llvm-project/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp

6405 lines
215 KiB
C++

//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/MipsABIInfo.h"
#include "MCTargetDesc/MipsMCExpr.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetObjectFile.h"
#include "MipsTargetStreamer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "mips-asm-parser"
namespace llvm {
class MCInstrInfo;
}
namespace {
class MipsAssemblerOptions {
public:
MipsAssemblerOptions(const FeatureBitset &Features_) :
ATReg(1), Reorder(true), Macro(true), Features(Features_) {}
MipsAssemblerOptions(const MipsAssemblerOptions *Opts) {
ATReg = Opts->getATRegIndex();
Reorder = Opts->isReorder();
Macro = Opts->isMacro();
Features = Opts->getFeatures();
}
unsigned getATRegIndex() const { return ATReg; }
bool setATRegIndex(unsigned Reg) {
if (Reg > 31)
return false;
ATReg = Reg;
return true;
}
bool isReorder() const { return Reorder; }
void setReorder() { Reorder = true; }
void setNoReorder() { Reorder = false; }
bool isMacro() const { return Macro; }
void setMacro() { Macro = true; }
void setNoMacro() { Macro = false; }
const FeatureBitset &getFeatures() const { return Features; }
void setFeatures(const FeatureBitset &Features_) { Features = Features_; }
// Set of features that are either architecture features or referenced
// by them (e.g.: FeatureNaN2008 implied by FeatureMips32r6).
// The full table can be found in MipsGenSubtargetInfo.inc (MipsFeatureKV[]).
// The reason we need this mask is explained in the selectArch function.
// FIXME: Ideally we would like TableGen to generate this information.
static const FeatureBitset AllArchRelatedMask;
private:
unsigned ATReg;
bool Reorder;
bool Macro;
FeatureBitset Features;
};
}
const FeatureBitset MipsAssemblerOptions::AllArchRelatedMask = {
Mips::FeatureMips1, Mips::FeatureMips2, Mips::FeatureMips3,
Mips::FeatureMips3_32, Mips::FeatureMips3_32r2, Mips::FeatureMips4,
Mips::FeatureMips4_32, Mips::FeatureMips4_32r2, Mips::FeatureMips5,
Mips::FeatureMips5_32r2, Mips::FeatureMips32, Mips::FeatureMips32r2,
Mips::FeatureMips32r3, Mips::FeatureMips32r5, Mips::FeatureMips32r6,
Mips::FeatureMips64, Mips::FeatureMips64r2, Mips::FeatureMips64r3,
Mips::FeatureMips64r5, Mips::FeatureMips64r6, Mips::FeatureCnMips,
Mips::FeatureFP64Bit, Mips::FeatureGP64Bit, Mips::FeatureNaN2008
};
namespace {
class MipsAsmParser : public MCTargetAsmParser {
MipsTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<MipsTargetStreamer &>(TS);
}
MipsABIInfo ABI;
SmallVector<std::unique_ptr<MipsAssemblerOptions>, 2> AssemblerOptions;
MCSymbol *CurrentFn; // Pointer to the function being parsed. It may be a
// nullptr, which indicates that no function is currently
// selected. This usually happens after an '.end func'
// directive.
bool IsLittleEndian;
bool IsPicEnabled;
bool IsCpRestoreSet;
int CpRestoreOffset;
unsigned CpSaveLocation;
/// If true, then CpSaveLocation is a register, otherwise it's an offset.
bool CpSaveLocationIsRegister;
// Print a warning along with its fix-it message at the given range.
void printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
SMRange Range, bool ShowColors = true);
#define GET_ASSEMBLER_HEADER
#include "MipsGenAsmMatcher.inc"
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
/// Parse a register as used in CFI directives
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool parseParenSuffix(StringRef Name, OperandVector &Operands);
bool parseBracketSuffix(StringRef Name, OperandVector &Operands);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
OperandMatchResultTy parseMemOperand(OperandVector &Operands);
OperandMatchResultTy
matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
StringRef Identifier, SMLoc S);
OperandMatchResultTy matchAnyRegisterWithoutDollar(OperandVector &Operands,
SMLoc S);
OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
OperandMatchResultTy parseImm(OperandVector &Operands);
OperandMatchResultTy parseJumpTarget(OperandVector &Operands);
OperandMatchResultTy parseInvNum(OperandVector &Operands);
OperandMatchResultTy parseLSAImm(OperandVector &Operands);
OperandMatchResultTy parseRegisterPair(OperandVector &Operands);
OperandMatchResultTy parseMovePRegPair(OperandVector &Operands);
OperandMatchResultTy parseRegisterList(OperandVector &Operands);
bool searchSymbolAlias(OperandVector &Operands);
bool parseOperand(OperandVector &, StringRef Mnemonic);
enum MacroExpanderResultTy {
MER_NotAMacro,
MER_Success,
MER_Fail,
};
// Expands assembly pseudo instructions.
MacroExpanderResultTy
tryExpandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandJalWithRegs(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool loadImmediate(int64_t ImmValue, unsigned DstReg, unsigned SrcReg,
bool Is32BitImm, bool IsAddress, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool loadAndAddSymbolAddress(const MCExpr *SymExpr, unsigned DstReg,
unsigned SrcReg, bool Is32BitSym, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandLoadAddress(unsigned DstReg, unsigned BaseReg,
const MCOperand &Offset, bool Is32BitAddress,
SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions);
bool expandUncondBranchMMPseudo(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions, bool isLoad,
bool isImmOpnd);
bool expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandAliasImmediate(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandBranchImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandCondBranches(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandDiv(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions, const bool IsMips64,
const bool Signed);
bool expandTrunc(MCInst &Inst, bool IsDouble, bool Is64FPU, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandUlh(MCInst &Inst, bool Signed, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandUlw(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandRotation(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandRotationImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandDRotation(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandDRotationImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandAbs(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void createNop(bool hasShortDelaySlot, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void createAddu(unsigned DstReg, unsigned SrcReg, unsigned TrgReg,
bool Is64Bit, SmallVectorImpl<MCInst> &Instructions);
void createCpRestoreMemOp(bool IsLoad, int StackOffset, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool reportParseError(Twine ErrorMsg);
bool reportParseError(SMLoc Loc, Twine ErrorMsg);
bool parseMemOffset(const MCExpr *&Res, bool isParenExpr);
bool parseRelocOperand(const MCExpr *&Res);
const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
bool isEvaluated(const MCExpr *Expr);
bool parseSetMips0Directive();
bool parseSetArchDirective();
bool parseSetFeature(uint64_t Feature);
bool isPicAndNotNxxAbi(); // Used by .cpload, .cprestore, and .cpsetup.
bool parseDirectiveCpLoad(SMLoc Loc);
bool parseDirectiveCpRestore(SMLoc Loc);
bool parseDirectiveCPSetup();
bool parseDirectiveCPReturn();
bool parseDirectiveNaN();
bool parseDirectiveSet();
bool parseDirectiveOption();
bool parseInsnDirective();
bool parseSSectionDirective(StringRef Section, unsigned Type);
bool parseSetAtDirective();
bool parseSetNoAtDirective();
bool parseSetMacroDirective();
bool parseSetNoMacroDirective();
bool parseSetMsaDirective();
bool parseSetNoMsaDirective();
bool parseSetNoDspDirective();
bool parseSetReorderDirective();
bool parseSetNoReorderDirective();
bool parseSetMips16Directive();
bool parseSetNoMips16Directive();
bool parseSetFpDirective();
bool parseSetOddSPRegDirective();
bool parseSetNoOddSPRegDirective();
bool parseSetPopDirective();
bool parseSetPushDirective();
bool parseSetSoftFloatDirective();
bool parseSetHardFloatDirective();
bool parseSetAssignment();
bool parseDataDirective(unsigned Size, SMLoc L);
bool parseDirectiveGpWord();
bool parseDirectiveGpDWord();
bool parseDirectiveModule();
bool parseDirectiveModuleFP();
bool parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
StringRef Directive);
bool parseInternalDirectiveReallowModule();
MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
bool eatComma(StringRef ErrorStr);
int matchCPURegisterName(StringRef Symbol);
int matchHWRegsRegisterName(StringRef Symbol);
int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
int matchFPURegisterName(StringRef Name);
int matchFCCRegisterName(StringRef Name);
int matchACRegisterName(StringRef Name);
int matchMSA128RegisterName(StringRef Name);
int matchMSA128CtrlRegisterName(StringRef Name);
unsigned getReg(int RC, int RegNo);
unsigned getGPR(int RegNo);
/// Returns the internal register number for the current AT. Also checks if
/// the current AT is unavailable (set to $0) and gives an error if it is.
