llvm-project/clang-tools-extra/clangd/ConfigYAML.cpp

452 lines
16 KiB
C++

//===--- ConfigYAML.cpp - Loading configuration fragments from YAML files -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ConfigFragment.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/YAMLParser.h"
#include <string>
#include <system_error>
namespace clang {
namespace clangd {
namespace config {
namespace {
using llvm::yaml::BlockScalarNode;
using llvm::yaml::MappingNode;
using llvm::yaml::Node;
using llvm::yaml::ScalarNode;
using llvm::yaml::SequenceNode;
llvm::Optional<llvm::StringRef>
bestGuess(llvm::StringRef Search,
llvm::ArrayRef<llvm::StringRef> AllowedValues) {
unsigned MaxEdit = (Search.size() + 1) / 3;
if (!MaxEdit)
return llvm::None;
llvm::Optional<llvm::StringRef> Result;
for (const auto &AllowedValue : AllowedValues) {
unsigned EditDistance = Search.edit_distance(AllowedValue, true, MaxEdit);
// We can't do better than an edit distance of 1, so just return this and
// save computing other values.
if (EditDistance == 1U)
return AllowedValue;
if (EditDistance == MaxEdit && !Result) {
Result = AllowedValue;
} else if (EditDistance < MaxEdit) {
Result = AllowedValue;
MaxEdit = EditDistance;
}
}
return Result;
}
class Parser {
llvm::SourceMgr &SM;
bool HadError = false;
public:
Parser(llvm::SourceMgr &SM) : SM(SM) {}
// Tries to parse N into F, returning false if it failed and we couldn't
// meaningfully recover (YAML syntax error, or hard semantic error).
bool parse(Fragment &F, Node &N) {
DictParser Dict("Config", this);
Dict.handle("If", [&](Node &N) { parse(F.If, N); });
Dict.handle("CompileFlags", [&](Node &N) { parse(F.CompileFlags, N); });
Dict.handle("Index", [&](Node &N) { parse(F.Index, N); });
Dict.handle("Style", [&](Node &N) { parse(F.Style, N); });
Dict.handle("Diagnostics", [&](Node &N) { parse(F.Diagnostics, N); });
Dict.handle("Completion", [&](Node &N) { parse(F.Completion, N); });
Dict.handle("Hover", [&](Node &N) { parse(F.Hover, N); });
Dict.handle("InlayHints", [&](Node &N) { parse(F.InlayHints, N); });
Dict.parse(N);
return !(N.failed() || HadError);
}
private:
void parse(Fragment::IfBlock &F, Node &N) {
DictParser Dict("If", this);
Dict.unrecognized([&](Located<std::string>, Node &) {
F.HasUnrecognizedCondition = true;
return true; // Emit a warning for the unrecognized key.
});
Dict.handle("PathMatch", [&](Node &N) {
if (auto Values = scalarValues(N))
F.PathMatch = std::move(*Values);
});
Dict.handle("PathExclude", [&](Node &N) {
if (auto Values = scalarValues(N))
F.PathExclude = std::move(*Values);
});
Dict.parse(N);
}
void parse(Fragment::CompileFlagsBlock &F, Node &N) {
DictParser Dict("CompileFlags", this);
Dict.handle("Compiler", [&](Node &N) {
if (auto Value = scalarValue(N, "Compiler"))
F.Compiler = std::move(*Value);
});
Dict.handle("Add", [&](Node &N) {
if (auto Values = scalarValues(N))
F.Add = std::move(*Values);
});
Dict.handle("Remove", [&](Node &N) {
if (auto Values = scalarValues(N))
F.Remove = std::move(*Values);
});
Dict.handle("CompilationDatabase", [&](Node &N) {
F.CompilationDatabase = scalarValue(N, "CompilationDatabase");
});
Dict.parse(N);
}
void parse(Fragment::StyleBlock &F, Node &N) {
DictParser Dict("Style", this);
Dict.handle("FullyQualifiedNamespaces", [&](Node &N) {
if (auto Values = scalarValues(N))
F.FullyQualifiedNamespaces = std::move(*Values);
});
Dict.parse(N);
}
void parse(Fragment::DiagnosticsBlock &F, Node &N) {
DictParser Dict("Diagnostics", this);
Dict.handle("Suppress", [&](Node &N) {
if (auto Values = scalarValues(N))
F.Suppress = std::move(*Values);
});
Dict.handle("UnusedIncludes", [&](Node &N) {
