llvm-project/clang/lib/Sema/SemaTemplate.cpp

5610 lines
227 KiB
C++

//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements semantic analysis for C++ templates.
//===----------------------------------------------------------------------===/
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "TreeTransform.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace sema;
/// \brief Determine whether the declaration found is acceptable as the name
/// of a template and, if so, return that template declaration. Otherwise,
/// returns NULL.
static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
NamedDecl *Orig) {
NamedDecl *D = Orig->getUnderlyingDecl();
if (isa<TemplateDecl>(D))
return Orig;
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
// C++ [temp.local]p1:
// Like normal (non-template) classes, class templates have an
// injected-class-name (Clause 9). The injected-class-name
// can be used with or without a template-argument-list. When
// it is used without a template-argument-list, it is
// equivalent to the injected-class-name followed by the
// template-parameters of the class template enclosed in
// <>. When it is used with a template-argument-list, it
// refers to the specified class template specialization,
// which could be the current specialization or another
// specialization.
if (Record->isInjectedClassName()) {
Record = cast<CXXRecordDecl>(Record->getDeclContext());
if (Record->getDescribedClassTemplate())
return Record->getDescribedClassTemplate();
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Record))
return Spec->getSpecializedTemplate();
}
return 0;
}
return 0;
}
static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
// The set of class templates we've already seen.
llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
LookupResult::Filter filter = R.makeFilter();
while (filter.hasNext()) {
NamedDecl *Orig = filter.next();
NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
if (!Repl)
filter.erase();
else if (Repl != Orig) {
// C++ [temp.local]p3:
// A lookup that finds an injected-class-name (10.2) can result in an
// ambiguity in certain cases (for example, if it is found in more than
// one base class). If all of the injected-class-names that are found
// refer to specializations of the same class template, and if the name
// is followed by a template-argument-list, the reference refers to the
// class template itself and not a specialization thereof, and is not
// ambiguous.
//
// FIXME: Will we eventually have to do the same for alias templates?
if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
if (!ClassTemplates.insert(ClassTmpl)) {
filter.erase();
continue;
}
// FIXME: we promote access to public here as a workaround to
// the fact that LookupResult doesn't let us remember that we
// found this template through a particular injected class name,
// which means we end up doing nasty things to the invariants.
// Pretending that access is public is *much* safer.
filter.replace(Repl, AS_public);
}
}
filter.done();
}
TemplateNameKind Sema::isTemplateName(Scope *S,
CXXScopeSpec &SS,
bool hasTemplateKeyword,
UnqualifiedId &Name,
ParsedType ObjectTypePtr,
bool EnteringContext,
TemplateTy &TemplateResult,
bool &MemberOfUnknownSpecialization) {
assert(getLangOptions().CPlusPlus && "No template names in C!");
DeclarationName TName;
MemberOfUnknownSpecialization = false;
switch (Name.getKind()) {
case UnqualifiedId::IK_Identifier:
TName = DeclarationName(Name.Identifier);
break;
case UnqualifiedId::IK_OperatorFunctionId:
TName = Context.DeclarationNames.getCXXOperatorName(
Name.OperatorFunctionId.Operator);
break;
case UnqualifiedId::IK_LiteralOperatorId:
TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
break;
default:
return TNK_Non_template;
}
QualType ObjectType = ObjectTypePtr.get();
LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
LookupOrdinaryName);
LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
MemberOfUnknownSpecialization);
if (R.empty() || R.isAmbiguous()) {
R.suppressDiagnostics();
return TNK_Non_template;
}
TemplateName Template;
TemplateNameKind TemplateKind;
unsigned ResultCount = R.end() - R.begin();
if (ResultCount > 1) {
// We assume that we'll preserve the qualifier from a function
// template name in other ways.
Template = Context.getOverloadedTemplateName(R.begin(), R.end());
TemplateKind = TNK_Function_template;
// We'll do this lookup again later.
R.suppressDiagnostics();
} else {
TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
if (SS.isSet() && !SS.isInvalid()) {
NestedNameSpecifier *Qualifier
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
Template = Context.getQualifiedTemplateName(Qualifier,
hasTemplateKeyword, TD);
} else {
Template = TemplateName(TD);
}
if (isa<FunctionTemplateDecl>(TD)) {
TemplateKind = TNK_Function_template;
// We'll do this lookup again later.
R.suppressDiagnostics();
} else {
assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
TemplateKind = TNK_Type_template;
}
}
TemplateResult = TemplateTy::make(Template);
return TemplateKind;
}
bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
SourceLocation IILoc,
Scope *S,
const CXXScopeSpec *SS,
TemplateTy &SuggestedTemplate,
TemplateNameKind &SuggestedKind) {
// We can't recover unless there's a dependent scope specifier preceding the
// template name.
// FIXME: Typo correction?
if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
computeDeclContext(*SS))
return false;
// The code is missing a 'template' keyword prior to the dependent template
// name.
NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
Diag(IILoc, diag::err_template_kw_missing)
<< Qualifier << II.getName()
<< FixItHint::CreateInsertion(IILoc, "template ");
SuggestedTemplate
= TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
SuggestedKind = TNK_Dependent_template_name;
return true;
}
void Sema::LookupTemplateName(LookupResult &Found,
Scope *S, CXXScopeSpec &SS,
QualType ObjectType,
bool EnteringContext,
bool &MemberOfUnknownSpecialization) {
// Determine where to perform name lookup
MemberOfUnknownSpecialization = false;
DeclContext *LookupCtx = 0;
bool isDependent = false;
if (!ObjectType.isNull()) {
// This nested-name-specifier occurs in a member access expression, e.g.,
// x->B::f, and we are looking into the type of the object.
assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
LookupCtx = computeDeclContext(ObjectType);
isDependent = ObjectType->isDependentType();
assert((isDependent || !ObjectType->isIncompleteType()) &&
"Caller should have completed object type");
} else if (SS.isSet()) {
// This nested-name-specifier occurs after another nested-name-specifier,
// so long into the context associated with the prior nested-name-specifier.
LookupCtx = computeDeclContext(SS, EnteringContext);
isDependent = isDependentScopeSpecifier(SS);
// The declaration context must be complete.
if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
return;
}
bool ObjectTypeSearchedInScope = false;
if (LookupCtx) {
// Perform "qualified" name lookup into the declaration context we
// computed, which is either the type of the base of a member access
// expression or the declaration context associated with a prior
// nested-name-specifier.
LookupQualifiedName(Found, LookupCtx);
if (!ObjectType.isNull() && Found.empty()) {
// C++ [basic.lookup.classref]p1:
// In a class member access expression (5.2.5), if the . or -> token is
// immediately followed by an identifier followed by a <, the
// identifier must be looked up to determine whether the < is the
// beginning of a template argument list (14.2) or a less-than operator.
// The identifier is first looked up in the class of the object
// expression. If the identifier is not found, it is then looked up in
// the context of the entire postfix-expression and shall name a class
// or function template.
if (S) LookupName(Found, S);
ObjectTypeSearchedInScope = true;
}
} else if (isDependent && (!S || ObjectType.isNull())) {
// We cannot look into a dependent object type or nested nme
// specifier.
MemberOfUnknownSpecialization = true;
return;
} else {
// Perform unqualified name lookup in the current scope.
LookupName(Found, S);
}
if (Found.empty() && !isDependent) {
// If we did not find any names, attempt to correct any typos.
DeclarationName Name = Found.getLookupName();
if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
false, CTC_CXXCasts)) {
FilterAcceptableTemplateNames(Context, Found);
if (!Found.empty()) {
if (LookupCtx)
Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
<< Name << LookupCtx << Found.getLookupName() << SS.getRange()
<< FixItHint::CreateReplacement(Found.getNameLoc(),
Found.getLookupName().getAsString());
else
Diag(Found.getNameLoc(), diag::err_no_template_suggest)
<< Name << Found.getLookupName()
<< FixItHint::CreateReplacement(Found.getNameLoc(),
Found.getLookupName().getAsString());
if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
Diag(Template->getLocation(), diag::note_previous_decl)
<< Template->getDeclName();
}
} else {
Found.clear();
Found.setLookupName(Name);
}
}
FilterAcceptableTemplateNames(Context, Found);
if (Found.empty()) {
if (isDependent)
MemberOfUnknownSpecialization = true;
return;
}
if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
// C++ [basic.lookup.classref]p1:
// [...] If the lookup in the class of the object expression finds a
// template, the name is also looked up in the context of the entire
// postfix-expression and [...]
//
LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
LookupOrdinaryName);
LookupName(FoundOuter, S);
FilterAcceptableTemplateNames(Context, FoundOuter);
if (FoundOuter.empty()) {
// - if the name is not found, the name found in the class of the
// object expression is used, otherwise
} else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
// - if the name is found in the context of the entire
// postfix-expression and does not name a class template, the name
// found in the class of the object expression is used, otherwise
} else if (!Found.isSuppressingDiagnostics()) {
// - if the name found is a class template, it must refer to the same
// entity as the one found in the class of the object expression,
// otherwise the program is ill-formed.
if (!Found.isSingleResult() ||
Found.getFoundDecl()->getCanonicalDecl()
!= FoundOuter.getFoundDecl()->getCanonicalDecl()) {
Diag(Found.getNameLoc(),
diag::ext_nested_name_member_ref_lookup_ambiguous)
<< Found.getLookupName()
<< ObjectType;
Diag(Found.getRepresentativeDecl()->getLocation(),
diag::note_ambig_member_ref_object_type)
<< ObjectType;
Diag(FoundOuter.getFoundDecl()->getLocation(),
diag::note_ambig_member_ref_scope);
// Recover by taking the template that we found in the object
// expression's type.
}
}
}
}
/// ActOnDependentIdExpression - Handle a dependent id-expression that
/// was just parsed. This is only possible with an explicit scope
/// specifier naming a dependent type.
ExprResult
Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
bool isAddressOfOperand,
const TemplateArgumentListInfo *TemplateArgs) {
NestedNameSpecifier *Qualifier
= static_cast<NestedNameSpecifier*>(SS.getScopeRep());
DeclContext *DC = getFunctionLevelDeclContext();
if (!isAddressOfOperand &&
isa<CXXMethodDecl>(DC) &&
cast<CXXMethodDecl>(DC)->isInstance()) {
QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
// Since the 'this' expression is synthesized, we don't need to
// perform the double-lookup check.
NamedDecl *FirstQualifierInScope = 0;
return Owned(CXXDependentScopeMemberExpr::Create(Context,
/*This*/ 0, ThisType,
/*IsArrow*/ true,
/*Op*/ SourceLocation(),
Qualifier, SS.getRange(),
FirstQualifierInScope,
NameInfo,
TemplateArgs));
}
return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
}
ExprResult
Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
return Owned(DependentScopeDeclRefExpr::Create(Context,
static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
SS.getRange(),
NameInfo,
TemplateArgs));
}
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
/// that the template parameter 'PrevDecl' is being shadowed by a new
/// declaration at location Loc. Returns true to indicate that this is
/// an error, and false otherwise.
bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
// Microsoft Visual C++ permits template parameters to be shadowed.
if (getLangOptions().Microsoft)
return false;
// C++ [temp.local]p4:
// A template-parameter shall not be redeclared within its
// scope (including nested scopes).
Diag(Loc, diag::err_template_param_shadow)
<< cast<NamedDecl>(PrevDecl)->getDeclName();
Diag(PrevDecl->getLocation(), diag::note_template_param_here);
return true;
}
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
/// the parameter D to reference the templated declaration and return a pointer
/// to the template declaration. Otherwise, do nothing to D and return null.
TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
D = Temp->getTemplatedDecl();
return Temp;
}
return 0;
}
static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
const ParsedTemplateArgument &Arg) {
switch (Arg.getKind()) {
case ParsedTemplateArgument::Type: {
TypeSourceInfo *DI;
QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
if (!DI)
DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
return TemplateArgumentLoc(TemplateArgument(T), DI);
}
case ParsedTemplateArgument::NonType: {
Expr *E = static_cast<Expr *>(Arg.getAsExpr());
return TemplateArgumentLoc(TemplateArgument(E), E);
}
case ParsedTemplateArgument::Template: {
TemplateName Template = Arg.getAsTemplate().get();
return TemplateArgumentLoc(TemplateArgument(Template),
Arg.getScopeSpec().getRange(),
Arg.getLocation());
}
}
llvm_unreachable("Unhandled parsed template argument");
return TemplateArgumentLoc();
}
/// \brief Translates template arguments as provided by the parser
/// into template arguments used by semantic analysis.
void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
TemplateArgumentListInfo &TemplateArgs) {
for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
TemplateArgs.addArgument(translateTemplateArgument(*this,
TemplateArgsIn[I]));
}
/// ActOnTypeParameter - Called when a C++ template type parameter
/// (e.g., "typename T") has been parsed. Typename specifies whether
/// the keyword "typename" was used to declare the type parameter
/// (otherwise, "class" was used), and KeyLoc is the location of the
/// "class" or "typename" keyword. ParamName is the name of the
/// parameter (NULL indicates an unnamed template parameter) and
/// ParamName is the location of the parameter name (if any).
/// If the type parameter has a default argument, it will be added
/// later via ActOnTypeParameterDefault.
Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
SourceLocation EllipsisLoc,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth, unsigned Position,
SourceLocation EqualLoc,
ParsedType DefaultArg) {
assert(S->isTemplateParamScope() &&
"Template type parameter not in template parameter scope!");
bool Invalid = false;
if (ParamName) {
NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
LookupOrdinaryName,
ForRedeclaration);
if (PrevDecl && PrevDecl->isTemplateParameter())
Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
PrevDecl);
}
SourceLocation Loc = ParamNameLoc;
if (!ParamName)
Loc = KeyLoc;
TemplateTypeParmDecl *Param
= TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
Loc, Depth, Position, ParamName, Typename,
Ellipsis);
if (Invalid)
Param->setInvalidDecl();
if (ParamName) {
// Add the template parameter into the current scope.
S->AddDecl(Param);
IdResolver.AddDecl(Param);
}
// Handle the default argument, if provided.
if (DefaultArg) {
TypeSourceInfo *DefaultTInfo;
GetTypeFromParser(DefaultArg, &DefaultTInfo);
assert(DefaultTInfo && "expected source information for type");
// C++0x [temp.param]p9:
// A default template-argument may be specified for any kind of
// template-parameter that is not a template parameter pack.
if (Ellipsis) {
Diag(EqualLoc, diag::err_template_param_pack_default_arg);
return Param;
}
// Check the template argument itself.
if (CheckTemplateArgument(Param, DefaultTInfo)) {
Param->setInvalidDecl();
return Param;
}
Param->setDefaultArgument(DefaultTInfo, false);
}
return Param;
}
/// \brief Check that the type of a non-type template parameter is
/// well-formed.
///
/// \returns the (possibly-promoted) parameter type if valid;
/// otherwise, produces a diagnostic and returns a NULL type.
QualType
Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
// We don't allow variably-modified types as the type of non-type template
// parameters.
if (T->isVariablyModifiedType()) {
Diag(Loc, diag::err_variably_modified_nontype_template_param)
<< T;
return QualType();
}
// C++ [temp.param]p4:
//
// A non-type template-parameter shall have one of the following
// (optionally cv-qualified) types:
//
// -- integral or enumeration type,
if (T->isIntegralOrEnumerationType() ||
// -- pointer to object or pointer to function,
T->isPointerType() ||
// -- reference to object or reference to function,
T->isReferenceType() ||
// -- pointer to member.
T->isMemberPointerType() ||
// If T is a dependent type, we can't do the check now, so we
// assume that it is well-formed.
T->isDependentType())
return T;
// C++ [temp.param]p8:
//
// A non-type template-parameter of type "array of T" or
// "function returning T" is adjusted to be of type "pointer to
// T" or "pointer to function returning T", respectively.
else if (T->isArrayType())
// FIXME: Keep the type prior to promotion?
return Context.getArrayDecayedType(T);
else if (T->isFunctionType())
// FIXME: Keep the type prior to promotion?
return Context.getPointerType(T);
Diag(Loc, diag::err_template_nontype_parm_bad_type)
<< T;
return QualType();
}
Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
Expr *Default) {
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
assert(S->isTemplateParamScope() &&
"Non-type template parameter not in template parameter scope!");
bool Invalid = false;
IdentifierInfo *ParamName = D.getIdentifier();
if (ParamName) {
NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
LookupOrdinaryName,
ForRedeclaration);
if (PrevDecl && PrevDecl->isTemplateParameter())
Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
PrevDecl);
}
T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
if (T.isNull()) {
T = Context.IntTy; // Recover with an 'int' type.
Invalid = true;
}
NonTypeTemplateParmDecl *Param
= NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
D.getIdentifierLoc(),
Depth, Position, ParamName, T, TInfo);
if (Invalid)
Param->setInvalidDecl();
if (D.getIdentifier()) {
// Add the template parameter into the current scope.
S->AddDecl(Param);
IdResolver.AddDecl(Param);
}
// Check the well-formedness of the default template argument, if provided.
if (Default) {
TemplateArgument Converted;
if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
Param->setInvalidDecl();
return Param;
}
Param->setDefaultArgument(Default, false);
}
return Param;
}
/// ActOnTemplateTemplateParameter - Called when a C++ template template
/// parameter (e.g. T in template <template <typename> class T> class array)
/// has been parsed. S is the current scope.
Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
SourceLocation TmpLoc,
TemplateParamsTy *Params,
IdentifierInfo *Name,
SourceLocation NameLoc,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
const ParsedTemplateArgument &Default) {
assert(S->isTemplateParamScope() &&
"Template template parameter not in template parameter scope!");
// Construct the parameter object.
TemplateTemplateParmDecl *Param =
TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
TmpLoc, Depth, Position, Name,
(TemplateParameterList*)Params);
// If the template template parameter has a name, then link the identifier
// into the scope and lookup mechanisms.
if (Name) {
S->AddDecl(Param);
IdResolver.AddDecl(Param);
}
if (!Default.isInvalid()) {
// Check only that we have a template template argument. We don't want to
// try to check well-formedness now, because our template template parameter
// might have dependent types in its template parameters, which we wouldn't
// be able to match now.
//
// If none of the template template parameter's template arguments mention
// other template parameters, we could actually perform more checking here.
// However, it isn't worth doing.
TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
if (DefaultArg.getArgument().getAsTemplate().isNull()) {
Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
<< DefaultArg.getSourceRange();
return Param;
}
Param->setDefaultArgument(DefaultArg, false);
}
return Param;
}
/// ActOnTemplateParameterList - Builds a TemplateParameterList that
/// contains the template parameters in Params/NumParams.
