llvm-project/clang/lib/Sema/SemaDeclAttr.cpp

3363 lines
113 KiB
C++

//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "TargetAttributesSema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace sema;
/// These constants match the enumerated choices of
/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
enum {
ExpectedFunction,
ExpectedUnion,
ExpectedVariableOrFunction,
ExpectedFunctionOrMethod,
ExpectedParameter,
ExpectedParameterOrMethod,
ExpectedFunctionMethodOrBlock,
ExpectedClassOrVirtualMethod,
ExpectedFunctionMethodOrParameter,
ExpectedClass,
ExpectedVirtualMethod,
ExpectedClassMember,
ExpectedVariable,
ExpectedMethod,
ExpectedVariableFunctionOrLabel
};
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
static const FunctionType *getFunctionType(const Decl *D,
bool blocksToo = true) {
QualType Ty;
if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
Ty = decl->getType();
else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
Ty = decl->getType();
else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
Ty = decl->getUnderlyingType();
else
return 0;
if (Ty->isFunctionPointerType())
Ty = Ty->getAs<PointerType>()->getPointeeType();
else if (blocksToo && Ty->isBlockPointerType())
Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
return Ty->getAs<FunctionType>();
}
// FIXME: We should provide an abstraction around a method or function
// to provide the following bits of information.
/// isFunction - Return true if the given decl has function
/// type (function or function-typed variable).
static bool isFunction(const Decl *D) {
return getFunctionType(D, false) != NULL;
}
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(const Decl *D) {
return isFunction(D)|| isa<ObjCMethodDecl>(D);
}
/// isFunctionOrMethodOrBlock - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method or a block.
static bool isFunctionOrMethodOrBlock(const Decl *D) {
if (isFunctionOrMethod(D))
return true;
// check for block is more involved.
if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
QualType Ty = V->getType();
return Ty->isBlockPointerType();
}
return isa<BlockDecl>(D);
}
/// Return true if the given decl has a declarator that should have
/// been processed by Sema::GetTypeForDeclarator.
static bool hasDeclarator(const Decl *D) {
// In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
isa<ObjCPropertyDecl>(D);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
static bool hasFunctionProto(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D))
return isa<FunctionProtoType>(FnTy);
else {
assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
return true;
}
}
/// getFunctionOrMethodNumArgs - Return number of function or method
/// arguments. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D))
return cast<FunctionProtoType>(FnTy)->getNumArgs();
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getNumParams();
return cast<ObjCMethodDecl>(D)->param_size();
}
static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
if (const FunctionType *FnTy = getFunctionType(D))
return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx)->getType();
return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
}
static QualType getFunctionOrMethodResultType(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D))
return cast<FunctionProtoType>(FnTy)->getResultType();
return cast<ObjCMethodDecl>(D)->getResultType();
}
static bool isFunctionOrMethodVariadic(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D)) {
const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
return proto->isVariadic();
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
else {
return cast<ObjCMethodDecl>(D)->isVariadic();
}
}
static bool isInstanceMethod(const Decl *D) {
if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
return MethodDecl->isInstance();
return false;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
if (!Cls)
return false;
IdentifierInfo* ClsName = Cls->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const PointerType *PT = T->getAs<PointerType>();
if (!PT)
return false;
const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TTK_Struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
unsigned int Num) {
if (Attr.getNumArgs() != Num) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
// FIXME: All this manual attribute parsing code is gross. At the
// least add some helper functions to check most argument patterns (#
// and types of args).
static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D);
if (tDecl == 0) {
S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
return;
}
QualType curType = tDecl->getUnderlyingType();
Expr *sizeExpr;
// Special case where the argument is a template id.
if (Attr.getParameterName()) {
CXXScopeSpec SS;
UnqualifiedId id;
id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(scope, SS, id, false, false);
if (Size.isInvalid())
return;
sizeExpr = Size.get();
} else {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
sizeExpr = Attr.getArg(0);
}
// Instantiate/Install the vector type, and let Sema build the type for us.
// This will run the reguired checks.
QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc());
if (!T.isNull()) {
// FIXME: preserve the old source info.
tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T));
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(tDecl);
}
}
static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (TagDecl *TD = dyn_cast<TagDecl>(D))
TD->addAttr(::new (S.Context) PackedAttr(Attr.getLoc(), S.Context));
else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
// If the alignment is less than or equal to 8 bits, the packed attribute
// has no effect.
if (!FD->getType()->isIncompleteType() &&
S.Context.getTypeAlign(FD->getType()) <= 8)
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
<< Attr.getName() << FD->getType();
else
FD->addAttr(::new (S.Context) PackedAttr(Attr.getLoc(), S.Context));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (TagDecl *TD = dyn_cast<TagDecl>(D))
TD->addAttr(::new (S.Context) MsStructAttr(Attr.getLoc(), S.Context));
else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
// The IBAction attributes only apply to instance methods.
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->isInstanceMethod()) {
D->addAttr(::new (S.Context) IBActionAttr(Attr.getLoc(), S.Context));
return;
}
S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
}
static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
// The IBOutlet attributes only apply to instance variables of
// Objective-C classes.
if (isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D)) {
D->addAttr(::new (S.Context) IBOutletAttr(Attr.getLoc(), S.Context));
return;
}
S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
}
static void handleIBOutletCollection(Sema &S, Decl *D,
const AttributeList &Attr) {
// The iboutletcollection attribute can have zero or one arguments.
if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
// The IBOutletCollection attributes only apply to instance variables of
// Objective-C classes.
if (!(isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
return;
}
if (const ValueDecl *VD = dyn_cast<ValueDecl>(D))
if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_object_type)
<< VD->getType() << 0;
return;
}
if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_object_type)
<< PD->getType() << 1;
return;
}
IdentifierInfo *II = Attr.getParameterName();
if (!II)
II = &S.Context.Idents.get("id");
ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
S.getScopeForContext(D->getDeclContext()->getParent()));
if (!TypeRep) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
return;
}
QualType QT = TypeRep.get();
// Diagnose use of non-object type in iboutletcollection attribute.
// FIXME. Gnu attribute extension ignores use of builtin types in
// attributes. So, __attribute__((iboutletcollection(char))) will be
// treated as __attribute__((iboutletcollection())).
if (!QT->isObjCIdType() && !QT->isObjCClassType() &&
!QT->isObjCObjectType()) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
return;
}
D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getLoc(), S.Context,
QT));
}
static void possibleTransparentUnionPointerType(QualType &T) {
if (const RecordType *UT = T->getAsUnionType())
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
RecordDecl *UD = UT->getDecl();
for (RecordDecl::field_iterator it = UD->field_begin(),
itend = UD->field_end(); it != itend; ++it) {
QualType QT = it->getType();
if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
T = QT;
return;
}
}
}
}
static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// GCC ignores the nonnull attribute on K&R style function prototypes, so we
// ignore it as well
if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
// The nonnull attribute only applies to pointers.
SmallVector<unsigned, 10> NonNullArgs;
for (AttributeList::arg_iterator I=Attr.arg_begin(),
E=Attr.arg_end(); I!=E; ++I) {
// The argument must be an integer constant expression.
Expr *Ex = *I;
llvm::APSInt ArgNum(32);
if (Ex->isTypeDependent() || Ex->isValueDependent() ||
!Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "nonnull" << Ex->getSourceRange();
return;
}
unsigned x = (unsigned) ArgNum.getZExtValue();
if (x < 1 || x > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "nonnull" << I.getArgNum() << Ex->getSourceRange();
return;
}
--x;
if (HasImplicitThisParam) {
if (x == 0) {
S.Diag(Attr.getLoc(),
diag::err_attribute_invalid_implicit_this_argument)
<< "nonnull" << Ex->getSourceRange();
return;
}
--x;
}
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
possibleTransparentUnionPointerType(T);
if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
// FIXME: Should also highlight argument in decl.
S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
<< "nonnull" << Ex->getSourceRange();
continue;
}
NonNullArgs.push_back(x);
}
// If no arguments were specified to __attribute__((nonnull)) then all pointer
// arguments have a nonnull attribute.
if (NonNullArgs.empty()) {
for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) {
QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType();
possibleTransparentUnionPointerType(T);
if (T->isAnyPointerType() || T->isBlockPointerType())
NonNullArgs.push_back(I);
}
// No pointer arguments?
if (NonNullArgs.empty()) {
// Warn the trivial case only if attribute is not coming from a
// macro instantiation.
if (Attr.getLoc().isFileID())
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
return;
}
}
unsigned* start = &NonNullArgs[0];
unsigned size = NonNullArgs.size();
llvm::array_pod_sort(start, start + size);
D->addAttr(::new (S.Context) NonNullAttr(Attr.getLoc(), S.Context, start,
size));
}
static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
// This attribute must be applied to a function declaration.