/// This should be used in pseudo-instruction expansions which need AT.
unsigned getATReg(SMLoc Loc);
bool processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
// Helper function that checks if the value of a vector index is within the
// boundaries of accepted values for each RegisterKind
// Example: INSERT.B $w0[n], $1 => 16 > n >= 0
bool validateMSAIndex(int Val, int RegKind);
// Selects a new architecture by updating the FeatureBits with the necessary
// info including implied dependencies.
// Internally, it clears all the feature bits related to *any* architecture
// and selects the new one using the ToggleFeature functionality of the
// MCSubtargetInfo object that handles implied dependencies. The reason we
// clear all the arch related bits manually is because ToggleFeature only
// clears the features that imply the feature being cleared and not the
// features implied by the feature being cleared. This is easier to see
// with an example:
// --------------------------------------------------
// | Feature | Implies |
// | -------------------------------------------------|
// | FeatureMips1 | None |
// | FeatureMips2 | FeatureMips1 |
// | FeatureMips3 | FeatureMips2 | FeatureMipsGP64 |
// | FeatureMips4 | FeatureMips3 |
// | ... | |
// --------------------------------------------------
//
// Setting Mips3 is equivalent to set: (FeatureMips3 | FeatureMips2 |
// FeatureMipsGP64 | FeatureMips1)
// Clearing Mips3 is equivalent to clear (FeatureMips3 | FeatureMips4).
void selectArch(StringRef ArchFeature) {
MCSubtargetInfo &STI = copySTI();
FeatureBitset FeatureBits = STI.getFeatureBits();
FeatureBits &= ~MipsAssemblerOptions::AllArchRelatedMask;
STI.setFeatureBits(FeatureBits);
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(ArchFeature)));
AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
}
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(getSTI().getFeatureBits()[Feature])) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
}
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (getSTI().getFeatureBits()[Feature]) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
}
}
void setModuleFeatureBits(uint64_t Feature, StringRef FeatureString) {
setFeatureBits(Feature, FeatureString);
AssemblerOptions.front()->setFeatures(getSTI().getFeatureBits());
}
void clearModuleFeatureBits(uint64_t Feature, StringRef FeatureString) {
clearFeatureBits(Feature, FeatureString);
AssemblerOptions.front()->setFeatures(getSTI().getFeatureBits());
}
public:
enum MipsMatchResultTy {
Match_RequiresDifferentSrcAndDst = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "MipsGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
MipsAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti),
ABI(MipsABIInfo::computeTargetABI(Triple(sti.getTargetTriple()),
sti.getCPU(), Options)) {
MCAsmParserExtension::Initialize(parser);
parser.addAliasForDirective(".asciiz", ".asciz");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
// Remember the initial assembler options. The user can not modify these.
AssemblerOptions.push_back(
llvm::make_unique<MipsAssemblerOptions>(getSTI().getFeatureBits()));
// Create an assembler options environment for the user to modify.