Sema::TemplateParamsTy *
Sema::ActOnTemplateParameterList(unsigned Depth,
SourceLocation ExportLoc,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
Decl **Params, unsigned NumParams,
SourceLocation RAngleLoc) {
if (ExportLoc.isValid())
Diag(ExportLoc, diag::warn_template_export_unsupported);
return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
(NamedDecl**)Params, NumParams,
RAngleLoc);
}
static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
if (SS.isSet())
T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
SS.getRange());
}
DeclResult
Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
TemplateParameterList *TemplateParams,
AccessSpecifier AS) {
assert(TemplateParams && TemplateParams->size() > 0 &&
"No template parameters");
assert(TUK != TUK_Reference && "Can only declare or define class templates");
bool Invalid = false;
// Check that we can declare a template here.
if (CheckTemplateDeclScope(S, TemplateParams))
return true;
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
assert(Kind != TTK_Enum && "can't build template of enumerated type");
// There is no such thing as an unnamed class template.
if (!Name) {
Diag(KWLoc, diag::err_template_unnamed_class);
return true;
}
// Find any previous declaration with this name.
DeclContext *SemanticContext;
LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
ForRedeclaration);
if (SS.isNotEmpty() && !SS.isInvalid()) {
SemanticContext = computeDeclContext(SS, true);
if (!SemanticContext) {
// FIXME: Produce a reasonable diagnostic here
return true;
}
if (RequireCompleteDeclContext(SS, SemanticContext))
return true;
LookupQualifiedName(Previous, SemanticContext);
} else {
SemanticContext = CurContext;
LookupName(Previous, S);
}
if (Previous.isAmbiguous())
return true;
NamedDecl *PrevDecl = 0;
if (Previous.begin() != Previous.end())
PrevDecl = (*Previous.begin())->getUnderlyingDecl();
// If there is a previous declaration with the same name, check
// whether this is a valid redeclaration.
ClassTemplateDecl *PrevClassTemplate
= dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
// We may have found the injected-class-name of a class template,
// class template partial specialization, or class template specialization.
// In these cases, grab the template that is being defined or specialized.
if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
PrevClassTemplate
= cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
PrevClassTemplate
= cast<ClassTemplateSpecializationDecl>(PrevDecl)
->getSpecializedTemplate();
}
}
if (TUK == TUK_Friend) {
// C++ [namespace.memdef]p3:
// [...] When looking for a prior declaration of a class or a function
// declared as a friend, and when the name of the friend class or
// function is neither a qualified name nor a template-id, scopes outside
// the innermost enclosing namespace scope are not considered.
if (!SS.isSet()) {
DeclContext *OutermostContext = CurContext;
while (!OutermostContext->isFileContext())
OutermostContext = OutermostContext->getLookupParent();
if (PrevDecl &&
(OutermostContext->Equals(PrevDecl->getDeclContext()) ||
OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
SemanticContext = PrevDecl->getDeclContext();
} else {
// Declarations in outer scopes don't matter. However, the outermost
// context we computed is the semantic context for our new
// declaration.
PrevDecl = PrevClassTemplate = 0;
SemanticContext = OutermostContext;
}
}
if (CurContext->isDependentContext()) {
// If this is a dependent context, we don't want to link the friend
// class template to the template in scope, because that would perform
// checking of the template parameter lists that can't be performed
// until the outer context is instantiated.
PrevDecl = PrevClassTemplate = 0;
}
} else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
PrevDecl = PrevClassTemplate = 0;
if (PrevClassTemplate) {
// Ensure that the template parameter lists are compatible.
if (!TemplateParameterListsAreEqual(TemplateParams,
PrevClassTemplate->getTemplateParameters(),
/*Complain=*/true,
TPL_TemplateMatch))
return true;
// C++ [temp.class]p4:
// In a redeclaration, partial specialization, explicit
// specialization or explicit instantiation of a class template,
// the class-key shall agree in kind with the original class
// template declaration (7.1.5.3).
RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
Diag(KWLoc, diag::err_use_with_wrong_tag)
<< Name
<< FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
Kind = PrevRecordDecl->getTagKind();
}
// Check for redefinition of this class template.
if (TUK == TUK_Definition) {
if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
Diag(NameLoc, diag::err_redefinition) << Name;
Diag(Def->getLocation(), diag::note_previous_definition);
// FIXME: Would it make sense to try to "forget" the previous
// definition, as part of error recovery?
return true;
}
}
} else if (PrevDecl && PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
} else if (PrevDecl) {
// C++ [temp]p5:
// A class template shall not have the same name as any other
// template, class, function, object, enumeration, enumerator,
// namespace, or type in the same scope (3.3), except as specified
// in (14.5.4).
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
return true;
}
// Check the template parameter list of this declaration, possibly
// merging in the template parameter list from the previous class
// template declaration.
if (CheckTemplateParameterList(TemplateParams,
PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
TPC_ClassTemplate))
Invalid = true;
if (SS.isSet()) {
// If the name of the template was qualified, we must be defining the
// template out-of-line.
if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
!(TUK == TUK_Friend && CurContext->isDependentContext()))
Diag(NameLoc, diag::err_member_def_does_not_match)
<< Name << SemanticContext << SS.getRange();
}
CXXRecordDecl *NewClass =
CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
PrevClassTemplate?
PrevClassTemplate->getTemplatedDecl() : 0,
/*DelayTypeCreation=*/true);
SetNestedNameSpecifier(NewClass, SS);
ClassTemplateDecl *NewTemplate
= ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
DeclarationName(Name), TemplateParams,
NewClass, PrevClassTemplate);
NewClass->setDescribedClassTemplate(NewTemplate);
// Build the type for the class template declaration now.
QualType T = NewTemplate->getInjectedClassNameSpecialization();
T = Context.getInjectedClassNameType(NewClass, T);
assert(T->isDependentType() && "Class template type is not dependent?");
(void)T;
// If we are providing an explicit specialization of a member that is a
// class template, make a note of that.
if (PrevClassTemplate &&
PrevClassTemplate->getInstantiatedFromMemberTemplate())
PrevClassTemplate->setMemberSpecialization();
// Set the access specifier.
if (!Invalid && TUK != TUK_Friend)
SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
// Set the lexical context of these templates
NewClass->setLexicalDeclContext(CurContext);
NewTemplate->setLexicalDeclContext(CurContext);
if (TUK == TUK_Definition)
NewClass->startDefinition();
if (Attr)
ProcessDeclAttributeList(S, NewClass, Attr);
if (TUK != TUK_Friend)
PushOnScopeChains(NewTemplate, S);
else {
if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
NewTemplate->setAccess(PrevClassTemplate->getAccess());
NewClass->setAccess(PrevClassTemplate->getAccess());
}
NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
PrevClassTemplate != NULL);
// Friend templates are visible in fairly strange ways.
if (!CurContext->isDependentContext()) {
DeclContext *DC = SemanticContext->getLookupContext();
DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
PushOnScopeChains(NewTemplate, EnclosingScope,
/* AddToContext = */ false);
}
FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
NewClass->getLocation(),
NewTemplate,
/*FIXME:*/NewClass->getLocation());
Friend->setAccess(AS_public);
CurContext->addDecl(Friend);
}
if (Invalid) {
NewTemplate->setInvalidDecl();
NewClass->setInvalidDecl();
}
return NewTemplate;
}
/// \brief Diagnose the presence of a default template argument on a
/// template parameter, which is ill-formed in certain contexts.
///
/// \returns true if the default template argument should be dropped.
static bool DiagnoseDefaultTemplateArgument(Sema &S,
Sema::TemplateParamListContext TPC,
SourceLocation ParamLoc,
SourceRange DefArgRange) {
switch (TPC) {
case Sema::TPC_ClassTemplate:
return false;
case Sema::TPC_FunctionTemplate:
// C++ [temp.param]p9:
// A default template-argument shall not be specified in a
// function template declaration or a function template
// definition [...]
// (This sentence is not in C++0x, per DR226).
if (!S.getLangOptions().CPlusPlus0x)
S.Diag(ParamLoc,
diag::err_template_parameter_default_in_function_template)
<< DefArgRange;
return false;
case Sema::TPC_ClassTemplateMember:
// C++0x [temp.param]p9:
// A default template-argument shall not be specified in the
// template-parameter-lists of the definition of a member of a
// class template that appears outside of the member's class.
S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
<< DefArgRange;
return true;
case Sema::TPC_FriendFunctionTemplate:
// C++ [temp.param]p9:
// A default template-argument shall not be specified in a
// friend template declaration.
S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
<< DefArgRange;
return true;
// FIXME: C++0x [temp.param]p9 allows default template-arguments
// for friend function templates if there is only a single
// declaration (and it is a definition). Strange!
}
return false;
}
/// \brief Checks the validity of a template parameter list, possibly
/// considering the template parameter list from a previous
/// declaration.
///
/// If an "old" template parameter list is provided, it must be
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
/// template parameter list.
///
/// \param NewParams Template parameter list for a new template
/// declaration. This template parameter list will be updated with any
/// default arguments that are carried through from the previous
/// template parameter list.
///
/// \param OldParams If provided, template parameter list from a
/// previous declaration of the same template. Default template
/// arguments will be merged from the old template parameter list to
/// the new template parameter list.
///
/// \param TPC Describes the context in which we are checking the given
/// template parameter list.
///
/// \returns true if an error occurred, false otherwise.
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
TemplateParameterList *OldParams,
TemplateParamListContext TPC) {
bool Invalid = false;
// C++ [temp.param]p10:
// The set of default template-arguments available for use with a
// template declaration or definition is obtained by merging the
// default arguments from the definition (if in scope) and all
// declarations in scope in the same way default function
// arguments are (8.3.6).
bool SawDefaultArgument = false;
SourceLocation PreviousDefaultArgLoc;
bool SawParameterPack = false;
SourceLocation ParameterPackLoc;
// Dummy initialization to avoid warnings.
TemplateParameterList::iterator OldParam = NewParams->end();
if (OldParams)
OldParam = OldParams->begin();
for (TemplateParameterList::iterator NewParam = NewParams->begin(),
NewParamEnd = NewParams->end();
NewParam != NewParamEnd; ++NewParam) {
// Variables used to diagnose redundant default arguments
bool RedundantDefaultArg = false;
SourceLocation OldDefaultLoc;
SourceLocation NewDefaultLoc;
// Variables used to diagnose missing default arguments
bool MissingDefaultArg = false;
// C++0x [temp.param]p11:
// If a template parameter of a class template is a template parameter pack,
// it must be the last template parameter.
if (SawParameterPack) {
Diag(ParameterPackLoc,
diag::err_template_param_pack_must_be_last_template_parameter);
Invalid = true;
}
if (TemplateTypeParmDecl *NewTypeParm
= dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
// Check the presence of a default argument here.
if (NewTypeParm->hasDefaultArgument() &&
DiagnoseDefaultTemplateArgument(*this, TPC,
NewTypeParm->getLocation(),
NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
.getSourceRange()))
NewTypeParm->removeDefaultArgument();
// Merge default arguments for template type parameters.
TemplateTypeParmDecl *OldTypeParm
= OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
if (NewTypeParm->isParameterPack()) {
assert(!NewTypeParm->hasDefaultArgument() &&
"Parameter packs can't have a default argument!");
SawParameterPack = true;
ParameterPackLoc = NewTypeParm->getLocation();
} else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
NewTypeParm->hasDefaultArgument()) {
OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
SawDefaultArgument = true;
RedundantDefaultArg = true;
PreviousDefaultArgLoc = NewDefaultLoc;
} else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
// Merge the default argument from the old declaration to the
// new declaration.
SawDefaultArgument = true;
NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
true);
PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
} else if (NewTypeParm->hasDefaultArgument()) {
SawDefaultArgument = true;
PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
} else if (SawDefaultArgument)
MissingDefaultArg = true;
} else if (NonTypeTemplateParmDecl *NewNonTypeParm
= dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
// Check the presence of a default argument here.
if (NewNonTypeParm->hasDefaultArgument() &&
DiagnoseDefaultTemplateArgument(*this, TPC,
NewNonTypeParm->getLocation(),
NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
NewNonTypeParm->removeDefaultArgument();
}
// Merge default arguments for non-type template parameters
NonTypeTemplateParmDecl *OldNonTypeParm
= OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
NewNonTypeParm->hasDefaultArgument()) {
OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
SawDefaultArgument = true;
RedundantDefaultArg = true;
PreviousDefaultArgLoc = NewDefaultLoc;
} else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
// Merge the default argument from the old declaration to the
// new declaration.
SawDefaultArgument = true;
// FIXME: We need to create a new kind of "default argument"
// expression that points to a previous template template
// parameter.
NewNonTypeParm->setDefaultArgument(
OldNonTypeParm->getDefaultArgument(),
/*Inherited=*/ true);
PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
} else if (NewNonTypeParm->hasDefaultArgument()) {
SawDefaultArgument = true;
PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
} else if (SawDefaultArgument)
MissingDefaultArg = true;
} else {
// Check the presence of a default argument here.
TemplateTemplateParmDecl *NewTemplateParm
= cast<TemplateTemplateParmDecl>(*NewParam);
if (NewTemplateParm->hasDefaultArgument() &&
DiagnoseDefaultTemplateArgument(*this, TPC,
NewTemplateParm->getLocation(),
NewTemplateParm->getDefaultArgument().getSourceRange()))
NewTemplateParm->removeDefaultArgument();
// Merge default arguments for template template parameters
TemplateTemplateParmDecl *OldTemplateParm
= OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
NewTemplateParm->hasDefaultArgument()) {
OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
SawDefaultArgument = true;
RedundantDefaultArg = true;
PreviousDefaultArgLoc = NewDefaultLoc;
} else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
// Merge the default argument from the old declaration to the
// new declaration.
SawDefaultArgument = true;
// FIXME: We need to create a new kind of "default argument" expression
// that points to a previous template template parameter.
NewTemplateParm->setDefaultArgument(
OldTemplateParm->getDefaultArgument(),
/*Inherited=*/ true);
PreviousDefaultArgLoc
= OldTemplateParm->getDefaultArgument().getLocation();
} else if (NewTemplateParm->hasDefaultArgument()) {
SawDefaultArgument = true;
PreviousDefaultArgLoc
= NewTemplateParm->getDefaultArgument().getLocation();
} else if (SawDefaultArgument)
MissingDefaultArg = true;
}
if (RedundantDefaultArg) {
// C++ [temp.param]p12:
// A template-parameter shall not be given default arguments
// by two different declarations in the same scope.
Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
Invalid = true;
} else if (MissingDefaultArg) {
// C++ [temp.param]p11:
// If a template-parameter has a default template-argument,
// all subsequent template-parameters shall have a default
// template-argument supplied.
Diag((*NewParam)->getLocation(),
diag::err_template_param_default_arg_missing);
Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
Invalid = true;
}
// If we have an old template parameter list that we're merging
// in, move on to the next parameter.
if (OldParams)
++OldParam;
}
return Invalid;
}
/// \brief Match the given template parameter lists to the given scope
/// specifier, returning the template parameter list that applies to the
/// name.
///
/// \param DeclStartLoc the start of the declaration that has a scope
/// specifier or a template parameter list.
///
/// \param SS the scope specifier that will be matched to the given template
/// parameter lists. This scope specifier precedes a qualified name that is
/// being declared.
///
/// \param ParamLists the template parameter lists, from the outermost to the
/// innermost template parameter lists.
///
/// \param NumParamLists the number of template parameter lists in ParamLists.
///
/// \param IsFriend Whether to apply the slightly different rules for
/// matching template parameters to scope specifiers in friend
/// declarations.
///
/// \param IsExplicitSpecialization will be set true if the entity being
/// declared is an explicit specialization, false otherwise.
///
/// \returns the template parameter list, if any, that corresponds to the
/// name that is preceded by the scope specifier @p SS. This template
/// parameter list may be have template parameters (if we're declaring a
/// template) or may have no template parameters (if we're declaring a
/// template specialization), or may be NULL (if we were's declaring isn't
/// itself a template).
TemplateParameterList *
Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
const CXXScopeSpec &SS,
TemplateParameterList **ParamLists,
unsigned NumParamLists,
bool IsFriend,
bool &IsExplicitSpecialization,
bool &Invalid) {
IsExplicitSpecialization = false;
// Find the template-ids that occur within the nested-name-specifier. These
// template-ids will match up with the template parameter lists.
llvm::SmallVector<const TemplateSpecializationType *, 4>
TemplateIdsInSpecifier;
llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
ExplicitSpecializationsInSpecifier;
for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
NNS; NNS = NNS->getPrefix()) {
const Type *T = NNS->getAsType();
if (!T) break;
// C++0x [temp.expl.spec]p17:
// A member or a member template may be nested within many
// enclosing class templates. In an explicit specialization for
// such a member, the member declaration shall be preceded by a
// template<> for each enclosing class template that is
// explicitly specialized.
//
// Following the existing practice of GNU and EDG, we allow a typedef of a
// template specialization type.
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
T = TT->LookThroughTypedefs().getTypePtr();
if (const TemplateSpecializationType *SpecType
= dyn_cast<TemplateSpecializationType>(T)) {
TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
if (!Template)
continue; // FIXME: should this be an error? probably...
if (const RecordType *Record = SpecType->getAs<RecordType>()) {
ClassTemplateSpecializationDecl *SpecDecl
= cast<ClassTemplateSpecializationDecl>(Record->getDecl());
// If the nested name specifier refers to an explicit specialization,
// we don't need a template<> header.
if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
continue;
}
}
TemplateIdsInSpecifier.push_back(SpecType);
}
}
// Reverse the list of template-ids in the scope specifier, so that we can
// more easily match up the template-ids and the template parameter lists.
std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
SourceLocation FirstTemplateLoc = DeclStartLoc;
if (NumParamLists)
FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
// Match the template-ids found in the specifier to the template parameter
// lists.
unsigned Idx = 0;
for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
Idx != NumTemplateIds; ++Idx) {
QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
bool DependentTemplateId = TemplateId->isDependentType();
if (Idx >= NumParamLists) {
// We have a template-id without a corresponding template parameter
// list.
// ...which is fine if this is a friend declaration.
if (IsFriend) {
IsExplicitSpecialization = true;
break;
}
if (DependentTemplateId) {
// FIXME: the location information here isn't great.