// The first argument to the attribute must be a string,
// the name of the resource, for example "malloc".
// The following arguments must be argument indexes, the arguments must be
// of integer type for Returns, otherwise of pointer type.
// The difference between Holds and Takes is that a pointer may still be used
// after being held. free() should be __attribute((ownership_takes)), whereas
// a list append function may well be __attribute((ownership_holds)).
if (!AL.getParameterName()) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
<< AL.getName()->getName() << 1;
return;
}
// Figure out our Kind, and check arguments while we're at it.
OwnershipAttr::OwnershipKind K;
switch (AL.getKind()) {
case AttributeList::AT_ownership_takes:
K = OwnershipAttr::Takes;
if (AL.getNumArgs() < 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
return;
}
break;
case AttributeList::AT_ownership_holds:
K = OwnershipAttr::Holds;
if (AL.getNumArgs() < 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
return;
}
break;
case AttributeList::AT_ownership_returns:
K = OwnershipAttr::Returns;
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
<< AL.getNumArgs() + 1;
return;
}
break;
default:
// This should never happen given how we are called.
llvm_unreachable("Unknown ownership attribute");
}
if (!isFunction(D) || !hasFunctionProto(D)) {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
StringRef Module = AL.getParameterName()->getName();
// Normalize the argument, __foo__ becomes foo.
if (Module.startswith("__") && Module.endswith("__"))
Module = Module.substr(2, Module.size() - 4);
SmallVector<unsigned, 10> OwnershipArgs;
for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
++I) {
Expr *IdxExpr = *I;
llvm::APSInt ArgNum(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
|| !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
<< AL.getName()->getName() << IdxExpr->getSourceRange();
continue;
}
unsigned x = (unsigned) ArgNum.getZExtValue();
if (x > NumArgs || x < 1) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL.getName()->getName() << x << IdxExpr->getSourceRange();
continue;
}
--x;
if (HasImplicitThisParam) {
if (x == 0) {
S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
<< "ownership" << IdxExpr->getSourceRange();
return;
}
--x;
}
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds: {
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodArgType(D, x);
if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
// FIXME: Should also highlight argument in decl.
S.Diag(AL.getLoc(), diag::err_ownership_type)
<< ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
<< "pointer"
<< IdxExpr->getSourceRange();
continue;
}
break;
}
case OwnershipAttr::Returns: {
if (AL.getNumArgs() > 1) {
// Is the function argument an integer type?
Expr *IdxExpr = AL.getArg(0);
llvm::APSInt ArgNum(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
|| !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(AL.getLoc(), diag::err_ownership_type)
<< "ownership_returns" << "integer"
<< IdxExpr->getSourceRange();
return;
}
}
break;
}
default:
llvm_unreachable("Unknown ownership attribute");
} // switch
// Check we don't have a conflict with another ownership attribute.
for (specific_attr_iterator<OwnershipAttr>
i = D->specific_attr_begin<OwnershipAttr>(),
e = D->specific_attr_end<OwnershipAttr>();
i != e; ++i) {
if ((*i)->getOwnKind() != K) {
for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
I!=E; ++I) {
if (x == *I) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
<< AL.getName()->getName() << "ownership_*";
}
}
}
}
OwnershipArgs.push_back(x);
}
unsigned* start = OwnershipArgs.data();
unsigned size = OwnershipArgs.size();
llvm::array_pod_sort(start, start + size);
if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
return;
}
D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module,
start, size));
}
/// Whether this declaration has internal linkage for the purposes of
/// things that want to complain about things not have internal linkage.
static bool hasEffectivelyInternalLinkage(NamedDecl *D) {
switch (D->getLinkage()) {
case NoLinkage:
case InternalLinkage:
return true;
// Template instantiations that go from external to unique-external
// shouldn't get diagnosed.
case UniqueExternalLinkage:
return true;
case ExternalLinkage:
return false;
}
llvm_unreachable("unknown linkage kind!");
return false;
}
static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
NamedDecl *nd = cast<NamedDecl>(D);
// gcc rejects
// class c {
// static int a __attribute__((weakref ("v2")));
// static int b() __attribute__((weakref ("f3")));
// };
// and ignores the attributes of
// void f(void) {
// static int a __attribute__((weakref ("v2")));
// }
// we reject them
const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
if (!Ctx->isFileContext()) {
S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
nd->getNameAsString();
return;
}
// The GCC manual says
//
// At present, a declaration to which `weakref' is attached can only
// be `static'.
//
// It also says
//
// Without a TARGET,
// given as an argument to `weakref' or to `alias', `weakref' is
// equivalent to `weak'.
//
// gcc 4.4.1 will accept
// int a7 __attribute__((weakref));
// as
// int a7 __attribute__((weak));
// This looks like a bug in gcc. We reject that for now. We should revisit
// it if this behaviour is actually used.
if (!hasEffectivelyInternalLinkage(nd)) {
S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static);
return;
}
// GCC rejects
// static ((alias ("y"), weakref)).
// Should we? How to check that weakref is before or after alias?
if (Attr.getNumArgs() == 1) {
Expr *Arg = Attr.getArg(0);
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "weakref" << 1;
return;
}
// GCC will accept anything as the argument of weakref. Should we
// check for an existing decl?
D->addAttr(::new (S.Context) AliasAttr(Attr.getLoc(), S.Context,
Str->getString()));
}
D->addAttr(::new (S.Context) WeakRefAttr(Attr.getLoc(), S.Context));
}
static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *Arg = Attr.getArg(0);
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "alias" << 1;
return;
}
if (S.Context.Target.getTriple().isOSDarwin()) {
S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
return;
}
// FIXME: check if target symbol exists in current file
D->addAttr(::new (S.Context) AliasAttr(Attr.getLoc(), S.Context,
Str->getString()));
}
static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) NakedAttr(Attr.getLoc(), S.Context));
}
static void handleAlwaysInlineAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getLoc(), S.Context));
}
static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
QualType RetTy = FD->getResultType();
if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
D->addAttr(::new (S.Context) MallocAttr(Attr.getLoc(), S.Context));
return;
}
}
S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
}
static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
D->addAttr(::new (S.Context) MayAliasAttr(Attr.getLoc(), S.Context));
}
static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (isa<VarDecl>(D))
D->addAttr(::new (S.Context) NoCommonAttr(Attr.getLoc(), S.Context));
else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
}
static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (isa<VarDecl>(D))
D->addAttr(::new (S.Context) CommonAttr(Attr.getLoc(), S.Context));
else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
}
static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
if (hasDeclarator(D)) return;
if (S.CheckNoReturnAttr(attr)) return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context) NoReturnAttr(attr.getLoc(), S.Context));
}
bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
if (attr.hasParameterOrArguments()) {
Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
attr.setInvalid();
return true;
}
return false;
}
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// The checking path for 'noreturn' and 'analyzer_noreturn' are different
// because 'analyzer_noreturn' does not impact the type.
if(!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (VD == 0 || (!VD->getType()->isBlockPointerType()
&& !VD->getType()->isFunctionPointerType())) {
S.Diag(Attr.getLoc(),
Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type
: diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
}
D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getLoc(), S.Context));
}
// PS3 PPU-specific.
static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
/*
Returning a Vector Class in Registers
According to the PPU ABI specifications, a class with a single member of
vector type is returned in memory when used as the return value of a function.
This results in inefficient code when implementing vector classes. To return
the value in a single vector register, add the vecreturn attribute to the
class definition. This attribute is also applicable to struct types.