AssemblerOptions.push_back(
llvm::make_unique<MipsAssemblerOptions>(getSTI().getFeatureBits()));
getTargetStreamer().updateABIInfo(*this);
if (!isABI_O32() && !useOddSPReg() != 0)
report_fatal_error("-mno-odd-spreg requires the O32 ABI");
CurrentFn = nullptr;
IsPicEnabled =
(getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_);
IsCpRestoreSet = false;
CpRestoreOffset = -1;
Triple TheTriple(sti.getTargetTriple());
if ((TheTriple.getArch() == Triple::mips) ||
(TheTriple.getArch() == Triple::mips64))
IsLittleEndian = false;
else
IsLittleEndian = true;
}
/// True if all of $fcc0 - $fcc7 exist for the current ISA.
bool hasEightFccRegisters() const { return hasMips4() || hasMips32(); }
bool isGP64bit() const {
return getSTI().getFeatureBits()[Mips::FeatureGP64Bit];
}
bool isFP64bit() const {
return getSTI().getFeatureBits()[Mips::FeatureFP64Bit];
}
const MipsABIInfo &getABI() const { return ABI; }
bool isABI_N32() const { return ABI.IsN32(); }
bool isABI_N64() const { return ABI.IsN64(); }
bool isABI_O32() const { return ABI.IsO32(); }
bool isABI_FPXX() const {
return getSTI().getFeatureBits()[Mips::FeatureFPXX];
}
bool useOddSPReg() const {
return !(getSTI().getFeatureBits()[Mips::FeatureNoOddSPReg]);
}
bool inMicroMipsMode() const {
return getSTI().getFeatureBits()[Mips::FeatureMicroMips];
}
bool hasMips1() const {
return getSTI().getFeatureBits()[Mips::FeatureMips1];
}
bool hasMips2() const {
return getSTI().getFeatureBits()[Mips::FeatureMips2];
}
bool hasMips3() const {
return getSTI().getFeatureBits()[Mips::FeatureMips3];
}
bool hasMips4() const {
return getSTI().getFeatureBits()[Mips::FeatureMips4];
}
bool hasMips5() const {
return getSTI().getFeatureBits()[Mips::FeatureMips5];
}
bool hasMips32() const {
return getSTI().getFeatureBits()[Mips::FeatureMips32];
}
bool hasMips64() const {
return getSTI().getFeatureBits()[Mips::FeatureMips64];
}
bool hasMips32r2() const {
return getSTI().getFeatureBits()[Mips::FeatureMips32r2];
}
bool hasMips64r2() const {
return getSTI().getFeatureBits()[Mips::FeatureMips64r2];
}
bool hasMips32r3() const {
return (getSTI().getFeatureBits()[Mips::FeatureMips32r3]);
}
bool hasMips64r3() const {
return (getSTI().getFeatureBits()[Mips::FeatureMips64r3]);
}
bool hasMips32r5() const {
return (getSTI().getFeatureBits()[Mips::FeatureMips32r5]);
}
bool hasMips64r5() const {
return (getSTI().getFeatureBits()[Mips::FeatureMips64r5]);
}
bool hasMips32r6() const {
return getSTI().getFeatureBits()[Mips::FeatureMips32r6];
}
bool hasMips64r6() const {
return getSTI().getFeatureBits()[Mips::FeatureMips64r6];
}
bool hasDSP() const {
return getSTI().getFeatureBits()[Mips::FeatureDSP];
}
bool hasDSPR2() const {
return getSTI().getFeatureBits()[Mips::FeatureDSPR2];
}
bool hasDSPR3() const {
return getSTI().getFeatureBits()[Mips::FeatureDSPR3];
}
bool hasMSA() const {
return getSTI().getFeatureBits()[Mips::FeatureMSA];
}
bool hasCnMips() const {
return (getSTI().getFeatureBits()[Mips::FeatureCnMips]);
}
bool inPicMode() {
return IsPicEnabled;
}
bool inMips16Mode() const {
return getSTI().getFeatureBits()[Mips::FeatureMips16];
}
bool useTraps() const {
return getSTI().getFeatureBits()[Mips::FeatureUseTCCInDIV];
}
bool useSoftFloat() const {
return getSTI().getFeatureBits()[Mips::FeatureSoftFloat];
}
/// Warn if RegIndex is the same as the current AT.
void warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc);
void warnIfNoMacro(SMLoc Loc);
bool isLittle() const { return IsLittleEndian; }
};
}
namespace {
/// MipsOperand - Instances of this class represent a parsed Mips machine
/// instruction.
class MipsOperand : public MCParsedAsmOperand {
public:
/// Broad categories of register classes
/// The exact class is finalized by the render method.
enum RegKind {
RegKind_GPR = 1, /// GPR32 and GPR64 (depending on isGP64bit())
RegKind_FGR = 2, /// FGR32, FGR64, AFGR64 (depending on context and
/// isFP64bit())
RegKind_FCC = 4, /// FCC
RegKind_MSA128 = 8, /// MSA128[BHWD] (makes no difference which)
RegKind_MSACtrl = 16, /// MSA control registers
RegKind_COP2 = 32, /// COP2
RegKind_ACC = 64, /// HI32DSP, LO32DSP, and ACC64DSP (depending on
/// context).
RegKind_CCR = 128, /// CCR
RegKind_HWRegs = 256, /// HWRegs
RegKind_COP3 = 512, /// COP3
RegKind_COP0 = 1024, /// COP0
/// Potentially any (e.g. $1)
RegKind_Numeric = RegKind_GPR | RegKind_FGR | RegKind_FCC | RegKind_MSA128 |
RegKind_MSACtrl | RegKind_COP2 | RegKind_ACC |
RegKind_CCR | RegKind_HWRegs | RegKind_COP3 | RegKind_COP0
};
private:
enum KindTy {
k_Immediate, /// An immediate (possibly involving symbol references)
k_Memory, /// Base + Offset Memory Address
k_PhysRegister, /// A physical register from the Mips namespace
k_RegisterIndex, /// A register index in one or more RegKind.
k_Token, /// A simple token
k_RegList, /// A physical register list
k_RegPair /// A pair of physical register
} Kind;
public:
MipsOperand(KindTy K, MipsAsmParser &Parser)
: MCParsedAsmOperand(), Kind(K), AsmParser(Parser) {}
private:
/// For diagnostics, and checking the assembler temporary
MipsAsmParser &AsmParser;
struct Token {
const char *Data;
unsigned Length;
};
struct PhysRegOp {
unsigned Num; /// Register Number
};
struct RegIdxOp {
unsigned Index; /// Index into the register class
RegKind Kind; /// Bitfield of the kinds it could possibly be
const MCRegisterInfo *RegInfo;
};
struct ImmOp {
const MCExpr *Val;
};
struct MemOp {
MipsOperand *Base;
const MCExpr *Off;
};
struct RegListOp {
SmallVector<unsigned, 10> *List;
};
union {
struct Token Tok;
struct PhysRegOp PhysReg;
struct RegIdxOp RegIdx;
struct ImmOp Imm;
struct MemOp Mem;
struct RegListOp RegList;
};
SMLoc StartLoc, EndLoc;
/// Internal constructor for register kinds
static std::unique_ptr<MipsOperand> CreateReg(unsigned Index, RegKind RegKind,
const MCRegisterInfo *RegInfo,
SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_RegisterIndex, Parser);
Op->RegIdx.Index = Index;
Op->RegIdx.RegInfo = RegInfo;
Op->RegIdx.Kind = RegKind;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
public:
/// Coerce the register to GPR32 and return the real register for the current
/// target.
unsigned getGPR32Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
AsmParser.warnIfRegIndexIsAT(RegIdx.Index, StartLoc);
unsigned ClassID = Mips::GPR32RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to GPR32 and return the real register for the current
/// target.
unsigned getGPRMM16Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
unsigned ClassID = Mips::GPR32RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to GPR64 and return the real register for the current
/// target.
unsigned getGPR64Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
unsigned ClassID = Mips::GPR64RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
private:
/// Coerce the register to AFGR64 and return the real register for the current
/// target.