Diag(SS.getRange().getBegin(),
diag::err_template_spec_needs_template_parameters)
<< TemplateId
<< SS.getRange();
Invalid = true;
} else {
Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
<< SS.getRange()
<< FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
IsExplicitSpecialization = true;
}
return 0;
}
// Check the template parameter list against its corresponding template-id.
if (DependentTemplateId) {
TemplateParameterList *ExpectedTemplateParams = 0;
// Are there cases in (e.g.) friends where this won't match?
if (const InjectedClassNameType *Injected
= TemplateId->getAs<InjectedClassNameType>()) {
CXXRecordDecl *Record = Injected->getDecl();
if (ClassTemplatePartialSpecializationDecl *Partial =
dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
ExpectedTemplateParams = Partial->getTemplateParameters();
else
ExpectedTemplateParams = Record->getDescribedClassTemplate()
->getTemplateParameters();
}
if (ExpectedTemplateParams)
TemplateParameterListsAreEqual(ParamLists[Idx],
ExpectedTemplateParams,
true, TPL_TemplateMatch);
CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
} else if (ParamLists[Idx]->size() > 0)
Diag(ParamLists[Idx]->getTemplateLoc(),
diag::err_template_param_list_matches_nontemplate)
<< TemplateId
<< ParamLists[Idx]->getSourceRange();
else
IsExplicitSpecialization = true;
}
// If there were at least as many template-ids as there were template
// parameter lists, then there are no template parameter lists remaining for
// the declaration itself.
if (Idx >= NumParamLists)
return 0;
// If there were too many template parameter lists, complain about that now.
if (Idx != NumParamLists - 1) {
while (Idx < NumParamLists - 1) {
bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
Diag(ParamLists[Idx]->getTemplateLoc(),
isExplicitSpecHeader? diag::warn_template_spec_extra_headers
: diag::err_template_spec_extra_headers)
<< SourceRange(ParamLists[Idx]->getTemplateLoc(),
ParamLists[Idx]->getRAngleLoc());
if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
diag::note_explicit_template_spec_does_not_need_header)
<< ExplicitSpecializationsInSpecifier.back();
ExplicitSpecializationsInSpecifier.pop_back();
}
// We have a template parameter list with no corresponding scope, which
// means that the resulting template declaration can't be instantiated
// properly (we'll end up with dependent nodes when we shouldn't).
if (!isExplicitSpecHeader)
Invalid = true;
++Idx;
}
}
// Return the last template parameter list, which corresponds to the
// entity being declared.
return ParamLists[NumParamLists - 1];
}
QualType Sema::CheckTemplateIdType(TemplateName Name,
SourceLocation TemplateLoc,
const TemplateArgumentListInfo &TemplateArgs) {
TemplateDecl *Template = Name.getAsTemplateDecl();
if (!Template) {
// The template name does not resolve to a template, so we just
// build a dependent template-id type.
return Context.getTemplateSpecializationType(Name, TemplateArgs);
}
// Check that the template argument list is well-formed for this
// template.
TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
TemplateArgs.size());
if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
false, Converted))
return QualType();
assert((Converted.structuredSize() ==
Template->getTemplateParameters()->size()) &&
"Converted template argument list is too short!");
QualType CanonType;
if (Name.isDependent() ||
TemplateSpecializationType::anyDependentTemplateArguments(
TemplateArgs)) {
// This class template specialization is a dependent
// type. Therefore, its canonical type is another class template
// specialization type that contains all of the converted
// arguments in canonical form. This ensures that, e.g., A<T> and
// A<T, T> have identical types when A is declared as:
//
// template<typename T, typename U = T> struct A;
TemplateName CanonName = Context.getCanonicalTemplateName(Name);
CanonType = Context.getTemplateSpecializationType(CanonName,
Converted.getFlatArguments(),
Converted.flatSize());
// FIXME: CanonType is not actually the canonical type, and unfortunately
// it is a TemplateSpecializationType that we will never use again.
// In the future, we need to teach getTemplateSpecializationType to only
// build the canonical type and return that to us.
CanonType = Context.getCanonicalType(CanonType);
// This might work out to be a current instantiation, in which
// case the canonical type needs to be the InjectedClassNameType.
//
// TODO: in theory this could be a simple hashtable lookup; most
// changes to CurContext don't change the set of current
// instantiations.
if (isa<ClassTemplateDecl>(Template)) {
for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
// If we get out to a namespace, we're done.
if (Ctx->isFileContext()) break;
// If this isn't a record, keep looking.
CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
if (!Record) continue;
// Look for one of the two cases with InjectedClassNameTypes
// and check whether it's the same template.
if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
!Record->getDescribedClassTemplate())
continue;
// Fetch the injected class name type and check whether its
// injected type is equal to the type we just built.
QualType ICNT = Context.getTypeDeclType(Record);
QualType Injected = cast<InjectedClassNameType>(ICNT)
->getInjectedSpecializationType();
if (CanonType != Injected->getCanonicalTypeInternal())
continue;
// If so, the canonical type of this TST is the injected
// class name type of the record we just found.
assert(ICNT.isCanonical());
CanonType = ICNT;
break;
}
}
} else if (ClassTemplateDecl *ClassTemplate
= dyn_cast<ClassTemplateDecl>(Template)) {
// Find the class template specialization declaration that
// corresponds to these arguments.
void *InsertPos = 0;
ClassTemplateSpecializationDecl *Decl
= ClassTemplate->findSpecialization(Converted.getFlatArguments(),
Converted.flatSize(), InsertPos);
if (!Decl) {
// This is the first time we have referenced this class template
// specialization. Create the canonical declaration and add it to
// the set of specializations.
Decl = ClassTemplateSpecializationDecl::Create(Context,
ClassTemplate->getTemplatedDecl()->getTagKind(),
ClassTemplate->getDeclContext(),
ClassTemplate->getLocation(),
ClassTemplate,
Converted, 0);
ClassTemplate->AddSpecialization(Decl, InsertPos);
Decl->setLexicalDeclContext(CurContext);
}
CanonType = Context.getTypeDeclType(Decl);
assert(isa<RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType");
}
// Build the fully-sugared type for this class template
// specialization, which refers back to the class template
// specialization we created or found.
return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
}
TypeResult
Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgsIn,
SourceLocation RAngleLoc) {
TemplateName Template = TemplateD.getAsVal<TemplateName>();
// Translate the parser's template argument list in our AST format.
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
TemplateArgsIn.release();
if (Result.isNull())
return true;
TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
TemplateSpecializationTypeLoc TL
= cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
TL.setTemplateNameLoc(TemplateLoc);
TL.setLAngleLoc(LAngleLoc);
TL.setRAngleLoc(RAngleLoc);
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
return CreateParsedType(Result, DI);
}
TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
TagUseKind TUK,
TypeSpecifierType TagSpec,
SourceLocation TagLoc) {
if (TypeResult.isInvalid())
return ::TypeResult();
// FIXME: preserve source info, ideally without copying the DI.
TypeSourceInfo *DI;
QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
// Verify the tag specifier.
TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
if (const RecordType *RT = Type->getAs<RecordType>()) {
RecordDecl *D = RT->getDecl();
IdentifierInfo *Id = D->getIdentifier();
assert(Id && "templated class must have an identifier");
if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
Diag(TagLoc, diag::err_use_with_wrong_tag)
<< Type
<< FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
Diag(D->getLocation(), diag::note_previous_use);
}
}
ElaboratedTypeKeyword Keyword
= TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
return ParsedType::make(ElabType);
}
ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo &TemplateArgs) {
// FIXME: Can we do any checking at this point? I guess we could check the
// template arguments that we have against the template name, if the template
// name refers to a single template. That's not a terribly common case,
// though.
// These should be filtered out by our callers.
assert(!R.empty() && "empty lookup results when building templateid");
assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
NestedNameSpecifier *Qualifier = 0;
SourceRange QualifierRange;
if (SS.isSet()) {
Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
QualifierRange = SS.getRange();
}
// We don't want lookup warnings at this point.
R.suppressDiagnostics();
bool Dependent
= UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
&TemplateArgs);
UnresolvedLookupExpr *ULE
= UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
Qualifier, QualifierRange,
R.getLookupNameInfo(),
RequiresADL, TemplateArgs,
R.begin(), R.end());
return Owned(ULE);
}
// We actually only call this from template instantiation.
ExprResult
Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo &TemplateArgs) {
DeclContext *DC;
if (!(DC = computeDeclContext(SS, false)) ||
DC->isDependentContext() ||
RequireCompleteDeclContext(SS, DC))
return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
bool MemberOfUnknownSpecialization;
LookupResult R(*this, NameInfo, LookupOrdinaryName);
LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
MemberOfUnknownSpecialization);
if (R.isAmbiguous())
return ExprError();
if (R.empty()) {
Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
<< NameInfo.getName() << SS.getRange();
return ExprError();
}
if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
<< (NestedNameSpecifier*) SS.getScopeRep()
<< NameInfo.getName() << SS.getRange();
Diag(Temp->getLocation(), diag::note_referenced_class_template);
return ExprError();
}
return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
}
/// \brief Form a dependent template name.
///
/// This action forms a dependent template name given the template
/// name and its (presumably dependent) scope specifier. For
/// example, given "MetaFun::template apply", the scope specifier \p
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
/// of the "template" keyword, and "apply" is the \p Name.
TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
SourceLocation TemplateKWLoc,
CXXScopeSpec &SS,
UnqualifiedId &Name,
ParsedType ObjectType,
bool EnteringContext,
TemplateTy &Result) {
if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
!getLangOptions().CPlusPlus0x)
Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
<< FixItHint::CreateRemoval(TemplateKWLoc);
DeclContext *LookupCtx = 0;
if (SS.isSet())
LookupCtx = computeDeclContext(SS, EnteringContext);
if (!LookupCtx && ObjectType)
LookupCtx = computeDeclContext(ObjectType.get());
if (LookupCtx) {
// C++0x [temp.names]p5:
// If a name prefixed by the keyword template is not the name of
// a template, the program is ill-formed. [Note: the keyword
// template may not be applied to non-template members of class
// templates. -end note ] [ Note: as is the case with the
// typename prefix, the template prefix is allowed in cases
// where it is not strictly necessary; i.e., when the
// nested-name-specifier or the expression on the left of the ->
// or . is not dependent on a template-parameter, or the use
// does not appear in the scope of a template. -end note]
//
// Note: C++03 was more strict here, because it banned the use of
// the "template" keyword prior to a template-name that was not a
// dependent name. C++ DR468 relaxed this requirement (the
// "template" keyword is now permitted). We follow the C++0x
// rules, even in C++03 mode with a warning, retroactively applying the DR.
bool MemberOfUnknownSpecialization;
TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
ObjectType, EnteringContext, Result,
MemberOfUnknownSpecialization);
if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
isa<CXXRecordDecl>(LookupCtx) &&
cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
// This is a dependent template. Handle it below.
} else if (TNK == TNK_Non_template) {
Diag(Name.getSourceRange().getBegin(),
diag::err_template_kw_refers_to_non_template)
<< GetNameFromUnqualifiedId(Name).getName()
<< Name.getSourceRange()
<< TemplateKWLoc;
return TNK_Non_template;
} else {
// We found something; return it.
return TNK;
}
}
NestedNameSpecifier *Qualifier
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
switch (Name.getKind()) {
case UnqualifiedId::IK_Identifier:
Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
Name.Identifier));
return TNK_Dependent_template_name;
case UnqualifiedId::IK_OperatorFunctionId:
Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
Name.OperatorFunctionId.Operator));
return TNK_Dependent_template_name;
case UnqualifiedId::IK_LiteralOperatorId:
assert(false && "We don't support these; Parse shouldn't have allowed propagation");
default:
break;
}
Diag(Name.getSourceRange().getBegin(),
diag::err_template_kw_refers_to_non_template)
<< GetNameFromUnqualifiedId(Name).getName()
<< Name.getSourceRange()
<< TemplateKWLoc;
return TNK_Non_template;
}
bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
const TemplateArgumentLoc &AL,
TemplateArgumentListBuilder &Converted) {
const TemplateArgument &Arg = AL.getArgument();
// Check template type parameter.
switch(Arg.getKind()) {
case TemplateArgument::Type:
// C++ [temp.arg.type]p1:
// A template-argument for a template-parameter which is a
// type shall be a type-id.
break;
case TemplateArgument::Template: {
// We have a template type parameter but the template argument
// is a template without any arguments.
SourceRange SR = AL.getSourceRange();
TemplateName Name = Arg.getAsTemplate();
Diag(SR.getBegin(), diag::err_template_missing_args)
<< Name << SR;
if (TemplateDecl *Decl = Name.getAsTemplateDecl())
Diag(Decl->getLocation(), diag::note_template_decl_here);
return true;
}
default: {
// We have a template type parameter but the template argument
// is not a type.
SourceRange SR = AL.getSourceRange();
Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
}
if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
return true;
// Add the converted template type argument.
Converted.Append(
TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
return false;
}
/// \brief Substitute template arguments into the default template argument for
/// the given template type parameter.
///
/// \param SemaRef the semantic analysis object for which we are performing
/// the substitution.
///
/// \param Template the template that we are synthesizing template arguments
/// for.
///
/// \param TemplateLoc the location of the template name that started the
/// template-id we are checking.
///
/// \param RAngleLoc the location of the right angle bracket ('>') that
/// terminates the template-id.
///
/// \param Param the template template parameter whose default we are
/// substituting into.
///
/// \param Converted the list of template arguments provided for template
/// parameters that precede \p Param in the template parameter list.
///
/// \returns the substituted template argument, or NULL if an error occurred.
static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema &SemaRef,
TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
TemplateTypeParmDecl *Param,
TemplateArgumentListBuilder &Converted) {
TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
// If the argument type is dependent, instantiate it now based
// on the previously-computed template arguments.
if (ArgType->getType()->isDependentType()) {
TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
/*TakeArgs=*/false);
MultiLevelTemplateArgumentList AllTemplateArgs
= SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
Template, Converted.getFlatArguments(),
Converted.flatSize(),
SourceRange(TemplateLoc, RAngleLoc));
ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
Param->getDefaultArgumentLoc(),
Param->getDeclName());
}
return ArgType;
}
/// \brief Substitute template arguments into the default template argument for
/// the given non-type template parameter.
///
/// \param SemaRef the semantic analysis object for which we are performing
/// the substitution.
///
/// \param Template the template that we are synthesizing template arguments
/// for.
///
/// \param TemplateLoc the location of the template name that started the
/// template-id we are checking.
///
/// \param RAngleLoc the location of the right angle bracket ('>') that
/// terminates the template-id.
///
/// \param Param the non-type template parameter whose default we are
/// substituting into.
///
/// \param Converted the list of template arguments provided for template
/// parameters that precede \p Param in the template parameter list.
///
/// \returns the substituted template argument, or NULL if an error occurred.
static ExprResult
SubstDefaultTemplateArgument(Sema &SemaRef,
TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
NonTypeTemplateParmDecl *Param,
TemplateArgumentListBuilder &Converted) {
TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
/*TakeArgs=*/false);
MultiLevelTemplateArgumentList AllTemplateArgs
= SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
Template, Converted.getFlatArguments(),
Converted.flatSize(),
SourceRange(TemplateLoc, RAngleLoc));
return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
}
/// \brief Substitute template arguments into the default template argument for
/// the given template template parameter.
///
/// \param SemaRef the semantic analysis object for which we are performing
/// the substitution.
///
/// \param Template the template that we are synthesizing template arguments
/// for.
///
/// \param TemplateLoc the location of the template name that started the
/// template-id we are checking.
///
/// \param RAngleLoc the location of the right angle bracket ('>') that
/// terminates the template-id.
///
/// \param Param the template template parameter whose default we are
/// substituting into.
///
/// \param Converted the list of template arguments provided for template
/// parameters that precede \p Param in the template parameter list.
///
/// \returns the substituted template argument, or NULL if an error occurred.
static TemplateName
SubstDefaultTemplateArgument(Sema &SemaRef,
TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
TemplateTemplateParmDecl *Param,
TemplateArgumentListBuilder &Converted) {
TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
/*TakeArgs=*/false);
MultiLevelTemplateArgumentList AllTemplateArgs
= SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
Template, Converted.getFlatArguments(),
Converted.flatSize(),
SourceRange(TemplateLoc, RAngleLoc));
return SemaRef.SubstTemplateName(
Param->getDefaultArgument().getArgument().getAsTemplate(),
Param->getDefaultArgument().getTemplateNameLoc(),
AllTemplateArgs);
}
/// \brief If the given template parameter has a default template
/// argument, substitute into that default template argument and
/// return the corresponding template argument.
TemplateArgumentLoc
Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
Decl *Param,
TemplateArgumentListBuilder &Converted) {
if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
if (!TypeParm->hasDefaultArgument())
return TemplateArgumentLoc();
TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
TemplateLoc,
RAngleLoc,
TypeParm,
Converted);
if (DI)
return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
return TemplateArgumentLoc();
}
if (NonTypeTemplateParmDecl *NonTypeParm
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
if (!NonTypeParm->hasDefaultArgument())
return TemplateArgumentLoc();
ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
TemplateLoc,
RAngleLoc,
NonTypeParm,
Converted);
if (Arg.isInvalid())
return TemplateArgumentLoc();
Expr *ArgE = Arg.takeAs<Expr>();
return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
}
TemplateTemplateParmDecl *TempTempParm
= cast<TemplateTemplateParmDecl>(Param);
if (!TempTempParm->hasDefaultArgument())
return TemplateArgumentLoc();
TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
TemplateLoc,
RAngleLoc,
TempTempParm,
Converted);
if (TName.isNull())
return TemplateArgumentLoc();
return TemplateArgumentLoc(TemplateArgument(TName),
TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
TempTempParm->getDefaultArgument().getTemplateNameLoc());
}
/// \brief Check that the given template argument corresponds to the given
/// template parameter.
bool Sema::CheckTemplateArgument(NamedDecl *Param,
const TemplateArgumentLoc &Arg,
TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
TemplateArgumentListBuilder &Converted,
CheckTemplateArgumentKind CTAK) {
// Check template type parameters.
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
return CheckTemplateTypeArgument(TTP, Arg, Converted);
// Check non-type template parameters.
if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
// Do substitution on the type of the non-type template parameter
// with the template arguments we've seen thus far.
QualType NTTPType = NTTP->getType();
if (NTTPType->isDependentType()) {
// Do substitution on the type of the non-type template parameter.
InstantiatingTemplate Inst(*this, TemplateLoc, Template,
NTTP, Converted.getFlatArguments(),
Converted.flatSize(),
SourceRange(TemplateLoc, RAngleLoc));
TemplateArgumentList TemplateArgs(Context, Converted,
/*TakeArgs=*/false);
NTTPType = SubstType(NTTPType,
MultiLevelTemplateArgumentList(TemplateArgs),
NTTP->getLocation(),
NTTP->getDeclName());
// If that worked, check the non-type template parameter type
// for validity.
if (!NTTPType.isNull())
NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
NTTP->getLocation());
if (NTTPType.isNull())
return true;
}
switch (Arg.getArgument().getKind()) {
case TemplateArgument::Null:
assert(false && "Should never see a NULL template argument here");
return true;
case TemplateArgument::Expression: {
Expr *E = Arg.getArgument().getAsExpr();
TemplateArgument Result;
if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
return true;
Converted.Append(Result);
break;
}
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
// We've already checked this template argument, so just copy
// it to the list of converted arguments.
Converted.Append(Arg.getArgument());
break;
case TemplateArgument::Template:
// We were given a template template argument. It may not be ill-formed;
// see below.
if (DependentTemplateName *DTN
= Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
// We have a template argument such as \c T::template X, which we
// parsed as a template template argument. However, since we now
// know that we need a non-type template argument, convert this
// template name into an expression.
DeclarationNameInfo NameInfo(DTN->getIdentifier(),
Arg.getTemplateNameLoc());
Expr *E = DependentScopeDeclRefExpr::Create(Context,
DTN->getQualifier(),
Arg.getTemplateQualifierRange(),
NameInfo);
TemplateArgument Result;
if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
return true;
Converted.Append(Result);
break;
}
// We have a template argument that actually does refer to a class
// template, template alias, or template template parameter, and
// therefore cannot be a non-type template argument.
Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
<< Arg.getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
case TemplateArgument::Type: {
// We have a non-type template parameter but the template
// argument is a type.
// C++ [temp.arg]p2:
// In a template-argument, an ambiguity between a type-id and
// an expression is resolved to a type-id, regardless of the
// form of the corresponding template-parameter.
//
// We warn specifically about this case, since it can be rather
// confusing for users.
QualType T = Arg.getArgument().getAsType();
SourceRange SR = Arg.getSourceRange();
if (T->isFunctionType())
Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
else
Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
case TemplateArgument::Pack:
llvm_unreachable("Caller must expand template argument packs");
break;
}
return false;
}
// Check template template parameters.
TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
// Substitute into the template parameter list of the template
// template parameter, since previously-supplied template arguments
// may appear within the template template parameter.
{
// Set up a template instantiation context.
LocalInstantiationScope Scope(*this);
InstantiatingTemplate Inst(*this, TemplateLoc, Template,
TempParm, Converted.getFlatArguments(),
Converted.flatSize(),
SourceRange(TemplateLoc, RAngleLoc));
TemplateArgumentList TemplateArgs(Context, Converted,
/*TakeArgs=*/false);
TempParm = cast_or_null<TemplateTemplateParmDecl>(
SubstDecl(TempParm, CurContext,
MultiLevelTemplateArgumentList(TemplateArgs)));
if (!TempParm)
return true;
// FIXME: TempParam is leaked.
}
switch (Arg.getArgument().getKind()) {
case TemplateArgument::Null:
assert(false && "Should never see a NULL template argument here");
return true;
case TemplateArgument::Template:
if (CheckTemplateArgument(TempParm, Arg))
return true;
Converted.Append(Arg.getArgument());
break;
case TemplateArgument::Expression:
case TemplateArgument::Type:
// We have a template template parameter but the template
// argument does not refer to a template.
Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
return true;
case TemplateArgument::Declaration:
llvm_unreachable(
"Declaration argument with template template parameter");
break;
case TemplateArgument::Integral:
llvm_unreachable(
"Integral argument with template template parameter");
break;
case TemplateArgument::Pack:
llvm_unreachable("Caller must expand template argument packs");
break;
}
return false;
}
/// \brief Check that the given template argument list is well-formed
/// for specializing the given template.
bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
SourceLocation TemplateLoc,
const TemplateArgumentListInfo &TemplateArgs,
bool PartialTemplateArgs,
TemplateArgumentListBuilder &Converted) {
TemplateParameterList *Params = Template->getTemplateParameters();
unsigned NumParams = Params->size();
unsigned NumArgs = TemplateArgs.size();
bool Invalid = false;
SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
bool HasParameterPack =
NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
if ((NumArgs > NumParams && !HasParameterPack) ||
(NumArgs < Params->getMinRequiredArguments() &&
!PartialTemplateArgs)) {
// FIXME: point at either the first arg beyond what we can handle,
// or the '>', depending on whether we have too many or too few
// arguments.
SourceRange Range;
if (NumArgs > NumParams)
Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
<< (NumArgs > NumParams)
<< (isa<ClassTemplateDecl>(Template)? 0 :
isa<FunctionTemplateDecl>(Template)? 1 :
isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
<< Template << Range;
Diag(Template->getLocation(), diag::note_template_decl_here)
<< Params->getSourceRange();
Invalid = true;
}
// C++ [temp.arg]p1:
// [...] The type and form of each template-argument specified in
// a template-id shall match the type and form specified for the
// corresponding parameter declared by the template in its
// template-parameter-list.
unsigned ArgIdx = 0;
for (TemplateParameterList::iterator Param = Params->begin(),
ParamEnd = Params->end();
Param != ParamEnd; ++Param, ++ArgIdx) {
if (ArgIdx > NumArgs && PartialTemplateArgs)
break;
// If we have a template parameter pack, check every remaining template
// argument against that template parameter pack.
if ((*Param)->isTemplateParameterPack()) {
Converted.BeginPack();
for (; ArgIdx < NumArgs; ++ArgIdx) {
if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
TemplateLoc, RAngleLoc, Converted)) {
Invalid = true;
break;
}
}
Converted.EndPack();
continue;
}
if (ArgIdx < NumArgs) {
// Check the template argument we were given.
if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
TemplateLoc, RAngleLoc, Converted))
return true;
continue;
}
// We have a default template argument that we will use.
TemplateArgumentLoc Arg;
// Retrieve the default template argument from the template
// parameter. For each kind of template parameter, we substitute the
// template arguments provided thus far and any "outer" template arguments
// (when the template parameter was part of a nested template) into
// the default argument.
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
if (!TTP->hasDefaultArgument()) {
assert((Invalid || PartialTemplateArgs) && "Missing default argument");
break;
}
TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
Template,
TemplateLoc,
RAngleLoc,
TTP,
Converted);
if (!ArgType)
return true;
Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
ArgType);
} else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
if (!NTTP->hasDefaultArgument()) {
assert((Invalid || PartialTemplateArgs) && "Missing default argument");
break;
}
ExprResult E = SubstDefaultTemplateArgument(*this, Template,
TemplateLoc,
RAngleLoc,
NTTP,
Converted);
if (E.isInvalid())
return true;
Expr *Ex = E.takeAs<Expr>();
Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
} else {
TemplateTemplateParmDecl *TempParm
= cast<TemplateTemplateParmDecl>(*Param);
if (!TempParm->hasDefaultArgument()) {
assert((Invalid || PartialTemplateArgs) && "Missing default argument");
break;
}
TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
TemplateLoc,
RAngleLoc,
TempParm,
Converted);
if (Name.isNull())
return true;
Arg = TemplateArgumentLoc(TemplateArgument(Name),
TempParm->getDefaultArgument().getTemplateQualifierRange(),
TempParm->getDefaultArgument().getTemplateNameLoc());
}
// Introduce an instantiation record that describes where we are using
// the default template argument.
InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
Converted.getFlatArguments(),
Converted.flatSize(),
SourceRange(TemplateLoc, RAngleLoc));
// Check the default template argument.
if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
RAngleLoc, Converted))
return true;
}
return Invalid;
}
/// \brief Check a template argument against its corresponding
/// template type parameter.
///
/// This routine implements the semantics of C++ [temp.arg.type]. It
/// returns true if an error occurred, and false otherwise.
bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
TypeSourceInfo *ArgInfo) {
assert(ArgInfo && "invalid TypeSourceInfo");
QualType Arg = ArgInfo->getType();
// C++ [temp.arg.type]p2:
// A local type, a type with no linkage, an unnamed type or a type
// compounded from any of these types shall not be used as a
// template-argument for a template type-parameter.
//
// FIXME: Perform the unnamed type check.
SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
const TagType *Tag = 0;
if (const EnumType *EnumT = Arg->getAs<EnumType>())
Tag = EnumT;
else if (const RecordType *RecordT = Arg->getAs<RecordType>())
Tag = RecordT;
if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
return Diag(SR.getBegin(), diag::err_template_arg_local_type)
<< QualType(Tag, 0) << SR;
} else if (Tag && !Tag->getDecl()->getDeclName() &&
!Tag->getDecl()->getTypedefForAnonDecl()) {
Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
return true;
} else if (Arg->isVariablyModifiedType()) {
Diag(SR.getBegin(), diag::err_variably_modified_template_arg)
<< Arg;
return true;
} else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
}
return false;
}
/// \brief Checks whether the given template argument is the address
/// of an object or function according to C++ [temp.arg.nontype]p1.
static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
NonTypeTemplateParmDecl *Param,
QualType ParamType,
Expr *ArgIn,
TemplateArgument &Converted) {
bool Invalid = false;
Expr *Arg = ArgIn;
QualType ArgType = Arg->getType();
// See through any implicit casts we added to fix the type.
while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
Arg = Cast->getSubExpr();
// C++ [temp.arg.nontype]p1:
//
// A template-argument for a non-type, non-template
// template-parameter shall be one of: [...]
//
// -- the address of an object or function with external
// linkage, including function templates and function
// template-ids but excluding non-static class members,
// expressed as & id-expression where the & is optional if
// the name refers to a function or array, or if the
// corresponding template-parameter is a reference; or
DeclRefExpr *DRE = 0;
// Ignore (and complain about) any excess parentheses.
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
if (!Invalid) {
S.Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_extra_parens)
<< Arg->getSourceRange();
Invalid = true;
}
Arg = Parens->getSubExpr();
}
bool AddressTaken = false;
SourceLocation AddrOpLoc;
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
if (UnOp->getOpcode() == UO_AddrOf) {
DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
AddressTaken = true;
AddrOpLoc = UnOp->getOperatorLoc();
}
} else
DRE = dyn_cast<DeclRefExpr>(Arg);
if (!DRE) {
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
<< Arg->getSourceRange();
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
// Stop checking the precise nature of the argument if it is value dependent,
// it should be checked when instantiated.
if (Arg->isValueDependent()) {
Converted = TemplateArgument(ArgIn->Retain());
return false;
}
if (!isa<ValueDecl>(DRE->getDecl())) {
S.Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_object_or_func_form)
<< Arg->getSourceRange();
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
NamedDecl *Entity = 0;
// Cannot refer to non-static data members
if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
<< Field << Arg->getSourceRange();
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
// Cannot refer to non-static member functions
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
if (!Method->isStatic()) {
S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
<< Method << Arg->getSourceRange();
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
// Functions must have external linkage.
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
if (!isExternalLinkage(Func->getLinkage())) {
S.Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_function_not_extern)
<< Func << Arg->getSourceRange();
S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
<< true;
return true;
}
// Okay: we've named a function with external linkage.
Entity = Func;
// If the template parameter has pointer type, the function decays.
if (ParamType->isPointerType() && !AddressTaken)
ArgType = S.Context.getPointerType(Func->getType());
else if (AddressTaken && ParamType->isReferenceType()) {
// If we originally had an address-of operator, but the
// parameter has reference type, complain and (if things look
// like they will work) drop the address-of operator.
if (!S.Context.hasSameUnqualifiedType(Func->getType(),
ParamType.getNonReferenceType())) {
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
<< ParamType;
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
<< ParamType
<< FixItHint::CreateRemoval(AddrOpLoc);
S.Diag(Param->getLocation(), diag::note_template_param_here);
ArgType = Func->getType();
}
} else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (!isExternalLinkage(Var->getLinkage())) {
S.Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_object_not_extern)
<< Var << Arg->getSourceRange();
S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
<< true;
return true;
}
// A value of reference type is not an object.
if (Var->getType()->isReferenceType()) {
S.Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_reference_var)
<< Var->getType() << Arg->getSourceRange();
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
// Okay: we've named an object with external linkage
Entity = Var;
// If the template parameter has pointer type, we must have taken
// the address of this object.
if (ParamType->isReferenceType()) {
if (AddressTaken) {
// If we originally had an address-of operator, but the
// parameter has reference type, complain and (if things look
// like they will work) drop the address-of operator.
if (!S.Context.hasSameUnqualifiedType(Var->getType(),
ParamType.getNonReferenceType())) {
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
<< ParamType;
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
<< ParamType
<< FixItHint::CreateRemoval(AddrOpLoc);
S.Diag(Param->getLocation(), diag::note_template_param_here);
ArgType = Var->getType();
}
} else if (!AddressTaken && ParamType->isPointerType()) {
if (Var->getType()->isArrayType()) {
// Array-to-pointer decay.
ArgType = S.Context.getArrayDecayedType(Var->getType());
} else {
// If the template parameter has pointer type but the address of
// this object was not taken, complain and (possibly) recover by
// taking the address of the entity.
ArgType = S.Context.getPointerType(Var->getType());
if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
<< ParamType;
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
<< ParamType
<< FixItHint::CreateInsertion(Arg->getLocStart(), "&");
S.Diag(Param->getLocation(), diag::note_template_param_here);
}
}
} else {
// We found something else, but we don't know specifically what it is.
S.Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_object_or_func)
<< Arg->getSourceRange();
S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
return true;
}
if (ParamType->isPointerType() &&
!ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
S.IsQualificationConversion(ArgType, ParamType)) {
// For pointer-to-object types, qualification conversions are
// permitted.
} else {
if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
if (!ParamRef->getPointeeType()->isFunctionType()) {
// C++ [temp.arg.nontype]p5b3:
// For a non-type template-parameter of type reference to
// object, no conversions apply. The type referred to by the
// reference may be more cv-qualified than the (otherwise
// identical) type of the template- argument. The
// template-parameter is bound directly to the
// template-argument, which shall be an lvalue.
// FIXME: Other qualifiers?
unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
unsigned ArgQuals = ArgType.getCVRQualifiers();
if ((ParamQuals | ArgQuals) != ParamQuals) {
S.Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_ref_bind_ignores_quals)
<< ParamType << Arg->getType()
<< Arg->getSourceRange();
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
}
}
// At this point, the template argument refers to an object or
// function with external linkage. We now need to check whether the
// argument and parameter types are compatible.
if (!S.Context.hasSameUnqualifiedType(ArgType,
ParamType.getNonReferenceType())) {
// We can't perform this conversion or binding.
if (ParamType->isReferenceType())
S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
<< ParamType << Arg->getType() << Arg->getSourceRange();
else
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
<< Arg->getType() << ParamType << Arg->getSourceRange();
S.Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
}
// Create the template argument.
Converted = TemplateArgument(Entity->getCanonicalDecl());
S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
return false;
}
/// \brief Checks whether the given template argument is a pointer to
/// member constant according to C++ [temp.arg.nontype]p1.
bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
TemplateArgument &Converted) {
bool Invalid = false;
// See through any implicit casts we added to fix the type.
while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
Arg = Cast->getSubExpr();
// C++ [temp.arg.nontype]p1:
//
// A template-argument for a non-type, non-template
// template-parameter shall be one of: [...]
//
// -- a pointer to member expressed as described in 5.3.1.
DeclRefExpr *DRE = 0;
// Ignore (and complain about) any excess parentheses.
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
if (!Invalid) {
Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_extra_parens)
<< Arg->getSourceRange();
Invalid = true;
}
Arg = Parens->getSubExpr();
}
// A pointer-to-member constant written &Class::member.
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
if (UnOp->getOpcode() == UO_AddrOf) {
DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
if (DRE && !DRE->getQualifier())
DRE = 0;
}
}
// A constant of pointer-to-member type.
else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
if (VD->getType()->isMemberPointerType()) {
if (isa<NonTypeTemplateParmDecl>(VD) ||
(isa<VarDecl>(VD) &&
Context.getCanonicalType(VD->getType()).isConstQualified())) {
if (Arg->isTypeDependent() || Arg->isValueDependent())
Converted = TemplateArgument(Arg->Retain());
else
Converted = TemplateArgument(VD->getCanonicalDecl());
return Invalid;
}
}
}
DRE = 0;
}
if (!DRE)
return Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_pointer_to_member_form)
<< Arg->getSourceRange();
if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
assert((isa<FieldDecl>(DRE->getDecl()) ||
!cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
"Only non-static member pointers can make it here");
// Okay: this is the address of a non-static member, and therefore
// a member pointer constant.
if (Arg->isTypeDependent() || Arg->isValueDependent())
Converted = TemplateArgument(Arg->Retain());
else
Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
return Invalid;
}
// We found something else, but we don't know specifically what it is.
Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_pointer_to_member_form)
<< Arg->getSourceRange();
Diag(DRE->getDecl()->getLocation(),
diag::note_template_arg_refers_here);
return true;
}
/// \brief Check a template argument against its corresponding
/// non-type template parameter.
///
/// This routine implements the semantics of C++ [temp.arg.nontype].
/// It returns true if an error occurred, and false otherwise. \p
/// InstantiatedParamType is the type of the non-type template
/// parameter after it has been instantiated.
///
/// If no error was detected, Converted receives the converted template argument.
bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
QualType InstantiatedParamType, Expr *&Arg,
TemplateArgument &Converted,
CheckTemplateArgumentKind CTAK) {
SourceLocation StartLoc = Arg->getSourceRange().getBegin();
// If either the parameter has a dependent type or the argument is
// type-dependent, there's nothing we can check now.
if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
// FIXME: Produce a cloned, canonical expression?
Converted = TemplateArgument(Arg);
return false;
}
// C++ [temp.arg.nontype]p5:
// The following conversions are performed on each expression used
// as a non-type template-argument. If a non-type
// template-argument cannot be converted to the type of the
// corresponding template-parameter then the program is
// ill-formed.
//
// -- for a non-type template-parameter of integral or
// enumeration type, integral promotions (4.5) and integral
// conversions (4.7) are applied.
QualType ParamType = InstantiatedParamType;
QualType ArgType = Arg->getType();
if (ParamType->isIntegralOrEnumerationType()) {
// C++ [temp.arg.nontype]p1:
// A template-argument for a non-type, non-template
// template-parameter shall be one of:
//
// -- an integral constant-expression of integral or enumeration
// type; or
// -- the name of a non-type template-parameter; or
SourceLocation NonConstantLoc;
llvm::APSInt Value;
if (!ArgType->isIntegralOrEnumerationType()) {
Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_integral_or_enumeral)
<< ArgType << Arg->getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
} else if (!Arg->isValueDependent() &&
!Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
Diag(NonConstantLoc, diag::err_template_arg_not_ice)
<< ArgType << Arg->getSourceRange();
return true;
}
// From here on out, all we care about are the unqualified forms
// of the parameter and argument types.
ParamType = ParamType.getUnqualifiedType();
ArgType = ArgType.getUnqualifiedType();
// Try to convert the argument to the parameter's type.
if (Context.hasSameType(ParamType, ArgType)) {
// Okay: no conversion necessary
} else if (CTAK == CTAK_Deduced) {
// C++ [temp.deduct.type]p17:
// If, in the declaration of a function template with a non-type
// template-parameter, the non-type template- parameter is used
// in an expression in the function parameter-list and, if the
// corresponding template-argument is deduced, the
// template-argument type shall match the type of the
// template-parameter exactly, except that a template-argument
// deduced from an array bound may be of any integral type.
Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
<< ArgType << ParamType;
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
} else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
!ParamType->isEnumeralType()) {
// This is an integral promotion or conversion.
ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
} else {
// We can't perform this conversion.
Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_convertible)
<< Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
QualType IntegerType = Context.getCanonicalType(ParamType);
if (const EnumType *Enum = IntegerType->getAs<EnumType>())
IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
if (!Arg->isValueDependent()) {
llvm::APSInt OldValue = Value;
// Coerce the template argument's value to the value it will have
// based on the template parameter's type.
unsigned AllowedBits = Context.getTypeSize(IntegerType);
if (Value.getBitWidth() != AllowedBits)
Value.extOrTrunc(AllowedBits);
Value.setIsSigned(IntegerType->isSignedIntegerType());
// Complain if an unsigned parameter received a negative value.
if (IntegerType->isUnsignedIntegerType()
&& (OldValue.isSigned() && OldValue.isNegative())) {
Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
<< OldValue.toString(10) << Value.toString(10) << Param->getType()
<< Arg->getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
}
// Complain if we overflowed the template parameter's type.
unsigned RequiredBits;
if (IntegerType->isUnsignedIntegerType())
RequiredBits = OldValue.getActiveBits();
else if (OldValue.isUnsigned())
RequiredBits = OldValue.getActiveBits() + 1;
else
RequiredBits = OldValue.getMinSignedBits();
if (RequiredBits > AllowedBits) {
Diag(Arg->getSourceRange().getBegin(),
diag::warn_template_arg_too_large)
<< OldValue.toString(10) << Value.toString(10) << Param->getType()
<< Arg->getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
}
}
// Add the value of this argument to the list of converted
// arguments. We use the bitwidth and signedness of the template
// parameter.
if (Arg->isValueDependent()) {
// The argument is value-dependent. Create a new
// TemplateArgument with the converted expression.
Converted = TemplateArgument(Arg);
return false;
}
Converted = TemplateArgument(Value,
ParamType->isEnumeralType() ? ParamType
: IntegerType);
return false;
}
DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
// C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
// from a template argument of type std::nullptr_t to a non-type
// template parameter of type pointer to object, pointer to
// function, or pointer-to-member, respectively.
if (ArgType->isNullPtrType() &&
(ParamType->isPointerType() || ParamType->isMemberPointerType())) {
Converted = TemplateArgument((NamedDecl *)0);
return false;
}
// Handle pointer-to-function, reference-to-function, and
// pointer-to-member-function all in (roughly) the same way.
if (// -- For a non-type template-parameter of type pointer to
// function, only the function-to-pointer conversion (4.3) is
// applied. If the template-argument represents a set of
// overloaded functions (or a pointer to such), the matching
// function is selected from the set (13.4).
(ParamType->isPointerType() &&
ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
// -- For a non-type template-parameter of type reference to
// function, no conversions apply. If the template-argument
// represents a set of overloaded functions, the matching
// function is selected from the set (13.4).
(ParamType->isReferenceType() &&
ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
// -- For a non-type template-parameter of type pointer to
// member function, no conversions apply. If the
// template-argument represents a set of overloaded member
// functions, the matching member function is selected from
// the set (13.4).
(ParamType->isMemberPointerType() &&
ParamType->getAs<MemberPointerType>()->getPointeeType()
->isFunctionType())) {
if (Arg->getType() == Context.OverloadTy) {
if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
true,
FoundResult)) {
if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
return true;
Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
ArgType = Arg->getType();
} else
return true;
}
if (!ParamType->isMemberPointerType())
return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
ParamType,
Arg, Converted);
if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
} else if (!Context.hasSameUnqualifiedType(ArgType,
ParamType.getNonReferenceType())) {
// We can't perform this conversion.
Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_convertible)
<< Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
return CheckTemplateArgumentPointerToMember(Arg, Converted);
}
if (ParamType->isPointerType()) {
// -- for a non-type template-parameter of type pointer to
// object, qualification conversions (4.4) and the
// array-to-pointer conversion (4.2) are applied.
// C++0x also allows a value of std::nullptr_t.
assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
"Only object pointers allowed here");
return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
ParamType,
Arg, Converted);
}
if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
// -- For a non-type template-parameter of type reference to
// object, no conversions apply. The type referred to by the
// reference may be more cv-qualified than the (otherwise
// identical) type of the template-argument. The
// template-parameter is bound directly to the
// template-argument, which must be an lvalue.
assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
"Only object references allowed here");
if (Arg->getType() == Context.OverloadTy) {
if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
ParamRefType->getPointeeType(),
true,
FoundResult)) {
if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
return true;
Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
ArgType = Arg->getType();
} else
return true;
}
return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
ParamType,
Arg, Converted);
}
// -- For a non-type template-parameter of type pointer to data
// member, qualification conversions (4.4) are applied.
assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
// Types match exactly: nothing more to do here.
} else if (IsQualificationConversion(ArgType, ParamType)) {
ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
} else {
// We can't perform this conversion.
Diag(Arg->getSourceRange().getBegin(),
diag::err_template_arg_not_convertible)
<< Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
return CheckTemplateArgumentPointerToMember(Arg, Converted);
}
/// \brief Check a template argument against its corresponding
/// template template parameter.
///
/// This routine implements the semantics of C++ [temp.arg.template].
/// It returns true if an error occurred, and false otherwise.
bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
const TemplateArgumentLoc &Arg) {
TemplateName Name = Arg.getArgument().getAsTemplate();
TemplateDecl *Template = Name.getAsTemplateDecl();
if (!Template) {
// Any dependent template name is fine.
assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
return false;
}
// C++ [temp.arg.template]p1:
// A template-argument for a template template-parameter shall be
// the name of a class template, expressed as id-expression. Only
// primary class templates are considered when matching the
// template template argument with the corresponding parameter;
// partial specializations are not considered even if their
// parameter lists match that of the template template parameter.
//
// Note that we also allow template template parameters here, which
// will happen when we are dealing with, e.g., class template
// partial specializations.
if (!isa<ClassTemplateDecl>(Template) &&
!isa<TemplateTemplateParmDecl>(Template)) {
assert(isa<FunctionTemplateDecl>(Template) &&
"Only function templates are possible here");
Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
<< Template;
}
return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
Param->getTemplateParameters(),
true,
TPL_TemplateTemplateArgumentMatch,
Arg.getLocation());
}
/// \brief Given a non-type template argument that refers to a
/// declaration and the type of its corresponding non-type template
/// parameter, produce an expression that properly refers to that
/// declaration.
ExprResult
Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
QualType ParamType,
SourceLocation Loc) {
assert(Arg.getKind() == TemplateArgument::Declaration &&
"Only declaration template arguments permitted here");
ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
if (VD->getDeclContext()->isRecord() &&
(isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
// If the value is a class member, we might have a pointer-to-member.
// Determine whether the non-type template template parameter is of
// pointer-to-member type. If so, we need to build an appropriate
// expression for a pointer-to-member, since a "normal" DeclRefExpr
// would refer to the member itself.
if (ParamType->isMemberPointerType()) {
QualType ClassType
= Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
NestedNameSpecifier *Qualifier
= NestedNameSpecifier::Create(Context, 0, false,
ClassType.getTypePtr());
CXXScopeSpec SS;
SS.setScopeRep(Qualifier);
ExprResult RefExpr = BuildDeclRefExpr(VD,
VD->getType().getNonReferenceType(),
Loc,
&SS);
if (RefExpr.isInvalid())
return ExprError();
RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
// We might need to perform a trailing qualification conversion, since
// the element type on the parameter could be more qualified than the
// element type in the expression we constructed.
if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
ParamType.getUnqualifiedType())) {
Expr *RefE = RefExpr.takeAs<Expr>();
ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
RefExpr = Owned(RefE);
}
assert(!RefExpr.isInvalid() &&
Context.hasSameType(((Expr*) RefExpr.get())->getType(),
ParamType.getUnqualifiedType()));
return move(RefExpr);
}
}
QualType T = VD->getType().getNonReferenceType();
if (ParamType->isPointerType()) {
// When the non-type template parameter is a pointer, take the
// address of the declaration.
ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
if (RefExpr.isInvalid())
return ExprError();
if (T->isFunctionType() || T->isArrayType()) {
// Decay functions and arrays.
Expr *RefE = (Expr *)RefExpr.get();
DefaultFunctionArrayConversion(RefE);
if (RefE != RefExpr.get()) {
RefExpr.release();
RefExpr = Owned(RefE);
}
return move(RefExpr);
}
// Take the address of everything else
return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
}
// If the non-type template parameter has reference type, qualify the
// resulting declaration reference with the extra qualifiers on the
// type that the reference refers to.
if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
return BuildDeclRefExpr(VD, T, Loc);
}
/// \brief Construct a new expression that refers to the given
/// integral template argument with the given source-location
/// information.
///
/// This routine takes care of the mapping from an integral template
/// argument (which may have any integral type) to the appropriate
/// literal value.
ExprResult
Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
SourceLocation Loc) {
assert(Arg.getKind() == TemplateArgument::Integral &&
"Operation is only value for integral template arguments");
QualType T = Arg.getIntegralType();
if (T->isCharType() || T->isWideCharType())
return Owned(new (Context) CharacterLiteral(
Arg.getAsIntegral()->getZExtValue(),
T->isWideCharType(),
T,
Loc));
if (T->isBooleanType())
return Owned(new (Context) CXXBoolLiteralExpr(
Arg.getAsIntegral()->getBoolValue(),
T,
Loc));
return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
}
/// \brief Determine whether the given template parameter lists are
/// equivalent.
///
/// \param New The new template parameter list, typically written in the
/// source code as part of a new template declaration.
///
/// \param Old The old template parameter list, typically found via
/// name lookup of the template declared with this template parameter
/// list.
///
/// \param Complain If true, this routine will produce a diagnostic if
/// the template parameter lists are not equivalent.
///
/// \param Kind describes how we are to match the template parameter lists.
///
/// \param TemplateArgLoc If this source location is valid, then we
/// are actually checking the template parameter list of a template
/// argument (New) against the template parameter list of its
/// corresponding template template parameter (Old). We produce
/// slightly different diagnostics in this scenario.
///
/// \returns True if the template parameter lists are equal, false
/// otherwise.
bool
Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
TemplateParameterList *Old,
bool Complain,
TemplateParameterListEqualKind Kind,
SourceLocation TemplateArgLoc) {
if (Old->size() != New->size()) {
if (Complain) {
unsigned NextDiag = diag::err_template_param_list_different_arity;
if (TemplateArgLoc.isValid()) {
Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
NextDiag = diag::note_template_param_list_different_arity;
}
Diag(New->getTemplateLoc(), NextDiag)
<< (New->size() > Old->size())
<< (Kind != TPL_TemplateMatch)
<< SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
<< (Kind != TPL_TemplateMatch)
<< SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
}
return false;
}
for (TemplateParameterList::iterator OldParm = Old->begin(),
OldParmEnd = Old->end(), NewParm = New->begin();
OldParm != OldParmEnd; ++OldParm, ++NewParm) {
if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
if (Complain) {
unsigned NextDiag = diag::err_template_param_different_kind;
if (TemplateArgLoc.isValid()) {
Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
NextDiag = diag::note_template_param_different_kind;
}
Diag((*NewParm)->getLocation(), NextDiag)
<< (Kind != TPL_TemplateMatch);
Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
<< (Kind != TPL_TemplateMatch);
}
return false;
}
if (TemplateTypeParmDecl *OldTTP
= dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
// Template type parameters are equivalent if either both are template
// type parameter packs or neither are (since we know we're at the same
// index).
TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
// FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
// allow one to match a template parameter pack in the template
// parameter list of a template template parameter to one or more
// template parameters in the template parameter list of the
// corresponding template template argument.
if (Complain) {
unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
if (TemplateArgLoc.isValid()) {
Diag(TemplateArgLoc,
diag::err_template_arg_template_params_mismatch);
NextDiag = diag::note_template_parameter_pack_non_pack;
}
Diag(NewTTP->getLocation(), NextDiag)
<< 0 << NewTTP->isParameterPack();
Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
<< 0 << OldTTP->isParameterPack();
}
return false;
}
} else if (NonTypeTemplateParmDecl *OldNTTP
= dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
// The types of non-type template parameters must agree.
NonTypeTemplateParmDecl *NewNTTP
= cast<NonTypeTemplateParmDecl>(*NewParm);
// If we are matching a template template argument to a template
// template parameter and one of the non-type template parameter types
// is dependent, then we must wait until template instantiation time
// to actually compare the arguments.
if (Kind == TPL_TemplateTemplateArgumentMatch &&
(OldNTTP->getType()->isDependentType() ||
NewNTTP->getType()->isDependentType()))
continue;
if (Context.getCanonicalType(OldNTTP->getType()) !=
Context.getCanonicalType(NewNTTP->getType())) {
if (Complain) {
unsigned NextDiag = diag::err_template_nontype_parm_different_type;
if (TemplateArgLoc.isValid()) {
Diag(TemplateArgLoc,
diag::err_template_arg_template_params_mismatch);
NextDiag = diag::note_template_nontype_parm_different_type;
}
Diag(NewNTTP->getLocation(), NextDiag)
<< NewNTTP->getType()
<< (Kind != TPL_TemplateMatch);
Diag(OldNTTP->getLocation(),
diag::note_template_nontype_parm_prev_declaration)
<< OldNTTP->getType();
}
return false;
}
} else {
// The template parameter lists of template template
// parameters must agree.
assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
"Only template template parameters handled here");
TemplateTemplateParmDecl *OldTTP
= cast<TemplateTemplateParmDecl>(*OldParm);
TemplateTemplateParmDecl *NewTTP
= cast<TemplateTemplateParmDecl>(*NewParm);
if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
OldTTP->getTemplateParameters(),
Complain,
(Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
TemplateArgLoc))
return false;
}
}
return true;
}
/// \brief Check whether a template can be declared within this scope.
///
/// If the template declaration is valid in this scope, returns
/// false. Otherwise, issues a diagnostic and returns true.
bool
Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
// Find the nearest enclosing declaration scope.
while ((S->getFlags() & Scope::DeclScope) == 0 ||
(S->getFlags() & Scope::TemplateParamScope) != 0)
S = S->getParent();
// C++ [temp]p2:
// A template-declaration can appear only as a namespace scope or
// class scope declaration.
DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
<< TemplateParams->getSourceRange();
while (Ctx && isa<LinkageSpecDecl>(Ctx))
Ctx = Ctx->getParent();
if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
return false;
return Diag(TemplateParams->getTemplateLoc(),
diag::err_template_outside_namespace_or_class_scope)
<< TemplateParams->getSourceRange();
}
/// \brief Determine what kind of template specialization the given declaration
/// is.
static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
if (!D)
return TSK_Undeclared;
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
return Record->getTemplateSpecializationKind();
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
return Function->getTemplateSpecializationKind();
if (VarDecl *Var = dyn_cast<VarDecl>(D))
return Var->getTemplateSpecializationKind();
return TSK_Undeclared;
}
/// \brief Check whether a specialization is well-formed in the current
/// context.
///
/// This routine determines whether a template specialization can be declared
/// in the current context (C++ [temp.expl.spec]p2).
///
/// \param S the semantic analysis object for which this check is being
/// performed.
///
/// \param Specialized the entity being specialized or instantiated, which
/// may be a kind of template (class template, function template, etc.) or
/// a member of a class template (member function, static data member,
/// member class).
///
/// \param PrevDecl the previous declaration of this entity, if any.
///
/// \param Loc the location of the explicit specialization or instantiation of
/// this entity.
///
/// \param IsPartialSpecialization whether this is a partial specialization of
/// a class template.
///
/// \returns true if there was an error that we cannot recover from, false
/// otherwise.
static bool CheckTemplateSpecializationScope(Sema &S,
NamedDecl *Specialized,
NamedDecl *PrevDecl,
SourceLocation Loc,
bool IsPartialSpecialization) {
// Keep these "kind" numbers in sync with the %select statements in the
// various diagnostics emitted by this routine.
int EntityKind = 0;
bool isTemplateSpecialization = false;
if (isa<ClassTemplateDecl>(Specialized)) {
EntityKind = IsPartialSpecialization? 1 : 0;
isTemplateSpecialization = true;
} else if (isa<FunctionTemplateDecl>(Specialized)) {
EntityKind = 2;
isTemplateSpecialization = true;
} else if (isa<CXXMethodDecl>(Specialized))
EntityKind = 3;
else if (isa<VarDecl>(Specialized))
EntityKind = 4;
else if (isa<RecordDecl>(Specialized))
EntityKind = 5;
else {
S.Diag(Loc, diag::err_template_spec_unknown_kind);
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
return true;
}
// C++ [temp.expl.spec]p2:
// An explicit specialization shall be declared in the namespace
// of which the template is a member, or, for member templates, in
// the namespace of which the enclosing class or enclosing class
// template is a member. An explicit specialization of a member
// function, member class or static data member of a class
// template shall be declared in the namespace of which the class
// template is a member. Such a declaration may also be a
// definition. If the declaration is not a definition, the
// specialization may be defined later in the name- space in which
// the explicit specialization was declared, or in a namespace
// that encloses the one in which the explicit specialization was
// declared.
if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
S.Diag(Loc, diag::err_template_spec_decl_function_scope)
<< Specialized;
return true;
}
if (S.CurContext->isRecord() && !IsPartialSpecialization) {
S.Diag(Loc, diag::err_template_spec_decl_class_scope)
<< Specialized;
return true;
}
// C++ [temp.class.spec]p6:
// A class template partial specialization may be declared or redeclared
// in any namespace scope in which its definition may be defined (14.5.1
// and 14.5.2).
bool ComplainedAboutScope = false;
DeclContext *SpecializedContext
= Specialized->getDeclContext()->getEnclosingNamespaceContext();
DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
if ((!PrevDecl ||
getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
// There is no prior declaration of this entity, so this
// specialization must be in the same context as the template
// itself.
if (!DC->Equals(SpecializedContext)) {
if (isa<TranslationUnitDecl>(SpecializedContext))
S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
<< EntityKind << Specialized;
else if (isa<NamespaceDecl>(SpecializedContext))
S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
<< EntityKind << Specialized
<< cast<NamedDecl>(SpecializedContext);
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
ComplainedAboutScope = true;
}
}
// Make sure that this redeclaration (or definition) occurs in an enclosing
// namespace.
// Note that HandleDeclarator() performs this check for explicit
// specializations of function templates, static data members, and member
// functions, so we skip the check here for those kinds of entities.
// FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
// Should we refactor that check, so that it occurs later?
if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
!(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
isa<FunctionDecl>(Specialized))) {
if (isa<TranslationUnitDecl>(SpecializedContext))
S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
<< EntityKind << Specialized;
else if (isa<NamespaceDecl>(SpecializedContext))
S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
<< EntityKind << Specialized
<< cast<NamedDecl>(SpecializedContext);
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
}
// FIXME: check for specialization-after-instantiation errors and such.
return false;
}
/// \brief Check the non-type template arguments of a class template
/// partial specialization according to C++ [temp.class.spec]p9.
///
/// \param TemplateParams the template parameters of the primary class
/// template.
///
/// \param TemplateArg the template arguments of the class template
/// partial specialization.
///
/// \param MirrorsPrimaryTemplate will be set true if the class
/// template partial specialization arguments are identical to the
/// implicit template arguments of the primary template. This is not
/// necessarily an error (C++0x), and it is left to the caller to diagnose
/// this condition when it is an error.
///
/// \returns true if there was an error, false otherwise.
bool Sema::CheckClassTemplatePartialSpecializationArgs(
TemplateParameterList *TemplateParams,
const TemplateArgumentListBuilder &TemplateArgs,
bool &MirrorsPrimaryTemplate) {
// FIXME: the interface to this function will have to change to
// accommodate variadic templates.
