forked from OSchip/llvm-project
340 lines
12 KiB
C++
340 lines
12 KiB
C++
//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defined the types Store and StoreManager.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Checker/PathSensitive/Store.h"
|
|
#include "clang/Checker/PathSensitive/GRState.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
|
|
using namespace clang;
|
|
|
|
StoreManager::StoreManager(GRStateManager &stateMgr)
|
|
: ValMgr(stateMgr.getValueManager()), StateMgr(stateMgr),
|
|
MRMgr(ValMgr.getRegionManager()), Ctx(stateMgr.getContext()) {}
|
|
|
|
Store StoreManager::EnterStackFrame(const GRState *state,
|
|
const StackFrameContext *frame) {
|
|
return state->getStore();
|
|
}
|
|
|
|
const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
|
|
QualType EleTy, uint64_t index) {
|
|
SVal idx = ValMgr.makeArrayIndex(index);
|
|
return MRMgr.getElementRegion(EleTy, idx, Base, ValMgr.getContext());
|
|
}
|
|
|
|
// FIXME: Merge with the implementation of the same method in MemRegion.cpp
|
|
static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *D = RT->getDecl();
|
|
if (!D->getDefinition())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
|
|
QualType T) {
|
|
SVal idx = ValMgr.makeZeroArrayIndex();
|
|
assert(!T.isNull());
|
|
return MRMgr.getElementRegion(T, idx, R, Ctx);
|
|
}
|
|
|
|
const MemRegion *StoreManager::CastRegion(const MemRegion *R, QualType CastToTy) {
|
|
|
|
ASTContext& Ctx = StateMgr.getContext();
|
|
|
|
// Handle casts to Objective-C objects.
|
|
if (CastToTy->isObjCObjectPointerType())
|
|
return R->StripCasts();
|
|
|
|
if (CastToTy->isBlockPointerType()) {
|
|
// FIXME: We may need different solutions, depending on the symbol
|
|
// involved. Blocks can be casted to/from 'id', as they can be treated
|
|
// as Objective-C objects. This could possibly be handled by enhancing
|
|
// our reasoning of downcasts of symbolic objects.
|
|
if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
|
|
return R;
|
|
|
|
// We don't know what to make of it. Return a NULL region, which
|
|
// will be interpretted as UnknownVal.
|
|
return NULL;
|
|
}
|
|
|
|
// Now assume we are casting from pointer to pointer. Other cases should
|
|
// already be handled.
|
|
QualType PointeeTy = CastToTy->getAs<PointerType>()->getPointeeType();
|
|
QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
|
|
|
|
// Handle casts to void*. We just pass the region through.
|
|
if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
|
|
return R;
|
|
|
|
// Handle casts from compatible types.
|
|
if (R->isBoundable())
|
|
if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) {
|
|
QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
|
|
if (CanonPointeeTy == ObjTy)
|
|
return R;
|
|
}
|
|
|
|
// Process region cast according to the kind of the region being cast.
|
|
switch (R->getKind()) {
|
|
case MemRegion::CXXThisRegionKind:
|
|
case MemRegion::GenericMemSpaceRegionKind:
|
|
case MemRegion::StackLocalsSpaceRegionKind:
|
|
case MemRegion::StackArgumentsSpaceRegionKind:
|
|
case MemRegion::HeapSpaceRegionKind:
|
|
case MemRegion::UnknownSpaceRegionKind:
|
|
case MemRegion::NonStaticGlobalSpaceRegionKind:
|
|
case MemRegion::StaticGlobalSpaceRegionKind: {
|
|
assert(0 && "Invalid region cast");
|
|
break;
|
|
}
|
|
|
|
case MemRegion::FunctionTextRegionKind:
|
|
case MemRegion::BlockTextRegionKind:
|
|
case MemRegion::BlockDataRegionKind: {
|
|
// CodeTextRegion should be cast to only a function or block pointer type,
|
|
// although they can in practice be casted to anything, e.g, void*, char*,
|
|
// etc.
|
|
// Just return the region.
|
|
return R;
|
|
}
|
|
|
|
case MemRegion::StringRegionKind:
|
|
// FIXME: Need to handle arbitrary downcasts.