F.UnusedIncludes = scalarValue(N, "UnusedIncludes");
});
Dict.handle("Includes", [&](Node &N) { parse(F.Includes, N); });
Dict.handle("ClangTidy", [&](Node &N) { parse(F.ClangTidy, N); });
Dict.parse(N);
}
void parse(Fragment::DiagnosticsBlock::ClangTidyBlock &F, Node &N) {
DictParser Dict("ClangTidy", this);
Dict.handle("Add", [&](Node &N) {
if (auto Values = scalarValues(N))
F.Add = std::move(*Values);
});
Dict.handle("Remove", [&](Node &N) {
if (auto Values = scalarValues(N))
F.Remove = std::move(*Values);
});
Dict.handle("CheckOptions", [&](Node &N) {
DictParser CheckOptDict("CheckOptions", this);
CheckOptDict.unrecognized([&](Located<std::string> &&Key, Node &Val) {
if (auto Value = scalarValue(Val, *Key))
F.CheckOptions.emplace_back(std::move(Key), std::move(*Value));
return false; // Don't emit a warning
});
CheckOptDict.parse(N);
});
Dict.parse(N);
}
void parse(Fragment::DiagnosticsBlock::IncludesBlock &F, Node &N) {
DictParser Dict("Includes", this);
Dict.handle("IgnoreHeader", [&](Node &N) {
if (auto Values = scalarValues(N))
F.IgnoreHeader = std::move(*Values);
});
Dict.parse(N);
}
void parse(Fragment::IndexBlock &F, Node &N) {
DictParser Dict("Index", this);
Dict.handle("Background",
[&](Node &N) { F.Background = scalarValue(N, "Background"); });
Dict.handle("External", [&](Node &N) {
Fragment::IndexBlock::ExternalBlock External;
// External block can either be a mapping or a scalar value. Dispatch
// accordingly.
if (N.getType() == Node::NK_Mapping) {
parse(External, N);
} else if (N.getType() == Node::NK_Scalar ||
N.getType() == Node::NK_BlockScalar) {
parse(External, *scalarValue(N, "External"));
} else {
error("External must be either a scalar or a mapping.", N);
return;
}
F.External.emplace(std::move(External));
F.External->Range = N.getSourceRange();
});
Dict.handle("StandardLibrary", [&](Node &N) {
if (auto StandardLibrary = boolValue(N, "StandardLibrary"))
F.StandardLibrary = *StandardLibrary;
});
Dict.parse(N);
}
void parse(Fragment::IndexBlock::ExternalBlock &F,
Located<std::string> ExternalVal) {
if (!llvm::StringRef(*ExternalVal).equals_insensitive("none")) {
error("Only scalar value supported for External is 'None'",
ExternalVal.Range);
return;
}
F.IsNone = true;
F.IsNone.Range = ExternalVal.Range;
}
void parse(Fragment::IndexBlock::ExternalBlock &F, Node &N) {
DictParser Dict("External", this);
Dict.handle("File", [&](Node &N) { F.File = scalarValue(N, "File"); });
Dict.handle("Server",
[&](Node &N) { F.Server = scalarValue(N, "Server"); });
Dict.handle("MountPoint",
[&](Node &N) { F.MountPoint = scalarValue(N, "MountPoint"); });
Dict.parse(N);
}
void parse(Fragment::CompletionBlock &F, Node &N) {
DictParser Dict("Completion", this);
Dict.handle("AllScopes", [&](Node &N) {
if (auto AllScopes = boolValue(N, "AllScopes"))
F.AllScopes = *AllScopes;
});
Dict.parse(N);
}
void parse(Fragment::HoverBlock &F, Node &N) {
DictParser Dict("Hover", this);
Dict.handle("ShowAKA", [&](Node &N) {
if (auto ShowAKA = boolValue(N, "ShowAKA"))
F.ShowAKA = *ShowAKA;
});
Dict.parse(N);
}
void parse(Fragment::InlayHintsBlock &F, Node &N) {
DictParser Dict("InlayHints", this);
Dict.handle("Enabled", [&](Node &N) {
if (auto Value = boolValue(N, "Enabled"))
F.Enabled = *Value;
});
Dict.handle("ParameterNames", [&](Node &N) {
if (auto Value = boolValue(N, "ParameterNames"))
F.ParameterNames = *Value;
});
Dict.handle("DeducedTypes", [&](Node &N) {
if (auto Value = boolValue(N, "DeducedTypes"))
F.DeducedTypes = *Value;
});
Dict.handle("Designators", [&](Node &N) {
if (auto Value = boolValue(N, "Designators"))
F.Designators = *Value;
});
Dict.parse(N);
}
// Helper for parsing mapping nodes (dictionaries).