Example:
struct Vector
{
__vector float xyzw;
} __attribute__((vecreturn));
Vector Add(Vector lhs, Vector rhs)
{
Vector result;
result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
return result; // This will be returned in a register
}
*/
if (!isa<RecordDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedClass;
return;
}
if (D->getAttr<VecReturnAttr>()) {
S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
return;
}
RecordDecl *record = cast<RecordDecl>(D);
int count = 0;
if (!isa<CXXRecordDecl>(record)) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
if (!cast<CXXRecordDecl>(record)->isPOD()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
return;
}
for (RecordDecl::field_iterator iter = record->field_begin();
iter != record->field_end(); iter++) {
if ((count == 1) || !iter->getType()->isVectorType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
count++;
}
D->addAttr(::new (S.Context) VecReturnAttr(Attr.getLoc(), S.Context));
}
static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrParameter;
return;
}
// FIXME: Actually store the attribute on the declaration
}
static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
!isa<TypeDecl>(D) && !isa<LabelDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableFunctionOrLabel;
return;
}
D->addAttr(::new (S.Context) UnusedAttr(Attr.getLoc(), S.Context));
}
static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
return;
}
} else if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context) UsedAttr(Attr.getLoc(), S.Context));
}
static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArg(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "constructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) ConstructorAttr(Attr.getLoc(), S.Context,
priority));
}
static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArg(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "destructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) DestructorAttr(Attr.getLoc(), S.Context,
priority));
}
static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
return;
}
// Handle the case where deprecated attribute has a text message.
StringRef Str;
if (NumArgs == 1) {
StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
if (!SE) {
S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
<< "deprecated";
return;
}
Str = SE->getString();
}
D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getLoc(), S.Context, Str));
}
static void handleUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
return;
}
// Handle the case where unavailable attribute has a text message.
StringRef Str;
if (NumArgs == 1) {
StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
if (!SE) {
S.Diag(Attr.getArg(0)->getLocStart(),
diag::err_attribute_not_string) << "unavailable";
return;
}
Str = SE->getString();
}
D->addAttr(::new (S.Context) UnavailableAttr(Attr.getLoc(), S.Context, Str));
}
static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
return;
}
D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr(
Attr.getLoc(), S.Context));
}
static void handleAvailabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
IdentifierInfo *Platform = Attr.getParameterName();
SourceLocation PlatformLoc = Attr.getParameterLoc();
StringRef PlatformName
= AvailabilityAttr::getPrettyPlatformName(Platform->getName());
if (PlatformName.empty()) {
S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
<< Platform;
PlatformName = Platform->getName();
}
AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
bool IsUnavailable = Attr.getUnavailableLoc().isValid();
// Ensure that Introduced < Deprecated < Obsoleted (although not all
// of these steps are needed).
if (Introduced.isValid() && Deprecated.isValid() &&
!(Introduced.Version < Deprecated.Version)) {
S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
<< 1 << PlatformName << Deprecated.Version.getAsString()
<< 0 << Introduced.Version.getAsString();
return;
}
if (Introduced.isValid() && Obsoleted.isValid() &&
!(Introduced.Version < Obsoleted.Version)) {
S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.Version.getAsString()
<< 0 << Introduced.Version.getAsString();
return;
}
if (Deprecated.isValid() && Obsoleted.isValid() &&
!(Deprecated.Version < Obsoleted.Version)) {
S.Diag(Deprecated.KeywordLoc, diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.Version.getAsString()
<< 1 << Deprecated.Version.getAsString();
return;
}
D->addAttr(::new (S.Context) AvailabilityAttr(Attr.getLoc(), S.Context,
Platform,
Introduced.Version,
Deprecated.Version,
Obsoleted.Version,
IsUnavailable));
}
static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if(!checkAttributeNumArgs(S, Attr, 1))
return;
Expr *Arg = Attr.getArg(0);
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "visibility" << 1;
return;
}
StringRef TypeStr = Str->getString();
VisibilityAttr::VisibilityType type;
if (TypeStr == "default")
type = VisibilityAttr::Default;
else if (TypeStr == "hidden")
type = VisibilityAttr::Hidden;
else if (TypeStr == "internal")
type = VisibilityAttr::Hidden; // FIXME
else if (TypeStr == "protected")
type = VisibilityAttr::Protected;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
return;
}
D->addAttr(::new (S.Context) VisibilityAttr(Attr.getLoc(), S.Context, type));
}
static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
const AttributeList &Attr) {
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
if (!method) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< ExpectedMethod;
return;
}
if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "objc_method_family" << 1;
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
}
Attr.setInvalid();
return;
}
StringRef param = Attr.getParameterName()->getName();
ObjCMethodFamilyAttr::FamilyKind family;
if (param == "none")
family = ObjCMethodFamilyAttr::OMF_None;
else if (param == "alloc")
family = ObjCMethodFamilyAttr::OMF_alloc;
else if (param == "copy")
family = ObjCMethodFamilyAttr::OMF_copy;
else if (param == "init")
family = ObjCMethodFamilyAttr::OMF_init;
else if (param == "mutableCopy")
family = ObjCMethodFamilyAttr::OMF_mutableCopy;
else if (param == "new")
family = ObjCMethodFamilyAttr::OMF_new;
else {
// Just warn and ignore it. This is future-proof against new
// families being used in system headers.
S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
return;
}
if (family == ObjCMethodFamilyAttr::OMF_init &&
!method->getResultType()->isObjCObjectPointerType()) {
S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
<< method->getResultType();
// Ignore the attribute.
return;
}
method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getLoc(),
S.Context, family));
}
static void handleObjCExceptionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 0))
return;
ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
if (OCI == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
return;
}
D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getLoc(), S.Context));
}
static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isPointerType() ||
!T->getAs<PointerType>()->getPointeeType()->isRecordType()) {
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getLoc(), S.Context));
}
static void
handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
return;
}
D->addAttr(::new (S.Context) OverloadableAttr(Attr.getLoc(), S.Context));
}
static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "blocks" << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
BlocksAttr::BlockType type;
if (Attr.getParameterName()->isStr("byref"))
type = BlocksAttr::ByRef;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "blocks" << Attr.getParameterName();
return;
}
D->addAttr(::new (S.Context) BlocksAttr(Attr.getLoc(), S.Context, type));
}
static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
return;
}
int sentinel = 0;
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArg(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 1 << E->getSourceRange();
return;
}
sentinel = Idx.getZExtValue();
if (sentinel < 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
<< E->getSourceRange();
return;
}
}
int nullPos = 0;
if (Attr.getNumArgs() > 1) {
Expr *E = Attr.getArg(1);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 2 << E->getSourceRange();
return;
}
nullPos = Idx.getZExtValue();
if (nullPos > 1 || nullPos < 0) {
// FIXME: This error message could be improved, it would be nice
// to say what the bounds actually are.
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
<< E->getSourceRange();
return;
}
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
const FunctionType *FT = FD->getType()->getAs<FunctionType>();
assert(FT && "FunctionDecl has non-function type?");
if (isa<FunctionNoProtoType>(FT)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
return;
}
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (!MD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (isa<BlockDecl>(D)) {
// Note! BlockDecl is typeless. Variadic diagnostics will be issued by the
// caller.
;
} else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
int m = Ty->isFunctionPointerType() ? 0 : 1;
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
D->addAttr(::new (S.Context) SentinelAttr(Attr.getLoc(), S.Context, sentinel,
nullPos));
}
static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 0;
return;
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->getResultType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 1;
return;
}
D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getLoc(), S.Context));
}
static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
NamedDecl *nd = cast<NamedDecl>(D);
// 'weak' only applies to declarations with external linkage.
if (hasEffectivelyInternalLinkage(nd)) {
S.Diag(Attr.getLoc(), diag::err_attribute_weak_static);
return;
}
nd->addAttr(::new (S.Context) WeakAttr(Attr.getLoc(), S.Context));
}
static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
// weak_import only applies to variable & function declarations.
bool isDef = false;
if (!D->canBeWeakImported(isDef)) {
if (isDef)
S.Diag(Attr.getLoc(),
diag::warn_attribute_weak_import_invalid_on_definition)
<< "weak_import" << 2 /*variable and function*/;
else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
(S.Context.Target.getTriple().isOSDarwin() &&
isa<ObjCInterfaceDecl>(D))) {
// Nothing to warn about here.
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context) WeakImportAttr(Attr.getLoc(), S.Context));
}
static void handleReqdWorkGroupSize(Sema &S, Decl *D,
const AttributeList &Attr) {
// Attribute has 3 arguments.
if (!checkAttributeNumArgs(S, Attr, 3))
return;
unsigned WGSize[3];
for (unsigned i = 0; i < 3; ++i) {
Expr *E = Attr.getArg(i);
llvm::APSInt ArgNum(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "reqd_work_group_size" << E->getSourceRange();
return;
}
WGSize[i] = (unsigned) ArgNum.getZExtValue();
}
D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getLoc(), S.Context,
WGSize[0], WGSize[1],
WGSize[2]));
}
static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Attribute has no arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
// Make sure that there is a string literal as the sections's single
// argument.
