forked from OSchip/llvm-project
719 lines
28 KiB
C++
719 lines
28 KiB
C++
//===--- InlayHints.cpp ------------------------------------------*- C++-*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "InlayHints.h"
|
|
#include "AST.h"
|
|
#include "Config.h"
|
|
#include "HeuristicResolver.h"
|
|
#include "ParsedAST.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
|
|
namespace clang {
|
|
namespace clangd {
|
|
namespace {
|
|
|
|
// For now, inlay hints are always anchored at the left or right of their range.
|
|
enum class HintSide { Left, Right };
|
|
|
|
// Helper class to iterate over the designator names of an aggregate type.
|
|
//
|
|
// For an array type, yields [0], [1], [2]...
|
|
// For aggregate classes, yields null for each base, then .field1, .field2, ...
|
|
class AggregateDesignatorNames {
|
|
public:
|
|
AggregateDesignatorNames(QualType T) {
|
|
if (!T.isNull()) {
|
|
T = T.getCanonicalType();
|
|
if (T->isArrayType()) {
|
|
IsArray = true;
|
|
Valid = true;
|
|
return;
|
|
}
|
|
if (const RecordDecl *RD = T->getAsRecordDecl()) {
|
|
Valid = true;
|
|
FieldsIt = RD->field_begin();
|
|
FieldsEnd = RD->field_end();
|
|
if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(RD)) {
|
|
BasesIt = CRD->bases_begin();
|
|
BasesEnd = CRD->bases_end();
|
|
Valid = CRD->isAggregate();
|
|
}
|
|
OneField = Valid && BasesIt == BasesEnd && FieldsIt != FieldsEnd &&
|
|
std::next(FieldsIt) == FieldsEnd;
|
|
}
|
|
}
|
|
}
|
|
// Returns false if the type was not an aggregate.
|
|
operator bool() { return Valid; }
|
|
// Advance to the next element in the aggregate.
|
|
void next() {
|
|
if (IsArray)
|
|
++Index;
|
|
else if (BasesIt != BasesEnd)
|
|
++BasesIt;
|
|
else if (FieldsIt != FieldsEnd)
|
|
++FieldsIt;
|
|
}
|
|
// Print the designator to Out.
|
|
// Returns false if we could not produce a designator for this element.
|
|
bool append(std::string &Out, bool ForSubobject) {
|
|
if (IsArray) {
|
|
Out.push_back('[');
|
|
Out.append(std::to_string(Index));
|
|
Out.push_back(']');
|
|
return true;
|
|
}
|
|
if (BasesIt != BasesEnd)
|
|
return false; // Bases can't be designated. Should we make one up?
|
|
if (FieldsIt != FieldsEnd) {
|
|
llvm::StringRef FieldName;
|
|
if (const IdentifierInfo *II = FieldsIt->getIdentifier())
|
|
FieldName = II->getName();
|
|
|
|
// For certain objects, their subobjects may be named directly.
|
|
if (ForSubobject &&
|
|
(FieldsIt->isAnonymousStructOrUnion() ||
|
|
// std::array<int,3> x = {1,2,3}. Designators not strictly valid!
|
|
(OneField && isReservedName(FieldName))))
|
|
return true;
|
|
|
|
if (!FieldName.empty() && !isReservedName(FieldName)) {
|
|
Out.push_back('.');
|
|
Out.append(FieldName.begin(), FieldName.end());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
bool Valid = false;
|
|
bool IsArray = false;
|
|
bool OneField = false; // e.g. std::array { T __elements[N]; }
|
|
unsigned Index = 0;
|
|
CXXRecordDecl::base_class_const_iterator BasesIt;
|
|
CXXRecordDecl::base_class_const_iterator BasesEnd;
|
|
RecordDecl::field_iterator FieldsIt;
|
|
RecordDecl::field_iterator FieldsEnd;
|
|
};
|
|
|
|
// Collect designator labels describing the elements of an init list.