|
|
case MemRegion::SymbolicRegionKind:
|
|
case MemRegion::AllocaRegionKind:
|
|
case MemRegion::CompoundLiteralRegionKind:
|
|
case MemRegion::FieldRegionKind:
|
|
case MemRegion::ObjCIvarRegionKind:
|
|
case MemRegion::VarRegionKind:
|
|
case MemRegion::CXXObjectRegionKind:
|
|
return MakeElementRegion(R, PointeeTy);
|
|
|
|
case MemRegion::ElementRegionKind: {
|
|
// If we are casting from an ElementRegion to another type, the
|
|
// algorithm is as follows:
|
|
//
|
|
// (1) Compute the "raw offset" of the ElementRegion from the
|
|
// base region. This is done by calling 'getAsRawOffset()'.
|
|
//
|
|
// (2a) If we get a 'RegionRawOffset' after calling
|
|
// 'getAsRawOffset()', determine if the absolute offset
|
|
// can be exactly divided into chunks of the size of the
|
|
// casted-pointee type. If so, create a new ElementRegion with
|
|
// the pointee-cast type as the new ElementType and the index
|
|
// being the offset divded by the chunk size. If not, create
|
|
// a new ElementRegion at offset 0 off the raw offset region.
|
|
//
|
|
// (2b) If we don't a get a 'RegionRawOffset' after calling
|
|
// 'getAsRawOffset()', it means that we are at offset 0.
|
|
//
|
|
// FIXME: Handle symbolic raw offsets.
|
|
|
|
const ElementRegion *elementR = cast<ElementRegion>(R);
|
|
const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
|
|
const MemRegion *baseR = rawOff.getRegion();
|
|
|
|
// If we cannot compute a raw offset, throw up our hands and return
|
|
// a NULL MemRegion*.
|
|
if (!baseR)
|
|
return NULL;
|
|
|
|
CharUnits off = CharUnits::fromQuantity(rawOff.getByteOffset());
|
|
|
|
if (off.isZero()) {
|
|
// Edge case: we are at 0 bytes off the beginning of baseR. We
|
|
// check to see if type we are casting to is the same as the base
|
|
// region. If so, just return the base region.
|
|
if (const TypedRegion *TR = dyn_cast<TypedRegion>(baseR)) {
|
|
QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
|
|
QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
|
|
if (CanonPointeeTy == ObjTy)
|
|
return baseR;
|
|
}
|
|
|
|
// Otherwise, create a new ElementRegion at offset 0.
|
|
return MakeElementRegion(baseR, PointeeTy);
|
|
}
|
|
|
|
// We have a non-zero offset from the base region. We want to determine
|
|
// if the offset can be evenly divided by sizeof(PointeeTy). If so,
|
|
// we create an ElementRegion whose index is that value. Otherwise, we
|
|
// create two ElementRegions, one that reflects a raw offset and the other
|
|
// that reflects the cast.
|
|
|
|
// Compute the index for the new ElementRegion.
|
|
int64_t newIndex = 0;
|
|
const MemRegion *newSuperR = 0;
|
|
|
|
// We can only compute sizeof(PointeeTy) if it is a complete type.
|
|
if (IsCompleteType(Ctx, PointeeTy)) {
|
|
// Compute the size in **bytes**.
|
|
CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
|
|
if (!pointeeTySize.isZero()) {
|
|
// Is the offset a multiple of the size? If so, we can layer the
|
|
// ElementRegion (with elementType == PointeeTy) directly on top of
|
|
// the base region.
|
|
if (off % pointeeTySize == 0) {
|
|
newIndex = off / pointeeTySize;
|
|
newSuperR = baseR;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!newSuperR) {
|
|
// Create an intermediate ElementRegion to represent the raw byte.
|
|
// This will be the super region of the final ElementRegion.
|
|
newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
|
|
}
|
|
|
|
return MakeElementRegion(newSuperR, PointeeTy, newIndex);
|
|
}
|
|
}
|
|
|
|
assert(0 && "unreachable");
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// CastRetrievedVal - Used by subclasses of StoreManager to implement
|
|
/// implicit casts that arise from loads from regions that are reinterpreted
|
|
/// as another region.
|
|
SVal StoreManager::CastRetrievedVal(SVal V, const TypedRegion *R,
|
|
QualType castTy, bool performTestOnly) {
|
|
|
|
if (castTy.isNull())
|
|
return V;
|
|
|
|
ASTContext &Ctx = ValMgr.getContext();
|
|
|
|
if (performTestOnly) {
|
|
// Automatically translate references to pointers.