Expr *ArgExpr = Attr.getArg(0);
StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
if (!SE) {
S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
return;
}
// If the target wants to validate the section specifier, make it happen.
std::string Error = S.Context.Target.isValidSectionSpecifier(SE->getString());
if (!Error.empty()) {
S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
<< Error;
return;
}
// This attribute cannot be applied to local variables.
if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
return;
}
D->addAttr(::new (S.Context) SectionAttr(Attr.getLoc(), S.Context,
SE->getString()));
}
static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
if (Existing->getLocation().isInvalid())
Existing->setLocation(Attr.getLoc());
} else {
D->addAttr(::new (S.Context) NoThrowAttr(Attr.getLoc(), S.Context));
}
}
static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
if (Existing->getLocation().isInvalid())
Existing->setLocation(Attr.getLoc());
} else {
D->addAttr(::new (S.Context) ConstAttr(Attr.getLoc(), S.Context));
}
}
static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
D->addAttr(::new (S.Context) PureAttr(Attr.getLoc(), S.Context));
}
static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
VarDecl *VD = dyn_cast<VarDecl>(D);
if (!VD || !VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
return;
}
// Look up the function
// FIXME: Lookup probably isn't looking in the right place
NamedDecl *CleanupDecl
= S.LookupSingleName(S.TUScope, Attr.getParameterName(),
Attr.getParameterLoc(), Sema::LookupOrdinaryName);
if (!CleanupDecl) {
S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
Attr.getParameterName();
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
if (!FD) {
S.Diag(Attr.getParameterLoc(),
diag::err_attribute_cleanup_arg_not_function)
<< Attr.getParameterName();
return;
}
if (FD->getNumParams() != 1) {
S.Diag(Attr.getParameterLoc(),
diag::err_attribute_cleanup_func_must_take_one_arg)
<< Attr.getParameterName();
return;
}
// We're currently more strict than GCC about what function types we accept.
// If this ever proves to be a problem it should be easy to fix.
QualType Ty = S.Context.getPointerType(VD->getType());
QualType ParamTy = FD->getParamDecl(0)->getType();
if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
ParamTy, Ty) != Sema::Compatible) {
S.Diag(Attr.getParameterLoc(),
diag::err_attribute_cleanup_func_arg_incompatible_type) <<
Attr.getParameterName() << ParamTy << Ty;
return;
}
D->addAttr(::new (S.Context) CleanupAttr(Attr.getLoc(), S.Context, FD));
S.MarkDeclarationReferenced(Attr.getParameterLoc(), FD);
}
/// Handle __attribute__((format_arg((idx)))) attribute based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
unsigned FirstIdx = 1;
// checks for the 2nd argument
Expr *IdxExpr = Attr.getArg(0);
llvm::APSInt Idx(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
unsigned ArgIdx = Idx.getZExtValue() - 1;
if (HasImplicitThisParam) {
if (ArgIdx == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
<< "format_arg" << IdxExpr->getSourceRange();
return;
}
ArgIdx--;
}
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
bool not_nsstring_type = !isNSStringType(Ty, S.Context);
if (not_nsstring_type &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< (not_nsstring_type ? "a string type" : "an NSString")
<< IdxExpr->getSourceRange();
return;
}
Ty = getFunctionOrMethodResultType(D);
if (!isNSStringType(Ty, S.Context) &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
<< (not_nsstring_type ? "string type" : "NSString")
<< IdxExpr->getSourceRange();
return;
}
D->addAttr(::new (S.Context) FormatArgAttr(Attr.getLoc(), S.Context,
Idx.getZExtValue()));
}
enum FormatAttrKind {
CFStringFormat,
NSStringFormat,
StrftimeFormat,
SupportedFormat,
IgnoredFormat,
InvalidFormat
};
/// getFormatAttrKind - Map from format attribute names to supported format
/// types.
static FormatAttrKind getFormatAttrKind(StringRef Format) {
// Check for formats that get handled specially.
if (Format == "NSString")
return NSStringFormat;
if (Format == "CFString")
return CFStringFormat;
if (Format == "strftime")
return StrftimeFormat;
// Otherwise, check for supported formats.
if (Format == "scanf" || Format == "printf" || Format == "printf0" ||
Format == "strfmon" || Format == "cmn_err" || Format == "strftime" ||
Format == "NSString" || Format == "CFString" || Format == "vcmn_err" ||
Format == "zcmn_err" ||
Format == "kprintf") // OpenBSD.
return SupportedFormat;
if (Format == "gcc_diag" || Format == "gcc_cdiag" ||
Format == "gcc_cxxdiag" || Format == "gcc_tdiag")
return IgnoredFormat;
return InvalidFormat;
}
/// Handle __attribute__((init_priority(priority))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
static void handleInitPriorityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!S.getLangOptions().CPlusPlus) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
QualType T = dyn_cast<VarDecl>(D)->getType();
if (S.Context.getAsArrayType(T))
T = S.Context.getBaseElementType(T);
if (!T->getAs<RecordType>()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return;
}
Expr *priorityExpr = Attr.getArg(0);
llvm::APSInt priority(32);
if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
!priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "init_priority" << priorityExpr->getSourceRange();
Attr.setInvalid();
return;
}
unsigned prioritynum = priority.getZExtValue();
if (prioritynum < 101 || prioritynum > 65535) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
<< priorityExpr->getSourceRange();
Attr.setInvalid();
return;
}
D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getLoc(), S.Context,
prioritynum));
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "format" << 1;
return;
}
if (Attr.getNumArgs() != 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
return;
}
if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
unsigned FirstIdx = 1;
StringRef Format = Attr.getParameterName()->getName();
// Normalize the argument, __foo__ becomes foo.
if (Format.startswith("__") && Format.endswith("__"))
Format = Format.substr(2, Format.size() - 4);
// Check for supported formats.
FormatAttrKind Kind = getFormatAttrKind(Format);
if (Kind == IgnoredFormat)
return;
if (Kind == InvalidFormat) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "format" << Attr.getParameterName()->getName();
return;
}
// checks for the 2nd argument
Expr *IdxExpr = Attr.getArg(0);
llvm::APSInt Idx(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx.getZExtValue() - 1;
if (HasImplicitThisParam) {
if (ArgIdx == 0) {
S.Diag(Attr.getLoc(),
diag::err_format_attribute_implicit_this_format_string)
<< IdxExpr->getSourceRange();
return;
}
ArgIdx--;
}
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
if (Kind == CFStringFormat) {
if (!isCFStringType(Ty, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a CFString" << IdxExpr->getSourceRange();
return;
}
} else if (Kind == NSStringFormat) {
// FIXME: do we need to check if the type is NSString*? What are the
// semantics?
if (!isNSStringType(Ty, S.Context)) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "an NSString" << IdxExpr->getSourceRange();
return;
}
} else if (!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange();
return;
}
// check the 3rd argument
Expr *FirstArgExpr = Attr.getArg(1);
llvm::APSInt FirstArg(32);
if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (isFunctionOrMethodVariadic(D)) {
++NumArgs; // +1 for ...
} else {
S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any
// variable the input is just the current time + the format string.
if (Kind == StrftimeFormat) {
if (FirstArg != 0) {
S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
<< FirstArgExpr->getSourceRange();
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
// Check whether we already have an equivalent format attribute.
for (specific_attr_iterator<FormatAttr>
i = D->specific_attr_begin<FormatAttr>(),
e = D->specific_attr_end<FormatAttr>();
i != e ; ++i) {
FormatAttr *f = *i;
if (f->getType() == Format &&
f->getFormatIdx() == (int)Idx.getZExtValue() &&
f->getFirstArg() == (int)FirstArg.getZExtValue()) {
// If we don't have a valid location for this attribute, adopt the
// location.
if (f->getLocation().isInvalid())
f->setLocation(Attr.getLoc());
return;
}
}
D->addAttr(::new (S.Context) FormatAttr(Attr.getLoc(), S.Context, Format,
Idx.getZExtValue(),
FirstArg.getZExtValue()));
}
static void handleTransparentUnionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
// Try to find the underlying union declaration.