|
|
//
|
|
// This function contributes the designators of some (sub)object, which is
|
|
// represented by the semantic InitListExpr Sem.
|
|
// This includes any nested subobjects, but *only* if they are part of the same
|
|
// original syntactic init list (due to brace elision).
|
|
// In other words, it may descend into subobjects but not written init-lists.
|
|
//
|
|
// For example: struct Outer { Inner a,b; }; struct Inner { int x, y; }
|
|
// Outer o{{1, 2}, 3};
|
|
// This function will be called with Sem = { {1, 2}, {3, ImplicitValue} }
|
|
// It should generate designators '.a:' and '.b.x:'.
|
|
// '.a:' is produced directly without recursing into the written sublist.
|
|
// (The written sublist will have a separate collectDesignators() call later).
|
|
// Recursion with Prefix='.b' and Sem = {3, ImplicitValue} produces '.b.x:'.
|
|
void collectDesignators(const InitListExpr *Sem,
|
|
llvm::DenseMap<SourceLocation, std::string> &Out,
|
|
const llvm::DenseSet<SourceLocation> &NestedBraces,
|
|
std::string &Prefix) {
|
|
if (!Sem || Sem->isTransparent())
|
|
return;
|
|
assert(Sem->isSemanticForm());
|
|
|
|
// The elements of the semantic form all correspond to direct subobjects of
|
|
// the aggregate type. `Fields` iterates over these subobject names.
|
|
AggregateDesignatorNames Fields(Sem->getType());
|
|
if (!Fields)
|
|
return;
|
|
for (const Expr *Init : Sem->inits()) {
|
|
auto Next = llvm::make_scope_exit([&, Size(Prefix.size())] {
|
|
Fields.next(); // Always advance to the next subobject name.
|
|
Prefix.resize(Size); // Erase any designator we appended.
|
|
});
|
|
if (llvm::isa<ImplicitValueInitExpr>(Init))
|
|
continue; // a "hole" for a subobject that was not explicitly initialized
|
|
|
|
const auto *BraceElidedSubobject = llvm::dyn_cast<InitListExpr>(Init);
|
|
if (BraceElidedSubobject &&
|
|
NestedBraces.contains(BraceElidedSubobject->getLBraceLoc()))
|
|
BraceElidedSubobject = nullptr; // there were braces!
|
|
|
|
if (!Fields.append(Prefix, BraceElidedSubobject != nullptr))
|
|
continue; // no designator available for this subobject
|
|
if (BraceElidedSubobject) {
|
|
// If the braces were elided, this aggregate subobject is initialized
|
|
// inline in the same syntactic list.
|
|
// Descend into the semantic list describing the subobject.
|
|
// (NestedBraces are still correct, they're from the same syntactic list).
|
|
collectDesignators(BraceElidedSubobject, Out, NestedBraces, Prefix);
|
|
continue;
|
|
}
|
|
Out.try_emplace(Init->getBeginLoc(), Prefix);
|
|
}
|
|
}
|
|
|
|
// Get designators describing the elements of a (syntactic) init list.
|
|
// This does not produce designators for any explicitly-written nested lists.
|
|
llvm::DenseMap<SourceLocation, std::string>
|
|
getDesignators(const InitListExpr *Syn) {
|
|
assert(Syn->isSyntacticForm());
|
|
|
|
// collectDesignators needs to know which InitListExprs in the semantic tree
|
|
// were actually written, but InitListExpr::isExplicit() lies.
|
|
// Instead, record where braces of sub-init-lists occur in the syntactic form.
|
|
llvm::DenseSet<SourceLocation> NestedBraces;
|
|
for (const Expr *Init : Syn->inits())
|
|
if (auto *Nested = llvm::dyn_cast<InitListExpr>(Init))
|
|
NestedBraces.insert(Nested->getLBraceLoc());
|
|
|
|
// Traverse the semantic form to find the designators.