MirrorsPrimaryTemplate = true;
const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
// Determine whether the template argument list of the partial
// specialization is identical to the implicit argument list of
// the primary template. The caller may need to diagnostic this as
// an error per C++ [temp.class.spec]p9b3.
if (MirrorsPrimaryTemplate) {
if (TemplateTypeParmDecl *TTP
= dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
Context.getCanonicalType(ArgList[I].getAsType()))
MirrorsPrimaryTemplate = false;
} else if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(
TemplateParams->getParam(I))) {
TemplateName Name = ArgList[I].getAsTemplate();
TemplateTemplateParmDecl *ArgDecl
= dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
if (!ArgDecl ||
ArgDecl->getIndex() != TTP->getIndex() ||
ArgDecl->getDepth() != TTP->getDepth())
MirrorsPrimaryTemplate = false;
}
}
NonTypeTemplateParmDecl *Param
= dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
if (!Param) {
continue;
}
Expr *ArgExpr = ArgList[I].getAsExpr();
if (!ArgExpr) {
MirrorsPrimaryTemplate = false;
continue;
}
// C++ [temp.class.spec]p8:
// A non-type argument is non-specialized if it is the name of a
// non-type parameter. All other non-type arguments are
// specialized.
//
// Below, we check the two conditions that only apply to
// specialized non-type arguments, so skip any non-specialized
// arguments.
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
if (MirrorsPrimaryTemplate &&
(Param->getIndex() != NTTP->getIndex() ||
Param->getDepth() != NTTP->getDepth()))
MirrorsPrimaryTemplate = false;
continue;
}
// C++ [temp.class.spec]p9:
// Within the argument list of a class template partial
// specialization, the following restrictions apply:
// -- A partially specialized non-type argument expression
// shall not involve a template parameter of the partial
// specialization except when the argument expression is a
// simple identifier.
if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
Diag(ArgExpr->getLocStart(),
diag::err_dependent_non_type_arg_in_partial_spec)
<< ArgExpr->getSourceRange();
return true;
}
// -- The type of a template parameter corresponding to a
// specialized non-type argument shall not be dependent on a
// parameter of the specialization.
if (Param->getType()->isDependentType()) {
Diag(ArgExpr->getLocStart(),
diag::err_dependent_typed_non_type_arg_in_partial_spec)
<< Param->getType()
<< ArgExpr->getSourceRange();
Diag(Param->getLocation(), diag::note_template_param_here);
return true;
}
MirrorsPrimaryTemplate = false;
}
return false;
}
/// \brief Retrieve the previous declaration of the given declaration.
static NamedDecl *getPreviousDecl(NamedDecl *ND) {
if (VarDecl *VD = dyn_cast<VarDecl>(ND))
return VD->getPreviousDeclaration();
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
return FD->getPreviousDeclaration();
if (TagDecl *TD = dyn_cast<TagDecl>(ND))
return TD->getPreviousDeclaration();
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
return TD->getPreviousDeclaration();
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
return FTD->getPreviousDeclaration();
if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
return CTD->getPreviousDeclaration();
return 0;
}
DeclResult
Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
TagUseKind TUK,
SourceLocation KWLoc,
CXXScopeSpec &SS,
TemplateTy TemplateD,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgsIn,
SourceLocation RAngleLoc,
AttributeList *Attr,
MultiTemplateParamsArg TemplateParameterLists) {
assert(TUK != TUK_Reference && "References are not specializations");
// Find the class template we're specializing
TemplateName Name = TemplateD.getAsVal<TemplateName>();
ClassTemplateDecl *ClassTemplate
= dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
if (!ClassTemplate) {
Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
<< (Name.getAsTemplateDecl() &&
isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
return true;
}
bool isExplicitSpecialization = false;
bool isPartialSpecialization = false;
// Check the validity of the template headers that introduce this
// template.
// FIXME: We probably shouldn't complain about these headers for
// friend declarations.
bool Invalid = false;
TemplateParameterList *TemplateParams
= MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
(TemplateParameterList**)TemplateParameterLists.get(),
TemplateParameterLists.size(),
TUK == TUK_Friend,
isExplicitSpecialization,
Invalid);
if (Invalid)
return true;
unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
if (TemplateParams)
--NumMatchedTemplateParamLists;
if (TemplateParams && TemplateParams->size() > 0) {
isPartialSpecialization = true;
// C++ [temp.class.spec]p10:
// The template parameter list of a specialization shall not
// contain default template argument values.
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
Decl *Param = TemplateParams->getParam(I);
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
if (TTP->hasDefaultArgument()) {
Diag(TTP->getDefaultArgumentLoc(),
diag::err_default_arg_in_partial_spec);
TTP->removeDefaultArgument();
}
} else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
if (Expr *DefArg = NTTP->getDefaultArgument()) {
Diag(NTTP->getDefaultArgumentLoc(),
diag::err_default_arg_in_partial_spec)
<< DefArg->getSourceRange();
NTTP->removeDefaultArgument();
}
} else {
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
if (TTP->hasDefaultArgument()) {
Diag(TTP->getDefaultArgument().getLocation(),
diag::err_default_arg_in_partial_spec)
<< TTP->getDefaultArgument().getSourceRange();
TTP->removeDefaultArgument();
}
}
}
} else if (TemplateParams) {
if (TUK == TUK_Friend)
Diag(KWLoc, diag::err_template_spec_friend)
<< FixItHint::CreateRemoval(
SourceRange(TemplateParams->getTemplateLoc(),
TemplateParams->getRAngleLoc()))
<< SourceRange(LAngleLoc, RAngleLoc);
else
isExplicitSpecialization = true;
} else if (TUK != TUK_Friend) {
Diag(KWLoc, diag::err_template_spec_needs_header)
<< FixItHint::CreateInsertion(KWLoc, "template<> ");
isExplicitSpecialization = true;
}
// Check that the specialization uses the same tag kind as the
// original template.
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
Kind, KWLoc,
*ClassTemplate->getIdentifier())) {
Diag(KWLoc, diag::err_use_with_wrong_tag)
<< ClassTemplate
<< FixItHint::CreateReplacement(KWLoc,
ClassTemplate->getTemplatedDecl()->getKindName());
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
diag::note_previous_use);
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
}
// Translate the parser's template argument list in our AST format.
TemplateArgumentListInfo TemplateArgs;
TemplateArgs.setLAngleLoc(LAngleLoc);
TemplateArgs.setRAngleLoc(RAngleLoc);
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
// Check that the template argument list is well-formed for this
// template.
TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
TemplateArgs.size());
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
TemplateArgs, false, Converted))
return true;
assert((Converted.structuredSize() ==
ClassTemplate->getTemplateParameters()->size()) &&
"Converted template argument list is too short!");
// Find the class template (partial) specialization declaration that
// corresponds to these arguments.
if (isPartialSpecialization) {
bool MirrorsPrimaryTemplate;
if (CheckClassTemplatePartialSpecializationArgs(
ClassTemplate->getTemplateParameters(),
Converted, MirrorsPrimaryTemplate))
return true;
if (MirrorsPrimaryTemplate) {
// C++ [temp.class.spec]p9b3:
//
// -- The argument list of the specialization shall not be identical
// to the implicit argument list of the primary template.
Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
<< (TUK == TUK_Definition)
<< FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
ClassTemplate->getIdentifier(),
TemplateNameLoc,
Attr,
TemplateParams,
AS_none);
}
// FIXME: Diagnose friend partial specializations
if (!Name.isDependent() &&
!TemplateSpecializationType::anyDependentTemplateArguments(
TemplateArgs.getArgumentArray(),
TemplateArgs.size())) {
Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
<< ClassTemplate->getDeclName();
isPartialSpecialization = false;
}
}
void *InsertPos = 0;
ClassTemplateSpecializationDecl *PrevDecl = 0;
if (isPartialSpecialization)
// FIXME: Template parameter list matters, too
PrevDecl
= ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
Converted.flatSize(),
InsertPos);
else
PrevDecl
= ClassTemplate->findSpecialization(Converted.getFlatArguments(),
Converted.flatSize(), InsertPos);
ClassTemplateSpecializationDecl *Specialization = 0;
// Check whether we can declare a class template specialization in
// the current scope.
if (TUK != TUK_Friend &&
CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
TemplateNameLoc,
isPartialSpecialization))
return true;
// The canonical type
QualType CanonType;
if (PrevDecl &&
(PrevDecl->getSpecializationKind() == TSK_Undeclared ||
TUK == TUK_Friend)) {
// Since the only prior class template specialization with these
// arguments was referenced but not declared, or we're only
// referencing this specialization as a friend, reuse that
// declaration node as our own, updating its source location to
// reflect our new declaration.
Specialization = PrevDecl;
Specialization->setLocation(TemplateNameLoc);
PrevDecl = 0;
CanonType = Context.getTypeDeclType(Specialization);
} else if (isPartialSpecialization) {
// Build the canonical type that describes the converted template
// arguments of the class template partial specialization.
TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
CanonType = Context.getTemplateSpecializationType(CanonTemplate,
Converted.getFlatArguments(),
Converted.flatSize());
// Create a new class template partial specialization declaration node.
ClassTemplatePartialSpecializationDecl *PrevPartial
= cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
: ClassTemplate->getNextPartialSpecSequenceNumber();
ClassTemplatePartialSpecializationDecl *Partial
= ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
ClassTemplate->getDeclContext(),
TemplateNameLoc,
TemplateParams,
ClassTemplate,
Converted,
TemplateArgs,
CanonType,
PrevPartial,
SequenceNumber);
SetNestedNameSpecifier(Partial, SS);
if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
Partial->setTemplateParameterListsInfo(Context,
NumMatchedTemplateParamLists,
(TemplateParameterList**) TemplateParameterLists.release());
}
if (!PrevPartial)
ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
Specialization = Partial;
// If we are providing an explicit specialization of a member class
// template specialization, make a note of that.
if (PrevPartial && PrevPartial->getInstantiatedFromMember())
PrevPartial->setMemberSpecialization();
// Check that all of the template parameters of the class template
// partial specialization are deducible from the template
// arguments. If not, this class template partial specialization
// will never be used.
llvm::SmallVector<bool, 8> DeducibleParams;
DeducibleParams.resize(TemplateParams->size());
MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
TemplateParams->getDepth(),
DeducibleParams);
unsigned NumNonDeducible = 0;
for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
if (!DeducibleParams[I])
++NumNonDeducible;
if (NumNonDeducible) {
Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
<< (NumNonDeducible > 1)
<< SourceRange(TemplateNameLoc, RAngleLoc);
for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
if (!DeducibleParams[I]) {
NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
if (Param->getDeclName())
Diag(Param->getLocation(),
diag::note_partial_spec_unused_parameter)
<< Param->getDeclName();
else
Diag(Param->getLocation(),
diag::note_partial_spec_unused_parameter)
<< "<anonymous>";
}
}
}
} else {
// Create a new class template specialization declaration node for
// this explicit specialization or friend declaration.
Specialization
= ClassTemplateSpecializationDecl::Create(Context, Kind,
ClassTemplate->getDeclContext(),
TemplateNameLoc,
ClassTemplate,
Converted,
PrevDecl);
SetNestedNameSpecifier(Specialization, SS);
if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
Specialization->setTemplateParameterListsInfo(Context,
NumMatchedTemplateParamLists,
(TemplateParameterList**) TemplateParameterLists.release());
}
if (!PrevDecl)
ClassTemplate->AddSpecialization(Specialization, InsertPos);
CanonType = Context.getTypeDeclType(Specialization);
}
// C++ [temp.expl.spec]p6:
// If a template, a member template or the member of a class template is
// explicitly specialized then that specialization shall be declared
// before the first use of that specialization that would cause an implicit
// instantiation to take place, in every translation unit in which such a
// use occurs; no diagnostic is required.
if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
bool Okay = false;
for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
// Is there any previous explicit specialization declaration?
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
Okay = true;
break;
}
}
if (!Okay) {
SourceRange Range(TemplateNameLoc, RAngleLoc);
Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
<< Context.getTypeDeclType(Specialization) << Range;
Diag(PrevDecl->getPointOfInstantiation(),
diag::note_instantiation_required_here)
<< (PrevDecl->getTemplateSpecializationKind()
!= TSK_ImplicitInstantiation);
return true;
}
}
// If this is not a friend, note that this is an explicit specialization.
if (TUK != TUK_Friend)
Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
// Check that this isn't a redefinition of this specialization.
if (TUK == TUK_Definition) {
if (RecordDecl *Def = Specialization->getDefinition()) {
SourceRange Range(TemplateNameLoc, RAngleLoc);
Diag(TemplateNameLoc, diag::err_redefinition)
<< Context.getTypeDeclType(Specialization) << Range;
Diag(Def->getLocation(), diag::note_previous_definition);
Specialization->setInvalidDecl();
return true;
}
}
// Build the fully-sugared type for this class template
// specialization as the user wrote in the specialization
// itself. This means that we'll pretty-print the type retrieved
// from the specialization's declaration the way that the user
// actually wrote the specialization, rather than formatting the
// name based on the "canonical" representation used to store the
// template arguments in the specialization.
TypeSourceInfo *WrittenTy
= Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
TemplateArgs, CanonType);
if (TUK != TUK_Friend) {
Specialization->setTypeAsWritten(WrittenTy);
if (TemplateParams)
Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
}
TemplateArgsIn.release();
// C++ [temp.expl.spec]p9:
// A template explicit specialization is in the scope of the
// namespace in which the template was defined.
//
// We actually implement this paragraph where we set the semantic
// context (in the creation of the ClassTemplateSpecializationDecl),
// but we also maintain the lexical context where the actual
// definition occurs.
Specialization->setLexicalDeclContext(CurContext);
// We may be starting the definition of this specialization.
if (TUK == TUK_Definition)
Specialization->startDefinition();
if (TUK == TUK_Friend) {
FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
TemplateNameLoc,
WrittenTy,
/*FIXME:*/KWLoc);
Friend->setAccess(AS_public);
CurContext->addDecl(Friend);
} else {
// Add the specialization into its lexical context, so that it can
// be seen when iterating through the list of declarations in that
// context. However, specializations are not found by name lookup.
CurContext->addDecl(Specialization);
}
return Specialization;
}
Decl *Sema::ActOnTemplateDeclarator(Scope *S,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D) {
return HandleDeclarator(S, D, move(TemplateParameterLists), false);
}
Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D) {
assert(getCurFunctionDecl() == 0 && "Function parsing confused");
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
if (FTI.hasPrototype) {
// FIXME: Diagnose arguments without names in C.
}
Scope *ParentScope = FnBodyScope->getParent();
Decl *DP = HandleDeclarator(ParentScope, D,
move(TemplateParameterLists),
/*IsFunctionDefinition=*/true);
if (FunctionTemplateDecl *FunctionTemplate
= dyn_cast_or_null<FunctionTemplateDecl>(DP))
return ActOnStartOfFunctionDef(FnBodyScope,
FunctionTemplate->getTemplatedDecl());
if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
return ActOnStartOfFunctionDef(FnBodyScope, Function);
return 0;
}
/// \brief Strips various properties off an implicit instantiation
/// that has just been explicitly specialized.
static void StripImplicitInstantiation(NamedDecl *D) {
D->dropAttrs();
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
FD->setInlineSpecified(false);
}
}
/// \brief Diagnose cases where we have an explicit template specialization
/// before/after an explicit template instantiation, producing diagnostics
/// for those cases where they are required and determining whether the
/// new specialization/instantiation will have any effect.
///
/// \param NewLoc the location of the new explicit specialization or
/// instantiation.
///
/// \param NewTSK the kind of the new explicit specialization or instantiation.
///
/// \param PrevDecl the previous declaration of the entity.
///
/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
///
/// \param PrevPointOfInstantiation if valid, indicates where the previus
/// declaration was instantiated (either implicitly or explicitly).
///
/// \param HasNoEffect will be set to true to indicate that the new
/// specialization or instantiation has no effect and should be ignored.
///
/// \returns true if there was an error that should prevent the introduction of
/// the new declaration into the AST, false otherwise.
bool
Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
TemplateSpecializationKind NewTSK,
NamedDecl *PrevDecl,
TemplateSpecializationKind PrevTSK,
SourceLocation PrevPointOfInstantiation,
bool &HasNoEffect) {
HasNoEffect = false;
switch (NewTSK) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
assert(false && "Don't check implicit instantiations here");
return false;
case TSK_ExplicitSpecialization:
switch (PrevTSK) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
// Okay, we're just specializing something that is either already
// explicitly specialized or has merely been mentioned without any
// instantiation.
return false;
case TSK_ImplicitInstantiation:
if (PrevPointOfInstantiation.isInvalid()) {
// The declaration itself has not actually been instantiated, so it is
// still okay to specialize it.
StripImplicitInstantiation(PrevDecl);
return false;
}
// Fall through
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
assert((PrevTSK == TSK_ImplicitInstantiation ||
PrevPointOfInstantiation.isValid()) &&
"Explicit instantiation without point of instantiation?");
// C++ [temp.expl.spec]p6:
// If a template, a member template or the member of a class template
// is explicitly specialized then that specialization shall be declared
// before the first use of that specialization that would cause an
// implicit instantiation to take place, in every translation unit in
// which such a use occurs; no diagnostic is required.
for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
// Is there any previous explicit specialization declaration?
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
return false;
}
Diag(NewLoc, diag::err_specialization_after_instantiation)
<< PrevDecl;
Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
<< (PrevTSK != TSK_ImplicitInstantiation);
return true;
}
break;
case TSK_ExplicitInstantiationDeclaration:
switch (PrevTSK) {
case TSK_ExplicitInstantiationDeclaration:
// This explicit instantiation declaration is redundant (that's okay).
HasNoEffect = true;
return false;
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// We're explicitly instantiating something that may have already been
// implicitly instantiated; that's fine.
return false;
case TSK_ExplicitSpecialization:
// C++0x [temp.explicit]p4:
// For a given set of template parameters, if an explicit instantiation
// of a template appears after a declaration of an explicit
// specialization for that template, the explicit instantiation has no
// effect.
HasNoEffect = true;
return false;
case TSK_ExplicitInstantiationDefinition:
// C++0x [temp.explicit]p10:
// If an entity is the subject of both an explicit instantiation
// declaration and an explicit instantiation definition in the same
// translation unit, the definition shall follow the declaration.
Diag(NewLoc,
diag::err_explicit_instantiation_declaration_after_definition);
Diag(PrevPointOfInstantiation,
diag::note_explicit_instantiation_definition_here);
assert(PrevPointOfInstantiation.isValid() &&
"Explicit instantiation without point of instantiation?");
HasNoEffect = true;
return false;
}
break;
case TSK_ExplicitInstantiationDefinition:
switch (PrevTSK) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// We're explicitly instantiating something that may have already been
// implicitly instantiated; that's fine.
return false;
case TSK_ExplicitSpecialization:
// C++ DR 259, C++0x [temp.explicit]p4:
// For a given set of template parameters, if an explicit
// instantiation of a template appears after a declaration of
// an explicit specialization for that template, the explicit
// instantiation has no effect.