unsigned getAFGR64Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
if (RegIdx.Index % 2 != 0)
AsmParser.Warning(StartLoc, "Float register should be even.");
return RegIdx.RegInfo->getRegClass(Mips::AFGR64RegClassID)
.getRegister(RegIdx.Index / 2);
}
/// Coerce the register to FGR64 and return the real register for the current
/// target.
unsigned getFGR64Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FGR64RegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to FGR32 and return the real register for the current
/// target.
unsigned getFGR32Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FGR32RegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to FGRH32 and return the real register for the current
/// target.
unsigned getFGRH32Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FGRH32RegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to FCC and return the real register for the current
/// target.
unsigned getFCCReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FCC) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FCCRegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to MSA128 and return the real register for the current
/// target.
unsigned getMSA128Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_MSA128) && "Invalid access!");
// It doesn't matter which of the MSA128[BHWD] classes we use. They are all
// identical
unsigned ClassID = Mips::MSA128BRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to MSACtrl and return the real register for the
/// current target.
unsigned getMSACtrlReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_MSACtrl) && "Invalid access!");
unsigned ClassID = Mips::MSACtrlRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to COP0 and return the real register for the
/// current target.
unsigned getCOP0Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_COP0) && "Invalid access!");
unsigned ClassID = Mips::COP0RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to COP2 and return the real register for the
/// current target.
unsigned getCOP2Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_COP2) && "Invalid access!");
unsigned ClassID = Mips::COP2RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to COP3 and return the real register for the
/// current target.
unsigned getCOP3Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_COP3) && "Invalid access!");
unsigned ClassID = Mips::COP3RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to ACC64DSP and return the real register for the
/// current target.
unsigned getACC64DSPReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
unsigned ClassID = Mips::ACC64DSPRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to HI32DSP and return the real register for the
/// current target.
unsigned getHI32DSPReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
unsigned ClassID = Mips::HI32DSPRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to LO32DSP and return the real register for the
/// current target.
unsigned getLO32DSPReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
unsigned ClassID = Mips::LO32DSPRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to CCR and return the real register for the
/// current target.
unsigned getCCRReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_CCR) && "Invalid access!");
unsigned ClassID = Mips::CCRRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to HWRegs and return the real register for the
/// current target.
unsigned getHWRegsReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_HWRegs) && "Invalid access!");
unsigned ClassID = Mips::HWRegsRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
public:
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediate when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
llvm_unreachable("Use a custom parser instead");
}
/// Render the operand to an MCInst as a GPR32
/// Asserts if the wrong number of operands are requested, or the operand
/// is not a k_RegisterIndex compatible with RegKind_GPR
void addGPR32AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPR32Reg()));
}
void addGPRMM16AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
}
void addGPRMM16AsmRegZeroOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
}
void addGPRMM16AsmRegMovePOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
}
/// Render the operand to an MCInst as a GPR64
/// Asserts if the wrong number of operands are requested, or the operand
/// is not a k_RegisterIndex compatible with RegKind_GPR
void addGPR64AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPR64Reg()));
}
void addAFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getAFGR64Reg()));
}
void addFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFGR64Reg()));
}
void addFGR32AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFGR32Reg()));
// FIXME: We ought to do this for -integrated-as without -via-file-asm too.