|
|
// We use their SourceLocation to correlate with the syntactic form later.
|
|
llvm::DenseMap<SourceLocation, std::string> Designators;
|
|
std::string EmptyPrefix;
|
|
collectDesignators(Syn->isSemanticForm() ? Syn : Syn->getSemanticForm(),
|
|
Designators, NestedBraces, EmptyPrefix);
|
|
return Designators;
|
|
}
|
|
|
|
class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> {
|
|
public:
|
|
InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST,
|
|
const Config &Cfg, llvm::Optional<Range> RestrictRange)
|
|
: Results(Results), AST(AST.getASTContext()), Cfg(Cfg),
|
|
RestrictRange(std::move(RestrictRange)),
|
|
MainFileID(AST.getSourceManager().getMainFileID()),
|
|
Resolver(AST.getHeuristicResolver()),
|
|
TypeHintPolicy(this->AST.getPrintingPolicy()),
|
|
StructuredBindingPolicy(this->AST.getPrintingPolicy()) {
|
|
bool Invalid = false;
|
|
llvm::StringRef Buf =
|
|
AST.getSourceManager().getBufferData(MainFileID, &Invalid);
|
|
MainFileBuf = Invalid ? StringRef{} : Buf;
|
|
|
|
TypeHintPolicy.SuppressScope = true; // keep type names short
|
|
TypeHintPolicy.AnonymousTagLocations =
|
|
false; // do not print lambda locations
|
|
|
|
// For structured bindings, print canonical types. This is important because
|
|
// for bindings that use the tuple_element protocol, the non-canonical types
|
|
// would be "tuple_element<I, A>::type".
|
|
// For "auto", we often prefer sugared types.
|
|
// Not setting PrintCanonicalTypes for "auto" allows
|
|
// SuppressDefaultTemplateArgs (set by default) to have an effect.
|
|
StructuredBindingPolicy = TypeHintPolicy;
|
|
StructuredBindingPolicy.PrintCanonicalTypes = true;
|
|
}
|
|
|
|
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
|
|
// Weed out constructor calls that don't look like a function call with
|
|
// an argument list, by checking the validity of getParenOrBraceRange().
|
|
// Also weed out std::initializer_list constructors as there are no names
|
|
// for the individual arguments.
|
|
if (!E->getParenOrBraceRange().isValid() ||
|
|
E->isStdInitListInitialization()) {
|
|
return true;
|
|
}
|
|
|
|
processCall(E->getParenOrBraceRange().getBegin(), E->getConstructor(),
|
|
{E->getArgs(), E->getNumArgs()});
|
|
return true;
|
|
}
|
|
|
|
bool VisitCallExpr(CallExpr *E) {
|
|
if (!Cfg.InlayHints.Parameters)
|
|
return true;
|
|
|
|
// Do not show parameter hints for operator calls written using operator
|
|
// syntax or user-defined literals. (Among other reasons, the resulting
|
|
// hints can look awkard, e.g. the expression can itself be a function
|
|
// argument and then we'd get two hints side by side).