// We don't use YamlIO as we want to control over unknown keys.
class DictParser {
llvm::StringRef Description;
std::vector<std::pair<llvm::StringRef, std::function<void(Node &)>>> Keys;
std::function<bool(Located<std::string>, Node &)> UnknownHandler;
Parser *Outer;
public:
DictParser(llvm::StringRef Description, Parser *Outer)
: Description(Description), Outer(Outer) {}
// Parse is called when Key is encountered, and passed the associated value.
// It should emit diagnostics if the value is invalid (e.g. wrong type).
// If Key is seen twice, Parse runs only once and an error is reported.
void handle(llvm::StringLiteral Key, std::function<void(Node &)> Parse) {
for (const auto &Entry : Keys) {
(void) Entry;
assert(Entry.first != Key && "duplicate key handler");
}
Keys.emplace_back(Key, std::move(Parse));
}
// Handler is called when a Key is not matched by any handle().
// If this is unset or the Handler returns true, a warning is emitted for
// the unknown key.
void
unrecognized(std::function<bool(Located<std::string>, Node &)> Handler) {
UnknownHandler = std::move(Handler);
}
// Process a mapping node and call handlers for each key/value pair.
void parse(Node &N) const {
if (N.getType() != Node::NK_Mapping) {
Outer->error(Description + " should be a dictionary", N);
return;
}
llvm::SmallSet<std::string, 8> Seen;
llvm::SmallVector<Located<std::string>, 0> UnknownKeys;
// We *must* consume all items, even on error, or the parser will assert.
for (auto &KV : llvm::cast<MappingNode>(N)) {
auto *K = KV.getKey();
if (!K) // YAMLParser emitted an error.
continue;
auto Key = Outer->scalarValue(*K, "Dictionary key");
if (!Key)
continue;
if (!Seen.insert(**Key).second) {
Outer->warning("Duplicate key " + **Key + " is ignored", *K);
if (auto *Value = KV.getValue())
Value->skip();
continue;
}
auto *Value = KV.getValue();
if (!Value) // YAMLParser emitted an error.
continue;
bool Matched = false;
for (const auto &Handler : Keys) {
if (Handler.first == **Key) {
Matched = true;
Handler.second(*Value);
break;
}
}
if (!Matched) {
bool Warn = !UnknownHandler;
if (UnknownHandler)
Warn = UnknownHandler(
Located<std::string>(**Key, K->getSourceRange()), *Value);
if (Warn)
UnknownKeys.push_back(std::move(*Key));
}
}
if (!UnknownKeys.empty())
warnUnknownKeys(UnknownKeys, Seen);
}
private:
void warnUnknownKeys(llvm::ArrayRef<Located<std::string>> UnknownKeys,
const llvm::SmallSet<std::string, 8> &SeenKeys) const {
llvm::SmallVector<llvm::StringRef> UnseenKeys;
for (const auto &KeyAndHandler : Keys)
if (!SeenKeys.count(KeyAndHandler.first.str()))
UnseenKeys.push_back(KeyAndHandler.first);
for (const Located<std::string> &UnknownKey : UnknownKeys)
if (auto BestGuess = bestGuess(*UnknownKey, UnseenKeys))
Outer->warning("Unknown " + Description + " key '" + *UnknownKey +
"'; did you mean '" + *BestGuess + "'?",
UnknownKey.Range);
else
Outer->warning("Unknown " + Description + " key '" + *UnknownKey +
"'",
UnknownKey.Range);
}
};
// Try to parse a single scalar value from the node, warn on failure.