RecordDecl *RD = 0;
TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && TD->getUnderlyingType()->isUnionType())
RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
else
RD = dyn_cast<RecordDecl>(D);
if (!RD || !RD->isUnion()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedUnion;
return;
}
if (!RD->isDefinition()) {
S.Diag(Attr.getLoc(),
diag::warn_transparent_union_attribute_not_definition);
return;
}
RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
if (Field == FieldEnd) {
S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
return;
}
FieldDecl *FirstField = *Field;
QualType FirstType = FirstField->getType();
if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
S.Diag(FirstField->getLocation(),
diag::warn_transparent_union_attribute_floating)
<< FirstType->isVectorType() << FirstType;
return;
}
uint64_t FirstSize = S.Context.getTypeSize(FirstType);
uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
for (; Field != FieldEnd; ++Field) {
QualType FieldType = Field->getType();
if (S.Context.getTypeSize(FieldType) != FirstSize ||
S.Context.getTypeAlign(FieldType) != FirstAlign) {
// Warn if we drop the attribute.
bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
: S.Context.getTypeAlign(FieldType);
S.Diag(Field->getLocation(),
diag::warn_transparent_union_attribute_field_size_align)
<< isSize << Field->getDeclName() << FieldBits;
unsigned FirstBits = isSize? FirstSize : FirstAlign;
S.Diag(FirstField->getLocation(),
diag::note_transparent_union_first_field_size_align)
<< isSize << FirstBits;
return;
}
}
RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getLoc(), S.Context));
}
static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
Expr *ArgExpr = Attr.getArg(0);
StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
// Make sure that there is a string literal as the annotation's single
// argument.
if (!SE) {
S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
return;
}
D->addAttr(::new (S.Context) AnnotateAttr(Attr.getLoc(), S.Context,
SE->getString()));
}
static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
//FIXME: The C++0x version of this attribute has more limited applicabilty
// than GNU's, and should error out when it is used to specify a
// weaker alignment, rather than being silently ignored.
if (Attr.getNumArgs() == 0) {
D->addAttr(::new (S.Context) AlignedAttr(Attr.getLoc(), S.Context, true, 0));
return;
}
S.AddAlignedAttr(Attr.getLoc(), D, Attr.getArg(0));
}
void Sema::AddAlignedAttr(SourceLocation AttrLoc, Decl *D, Expr *E) {
if (E->isTypeDependent() || E->isValueDependent()) {
// Save dependent expressions in the AST to be instantiated.
D->addAttr(::new (Context) AlignedAttr(AttrLoc, Context, true, E));
return;
}
// FIXME: Cache the number on the Attr object?
llvm::APSInt Alignment(32);
if (!E->isIntegerConstantExpr(Alignment, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_not_int)
<< "aligned" << E->getSourceRange();
return;
}
if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
<< E->getSourceRange();
return;
}
D->addAttr(::new (Context) AlignedAttr(AttrLoc, Context, true, E));
}
void Sema::AddAlignedAttr(SourceLocation AttrLoc, Decl *D, TypeSourceInfo *TS) {
// FIXME: Cache the number on the Attr object if non-dependent?
// FIXME: Perform checking of type validity
D->addAttr(::new (Context) AlignedAttr(AttrLoc, Context, false, TS));
return;
}
/// handleModeAttr - This attribute modifies the width of a decl with primitive
/// type.
///
/// Despite what would be logical, the mode attribute is a decl attribute, not a
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
/// HImode, not an intermediate pointer.
static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
// Check that there aren't any arguments
if (!checkAttributeNumArgs(S, Attr, 0))
return;
IdentifierInfo *Name = Attr.getParameterName();
if (!Name) {
S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
return;
}
StringRef Str = Attr.getParameterName()->getName();
// Normalize the attribute name, __foo__ becomes foo.
if (Str.startswith("__") && Str.endswith("__"))
Str = Str.substr(2, Str.size() - 4);
unsigned DestWidth = 0;
bool IntegerMode = true;
bool ComplexMode = false;
switch (Str.size()) {
case 2:
switch (Str[0]) {
case 'Q': DestWidth = 8; break;
case 'H': DestWidth = 16; break;
case 'S': DestWidth = 32; break;
case 'D': DestWidth = 64; break;
case 'X': DestWidth = 96; break;
case 'T': DestWidth = 128; break;
}
if (Str[1] == 'F') {
IntegerMode = false;
} else if (Str[1] == 'C') {
IntegerMode = false;
ComplexMode = true;
} else if (Str[1] != 'I') {
DestWidth = 0;
}
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (Str == "word")
DestWidth = S.Context.Target.getPointerWidth(0);
else if (Str == "byte")
DestWidth = S.Context.Target.getCharWidth();
break;
case 7:
if (Str == "pointer")
DestWidth = S.Context.Target.getPointerWidth(0);
break;
}
QualType OldTy;
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
OldTy = TD->getUnderlyingType();
else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
OldTy = VD->getType();
else {
S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
<< "mode" << SourceRange(Attr.getLoc(), Attr.getLoc());
return;
}
if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
else if (IntegerMode) {
if (!OldTy->isIntegralOrEnumerationType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else if (ComplexMode) {
if (!OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else {
if (!OldTy->isFloatingType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
}
// FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
// and friends, at least with glibc.
// FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
// width on unusual platforms.
// FIXME: Make sure floating-point mappings are accurate
// FIXME: Support XF and TF types
QualType NewTy;
switch (DestWidth) {
case 0:
S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
return;
default:
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
case 8:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.SignedCharTy;
else
NewTy = S.Context.UnsignedCharTy;
break;
case 16:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.ShortTy;
else
NewTy = S.Context.UnsignedShortTy;
break;
case 32:
if (!IntegerMode)
NewTy = S.Context.FloatTy;
else if (OldTy->isSignedIntegerType())
NewTy = S.Context.IntTy;
else
NewTy = S.Context.UnsignedIntTy;
break;
case 64:
if (!IntegerMode)
NewTy = S.Context.DoubleTy;
else if (OldTy->isSignedIntegerType())
if (S.Context.Target.getLongWidth() == 64)
NewTy = S.Context.LongTy;
else
NewTy = S.Context.LongLongTy;
else
if (S.Context.Target.getLongWidth() == 64)
NewTy = S.Context.UnsignedLongTy;
else
NewTy = S.Context.UnsignedLongLongTy;
break;
case 96:
NewTy = S.Context.LongDoubleTy;
break;
case 128:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.Int128Ty;
else
NewTy = S.Context.UnsignedInt128Ty;
break;
}
if (ComplexMode) {
NewTy = S.Context.getComplexType(NewTy);
}
// Install the new type.
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
// FIXME: preserve existing source info.
TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
} else
cast<ValueDecl>(D)->setType(NewTy);
}
static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) NoDebugAttr(Attr.getLoc(), S.Context));
}
static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) NoInlineAttr(Attr.getLoc(), S.Context));
}
static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getLoc(),
S.Context));
}
static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
return;
}
D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getLoc(), S.Context));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
}
}
static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getLoc(), S.Context));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
}
}
static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
FunctionDecl *FD = cast<FunctionDecl>(D);
if (!FD->getResultType()->isVoidType()) {
TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) {
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType()
<< FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(),
"void");
} else {
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType();
}
return;
}
D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getLoc(), S.Context));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
}
}
static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getLoc(), S.Context));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
}
}
static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
return;
}
D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getLoc(), S.Context));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
}
}
static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
if (Fn == 0) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
if (!Fn->isInlineSpecified()) {
S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
return;
}
D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getLoc(), S.Context));
}
static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (hasDeclarator(D)) return;
// Diagnostic is emitted elsewhere: here we store the (valid) Attr
// in the Decl node for syntactic reasoning, e.g., pretty-printing.