|
|
if (isa<CXXOperatorCallExpr>(E) || isa<UserDefinedLiteral>(E))
|
|
return true;
|
|
|
|
auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E);
|
|
if (CalleeDecls.size() != 1)
|
|
return true;
|
|
const FunctionDecl *Callee = nullptr;
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0]))
|
|
Callee = FD;
|
|
else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0]))
|
|
Callee = FTD->getTemplatedDecl();
|
|
if (!Callee)
|
|
return true;
|
|
|
|
processCall(E->getRParenLoc(), Callee, {E->getArgs(), E->getNumArgs()});
|
|
return true;
|
|
}
|
|
|
|
bool VisitFunctionDecl(FunctionDecl *D) {
|
|
if (auto *FPT =
|
|
llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) {
|
|
if (!FPT->hasTrailingReturn()) {
|
|
if (auto FTL = D->getFunctionTypeLoc())
|
|
addReturnTypeHint(D, FTL.getRParenLoc());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VisitLambdaExpr(LambdaExpr *E) {
|
|
FunctionDecl *D = E->getCallOperator();
|
|
if (!E->hasExplicitResultType())
|
|
addReturnTypeHint(D, E->hasExplicitParameters()
|
|
? D->getFunctionTypeLoc().getRParenLoc()
|
|
: E->getIntroducerRange().getEnd());
|
|
return true;
|
|
}
|
|
|
|
void addReturnTypeHint(FunctionDecl *D, SourceLocation Loc) {
|
|
auto *AT = D->getReturnType()->getContainedAutoType();
|
|
if (!AT || AT->getDeducedType().isNull())
|
|
return;
|
|
addTypeHint(Loc, D->getReturnType(), /*Prefix=*/"-> ");
|
|
}
|
|
|
|
bool VisitVarDecl(VarDecl *D) {
|
|
// Do not show hints for the aggregate in a structured binding,
|
|
// but show hints for the individual bindings.
|
|
if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
|
|
for (auto *Binding : DD->bindings()) {
|
|
addTypeHint(Binding->getLocation(), Binding->getType(), /*Prefix=*/": ",
|
|
StructuredBindingPolicy);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (D->getType()->getContainedAutoType()) {
|
|
if (!D->getType()->isDependentType()) {
|
|
// Our current approach is to place the hint on the variable
|
|
// and accordingly print the full type
|
|
// (e.g. for `const auto& x = 42`, print `const int&`).
|
|
// Alternatively, we could place the hint on the `auto`
|
|
// (and then just print the type deduced for the `auto`).
|
|
addTypeHint(D->getLocation(), D->getType(), /*Prefix=*/": ");
|
|
}
|
|
}
|
|
|
|
// Handle templates like `int foo(auto x)` with exactly one instantiation.
|
|
if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) {
|
|
if (D->getIdentifier() && PVD->getType()->isDependentType() &&
|
|
!getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc())
|
|
.isNull()) {
|
|
if (auto *IPVD = getOnlyParamInstantiation(PVD))
|
|
addTypeHint(D->getLocation(), IPVD->getType(), /*Prefix=*/": ");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) {
|
|
auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext());
|
|
if (!TemplateFunction)
|
|
return nullptr;
|
|
auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>(
|
|
getOnlyInstantiation(TemplateFunction));
|
|
if (!InstantiatedFunction)
|
|
return nullptr;
|
|
|
|
unsigned ParamIdx = 0;
|
|
for (auto *Param : TemplateFunction->parameters()) {
|
|
// Can't reason about param indexes in the presence of preceding packs.
|
|
// And if this param is a pack, it may expand to multiple params.
|
|
if (Param->isParameterPack())
|
|
return nullptr;
|
|
if (Param == D)
|
|
break;
|
|
++ParamIdx;
|
|
}
|
|
assert(ParamIdx < TemplateFunction->getNumParams() &&
|
|
"Couldn't find param in list?");
|
|
assert(ParamIdx < InstantiatedFunction->getNumParams() &&
|
|
"Instantiated function has fewer (non-pack) parameters?");
|
|
return InstantiatedFunction->getParamDecl(ParamIdx);
|
|
}
|
|
|
|
bool VisitInitListExpr(InitListExpr *Syn) {
|
|
// We receive the syntactic form here (shouldVisitImplicitCode() is false).
|
|
// This is the one we will ultimately attach designators to.
|
|
// It may have subobject initializers inlined without braces. The *semantic*
|
|
// form of the init-list has nested init-lists for these.
|
|
// getDesignators will look at the semantic form to determine the labels.