|
|
QualType T = R->getValueType();
|
|
if (const ReferenceType *RT = T->getAs<ReferenceType>())
|
|
T = Ctx.getPointerType(RT->getPointeeType());
|
|
|
|
assert(ValMgr.getContext().hasSameUnqualifiedType(castTy, T));
|
|
return V;
|
|
}
|
|
|
|
if (const Loc *L = dyn_cast<Loc>(&V))
|
|
return ValMgr.getSValuator().EvalCastL(*L, castTy);
|
|
else if (const NonLoc *NL = dyn_cast<NonLoc>(&V))
|
|
return ValMgr.getSValuator().EvalCastNL(*NL, castTy);
|
|
|
|
return V;
|
|
}
|
|
|
|
SVal StoreManager::getLValueFieldOrIvar(const Decl* D, SVal Base) {
|
|
if (Base.isUnknownOrUndef())
|
|
return Base;
|
|
|
|
Loc BaseL = cast<Loc>(Base);
|
|
const MemRegion* BaseR = 0;
|
|
|
|
switch (BaseL.getSubKind()) {
|
|
case loc::MemRegionKind:
|
|
BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
|
|
break;
|
|
|
|
case loc::GotoLabelKind:
|
|
// These are anormal cases. Flag an undefined value.
|
|
return UndefinedVal();
|
|
|
|
case loc::ConcreteIntKind:
|
|
// While these seem funny, this can happen through casts.
|
|
// FIXME: What we should return is the field offset. For example,
|
|
// add the field offset to the integer value. That way funny things
|
|
// like this work properly: &(((struct foo *) 0xa)->f)
|
|
return Base;
|
|
|
|
default:
|
|
assert(0 && "Unhandled Base.");
|
|
return Base;
|
|
}
|
|
|
|
// NOTE: We must have this check first because ObjCIvarDecl is a subclass
|
|
// of FieldDecl.
|
|
if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
|
|
return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
|
|
|
|
return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
|
|
}
|
|
|
|
SVal StoreManager::getLValueElement(QualType elementType, SVal Offset,
|
|
SVal Base) {
|
|
|
|
// If the base is an unknown or undefined value, just return it back.
|
|
// FIXME: For absolute pointer addresses, we just return that value back as
|
|
// well, although in reality we should return the offset added to that
|
|
// value.
|
|
if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
|
|
return Base;
|
|
|
|
const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
|
|
|
|
// Pointer of any type can be cast and used as array base.
|
|
const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
|
|
|
|
// Convert the offset to the appropriate size and signedness.
|
|
Offset = ValMgr.convertToArrayIndex(Offset);
|
|
|
|
if (!ElemR) {
|
|
//
|
|
// If the base region is not an ElementRegion, create one.
|
|
// This can happen in the following example:
|
|
//
|
|
// char *p = __builtin_alloc(10);
|
|
// p[1] = 8;
|
|
//
|
|
// Observe that 'p' binds to an AllocaRegion.
|
|
//
|
|
return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
|
|
BaseRegion, Ctx));
|
|
}
|
|
|
|
SVal BaseIdx = ElemR->getIndex();
|
|
|
|
if (!isa<nonloc::ConcreteInt>(BaseIdx))
|
|
return UnknownVal();
|
|
|
|
const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
|
|
|
|
// Only allow non-integer offsets if the base region has no offset itself.
|
|
// FIXME: This is a somewhat arbitrary restriction. We should be using
|
|
// SValuator here to add the two offsets without checking their types.
|
|
if (!isa<nonloc::ConcreteInt>(Offset)) {
|
|
if (isa<ElementRegion>(BaseRegion->StripCasts()))
|
|
return UnknownVal();
|
|
|
|
return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
|
|
ElemR->getSuperRegion(),
|
|
Ctx));
|
|
}
|
|
|
|
const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
|
|
assert(BaseIdxI.isSigned());
|
|
|
|
// Compute the new index.
|
|
SVal NewIdx = nonloc::ConcreteInt(
|
|
ValMgr.getBasicValueFactory().getValue(BaseIdxI + OffI));
|
|
|
|
// Construct the new ElementRegion.
|
|
const MemRegion *ArrayR = ElemR->getSuperRegion();
|
|
return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
|
|
Ctx));
|
|
}
|