CallingConv CC;
if (S.CheckCallingConvAttr(Attr, CC))
return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
switch (Attr.getKind()) {
case AttributeList::AT_fastcall:
D->addAttr(::new (S.Context) FastCallAttr(Attr.getLoc(), S.Context));
return;
case AttributeList::AT_stdcall:
D->addAttr(::new (S.Context) StdCallAttr(Attr.getLoc(), S.Context));
return;
case AttributeList::AT_thiscall:
D->addAttr(::new (S.Context) ThisCallAttr(Attr.getLoc(), S.Context));
return;
case AttributeList::AT_cdecl:
D->addAttr(::new (S.Context) CDeclAttr(Attr.getLoc(), S.Context));
return;
case AttributeList::AT_pascal:
D->addAttr(::new (S.Context) PascalAttr(Attr.getLoc(), S.Context));
return;
case AttributeList::AT_pcs: {
Expr *Arg = Attr.getArg(0);
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "pcs" << 1;
Attr.setInvalid();
return;
}
StringRef StrRef = Str->getString();
PcsAttr::PCSType PCS;
if (StrRef == "aapcs")
PCS = PcsAttr::AAPCS;
else if (StrRef == "aapcs-vfp")
PCS = PcsAttr::AAPCS_VFP;
else {
S.Diag(Attr.getLoc(), diag::err_invalid_pcs);
Attr.setInvalid();
return;
}
D->addAttr(::new (S.Context) PcsAttr(Attr.getLoc(), S.Context, PCS));
}
default:
llvm_unreachable("unexpected attribute kind");
return;
}
}
static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
assert(!Attr.isInvalid());
D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getLoc(), S.Context));
}
bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) {
if (attr.isInvalid())
return true;
if ((attr.getNumArgs() != 0 &&
!(attr.getKind() == AttributeList::AT_pcs && attr.getNumArgs() == 1)) ||
attr.getParameterName()) {
Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
attr.setInvalid();
return true;
}
// TODO: diagnose uses of these conventions on the wrong target. Or, better
// move to TargetAttributesSema one day.
switch (attr.getKind()) {
case AttributeList::AT_cdecl: CC = CC_C; break;
case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
case AttributeList::AT_pascal: CC = CC_X86Pascal; break;
case AttributeList::AT_pcs: {
Expr *Arg = attr.getArg(0);
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "pcs" << 1;
attr.setInvalid();
return true;
}
StringRef StrRef = Str->getString();
if (StrRef == "aapcs") {
CC = CC_AAPCS;
break;
} else if (StrRef == "aapcs-vfp") {
CC = CC_AAPCS_VFP;
break;
}
// FALLS THROUGH
}
default: llvm_unreachable("unexpected attribute kind"); return true;
}
return false;
}
static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (hasDeclarator(D)) return;
unsigned numParams;
if (S.CheckRegparmAttr(Attr, numParams))
return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context) RegparmAttr(Attr.getLoc(), S.Context, numParams));
}
/// Checks a regparm attribute, returning true if it is ill-formed and
/// otherwise setting numParams to the appropriate value.
bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
if (Attr.isInvalid())
return true;
if (Attr.getNumArgs() != 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return true;
}
Expr *NumParamsExpr = Attr.getArg(0);
llvm::APSInt NumParams(32);
if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
!NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "regparm" << NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
if (Context.Target.getRegParmMax() == 0) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
<< NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
numParams = NumParams.getZExtValue();
if (numParams > Context.Target.getRegParmMax()) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
<< Context.Target.getRegParmMax() << NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
return false;
}
static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
// FIXME: 0 is not okay.
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
return;
}
if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
Expr *MaxThreadsExpr = Attr.getArg(0);
llvm::APSInt MaxThreads(32);
if (MaxThreadsExpr->isTypeDependent() ||
MaxThreadsExpr->isValueDependent() ||
!MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
return;
}
llvm::APSInt MinBlocks(32);
if (Attr.getNumArgs() > 1) {
Expr *MinBlocksExpr = Attr.getArg(1);
if (MinBlocksExpr->isTypeDependent() ||
MinBlocksExpr->isValueDependent() ||
!MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
return;
}
}
D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getLoc(), S.Context,
MaxThreads.getZExtValue(),
MinBlocks.getZExtValue()));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
}
}
//===----------------------------------------------------------------------===//
// Checker-specific attribute handlers.
//===----------------------------------------------------------------------===//
static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
return type->isObjCObjectPointerType() || S.Context.isObjCNSObjectType(type);
}
static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
return type->isPointerType() || isValidSubjectOfNSAttribute(S, type);
}
static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
if (!param) {
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< SourceRange(Attr.getLoc()) << Attr.getName() << ExpectedParameter;
return;
}
bool typeOK, cf;
if (Attr.getKind() == AttributeList::AT_ns_consumed) {
typeOK = isValidSubjectOfNSAttribute(S, param->getType());
cf = false;
} else {
typeOK = isValidSubjectOfCFAttribute(S, param->getType());
cf = true;
}
if (!typeOK) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
<< SourceRange(Attr.getLoc()) << Attr.getName() << cf;
return;
}
if (cf)
param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getLoc(), S.Context));
else
param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getLoc(), S.Context));
}
static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< SourceRange(Attr.getLoc()) << Attr.getName() << ExpectedMethod;
return;
}
D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getLoc(), S.Context));
}
static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
QualType returnType;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
returnType = MD->getResultType();
else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
returnType = PD->getType();
else if (S.getLangOptions().ObjCAutoRefCount && hasDeclarator(D) &&
(Attr.getKind() == AttributeList::AT_ns_returns_retained))
return; // ignore: was handled as a type attribute
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
returnType = FD->getResultType();
else {
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< SourceRange(Attr.getLoc()) << Attr.getName()
<< ExpectedFunctionOrMethod;
return;
}
bool typeOK;
bool cf;
switch (Attr.getKind()) {
default: llvm_unreachable("invalid ownership attribute"); return;
case AttributeList::AT_ns_returns_autoreleased:
case AttributeList::AT_ns_returns_retained:
case AttributeList::AT_ns_returns_not_retained:
typeOK = isValidSubjectOfNSAttribute(S, returnType);
cf = false;
break;
case AttributeList::AT_cf_returns_retained:
case AttributeList::AT_cf_returns_not_retained:
typeOK = isValidSubjectOfCFAttribute(S, returnType);
cf = true;
break;
}
if (!typeOK) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(Attr.getLoc())
<< Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
return;
}
switch (Attr.getKind()) {
default:
assert(0 && "invalid ownership attribute");
return;
case AttributeList::AT_ns_returns_autoreleased:
D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getLoc(),
S.Context));
return;
case AttributeList::AT_cf_returns_not_retained:
D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getLoc(),
S.Context));
return;
case AttributeList::AT_ns_returns_not_retained:
D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getLoc(),
S.Context));
return;
case AttributeList::AT_cf_returns_retained:
D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getLoc(),
S.Context));
return;
case AttributeList::AT_ns_returns_retained:
D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getLoc(),
S.Context));
return;
};
}
static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
const AttributeList &attr) {
SourceLocation loc = attr.getLoc();
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
if (!isa<ObjCMethodDecl>(method)) {
S.Diag(method->getLocStart(), diag::err_attribute_wrong_decl_type)
<< SourceRange(loc, loc) << attr.getName() << 13 /* methods */;
return;
}
// Check that the method returns a normal pointer.
QualType resultType = method->getResultType();
if (!resultType->isPointerType() || resultType->isObjCRetainableType()) {
S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(loc)
<< attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
// Drop the attribute.
return;
}
method->addAttr(
::new (S.Context) ObjCReturnsInnerPointerAttr(loc, S.Context));
}
static void handleObjCOwnershipAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (hasDeclarator(D)) return;
SourceLocation L = Attr.getLoc();
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< SourceRange(L, L) << Attr.getName() << 12 /* variable */;
}
static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
SourceLocation L = Attr.getLoc();
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< SourceRange(L, L) << Attr.getName() << 12 /* variable */;
return;
}
ValueDecl *vd = cast<ValueDecl>(D);
QualType type = vd->getType();
if (!type->isDependentType() &&
!type->isObjCLifetimeType()) {
S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
<< type;
return;
}
Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
// If we have no lifetime yet, check the lifetime we're presumably
// going to infer.
if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
lifetime = type->getObjCARCImplicitLifetime();
switch (lifetime) {
case Qualifiers::OCL_None:
assert(type->isDependentType() &&
"didn't infer lifetime for non-dependent type?");
break;
case Qualifiers::OCL_Weak: // meaningful
case Qualifiers::OCL_Strong: // meaningful
break;
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
<< (lifetime == Qualifiers::OCL_Autoreleasing);
break;
}
D->addAttr(::new (S.Context)
ObjCPreciseLifetimeAttr(Attr.getLoc(), S.Context));
}
static bool isKnownDeclSpecAttr(const AttributeList &Attr) {
return Attr.getKind() == AttributeList::AT_dllimport ||
Attr.getKind() == AttributeList::AT_dllexport ||
Attr.getKind() == AttributeList::AT_uuid;
}
//===----------------------------------------------------------------------===//
// Microsoft specific attribute handlers.