|
|
assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!");
|
|
if (!Cfg.InlayHints.Designators)
|
|
return true;
|
|
if (Syn->isIdiomaticZeroInitializer(AST.getLangOpts()))
|
|
return true;
|
|
llvm::DenseMap<SourceLocation, std::string> Designators =
|
|
getDesignators(Syn);
|
|
for (const Expr *Init : Syn->inits()) {
|
|
if (llvm::isa<DesignatedInitExpr>(Init))
|
|
continue;
|
|
auto It = Designators.find(Init->getBeginLoc());
|
|
if (It != Designators.end() &&
|
|
!isPrecededByParamNameComment(Init, It->second))
|
|
addDesignatorHint(Init->getSourceRange(), It->second);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Handle RecoveryExpr to try to hint some invalid calls.
|
|
|
|
private:
|
|
using NameVec = SmallVector<StringRef, 8>;
|
|
|
|
// The purpose of Anchor is to deal with macros. It should be the call's
|
|
// opening or closing parenthesis or brace. (Always using the opening would
|
|
// make more sense but CallExpr only exposes the closing.) We heuristically
|
|
// assume that if this location does not come from a macro definition, then
|
|
// the entire argument list likely appears in the main file and can be hinted.
|
|
void processCall(SourceLocation Anchor, const FunctionDecl *Callee,
|
|
llvm::ArrayRef<const Expr *> Args) {
|
|
if (!Cfg.InlayHints.Parameters || Args.size() == 0 || !Callee)
|
|
return;
|
|
|
|
// If the anchor location comes from a macro defintion, there's nowhere to
|
|
// put hints.
|
|
if (!AST.getSourceManager().getTopMacroCallerLoc(Anchor).isFileID())
|
|
return;
|
|
|
|
// The parameter name of a move or copy constructor is not very interesting.
|
|
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee))
|
|
if (Ctor->isCopyOrMoveConstructor())
|
|
return;
|
|
|
|
// Resolve parameter packs to their forwarded parameter
|
|
auto ForwardedParams = resolveForwardingParameters(Callee);
|
|
|
|
NameVec ParameterNames = chooseParameterNames(ForwardedParams);
|
|
|
|
// Exclude setters (i.e. functions with one argument whose name begins with
|
|
// "set"), and builtins like std::move/forward/... as their parameter name
|
|
// is also not likely to be interesting.
|
|
if (isSetter(Callee, ParameterNames) || isSimpleBuiltin(Callee))
|
|
return;
|
|
|
|
for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
|
|
// Pack expansion expressions cause the 1:1 mapping between arguments and
|
|
// parameters to break down, so we don't add further inlay hints if we
|
|
// encounter one.
|
|
if (isa<PackExpansionExpr>(Args[I])) {
|
|
break;
|
|
}
|
|
|
|
StringRef Name = ParameterNames[I];
|
|
bool NameHint = shouldHintName(Args[I], Name);
|
|
bool ReferenceHint =
|
|
shouldHintReference(Callee->getParamDecl(I), ForwardedParams[I]);
|
|
|
|
if (NameHint || ReferenceHint) {
|
|
addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
|
|
InlayHintKind::Parameter, ReferenceHint ? "&" : "",
|
|
NameHint ? Name : "", ": ");
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) {
|
|
if (ParamNames.size() != 1)
|
|
return false;
|
|
|
|
StringRef Name = getSimpleName(*Callee);
|
|
if (!Name.startswith_insensitive("set"))
|
|
return false;
|
|
|
|
// In addition to checking that the function has one parameter and its
|
|
// name starts with "set", also check that the part after "set" matches
|
|
// the name of the parameter (ignoring case). The idea here is that if
|
|
// the parameter name differs, it may contain extra information that
|
|
// may be useful to show in a hint, as in:
|
|
// void setTimeout(int timeoutMillis);
|
|
// This currently doesn't handle cases where params use snake_case
|
|
// and functions don't, e.g.
|
|
// void setExceptionHandler(EHFunc exception_handler);
|
|
// We could improve this by replacing `equals_insensitive` with some
|
|
// `sloppy_equals` which ignores case and also skips underscores.