llvm::Optional<Located<std::string>> scalarValue(Node &N,
llvm::StringRef Desc) {
llvm::SmallString<256> Buf;
if (auto *S = llvm::dyn_cast<ScalarNode>(&N))
return Located<std::string>(S->getValue(Buf).str(), N.getSourceRange());
if (auto *BS = llvm::dyn_cast<BlockScalarNode>(&N))
return Located<std::string>(BS->getValue().str(), N.getSourceRange());
warning(Desc + " should be scalar", N);
return llvm::None;
}
llvm::Optional<Located<bool>> boolValue(Node &N, llvm::StringRef Desc) {
if (auto Scalar = scalarValue(N, Desc)) {
if (auto Bool = llvm::yaml::parseBool(**Scalar))
return Located<bool>(*Bool, Scalar->Range);
warning(Desc + " should be a boolean", N);
}
return llvm::None;
}
// Try to parse a list of single scalar values, or just a single value.
llvm::Optional<std::vector<Located<std::string>>> scalarValues(Node &N) {
std::vector<Located<std::string>> Result;
if (auto *S = llvm::dyn_cast<ScalarNode>(&N)) {
llvm::SmallString<256> Buf;
Result.emplace_back(S->getValue(Buf).str(), N.getSourceRange());
} else if (auto *S = llvm::dyn_cast<BlockScalarNode>(&N)) {
Result.emplace_back(S->getValue().str(), N.getSourceRange());
} else if (auto *S = llvm::dyn_cast<SequenceNode>(&N)) {
// We *must* consume all items, even on error, or the parser will assert.
for (auto &Child : *S) {
if (auto Value = scalarValue(Child, "List item"))
Result.push_back(std::move(*Value));
}
} else {
warning("Expected scalar or list of scalars", N);
return llvm::None;
}
return Result;
}
// Report a "hard" error, reflecting a config file that can never be valid.
void error(const llvm::Twine &Msg, llvm::SMRange Range) {
HadError = true;
SM.PrintMessage(Range.Start, llvm::SourceMgr::DK_Error, Msg, Range);
}
void error(const llvm::Twine &Msg, const Node &N) {
return error(Msg, N.getSourceRange());
}
// Report a "soft" error that could be caused by e.g. version skew.
void warning(const llvm::Twine &Msg, llvm::SMRange Range) {
SM.PrintMessage(Range.Start, llvm::SourceMgr::DK_Warning, Msg, Range);
}
void warning(const llvm::Twine &Msg, const Node &N) {
return warning(Msg, N.getSourceRange());
}
};
} // namespace
std::vector<Fragment> Fragment::parseYAML(llvm::StringRef YAML,
llvm::StringRef BufferName,
DiagnosticCallback Diags) {
// The YAML document may contain multiple conditional fragments.
// The SourceManager is shared for all of them.
auto SM = std::make_shared<llvm::SourceMgr>();
auto Buf = llvm::MemoryBuffer::getMemBufferCopy(YAML, BufferName);
// Adapt DiagnosticCallback to function-pointer interface.
// Callback receives both errors we emit and those from the YAML parser.
SM->setDiagHandler(
[](const llvm::SMDiagnostic &Diag, void *Ctx) {
(*reinterpret_cast<DiagnosticCallback *>(Ctx))(Diag);
},
&Diags);
std::vector<Fragment> Result;
for (auto &Doc : llvm::yaml::Stream(*Buf, *SM)) {
if (Node *N = Doc.getRoot()) {
Fragment Fragment;
Fragment.Source.Manager = SM;
Fragment.Source.Location = N->getSourceRange().Start;
SM->PrintMessage(Fragment.Source.Location, llvm::SourceMgr::DK_Note,
"Parsing config fragment");
if (Parser(*SM).parse(Fragment, *N))
Result.push_back(std::move(Fragment));
}
}
SM->PrintMessage(SM->FindLocForLineAndColumn(SM->getMainFileID(), 0, 0),
llvm::SourceMgr::DK_Note,
"Parsed " + llvm::Twine(Result.size()) +
" fragments from file");
// Hack: stash the buffer in the SourceMgr to keep it alive.
// SM has two entries: "main" non-owning buffer, and ignored owning buffer.
SM->AddNewSourceBuffer(std::move(Buf), llvm::SMLoc());
return Result;
}
} // namespace config
} // namespace clangd
} // namespace clang