//===----------------------------------------------------------------------===//
static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.Microsoft || S.LangOpts.Borland) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
Expr *Arg = Attr.getArg(0);
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "uuid" << 1;
return;
}
StringRef StrRef = Str->getString();
bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
StrRef.back() == '}';
// Validate GUID length.
if (IsCurly && StrRef.size() != 38) {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
if (!IsCurly && StrRef.size() != 36) {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
// GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
// "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
StringRef::iterator I = StrRef.begin();
if (IsCurly) // Skip the optional '{'
++I;
for (int i = 0; i < 36; ++i) {
if (i == 8 || i == 13 || i == 18 || i == 23) {
if (*I != '-') {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
} else if (!isxdigit(*I)) {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
I++;
}
D->addAttr(::new (S.Context) UuidAttr(Attr.getLoc(), S.Context,
Str->getString()));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
}
//===----------------------------------------------------------------------===//
// Top Level Sema Entry Points
//===----------------------------------------------------------------------===//
static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
switch (Attr.getKind()) {
case AttributeList::AT_device: handleDeviceAttr (S, D, Attr); break;
case AttributeList::AT_host: handleHostAttr (S, D, Attr); break;
case AttributeList::AT_overloadable:handleOverloadableAttr(S, D, Attr); break;
default:
break;
}
}
static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
switch (Attr.getKind()) {
case AttributeList::AT_IBAction: handleIBAction(S, D, Attr); break;
case AttributeList::AT_IBOutlet: handleIBOutlet(S, D, Attr); break;
case AttributeList::AT_IBOutletCollection:
handleIBOutletCollection(S, D, Attr); break;
case AttributeList::AT_address_space:
case AttributeList::AT_opencl_image_access:
case AttributeList::AT_objc_gc:
case AttributeList::AT_vector_size:
case AttributeList::AT_neon_vector_type:
case AttributeList::AT_neon_polyvector_type:
// Ignore these, these are type attributes, handled by
// ProcessTypeAttributes.
break;
case AttributeList::AT_device:
case AttributeList::AT_host:
case AttributeList::AT_overloadable:
// Ignore, this is a non-inheritable attribute, handled
// by ProcessNonInheritableDeclAttr.
break;
case AttributeList::AT_alias: handleAliasAttr (S, D, Attr); break;
case AttributeList::AT_aligned: handleAlignedAttr (S, D, Attr); break;
case AttributeList::AT_always_inline:
handleAlwaysInlineAttr (S, D, Attr); break;
case AttributeList::AT_analyzer_noreturn:
handleAnalyzerNoReturnAttr (S, D, Attr); break;
case AttributeList::AT_annotate: handleAnnotateAttr (S, D, Attr); break;
case AttributeList::AT_availability:handleAvailabilityAttr(S, D, Attr); break;
case AttributeList::AT_carries_dependency:
handleDependencyAttr (S, D, Attr); break;
case AttributeList::AT_common: handleCommonAttr (S, D, Attr); break;
case AttributeList::AT_constant: handleConstantAttr (S, D, Attr); break;
case AttributeList::AT_constructor: handleConstructorAttr (S, D, Attr); break;
case AttributeList::AT_deprecated: handleDeprecatedAttr (S, D, Attr); break;
case AttributeList::AT_destructor: handleDestructorAttr (S, D, Attr); break;
case AttributeList::AT_ext_vector_type:
handleExtVectorTypeAttr(S, scope, D, Attr);
break;
case AttributeList::AT_format: handleFormatAttr (S, D, Attr); break;
case AttributeList::AT_format_arg: handleFormatArgAttr (S, D, Attr); break;
case AttributeList::AT_global: handleGlobalAttr (S, D, Attr); break;
case AttributeList::AT_gnu_inline: handleGNUInlineAttr (S, D, Attr); break;
case AttributeList::AT_launch_bounds:
handleLaunchBoundsAttr(S, D, Attr);
break;
case AttributeList::AT_mode: handleModeAttr (S, D, Attr); break;
case AttributeList::AT_malloc: handleMallocAttr (S, D, Attr); break;
case AttributeList::AT_may_alias: handleMayAliasAttr (S, D, Attr); break;
case AttributeList::AT_nocommon: handleNoCommonAttr (S, D, Attr); break;
case AttributeList::AT_nonnull: handleNonNullAttr (S, D, Attr); break;
case AttributeList::AT_ownership_returns:
case AttributeList::AT_ownership_takes:
case AttributeList::AT_ownership_holds:
handleOwnershipAttr (S, D, Attr); break;
case AttributeList::AT_naked: handleNakedAttr (S, D, Attr); break;
case AttributeList::AT_noreturn: handleNoReturnAttr (S, D, Attr); break;
case AttributeList::AT_nothrow: handleNothrowAttr (S, D, Attr); break;
case AttributeList::AT_shared: handleSharedAttr (S, D, Attr); break;
case AttributeList::AT_vecreturn: handleVecReturnAttr (S, D, Attr); break;
case AttributeList::AT_objc_ownership:
handleObjCOwnershipAttr(S, D, Attr); break;
case AttributeList::AT_objc_precise_lifetime:
handleObjCPreciseLifetimeAttr(S, D, Attr); break;
case AttributeList::AT_objc_returns_inner_pointer:
handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
// Checker-specific.
case AttributeList::AT_cf_consumed:
case AttributeList::AT_ns_consumed: handleNSConsumedAttr (S, D, Attr); break;
case AttributeList::AT_ns_consumes_self:
handleNSConsumesSelfAttr(S, D, Attr); break;
case AttributeList::AT_ns_returns_autoreleased:
case AttributeList::AT_ns_returns_not_retained:
case AttributeList::AT_cf_returns_not_retained:
case AttributeList::AT_ns_returns_retained:
case AttributeList::AT_cf_returns_retained:
handleNSReturnsRetainedAttr(S, D, Attr); break;
case AttributeList::AT_reqd_wg_size:
handleReqdWorkGroupSize(S, D, Attr); break;
case AttributeList::AT_init_priority:
handleInitPriorityAttr(S, D, Attr); break;
case AttributeList::AT_packed: handlePackedAttr (S, D, Attr); break;
case AttributeList::AT_MsStruct: handleMsStructAttr (S, D, Attr); break;
case AttributeList::AT_section: handleSectionAttr (S, D, Attr); break;
case AttributeList::AT_unavailable: handleUnavailableAttr (S, D, Attr); break;
case AttributeList::AT_arc_weakref_unavailable:
handleArcWeakrefUnavailableAttr (S, D, Attr);
break;
case AttributeList::AT_unused: handleUnusedAttr (S, D, Attr); break;
case AttributeList::AT_used: handleUsedAttr (S, D, Attr); break;
case AttributeList::AT_visibility: handleVisibilityAttr (S, D, Attr); break;
case AttributeList::AT_warn_unused_result: handleWarnUnusedResult(S, D, Attr);
break;
case AttributeList::AT_weak: handleWeakAttr (S, D, Attr); break;
case AttributeList::AT_weakref: handleWeakRefAttr (S, D, Attr); break;
case AttributeList::AT_weak_import: handleWeakImportAttr (S, D, Attr); break;
case AttributeList::AT_transparent_union:
handleTransparentUnionAttr(S, D, Attr);
break;
case AttributeList::AT_objc_exception:
handleObjCExceptionAttr(S, D, Attr);
break;
case AttributeList::AT_objc_method_family:
handleObjCMethodFamilyAttr(S, D, Attr);
break;
case AttributeList::AT_nsobject: handleObjCNSObject (S, D, Attr); break;
case AttributeList::AT_blocks: handleBlocksAttr (S, D, Attr); break;
case AttributeList::AT_sentinel: handleSentinelAttr (S, D, Attr); break;
case AttributeList::AT_const: handleConstAttr (S, D, Attr); break;
case AttributeList::AT_pure: handlePureAttr (S, D, Attr); break;
case AttributeList::AT_cleanup: handleCleanupAttr (S, D, Attr); break;
case AttributeList::AT_nodebug: handleNoDebugAttr (S, D, Attr); break;
case AttributeList::AT_noinline: handleNoInlineAttr (S, D, Attr); break;
case AttributeList::AT_regparm: handleRegparmAttr (S, D, Attr); break;
case AttributeList::IgnoredAttribute:
// Just ignore
break;
case AttributeList::AT_no_instrument_function: // Interacts with -pg.
handleNoInstrumentFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_stdcall:
case AttributeList::AT_cdecl:
case AttributeList::AT_fastcall:
case AttributeList::AT_thiscall:
case AttributeList::AT_pascal:
case AttributeList::AT_pcs:
handleCallConvAttr(S, D, Attr);
break;
case AttributeList::AT_opencl_kernel_function:
handleOpenCLKernelAttr(S, D, Attr);
break;
case AttributeList::AT_uuid:
handleUuidAttr(S, D, Attr);
break;
default:
// Ask target about the attribute.
const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
S.Diag(Attr.getLoc(), diag::warn_unknown_attribute_ignored)
<< Attr.getName();
break;
}
}
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to
/// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4).