|
|
StringRef WhatItIsSetting = Name.substr(3).ltrim("_");
|
|
return WhatItIsSetting.equals_insensitive(ParamNames[0]);
|
|
}
|
|
|
|
// Checks if the callee is one of the builtins
|
|
// addressof, as_const, forward, move(_if_noexcept)
|
|
static bool isSimpleBuiltin(const FunctionDecl *Callee) {
|
|
switch (Callee->getBuiltinID()) {
|
|
case Builtin::BIaddressof:
|
|
case Builtin::BIas_const:
|
|
case Builtin::BIforward:
|
|
case Builtin::BImove:
|
|
case Builtin::BImove_if_noexcept:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool shouldHintName(const Expr *Arg, StringRef ParamName) {
|
|
if (ParamName.empty())
|
|
return false;
|
|
|
|
// If the argument expression is a single name and it matches the
|
|
// parameter name exactly, omit the name hint.
|
|
if (ParamName == getSpelledIdentifier(Arg))
|
|
return false;
|
|
|
|
// Exclude argument expressions preceded by a /*paramName*/.
|
|
if (isPrecededByParamNameComment(Arg, ParamName))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool shouldHintReference(const ParmVarDecl *Param,
|
|
const ParmVarDecl *ForwardedParam) {
|
|
// We add a & hint only when the argument is passed as mutable reference.
|
|
// For parameters that are not part of an expanded pack, this is
|
|
// straightforward. For expanded pack parameters, it's likely that they will
|
|
// be forwarded to another function. In this situation, we only want to add
|
|
// the reference hint if the argument is actually being used via mutable
|
|
// reference. This means we need to check
|
|
// 1. whether the value category of the argument is preserved, i.e. each
|
|
// pack expansion uses std::forward correctly.
|
|
// 2. whether the argument is ever copied/cast instead of passed
|
|
// by-reference
|
|
// Instead of checking this explicitly, we use the following proxy:
|
|
// 1. the value category can only change from rvalue to lvalue during
|
|
// forwarding, so checking whether both the parameter of the forwarding
|
|
// function and the forwarded function are lvalue references detects such
|
|
// a conversion.
|
|
// 2. if the argument is copied/cast somewhere in the chain of forwarding
|
|
// calls, it can only be passed on to an rvalue reference or const lvalue
|
|
// reference parameter. Thus if the forwarded parameter is a mutable
|
|
// lvalue reference, it cannot have been copied/cast to on the way.
|
|
// Additionally, we should not add a reference hint if the forwarded
|
|
// parameter was only partially resolved, i.e. points to an expanded pack
|
|
// parameter, since we do not know how it will be used eventually.
|
|
auto Type = Param->getType();
|
|
auto ForwardedType = ForwardedParam->getType();
|
|
return Type->isLValueReferenceType() &&
|
|
ForwardedType->isLValueReferenceType() &&
|
|
!ForwardedType.getNonReferenceType().isConstQualified() &&
|
|
!isExpandedFromParameterPack(ForwardedParam);
|
|
}
|
|
|
|
// Checks if "E" is spelled in the main file and preceded by a C-style comment
|
|
// whose contents match ParamName (allowing for whitespace and an optional "="
|
|
// at the end.
|
|
bool isPrecededByParamNameComment(const Expr *E, StringRef ParamName) {
|
|
auto &SM = AST.getSourceManager();
|
|
auto ExprStartLoc = SM.getTopMacroCallerLoc(E->getBeginLoc());
|
|
auto Decomposed = SM.getDecomposedLoc(ExprStartLoc);
|
|
if (Decomposed.first != MainFileID)
|
|
return false;
|
|
|
|
StringRef SourcePrefix = MainFileBuf.substr(0, Decomposed.second);
|
|
// Allow whitespace between comment and expression.
|
|
SourcePrefix = SourcePrefix.rtrim();
|
|
// Check for comment ending.
|
|
if (!SourcePrefix.consume_back("*/"))
|
|
return false;
|
|
// Ignore some punctuation and whitespace around comment.