//
// In C++98/03 mode, we only give an extension warning here, because it
// is not harmful to try to explicitly instantiate something that
// has been explicitly specialized.
if (!getLangOptions().CPlusPlus0x) {
Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
<< PrevDecl;
Diag(PrevDecl->getLocation(),
diag::note_previous_template_specialization);
}
HasNoEffect = true;
return false;
case TSK_ExplicitInstantiationDeclaration:
// We're explicity instantiating a definition for something for which we
// were previously asked to suppress instantiations. That's fine.
return false;
case TSK_ExplicitInstantiationDefinition:
// C++0x [temp.spec]p5:
// For a given template and a given set of template-arguments,
// - an explicit instantiation definition shall appear at most once
// in a program,
Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
<< PrevDecl;
Diag(PrevPointOfInstantiation,
diag::note_previous_explicit_instantiation);
HasNoEffect = true;
return false;
}
break;
}
assert(false && "Missing specialization/instantiation case?");
return false;
}
/// \brief Perform semantic analysis for the given dependent function
/// template specialization. The only possible way to get a dependent
/// function template specialization is with a friend declaration,
/// like so:
///
/// template <class T> void foo(T);
/// template <class T> class A {
/// friend void foo<>(T);
/// };
///
/// There really isn't any useful analysis we can do here, so we
/// just store the information.
bool
Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
const TemplateArgumentListInfo &ExplicitTemplateArgs,
LookupResult &Previous) {
// Remove anything from Previous that isn't a function template in
// the correct context.
DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
LookupResult::Filter F = Previous.makeFilter();
while (F.hasNext()) {
NamedDecl *D = F.next()->getUnderlyingDecl();
if (!isa<FunctionTemplateDecl>(D) ||
!FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
F.erase();
}
F.done();
// Should this be diagnosed here?
if (Previous.empty()) return true;
FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
ExplicitTemplateArgs);
return false;
}
/// \brief Perform semantic analysis for the given function template
/// specialization.
///
/// This routine performs all of the semantic analysis required for an
/// explicit function template specialization. On successful completion,
/// the function declaration \p FD will become a function template
/// specialization.
///
/// \param FD the function declaration, which will be updated to become a
/// function template specialization.
///
/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
/// if any. Note that this may be valid info even when 0 arguments are
/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
/// as it anyway contains info on the angle brackets locations.
///
/// \param PrevDecl the set of declarations that may be specialized by
/// this function specialization.
bool
Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
const TemplateArgumentListInfo *ExplicitTemplateArgs,
LookupResult &Previous) {
// The set of function template specializations that could match this
// explicit function template specialization.
UnresolvedSet<8> Candidates;
DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
I != E; ++I) {
NamedDecl *Ovl = (*I)->getUnderlyingDecl();
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
// Only consider templates found within the same semantic lookup scope as
// FD.
if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
continue;
// C++ [temp.expl.spec]p11:
// A trailing template-argument can be left unspecified in the
// template-id naming an explicit function template specialization
// provided it can be deduced from the function argument type.
// Perform template argument deduction to determine whether we may be
// specializing this template.
// FIXME: It is somewhat wasteful to build
TemplateDeductionInfo Info(Context, FD->getLocation());
FunctionDecl *Specialization = 0;
if (TemplateDeductionResult TDK
= DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
FD->getType(),
Specialization,
Info)) {
// FIXME: Template argument deduction failed; record why it failed, so
// that we can provide nifty diagnostics.
(void)TDK;
continue;
}
// Record this candidate.
Candidates.addDecl(Specialization, I.getAccess());
}
}
// Find the most specialized function template.
UnresolvedSetIterator Result
= getMostSpecialized(Candidates.begin(), Candidates.end(),
TPOC_Other, FD->getLocation(),
PDiag(diag::err_function_template_spec_no_match)
<< FD->getDeclName(),
PDiag(diag::err_function_template_spec_ambiguous)
<< FD->getDeclName() << (ExplicitTemplateArgs != 0),
PDiag(diag::note_function_template_spec_matched));
if (Result == Candidates.end())
return true;
// Ignore access information; it doesn't figure into redeclaration checking.
FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
Specialization->setLocation(FD->getLocation());
// FIXME: Check if the prior specialization has a point of instantiation.
// If so, we have run afoul of .
// If this is a friend declaration, then we're not really declaring
// an explicit specialization.
bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
// Check the scope of this explicit specialization.
if (!isFriend &&
CheckTemplateSpecializationScope(*this,
Specialization->getPrimaryTemplate(),
Specialization, FD->getLocation(),
false))
return true;
// C++ [temp.expl.spec]p6:
// If a template, a member template or the member of a class template is
// explicitly specialized then that specialization shall be declared
// before the first use of that specialization that would cause an implicit
// instantiation to take place, in every translation unit in which such a
// use occurs; no diagnostic is required.
FunctionTemplateSpecializationInfo *SpecInfo
= Specialization->getTemplateSpecializationInfo();
assert(SpecInfo && "Function template specialization info missing?");
bool HasNoEffect = false;
if (!isFriend &&
CheckSpecializationInstantiationRedecl(FD->getLocation(),
TSK_ExplicitSpecialization,
Specialization,
SpecInfo->getTemplateSpecializationKind(),
SpecInfo->getPointOfInstantiation(),
HasNoEffect))
return true;
// Mark the prior declaration as an explicit specialization, so that later
// clients know that this is an explicit specialization.
if (!isFriend) {
SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
MarkUnusedFileScopedDecl(Specialization);
}
// Turn the given function declaration into a function template
// specialization, with the template arguments from the previous
// specialization.
// Take copies of (semantic and syntactic) template argument lists.
const TemplateArgumentList* TemplArgs = new (Context)
TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
TemplArgs, /*InsertPos=*/0,
SpecInfo->getTemplateSpecializationKind(),
TemplArgsAsWritten);
// The "previous declaration" for this function template specialization is
// the prior function template specialization.
Previous.clear();
Previous.addDecl(Specialization);
return false;
}
/// \brief Perform semantic analysis for the given non-template member
/// specialization.
///
/// This routine performs all of the semantic analysis required for an
/// explicit member function specialization. On successful completion,
/// the function declaration \p FD will become a member function
/// specialization.
///
/// \param Member the member declaration, which will be updated to become a
/// specialization.
///
/// \param Previous the set of declarations, one of which may be specialized
/// by this function specialization; the set will be modified to contain the
/// redeclared member.
bool
Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
// Try to find the member we are instantiating.
NamedDecl *Instantiation = 0;
NamedDecl *InstantiatedFrom = 0;
MemberSpecializationInfo *MSInfo = 0;
if (Previous.empty()) {
// Nowhere to look anyway.
} else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
I != E; ++I) {
NamedDecl *D = (*I)->getUnderlyingDecl();
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Context.hasSameType(Function->getType(), Method->getType())) {
Instantiation = Method;
InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
MSInfo = Method->getMemberSpecializationInfo();
break;
}
}
}
} else if (isa<VarDecl>(Member)) {
VarDecl *PrevVar;
if (Previous.isSingleResult() &&
(PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
if (PrevVar->isStaticDataMember()) {
Instantiation = PrevVar;
InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
MSInfo = PrevVar->getMemberSpecializationInfo();
}
} else if (isa<RecordDecl>(Member)) {
CXXRecordDecl *PrevRecord;
if (Previous.isSingleResult() &&
(PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
Instantiation = PrevRecord;
InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
MSInfo = PrevRecord->getMemberSpecializationInfo();
}
}
if (!Instantiation) {
// There is no previous declaration that matches. Since member
// specializations are always out-of-line, the caller will complain about
// this mismatch later.
return false;
}
// If this is a friend, just bail out here before we start turning
// things into explicit specializations.
if (Member->getFriendObjectKind() != Decl::FOK_None) {
// Preserve instantiation information.
if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
cast<CXXMethodDecl>(InstantiatedFrom),
cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
} else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
cast<CXXRecordDecl>(InstantiatedFrom),
cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
}
Previous.clear();
Previous.addDecl(Instantiation);
return false;
}
// Make sure that this is a specialization of a member.
if (!InstantiatedFrom) {
Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
<< Member;
Diag(Instantiation->getLocation(), diag::note_specialized_decl);
return true;
}
// C++ [temp.expl.spec]p6:
// If a template, a member template or the member of a class template is
// explicitly specialized then that spe- cialization shall be declared
// before the first use of that specialization that would cause an implicit
// instantiation to take place, in every translation unit in which such a
// use occurs; no diagnostic is required.
assert(MSInfo && "Member specialization info missing?");
bool HasNoEffect = false;
if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
TSK_ExplicitSpecialization,
Instantiation,
MSInfo->getTemplateSpecializationKind(),
MSInfo->getPointOfInstantiation(),
HasNoEffect))
return true;
// Check the scope of this explicit specialization.
if (CheckTemplateSpecializationScope(*this,
InstantiatedFrom,
Instantiation, Member->getLocation(),
false))
return true;
// Note that this is an explicit instantiation of a member.
// the original declaration to note that it is an explicit specialization
// (if it was previously an implicit instantiation). This latter step
// makes bookkeeping easier.
if (isa<FunctionDecl>(Member)) {
FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
if (InstantiationFunction->getTemplateSpecializationKind() ==
TSK_ImplicitInstantiation) {
InstantiationFunction->setTemplateSpecializationKind(
TSK_ExplicitSpecialization);
InstantiationFunction->setLocation(Member->getLocation());
}
cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
cast<CXXMethodDecl>(InstantiatedFrom),
TSK_ExplicitSpecialization);
MarkUnusedFileScopedDecl(InstantiationFunction);
} else if (isa<VarDecl>(Member)) {
VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
if (InstantiationVar->getTemplateSpecializationKind() ==
TSK_ImplicitInstantiation) {
InstantiationVar->setTemplateSpecializationKind(
TSK_ExplicitSpecialization);
InstantiationVar->setLocation(Member->getLocation());
}
Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
cast<VarDecl>(InstantiatedFrom),
TSK_ExplicitSpecialization);
MarkUnusedFileScopedDecl(InstantiationVar);
} else {
assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
if (InstantiationClass->getTemplateSpecializationKind() ==
TSK_ImplicitInstantiation) {
InstantiationClass->setTemplateSpecializationKind(
TSK_ExplicitSpecialization);
InstantiationClass->setLocation(Member->getLocation());
}
cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
cast<CXXRecordDecl>(InstantiatedFrom),
TSK_ExplicitSpecialization);
}
// Save the caller the trouble of having to figure out which declaration
// this specialization matches.
Previous.clear();
Previous.addDecl(Instantiation);
return false;
}
/// \brief Check the scope of an explicit instantiation.
///
/// \returns true if a serious error occurs, false otherwise.
static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
SourceLocation InstLoc,
bool WasQualifiedName) {
DeclContext *ExpectedContext
= D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
DeclContext *CurContext = S.CurContext->getLookupContext();
if (CurContext->isRecord()) {
S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
<< D;
return true;
}
// C++0x [temp.explicit]p2:
// An explicit instantiation shall appear in an enclosing namespace of its
// template.
//
// This is DR275, which we do not retroactively apply to C++98/03.
if (S.getLangOptions().CPlusPlus0x &&
!CurContext->Encloses(ExpectedContext)) {
if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
S.Diag(InstLoc,
S.getLangOptions().CPlusPlus0x?
diag::err_explicit_instantiation_out_of_scope
: diag::warn_explicit_instantiation_out_of_scope_0x)
<< D << NS;
else
S.Diag(InstLoc,
S.getLangOptions().CPlusPlus0x?
diag::err_explicit_instantiation_must_be_global
: diag::warn_explicit_instantiation_out_of_scope_0x)
<< D;
S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
return false;
}
// C++0x [temp.explicit]p2:
// If the name declared in the explicit instantiation is an unqualified
// name, the explicit instantiation shall appear in the namespace where
// its template is declared or, if that namespace is inline (7.3.1), any
// namespace from its enclosing namespace set.
if (WasQualifiedName)
return false;
if (CurContext->Equals(ExpectedContext))
return false;
S.Diag(InstLoc,
S.getLangOptions().CPlusPlus0x?
diag::err_explicit_instantiation_unqualified_wrong_namespace
: diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
<< D << ExpectedContext;
S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
return false;
}
/// \brief Determine whether the given scope specifier has a template-id in it.
static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
if (!SS.isSet())
return false;
// C++0x [temp.explicit]p2:
// If the explicit instantiation is for a member function, a member class
// or a static data member of a class template specialization, the name of
// the class template specialization in the qualified-id for the member
// name shall be a simple-template-id.
//
// C++98 has the same restriction, just worded differently.
for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
NNS; NNS = NNS->getPrefix())
if (Type *T = NNS->getAsType())
if (isa<TemplateSpecializationType>(T))
return true;
return false;
}
// Explicit instantiation of a class template specialization
DeclResult
Sema::ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
const CXXScopeSpec &SS,
TemplateTy TemplateD,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgsIn,
SourceLocation RAngleLoc,
AttributeList *Attr) {
// Find the class template we're specializing
TemplateName Name = TemplateD.getAsVal<TemplateName>();
ClassTemplateDecl *ClassTemplate
= cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
// Check that the specialization uses the same tag kind as the
// original template.
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
assert(Kind != TTK_Enum &&
"Invalid enum tag in class template explicit instantiation!");
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
Kind, KWLoc,
*ClassTemplate->getIdentifier())) {
Diag(KWLoc, diag::err_use_with_wrong_tag)
<< ClassTemplate
<< FixItHint::CreateReplacement(KWLoc,
ClassTemplate->getTemplatedDecl()->getKindName());
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
diag::note_previous_use);
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
}
// C++0x [temp.explicit]p2:
// There are two forms of explicit instantiation: an explicit instantiation
// definition and an explicit instantiation declaration. An explicit
// instantiation declaration begins with the extern keyword. [...]
TemplateSpecializationKind TSK
= ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
: TSK_ExplicitInstantiationDeclaration;
// Translate the parser's template argument list in our AST format.
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
// Check that the template argument list is well-formed for this
// template.
TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
TemplateArgs.size());
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
TemplateArgs, false, Converted))
return true;
assert((Converted.structuredSize() ==
ClassTemplate->getTemplateParameters()->size()) &&
"Converted template argument list is too short!");
// Find the class template specialization declaration that
// corresponds to these arguments.
void *InsertPos = 0;
ClassTemplateSpecializationDecl *PrevDecl
= ClassTemplate->findSpecialization(Converted.getFlatArguments(),
Converted.flatSize(), InsertPos);
TemplateSpecializationKind PrevDecl_TSK
= PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
// C++0x [temp.explicit]p2:
// [...] An explicit instantiation shall appear in an enclosing
// namespace of its template. [...]
//
// This is C++ DR 275.
if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
SS.isSet()))
return true;
ClassTemplateSpecializationDecl *Specialization = 0;
bool ReusedDecl = false;
bool HasNoEffect = false;
if (PrevDecl) {
if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
PrevDecl, PrevDecl_TSK,
PrevDecl->getPointOfInstantiation(),
HasNoEffect))
return PrevDecl;
// Even though HasNoEffect == true means that this explicit instantiation
// has no effect on semantics, we go on to put its syntax in the AST.
if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
PrevDecl_TSK == TSK_Undeclared) {
// Since the only prior class template specialization with these
// arguments was referenced but not declared, reuse that
// declaration node as our own, updating the source location
// for the template name to reflect our new declaration.
// (Other source locations will be updated later.)
Specialization = PrevDecl;
Specialization->setLocation(TemplateNameLoc);
PrevDecl = 0;
ReusedDecl = true;
}
}
if (!Specialization) {
// Create a new class template specialization declaration node for
// this explicit specialization.
Specialization
= ClassTemplateSpecializationDecl::Create(Context, Kind,
ClassTemplate->getDeclContext(),
TemplateNameLoc,
ClassTemplate,
Converted, PrevDecl);
SetNestedNameSpecifier(Specialization, SS);
if (!HasNoEffect && !PrevDecl) {
// Insert the new specialization.
ClassTemplate->AddSpecialization(Specialization, InsertPos);
}
}
// Build the fully-sugared type for this explicit instantiation as
// the user wrote in the explicit instantiation itself. This means
// that we'll pretty-print the type retrieved from the
// specialization's declaration the way that the user actually wrote
// the explicit instantiation, rather than formatting the name based
// on the "canonical" representation used to store the template
// arguments in the specialization.
TypeSourceInfo *WrittenTy
= Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
TemplateArgs,
Context.getTypeDeclType(Specialization));
Specialization->setTypeAsWritten(WrittenTy);
TemplateArgsIn.release();
// Set source locations for keywords.
Specialization->setExternLoc(ExternLoc);
Specialization->setTemplateKeywordLoc(TemplateLoc);
// Add the explicit instantiation into its lexical context. However,
// since explicit instantiations are never found by name lookup, we
// just put it into the declaration context directly.
Specialization->setLexicalDeclContext(CurContext);
CurContext->addDecl(Specialization);
// Syntax is now OK, so return if it has no other effect on semantics.
if (HasNoEffect) {
// Set the template specialization kind.
Specialization->setTemplateSpecializationKind(TSK);
return Specialization;
}
// C++ [temp.explicit]p3:
// A definition of a class template or class member template
// shall be in scope at the point of the explicit instantiation of
// the class template or class member template.
//
// This check comes when we actually try to perform the
// instantiation.
ClassTemplateSpecializationDecl *Def
= cast_or_null<ClassTemplateSpecializationDecl>(
Specialization->getDefinition());
if (!Def)
InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
else if (TSK == TSK_ExplicitInstantiationDefinition) {
MarkVTableUsed(TemplateNameLoc, Specialization, true);
Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
}
// Instantiate the members of this class template specialization.
Def = cast_or_null<ClassTemplateSpecializationDecl>(
Specialization->getDefinition());
if (Def) {
TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
// Fix a TSK_ExplicitInstantiationDeclaration followed by a
// TSK_ExplicitInstantiationDefinition
if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
TSK == TSK_ExplicitInstantiationDefinition)
Def->setTemplateSpecializationKind(TSK);
InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
}
// Set the template specialization kind.
Specialization->setTemplateSpecializationKind(TSK);
return Specialization;
}
// Explicit instantiation of a member class of a class template.
DeclResult
Sema::ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
AttributeList *Attr) {
bool Owned = false;
bool IsDependent = false;
Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
KWLoc, SS, Name, NameLoc, Attr, AS_none,
MultiTemplateParamsArg(*this, 0, 0),
Owned, IsDependent);
assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
if (!TagD)
return true;
TagDecl *Tag = cast<TagDecl>(TagD);
if (Tag->isEnum()) {
Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
<< Context.getTypeDeclType(Tag);
return true;
}
if (Tag->isInvalidDecl())
return true;
CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
if (!Pattern) {
Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
<< Context.getTypeDeclType(Record);
Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
return true;
}
// C++0x [temp.explicit]p2:
// If the explicit instantiation is for a class or member class, the
// elaborated-type-specifier in the declaration shall include a
// simple-template-id.