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr,
bool NonInheritable, bool Inheritable) {
if (Attr.isInvalid())
return;
if (Attr.isDeclspecAttribute() && !isKnownDeclSpecAttr(Attr))
// FIXME: Try to deal with other __declspec attributes!
return;
if (NonInheritable)
ProcessNonInheritableDeclAttr(S, scope, D, Attr);
if (Inheritable)
ProcessInheritableDeclAttr(S, scope, D, Attr);
}
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
const AttributeList *AttrList,
bool NonInheritable, bool Inheritable) {
for (const AttributeList* l = AttrList; l; l = l->getNext()) {
ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable);
}
// GCC accepts
// static int a9 __attribute__((weakref));
// but that looks really pointless. We reject it.
if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
dyn_cast<NamedDecl>(D)->getNameAsString();
return;
}
}
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
/// #pragma weak needs a non-definition decl and source may not have one
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II) {
assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
NamedDecl *NewD = 0;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
NewD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
FD->getInnerLocStart(),
FD->getLocation(), DeclarationName(II),
FD->getType(), FD->getTypeSourceInfo());
if (FD->getQualifier()) {
FunctionDecl *NewFD = cast<FunctionDecl>(NewD);
NewFD->setQualifierInfo(FD->getQualifierLoc());
}
} else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
VD->getInnerLocStart(), VD->getLocation(), II,
VD->getType(), VD->getTypeSourceInfo(),
VD->getStorageClass(),
VD->getStorageClassAsWritten());
if (VD->getQualifier()) {
VarDecl *NewVD = cast<VarDecl>(NewD);
NewVD->setQualifierInfo(VD->getQualifierLoc());
}
}
return NewD;
}
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak
/// applied to it, possibly with an alias.
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
if (W.getUsed()) return; // only do this once
W.setUsed(true);
if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
IdentifierInfo *NDId = ND->getIdentifier();
NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias());
NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
NDId->getName()));
NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
WeakTopLevelDecl.push_back(NewD);
// FIXME: "hideous" code from Sema::LazilyCreateBuiltin
// to insert Decl at TU scope, sorry.
DeclContext *SavedContext = CurContext;
CurContext = Context.getTranslationUnitDecl();
PushOnScopeChains(NewD, S);
CurContext = SavedContext;
} else { // just add weak to existing
ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
}
}
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
/// it, apply them to D. This is a bit tricky because PD can have attributes
/// specified in many different places, and we need to find and apply them all.
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
bool NonInheritable, bool Inheritable) {
// It's valid to "forward-declare" #pragma weak, in which case we
// have to do this.
if (Inheritable && !WeakUndeclaredIdentifiers.empty()) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
if (IdentifierInfo *Id = ND->getIdentifier()) {
llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
= WeakUndeclaredIdentifiers.find(Id);
if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) {
WeakInfo W = I->second;
DeclApplyPragmaWeak(S, ND, W);
WeakUndeclaredIdentifiers[Id] = W;
}
}
}
}
// Apply decl attributes from the DeclSpec if present.
if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
// Walk the declarator structure, applying decl attributes that were in a type
// position to the decl itself. This handles cases like:
// int *__attr__(x)** D;
// when X is a decl attribute.
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
// Finally, apply any attributes on the decl itself.
if (const AttributeList *Attrs = PD.getAttributes())
ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
}
/// Is the given declaration allowed to use a forbidden type?
static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
// Private ivars are always okay. Unfortunately, people don't
// always properly make their ivars private, even in system headers.
// Plus we need to make fields okay, too.
if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl))
return false;
// Require it to be declared in a system header.
return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
}
/// Handle a delayed forbidden-type diagnostic.
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
Decl *decl) {
if (decl && isForbiddenTypeAllowed(S, decl)) {
decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
"this system declaration uses an unsupported type"));
return;
}
S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
<< diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
diag.Triggered = true;
}
// This duplicates a vector push_back but hides the need to know the
// size of the type.
void Sema::DelayedDiagnostics::add(const DelayedDiagnostic &diag) {
assert(StackSize <= StackCapacity);
// Grow the stack if necessary.
if (StackSize == StackCapacity) {
unsigned newCapacity = 2 * StackCapacity + 2;
char *newBuffer = new char[newCapacity * sizeof(DelayedDiagnostic)];
const char *oldBuffer = (const char*) Stack;
if (StackCapacity)
memcpy(newBuffer, oldBuffer, StackCapacity * sizeof(DelayedDiagnostic));
delete[] oldBuffer;
Stack = reinterpret_cast<sema::DelayedDiagnostic*>(newBuffer);
StackCapacity = newCapacity;
}
assert(StackSize < StackCapacity);
new (&Stack[StackSize++]) DelayedDiagnostic(diag);
}
void Sema::DelayedDiagnostics::popParsingDecl(Sema &S, ParsingDeclState state,
Decl *decl) {
DelayedDiagnostics &DD = S.DelayedDiagnostics;
// Check the invariants.
assert(DD.StackSize >= state.SavedStackSize);
assert(state.SavedStackSize >= DD.ActiveStackBase);
assert(DD.ParsingDepth > 0);
// Drop the parsing depth.
DD.ParsingDepth--;
// If there are no active diagnostics, we're done.
if (DD.StackSize == DD.ActiveStackBase)
return;
// We only want to actually emit delayed diagnostics when we
// successfully parsed a decl.
if (decl && !decl->isInvalidDecl()) {
// We emit all the active diagnostics, not just those starting
// from the saved state. The idea is this: we get one push for a
// decl spec and another for each declarator; in a decl group like:
// deprecated_typedef foo, *bar, baz();
// only the declarator pops will be passed decls. This is correct;
// we really do need to consider delayed diagnostics from the decl spec
// for each of the different declarations.
for (unsigned i = DD.ActiveStackBase, e = DD.StackSize; i != e; ++i) {
DelayedDiagnostic &diag = DD.Stack[i];
if (diag.Triggered)
continue;
switch (diag.Kind) {
case DelayedDiagnostic::Deprecation:
S.HandleDelayedDeprecationCheck(diag, decl);
break;
case DelayedDiagnostic::Access:
S.HandleDelayedAccessCheck(diag, decl);
break;
case DelayedDiagnostic::ForbiddenType:
handleDelayedForbiddenType(S, diag, decl);
break;
}
}
}
// Destroy all the delayed diagnostics we're about to pop off.
for (unsigned i = state.SavedStackSize, e = DD.StackSize; i != e; ++i)
DD.Stack[i].Destroy();
DD.StackSize = state.SavedStackSize;
}
static bool isDeclDeprecated(Decl *D) {
do {
if (D->isDeprecated())
return true;
} while ((D = cast_or_null<Decl>(D->getDeclContext())));
return false;
}
void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
Decl *Ctx) {
if (isDeclDeprecated(Ctx))
return;
DD.Triggered = true;
if (!DD.getDeprecationMessage().empty())
Diag(DD.Loc, diag::warn_deprecated_message)
<< DD.getDeprecationDecl()->getDeclName()
<< DD.getDeprecationMessage();
else
Diag(DD.Loc, diag::warn_deprecated)
<< DD.getDeprecationDecl()->getDeclName();
}
void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass) {
// Delay if we're currently parsing a declaration.
if (DelayedDiagnostics.shouldDelayDiagnostics()) {
DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D, Message));
return;
}
// Otherwise, don't warn if our current context is deprecated.
if (isDeclDeprecated(cast<Decl>(CurContext)))
return;
if (!Message.empty())
Diag(Loc, diag::warn_deprecated_message) << D->getDeclName()
<< Message;
else {
if (!UnknownObjCClass)
Diag(Loc, diag::warn_deprecated) << D->getDeclName();
else {
Diag(Loc, diag::warn_deprecated_fwdclass_message) << D->getDeclName();
Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
}
}
}