|
|
// In particular this allows designators to match nicely.
|
|
llvm::StringLiteral IgnoreChars = " =.";
|
|
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
|
|
ParamName = ParamName.trim(IgnoreChars);
|
|
// Other than that, the comment must contain exactly ParamName.
|
|
if (!SourcePrefix.consume_back(ParamName))
|
|
return false;
|
|
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
|
|
return SourcePrefix.endswith("/*");
|
|
}
|
|
|
|
// If "E" spells a single unqualified identifier, return that name.
|
|
// Otherwise, return an empty string.
|
|
static StringRef getSpelledIdentifier(const Expr *E) {
|
|
E = E->IgnoreUnlessSpelledInSource();
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (!DRE->getQualifier())
|
|
return getSimpleName(*DRE->getDecl());
|
|
|
|
if (auto *ME = dyn_cast<MemberExpr>(E))
|
|
if (!ME->getQualifier() && ME->isImplicitAccess())
|
|
return getSimpleName(*ME->getMemberDecl());
|
|
|
|
return {};
|
|
}
|
|
|
|
NameVec chooseParameterNames(SmallVector<const ParmVarDecl *> Parameters) {
|
|
NameVec ParameterNames;
|
|
for (const auto *P : Parameters) {
|
|
if (isExpandedFromParameterPack(P)) {
|
|
// If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
|
|
// non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
|
|
// unlikely to be useful.
|
|
ParameterNames.emplace_back();
|
|
} else {
|
|
auto SimpleName = getSimpleName(*P);
|
|
// If the parameter is unnamed in the declaration:
|
|
// attempt to get its name from the definition
|
|
if (SimpleName.empty()) {
|
|
if (const auto *PD = getParamDefinition(P)) {
|
|
SimpleName = getSimpleName(*PD);
|
|
}
|
|
}
|
|
ParameterNames.emplace_back(SimpleName);
|
|
}
|
|
}
|
|
|
|
// Standard library functions often have parameter names that start
|
|
// with underscores, which makes the hints noisy, so strip them out.
|
|
for (auto &Name : ParameterNames)
|
|
stripLeadingUnderscores(Name);
|
|
|
|
return ParameterNames;
|
|
}
|
|
|
|
// for a ParmVarDecl from a function declaration, returns the corresponding
|
|
// ParmVarDecl from the definition if possible, nullptr otherwise.
|
|
static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
|
|
if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
|
|
if (auto *Def = Callee->getDefinition()) {
|
|
auto I = std::distance(
|
|
Callee->param_begin(),
|
|
std::find(Callee->param_begin(), Callee->param_end(), P));
|
|
if (I < Callee->getNumParams()) {
|
|
return Def->getParamDecl(I);
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void stripLeadingUnderscores(StringRef &Name) {
|
|
Name = Name.ltrim('_');
|
|
}
|
|
|
|
static StringRef getSimpleName(const NamedDecl &D) {
|
|
if (IdentifierInfo *Ident = D.getDeclName().getAsIdentifierInfo()) {
|
|
return Ident->getName();
|
|
}
|
|
|
|
return StringRef();
|
|
}
|
|
|
|
// We pass HintSide rather than SourceLocation because we want to ensure
|
|
// it is in the same file as the common file range.
|
|
void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,
|
|
llvm::StringRef Prefix, llvm::StringRef Label,
|
|
llvm::StringRef Suffix) {
|
|
// We shouldn't get as far as adding a hint if the category is disabled.
|
|
// We'd like to disable as much of the analysis as possible above instead.
|
|
// Assert in debug mode but add a dynamic check in production.