//
// C++98 has the same restriction, just worded differently.
if (!ScopeSpecifierHasTemplateId(SS))
Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
<< Record << SS.getRange();
// C++0x [temp.explicit]p2:
// There are two forms of explicit instantiation: an explicit instantiation
// definition and an explicit instantiation declaration. An explicit
// instantiation declaration begins with the extern keyword. [...]
TemplateSpecializationKind TSK
= ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
: TSK_ExplicitInstantiationDeclaration;
// C++0x [temp.explicit]p2:
// [...] An explicit instantiation shall appear in an enclosing
// namespace of its template. [...]
//
// This is C++ DR 275.
CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
// Verify that it is okay to explicitly instantiate here.
CXXRecordDecl *PrevDecl
= cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
if (!PrevDecl && Record->getDefinition())
PrevDecl = Record;
if (PrevDecl) {
MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
bool HasNoEffect = false;
assert(MSInfo && "No member specialization information?");
if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
PrevDecl,
MSInfo->getTemplateSpecializationKind(),
MSInfo->getPointOfInstantiation(),
HasNoEffect))
return true;
if (HasNoEffect)
return TagD;
}
CXXRecordDecl *RecordDef
= cast_or_null<CXXRecordDecl>(Record->getDefinition());
if (!RecordDef) {
// C++ [temp.explicit]p3:
// A definition of a member class of a class template shall be in scope
// at the point of an explicit instantiation of the member class.
CXXRecordDecl *Def
= cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
if (!Def) {
Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
<< 0 << Record->getDeclName() << Record->getDeclContext();
Diag(Pattern->getLocation(), diag::note_forward_declaration)
<< Pattern;
return true;
} else {
if (InstantiateClass(NameLoc, Record, Def,
getTemplateInstantiationArgs(Record),
TSK))
return true;
RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
if (!RecordDef)
return true;
}
}
// Instantiate all of the members of the class.
InstantiateClassMembers(NameLoc, RecordDef,
getTemplateInstantiationArgs(Record), TSK);
if (TSK == TSK_ExplicitInstantiationDefinition)
MarkVTableUsed(NameLoc, RecordDef, true);
// FIXME: We don't have any representation for explicit instantiations of
// member classes. Such a representation is not needed for compilation, but it
// should be available for clients that want to see all of the declarations in
// the source code.
return TagD;
}
DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
Declarator &D) {
// Explicit instantiations always require a name.
// TODO: check if/when DNInfo should replace Name.
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
DeclarationName Name = NameInfo.getName();
if (!Name) {
if (!D.isInvalidType())
Diag(D.getDeclSpec().getSourceRange().getBegin(),
diag::err_explicit_instantiation_requires_name)
<< D.getDeclSpec().getSourceRange()
<< D.getSourceRange();
return true;
}
// The scope passed in may not be a decl scope. Zip up the scope tree until
// we find one that is.
while ((S->getFlags() & Scope::DeclScope) == 0 ||
(S->getFlags() & Scope::TemplateParamScope) != 0)
S = S->getParent();
// Determine the type of the declaration.
TypeSourceInfo *T = GetTypeForDeclarator(D, S);
QualType R = T->getType();
if (R.isNull())
return true;
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
// Cannot explicitly instantiate a typedef.
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
<< Name;
return true;
}
// C++0x [temp.explicit]p1:
// [...] An explicit instantiation of a function template shall not use the
// inline or constexpr specifiers.
// Presumably, this also applies to member functions of class templates as
// well.
if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
Diag(D.getDeclSpec().getInlineSpecLoc(),
diag::err_explicit_instantiation_inline)
<<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
// FIXME: check for constexpr specifier.
// C++0x [temp.explicit]p2:
// There are two forms of explicit instantiation: an explicit instantiation
// definition and an explicit instantiation declaration. An explicit
// instantiation declaration begins with the extern keyword. [...]
TemplateSpecializationKind TSK
= ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
: TSK_ExplicitInstantiationDeclaration;
LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
LookupParsedName(Previous, S, &D.getCXXScopeSpec());
if (!R->isFunctionType()) {
// C++ [temp.explicit]p1:
// A [...] static data member of a class template can be explicitly
// instantiated from the member definition associated with its class
// template.
if (Previous.isAmbiguous())
return true;
VarDecl *Prev = Previous.getAsSingle<VarDecl>();
if (!Prev || !Prev->isStaticDataMember()) {
// We expect to see a data data member here.
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
<< Name;
for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
P != PEnd; ++P)
Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
return true;
}
if (!Prev->getInstantiatedFromStaticDataMember()) {
// FIXME: Check for explicit specialization?
Diag(D.getIdentifierLoc(),
diag::err_explicit_instantiation_data_member_not_instantiated)
<< Prev;
Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
// FIXME: Can we provide a note showing where this was declared?
return true;
}
// C++0x [temp.explicit]p2:
// If the explicit instantiation is for a member function, a member class
// or a static data member of a class template specialization, the name of
// the class template specialization in the qualified-id for the member
// name shall be a simple-template-id.
//
// C++98 has the same restriction, just worded differently.
if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
Diag(D.getIdentifierLoc(),
diag::ext_explicit_instantiation_without_qualified_id)
<< Prev << D.getCXXScopeSpec().getRange();
// Check the scope of this explicit instantiation.
CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
// Verify that it is okay to explicitly instantiate here.
MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
assert(MSInfo && "Missing static data member specialization info?");
bool HasNoEffect = false;
if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
MSInfo->getTemplateSpecializationKind(),
MSInfo->getPointOfInstantiation(),
HasNoEffect))
return true;
if (HasNoEffect)
return (Decl*) 0;
// Instantiate static data member.
Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
if (TSK == TSK_ExplicitInstantiationDefinition)
InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
// FIXME: Create an ExplicitInstantiation node?
return (Decl*) 0;
}
// If the declarator is a template-id, translate the parser's template
// argument list into our AST format.
bool HasExplicitTemplateArgs = false;
TemplateArgumentListInfo TemplateArgs;
if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
ASTTemplateArgsPtr TemplateArgsPtr(*this,
TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
HasExplicitTemplateArgs = true;
TemplateArgsPtr.release();
}
// C++ [temp.explicit]p1:
// A [...] function [...] can be explicitly instantiated from its template.
// A member function [...] of a class template can be explicitly
// instantiated from the member definition associated with its class
// template.
UnresolvedSet<8> Matches;
for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
P != PEnd; ++P) {
NamedDecl *Prev = *P;
if (!HasExplicitTemplateArgs) {
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
Matches.clear();
Matches.addDecl(Method, P.getAccess());
if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
break;
}
}
}
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
if (!FunTmpl)
continue;
TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
FunctionDecl *Specialization = 0;
if (TemplateDeductionResult TDK
= DeduceTemplateArguments(FunTmpl,
(HasExplicitTemplateArgs ? &TemplateArgs : 0),
R, Specialization, Info)) {
// FIXME: Keep track of almost-matches?
(void)TDK;
continue;
}
Matches.addDecl(Specialization, P.getAccess());
}
// Find the most specialized function template specialization.
UnresolvedSetIterator Result
= getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
D.getIdentifierLoc(),
PDiag(diag::err_explicit_instantiation_not_known) << Name,
PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
PDiag(diag::note_explicit_instantiation_candidate));
if (Result == Matches.end())
return true;
// Ignore access control bits, we don't need them for redeclaration checking.
FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
Diag(D.getIdentifierLoc(),
diag::err_explicit_instantiation_member_function_not_instantiated)
<< Specialization
<< (Specialization->getTemplateSpecializationKind() ==
TSK_ExplicitSpecialization);
Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
return true;
}
FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
if (!PrevDecl && Specialization->isThisDeclarationADefinition())
PrevDecl = Specialization;
if (PrevDecl) {
bool HasNoEffect = false;
if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
PrevDecl,
PrevDecl->getTemplateSpecializationKind(),
PrevDecl->getPointOfInstantiation(),
HasNoEffect))
return true;
// FIXME: We may still want to build some representation of this
// explicit specialization.
if (HasNoEffect)
return (Decl*) 0;
}
Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
if (TSK == TSK_ExplicitInstantiationDefinition)
InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
// C++0x [temp.explicit]p2:
// If the explicit instantiation is for a member function, a member class
// or a static data member of a class template specialization, the name of
// the class template specialization in the qualified-id for the member
// name shall be a simple-template-id.
//
// C++98 has the same restriction, just worded differently.
FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
D.getCXXScopeSpec().isSet() &&
!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
Diag(D.getIdentifierLoc(),
diag::ext_explicit_instantiation_without_qualified_id)
<< Specialization << D.getCXXScopeSpec().getRange();
CheckExplicitInstantiationScope(*this,
FunTmpl? (NamedDecl *)FunTmpl
: Specialization->getInstantiatedFromMemberFunction(),
D.getIdentifierLoc(),
D.getCXXScopeSpec().isSet());
// FIXME: Create some kind of ExplicitInstantiationDecl here.
return (Decl*) 0;
}
TypeResult
Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
const CXXScopeSpec &SS, IdentifierInfo *Name,
SourceLocation TagLoc, SourceLocation NameLoc) {
// This has to hold, because SS is expected to be defined.
assert(Name && "Expected a name in a dependent tag");
NestedNameSpecifier *NNS
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
if (!NNS)
return true;
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
if (TUK == TUK_Declaration || TUK == TUK_Definition) {
Diag(NameLoc, diag::err_dependent_tag_decl)
<< (TUK == TUK_Definition) << Kind << SS.getRange();
return true;
}
ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
}
TypeResult
Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS, const IdentifierInfo &II,
SourceLocation IdLoc) {
NestedNameSpecifier *NNS
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
if (!NNS)
return true;
if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
!getLangOptions().CPlusPlus0x)
Diag(TypenameLoc, diag::ext_typename_outside_of_template)
<< FixItHint::CreateRemoval(TypenameLoc);
QualType T = CheckTypenameType(ETK_Typename, NNS, II,
TypenameLoc, SS.getRange(), IdLoc);
if (T.isNull())
return true;
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
if (isa<DependentNameType>(T)) {
DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
TL.setKeywordLoc(TypenameLoc);
TL.setQualifierRange(SS.getRange());
TL.setNameLoc(IdLoc);
} else {
ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
TL.setKeywordLoc(TypenameLoc);
TL.setQualifierRange(SS.getRange());
cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
}
return CreateParsedType(T, TSI);
}
TypeResult
Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS, SourceLocation TemplateLoc,
ParsedType Ty) {
if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
!getLangOptions().CPlusPlus0x)
Diag(TypenameLoc, diag::ext_typename_outside_of_template)
<< FixItHint::CreateRemoval(TypenameLoc);
TypeSourceInfo *InnerTSI = 0;
QualType T = GetTypeFromParser(Ty, &InnerTSI);
assert(isa<TemplateSpecializationType>(T) &&
"Expected a template specialization type");
if (computeDeclContext(SS, false)) {
// If we can compute a declaration context, then the "typename"
// keyword was superfluous. Just build an ElaboratedType to keep
// track of the nested-name-specifier.
// Push the inner type, preserving its source locations if possible.
TypeLocBuilder Builder;
if (InnerTSI)
Builder.pushFullCopy(InnerTSI->getTypeLoc());
else
Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
/* Note: NNS already embedded in template specialization type T. */
T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
TL.setKeywordLoc(TypenameLoc);
TL.setQualifierRange(SS.getRange());
TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
return CreateParsedType(T, TSI);
}
// TODO: it's really silly that we make a template specialization
// type earlier only to drop it again here.
TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
DependentTemplateName *DTN =
TST->getTemplateName().getAsDependentTemplateName();
assert(DTN && "dependent template has non-dependent name?");
assert(DTN->getQualifier()
== static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
T = Context.getDependentTemplateSpecializationType(ETK_Typename,
DTN->getQualifier(),
DTN->getIdentifier(),
TST->getNumArgs(),
TST->getArgs());
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
DependentTemplateSpecializationTypeLoc TL =
cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
if (InnerTSI) {
TemplateSpecializationTypeLoc TSTL =
cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
TL.setLAngleLoc(TSTL.getLAngleLoc());
TL.setRAngleLoc(TSTL.getRAngleLoc());
for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
} else {
TL.initializeLocal(SourceLocation());
}
TL.setKeywordLoc(TypenameLoc);
TL.setQualifierRange(SS.getRange());
return CreateParsedType(T, TSI);
}
/// \brief Build the type that describes a C++ typename specifier,
/// e.g., "typename T::type".
QualType
Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, const IdentifierInfo &II,
SourceLocation KeywordLoc, SourceRange NNSRange,
SourceLocation IILoc) {
CXXScopeSpec SS;
SS.setScopeRep(NNS);
SS.setRange(NNSRange);
DeclContext *Ctx = computeDeclContext(SS);
if (!Ctx) {
// If the nested-name-specifier is dependent and couldn't be
// resolved to a type, build a typename type.
assert(NNS->isDependent());
return Context.getDependentNameType(Keyword, NNS, &II);
}
// If the nested-name-specifier refers to the current instantiation,
// the "typename" keyword itself is superfluous. In C++03, the
// program is actually ill-formed. However, DR 382 (in C++0x CD1)
// allows such extraneous "typename" keywords, and we retroactively
// apply this DR to C++03 code with only a warning. In any case we continue.
if (RequireCompleteDeclContext(SS, Ctx))
return QualType();
DeclarationName Name(&II);
LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
LookupQualifiedName(Result, Ctx);
unsigned DiagID = 0;
Decl *Referenced = 0;
switch (Result.getResultKind()) {
case LookupResult::NotFound:
DiagID = diag::err_typename_nested_not_found;
break;
case LookupResult::NotFoundInCurrentInstantiation:
// Okay, it's a member of an unknown instantiation.
return Context.getDependentNameType(Keyword, NNS, &II);
case LookupResult::Found:
if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
// We found a type. Build an ElaboratedType, since the
// typename-specifier was just sugar.
return Context.getElaboratedType(ETK_Typename, NNS,
Context.getTypeDeclType(Type));
}
DiagID = diag::err_typename_nested_not_type;
Referenced = Result.getFoundDecl();
break;
case LookupResult::FoundUnresolvedValue:
llvm_unreachable("unresolved using decl in non-dependent context");
return QualType();
case LookupResult::FoundOverloaded:
DiagID = diag::err_typename_nested_not_type;
Referenced = *Result.begin();
break;
case LookupResult::Ambiguous:
return QualType();
}
// If we get here, it's because name lookup did not find a
// type. Emit an appropriate diagnostic and return an error.
SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
IILoc);
Diag(IILoc, DiagID) << FullRange << Name << Ctx;
if (Referenced)
Diag(Referenced->getLocation(), diag::note_typename_refers_here)
<< Name;
return QualType();
}
namespace {
// See Sema::RebuildTypeInCurrentInstantiation
class CurrentInstantiationRebuilder
: public TreeTransform<CurrentInstantiationRebuilder> {
SourceLocation Loc;
DeclarationName Entity;
public:
typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
CurrentInstantiationRebuilder(Sema &SemaRef,
SourceLocation Loc,
DeclarationName Entity)
: TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
Loc(Loc), Entity(Entity) { }
/// \brief Determine whether the given type \p T has already been
/// transformed.
///
/// For the purposes of type reconstruction, a type has already been
/// transformed if it is NULL or if it is not dependent.
bool AlreadyTransformed(QualType T) {
return T.isNull() || !T->isDependentType();
}
/// \brief Returns the location of the entity whose type is being
/// rebuilt.
SourceLocation getBaseLocation() { return Loc; }
/// \brief Returns the name of the entity whose type is being rebuilt.
DeclarationName getBaseEntity() { return Entity; }
/// \brief Sets the "base" location and entity when that
/// information is known based on another transformation.
void setBase(SourceLocation Loc, DeclarationName Entity) {
this->Loc = Loc;
this->Entity = Entity;
}
};
}
/// \brief Rebuilds a type within the context of the current instantiation.
///
/// The type \p T is part of the type of an out-of-line member definition of
/// a class template (or class template partial specialization) that was parsed
/// and constructed before we entered the scope of the class template (or
/// partial specialization thereof). This routine will rebuild that type now
/// that we have entered the declarator's scope, which may produce different
/// canonical types, e.g.,
///
/// \code
/// template<typename T>
/// struct X {
/// typedef T* pointer;
/// pointer data();
/// };
///
/// template<typename T>
/// typename X<T>::pointer X<T>::data() { ... }
/// \endcode
///
/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
/// since we do not know that we can look into X<T> when we parsed the type.
/// This function will rebuild the type, performing the lookup of "pointer"
/// in X<T> and returning an ElaboratedType whose canonical type is the same
/// as the canonical type of T*, allowing the return types of the out-of-line
/// definition and the declaration to match.
TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
SourceLocation Loc,
DeclarationName Name) {
if (!T || !T->getType()->isDependentType())
return T;
CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
return Rebuilder.TransformType(T);
}
ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
DeclarationName());
return Rebuilder.TransformExpr(E);
}
bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
if (SS.isInvalid()) return true;
NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
DeclarationName());
NestedNameSpecifier *Rebuilt =
Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
if (!Rebuilt) return true;
SS.setScopeRep(Rebuilt);
return false;
}
/// \brief Produces a formatted string that describes the binding of
/// template parameters to template arguments.
std::string
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgumentList &Args) {
// FIXME: For variadic templates, we'll need to get the structured list.
return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
Args.flat_size());
}
std::string
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgument *Args,
unsigned NumArgs) {
std::string Result;
if (!Params || Params->size() == 0 || NumArgs == 0)
return Result;
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
if (I >= NumArgs)
break;
if (I == 0)
Result += "[with ";
else
Result += ", ";
if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
Result += Id->getName();
} else {
Result += '$';
Result += llvm::utostr(I);
}
Result += " = ";
switch (Args[I].getKind()) {
case TemplateArgument::Null:
Result += "<no value>";
break;
case TemplateArgument::Type: {
std::string TypeStr;
Args[I].getAsType().getAsStringInternal(TypeStr,
Context.PrintingPolicy);
Result += TypeStr;
break;
}
case TemplateArgument::Declaration: {
bool Unnamed = true;
if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
if (ND->getDeclName()) {
Unnamed = false;
Result += ND->getNameAsString();
}
}
if (Unnamed) {
Result += "<anonymous>";
}
break;
}
case TemplateArgument::Template: {
std::string Str;
llvm::raw_string_ostream OS(Str);
Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
Result += OS.str();
break;
}
case TemplateArgument::Integral: {
Result += Args[I].getAsIntegral()->toString(10);
break;
}
case TemplateArgument::Expression: {
// FIXME: This is non-optimal, since we're regurgitating the
// expression we were given.
std::string Str;
{
llvm::raw_string_ostream OS(Str);
Args[I].getAsExpr()->printPretty(OS, Context, 0,
Context.PrintingPolicy);
}
Result += Str;
break;
}
case TemplateArgument::Pack:
// FIXME: Format template argument packs
Result += "<template argument pack>";
break;
}
}
Result += ']';
return Result;
}