiationArgs(ClassTemplateSpec),
TSK,
Complain);
return Result;
}
/// \brief Instantiates the definitions of all of the member
/// of the given class, which is an instantiation of a class template
/// or a member class of a template.
void
Sema::InstantiateClassMembers(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK) {
for (DeclContext::decl_iterator D = Instantiation->decls_begin(),
DEnd = Instantiation->decls_end();
D != DEnd; ++D) {
bool SuppressNew = false;
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(*D)) {
if (FunctionDecl *Pattern
= Function->getInstantiatedFromMemberFunction()) {
MemberSpecializationInfo *MSInfo
= Function->getMemberSpecializationInfo();
assert(MSInfo && "No member specialization information?");
if (MSInfo->getTemplateSpecializationKind()
== TSK_ExplicitSpecialization)
continue;
if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK,
Function,
MSInfo->getTemplateSpecializationKind(),
MSInfo->getPointOfInstantiation(),
SuppressNew) ||
SuppressNew)
continue;
if (Function->hasBody())
continue;
if (TSK == TSK_ExplicitInstantiationDefinition) {
// C++0x [temp.explicit]p8:
// An explicit instantiation definition that names a class template
// specialization explicitly instantiates the class template
// specialization and is only an explicit instantiation definition
// of members whose definition is visible at the point of
// instantiation.
if (!Pattern->hasBody())
continue;
Function->setTemplateSpecializationKind(TSK, PointOfInstantiation);
InstantiateFunctionDefinition(PointOfInstantiation, Function);
} else {
Function->setTemplateSpecializationKind(TSK, PointOfInstantiation);
}
}
} else if (VarDecl *Var = dyn_cast<VarDecl>(*D)) {
if (Var->isStaticDataMember()) {
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
assert(MSInfo && "No member specialization information?");
if (MSInfo->getTemplateSpecializationKind()
== TSK_ExplicitSpecialization)
continue;
if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK,
Var,
MSInfo->getTemplateSpecializationKind(),
MSInfo->getPointOfInstantiation(),
SuppressNew) ||
SuppressNew)
continue;
if (TSK == TSK_ExplicitInstantiationDefinition) {
// C++0x [temp.explicit]p8:
// An explicit instantiation definition that names a class template
// specialization explicitly instantiates the class template
// specialization and is only an explicit instantiation definition
// of members whose definition is visible at the point of
// instantiation.
if (!Var->getInstantiatedFromStaticDataMember()
->getOutOfLineDefinition())
continue;
Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
InstantiateStaticDataMemberDefinition(PointOfInstantiation, Var);
} else {
Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
}
}
} else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(*D)) {
// Always skip the injected-class-name, along with any
// redeclarations of nested classes, since both would cause us
// to try to instantiate the members of a class twice.
if (Record->isInjectedClassName() || Record->getPreviousDeclaration())
continue;
MemberSpecializationInfo *MSInfo = Record->getMemberSpecializationInfo();
assert(MSInfo && "No member specialization information?");
if (MSInfo->getTemplateSpecializationKind()
== TSK_ExplicitSpecialization)
continue;
if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK,
Record,
MSInfo->getTemplateSpecializationKind(),
MSInfo->getPointOfInstantiation(),
SuppressNew) ||
SuppressNew)
continue;
CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
assert(Pattern && "Missing instantiated-from-template information");
if (!Record->getDefinition()) {
if (!Pattern->getDefinition()) {
// C++0x [temp.explicit]p8:
// An explicit instantiation definition that names a class template
// specialization explicitly instantiates the class template
// specialization and is only an explicit instantiation definition
// of members whose definition is visible at the point of
// instantiation.
if (TSK == TSK_ExplicitInstantiationDeclaration) {
MSInfo->setTemplateSpecializationKind(TSK);
MSInfo->setPointOfInstantiation(PointOfInstantiation);
}
continue;
}
InstantiateClass(PointOfInstantiation, Record, Pattern,
TemplateArgs,
TSK);
}
Pattern = cast_or_null<CXXRecordDecl>(Record->getDefinition());
if (Pattern)
InstantiateClassMembers(PointOfInstantiation, Pattern, TemplateArgs,
TSK);
}
}
}
/// \brief Instantiate the definitions of all of the members of the
/// given class template specialization, which was named as part of an
/// explicit instantiation.
void
Sema::InstantiateClassTemplateSpecializationMembers(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK) {
// C++0x [temp.explicit]p7:
// An explicit instantiation that names a class template
// specialization is an explicit instantion of the same kind
// (declaration or definition) of each of its members (not
// including members inherited from base classes) that has not
// been previously explicitly specialized in the translation unit
// containing the explicit instantiation, except as described
// below.
InstantiateClassMembers(PointOfInstantiation, ClassTemplateSpec,
getTemplateInstantiationArgs(ClassTemplateSpec),
TSK);
}
StmtResult
Sema::SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs) {
if (!S)
return Owned(S);
TemplateInstantiator Instantiator(*this, TemplateArgs,
SourceLocation(),
DeclarationName());
return Instantiator.TransformStmt(S);
}
ExprResult
Sema::SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs) {
if (!E)
return Owned(E);
TemplateInstantiator Instantiator(*this, TemplateArgs,
SourceLocation(),
DeclarationName());
return Instantiator.TransformExpr(E);
}
/// \brief Do template substitution on a nested-name-specifier.
NestedNameSpecifier *
Sema::SubstNestedNameSpecifier(NestedNameSpecifier *NNS,
SourceRange Range,
const MultiLevelTemplateArgumentList &TemplateArgs) {
TemplateInstantiator Instantiator(*this, TemplateArgs, Range.getBegin(),
DeclarationName());
return Instantiator.TransformNestedNameSpecifier(NNS, Range);
}
/// \brief Do template substitution on declaration name info.
DeclarationNameInfo
Sema::SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
const MultiLevelTemplateArgumentList &TemplateArgs) {
TemplateInstantiator Instantiator(*this, TemplateArgs, NameInfo.getLoc(),
NameInfo.getName());
return Instantiator.TransformDeclarationNameInfo(NameInfo);
}
TemplateName
Sema::SubstTemplateName(TemplateName Name, SourceLocation Loc,
const MultiLevelTemplateArgumentList &TemplateArgs) {
TemplateInstantiator Instantiator(*this, TemplateArgs, Loc,
DeclarationName());
return Instantiator.TransformTemplateName(Name);
}
bool Sema::Subst(const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output,
const MultiLevelTemplateArgumentList &TemplateArgs) {
TemplateInstantiator Instantiator(*this, TemplateArgs, SourceLocation(),
DeclarationName());
return Instantiator.TransformTemplateArgument(Input, Output);
}
Decl *LocalInstantiationScope::getInstantiationOf(const Decl *D) {
for (LocalInstantiationScope *Current = this; Current;
Current = Current->Outer) {
// Check if we found something within this scope.
llvm::DenseMap<const Decl *, Decl *>::iterator Found
= Current->LocalDecls.find(D);
if (Found != Current->LocalDecls.end())
return Found->second;
// If we aren't combined with our outer scope, we're done.
if (!Current->CombineWithOuterScope)
break;
}
assert(D->isInvalidDecl() &&
"declaration was not instantiated in this scope!");
return 0;
}
void LocalInstantiationScope::InstantiatedLocal(const Decl *D, Decl *Inst) {
Decl *&Stored = LocalDecls[D];
assert((!Stored || Stored == Inst)&& "Already instantiated this local");
Stored = Inst;
}