|
|
assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!");
|
|
switch (Kind) {
|
|
#define CHECK_KIND(Enumerator, ConfigProperty) \
|
|
case InlayHintKind::Enumerator: \
|
|
assert(Cfg.InlayHints.ConfigProperty && \
|
|
"Shouldn't get here if kind is disabled!"); \
|
|
if (!Cfg.InlayHints.ConfigProperty) \
|
|
return; \
|
|
break
|
|
CHECK_KIND(Parameter, Parameters);
|
|
CHECK_KIND(Type, DeducedTypes);
|
|
CHECK_KIND(Designator, Designators);
|
|
#undef CHECK_KIND
|
|
}
|
|
|
|
auto FileRange =
|
|
toHalfOpenFileRange(AST.getSourceManager(), AST.getLangOpts(), R);
|
|
if (!FileRange)
|
|
return;
|
|
Range LSPRange{
|
|
sourceLocToPosition(AST.getSourceManager(), FileRange->getBegin()),
|
|
sourceLocToPosition(AST.getSourceManager(), FileRange->getEnd())};
|
|
Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end;
|
|
if (RestrictRange &&
|
|
(LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end)))
|
|
return;
|
|
// The hint may be in a file other than the main file (for example, a header
|
|
// file that was included after the preamble), do not show in that case.
|
|
if (!AST.getSourceManager().isWrittenInMainFile(FileRange->getBegin()))
|
|
return;
|
|
bool PadLeft = Prefix.consume_front(" ");
|
|
bool PadRight = Suffix.consume_back(" ");
|
|
Results.push_back(InlayHint{LSPPos, (Prefix + Label + Suffix).str(), Kind,
|
|
PadLeft, PadRight, LSPRange});
|
|
}
|
|
|
|
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) {
|
|
addTypeHint(R, T, Prefix, TypeHintPolicy);
|
|
}
|
|
|
|
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix,
|
|
const PrintingPolicy &Policy) {
|
|
if (!Cfg.InlayHints.DeducedTypes || T.isNull())
|
|
return;
|
|
|
|
std::string TypeName = T.getAsString(Policy);
|
|
if (TypeName.length() < TypeNameLimit)
|
|
addInlayHint(R, HintSide::Right, InlayHintKind::Type, Prefix, TypeName,
|
|
/*Suffix=*/"");
|
|
}
|
|
|
|
void addDesignatorHint(SourceRange R, llvm::StringRef Text) {
|
|
addInlayHint(R, HintSide::Left, InlayHintKind::Designator,
|
|
/*Prefix=*/"", Text, /*Suffix=*/"=");
|
|
}
|
|
|
|
std::vector<InlayHint> &Results;
|
|
ASTContext &AST;
|
|
const Config &Cfg;
|
|
llvm::Optional<Range> RestrictRange;
|
|
FileID MainFileID;
|
|
StringRef MainFileBuf;
|
|
const HeuristicResolver *Resolver;
|
|
// We want to suppress default template arguments, but otherwise print
|
|
// canonical types. Unfortunately, they're conflicting policies so we can't
|
|
// have both. For regular types, suppressing template arguments is more
|
|
// important, whereas printing canonical types is crucial for structured
|
|
// bindings, so we use two separate policies. (See the constructor where
|
|
// the policies are initialized for more details.)
|
|
PrintingPolicy TypeHintPolicy;
|
|
PrintingPolicy StructuredBindingPolicy;
|
|
|
|
static const size_t TypeNameLimit = 32;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::vector<InlayHint> inlayHints(ParsedAST &AST,
|
|
llvm::Optional<Range> RestrictRange) {
|
|
std::vector<InlayHint> Results;
|
|
const auto &Cfg = Config::current();
|
|
if (!Cfg.InlayHints.Enabled)
|
|
return Results;
|
|
InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange));
|
|
Visitor.TraverseAST(AST.getASTContext());
|
|
|
|
// De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit
|
|
// template instantiations.
|
|
llvm::sort(Results);
|
|
Results.erase(std::unique(Results.begin(), Results.end()), Results.end());
|
|
|
|
return Results;
|
|
}
|
|
|
|
} // namespace clangd
|
|
} // namespace clang
|