if (!AsmParser.useOddSPReg() && RegIdx.Index & 1)
AsmParser.Error(StartLoc, "-mno-odd-spreg prohibits the use of odd FPU "
"registers");
}
void addFGRH32AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFGRH32Reg()));
}
void addFCCAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFCCReg()));
}
void addMSA128AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMSA128Reg()));
}
void addMSACtrlAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMSACtrlReg()));
}
void addCOP0AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCOP0Reg()));
}
void addCOP2AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCOP2Reg()));
}
void addCOP3AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCOP3Reg()));
}
void addACC64DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getACC64DSPReg()));
}
void addHI32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getHI32DSPReg()));
}
void addLO32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getLO32DSPReg()));
}
void addCCRAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCCRReg()));
}
void addHWRegsAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getHWRegsReg()));
}
template <unsigned Bits, int Offset = 0, int AdjustOffset = 0>
void addConstantUImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
uint64_t Imm = getConstantImm() - Offset;
Imm &= (1 << Bits) - 1;
Imm += Offset;
Imm += AdjustOffset;
Inst.addOperand(MCOperand::createImm(Imm));
}
template <unsigned Bits>
void addSImmOperands(MCInst &Inst, unsigned N) const {
if (isImm() && !isConstantImm()) {
addExpr(Inst, getImm());
return;
}
addConstantSImmOperands<Bits, 0, 0>(Inst, N);
}
template <unsigned Bits>
void addUImmOperands(MCInst &Inst, unsigned N) const {
if (isImm() && !isConstantImm()) {
addExpr(Inst, getImm());
return;
}
addConstantUImmOperands<Bits, 0, 0>(Inst, N);
}
template <unsigned Bits, int Offset = 0, int AdjustOffset = 0>
void addConstantSImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
int64_t Imm = getConstantImm() - Offset;
Imm = SignExtend64<Bits>(Imm);
Imm += Offset;
Imm += AdjustOffset;
Inst.addOperand(MCOperand::createImm(Imm));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(AsmParser.getABI().ArePtrs64bit()
? getMemBase()->getGPR64Reg()
: getMemBase()->getGPR32Reg()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
void addMicroMipsMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBase()->getGPRMM16Reg()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
for (auto RegNo : getRegList())
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addRegPairOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
unsigned RegNo = getRegPair();
Inst.addOperand(MCOperand::createReg(RegNo++));
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addMovePRegPairOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
for (auto RegNo : getRegList())
Inst.addOperand(MCOperand::createReg(RegNo));
}
bool isReg() const override {
// As a special case until we sort out the definition of div/divu, pretend
// that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
if (isGPRAsmReg() && RegIdx.Index == 0)
return true;
return Kind == k_PhysRegister;
}
bool isRegIdx() const { return Kind == k_RegisterIndex; }
bool isImm() const override { return Kind == k_Immediate; }
bool isConstantImm() const {
return isImm() && isa<MCConstantExpr>(getImm());
}
bool isConstantImmz() const {
return isConstantImm() && getConstantImm() == 0;
}
template <unsigned Bits, int Offset = 0> bool isConstantUImm() const {
return isConstantImm() && isUInt<Bits>(getConstantImm() - Offset);
}
template <unsigned Bits> bool isSImm() const {
return isConstantImm() ? isInt<Bits>(getConstantImm()) : isImm();
}
template <unsigned Bits> bool isUImm() const {
return isConstantImm() ? isUInt<Bits>(getConstantImm()) : isImm();
}
template <unsigned Bits> bool isAnyImm() const {
return isConstantImm() ? (isInt<Bits>(getConstantImm()) ||
isUInt<Bits>(getConstantImm()))
: isImm();
}
template <unsigned Bits, int Offset = 0> bool isConstantSImm() const {
return isConstantImm() && isInt<Bits>(getConstantImm() - Offset);
}
template <unsigned Bottom, unsigned Top> bool isConstantUImmRange() const {
return isConstantImm() && getConstantImm() >= Bottom &&
getConstantImm() <= Top;
}
bool isToken() const override {
// Note: It's not possible to pretend that other operand kinds are tokens.
// The matcher emitter checks tokens first.
return Kind == k_Token;
}
bool isMem() const override { return Kind == k_Memory; }
bool isConstantMemOff() const {
return isMem() && isa<MCConstantExpr>(getMemOff());
}
template <unsigned Bits, unsigned ShiftAmount = 0>
bool isMemWithSimmOffset() const {
return isMem() && isConstantMemOff() &&
isShiftedInt<Bits, ShiftAmount>(getConstantMemOff()) &&
getMemBase()->isGPRAsmReg();
}
template <unsigned Bits> bool isMemWithSimmOffsetGPR() const {
return isMem() && isConstantMemOff() && isInt<Bits>(getConstantMemOff()) &&
getMemBase()->isGPRAsmReg();
}
bool isMemWithGRPMM16Base() const {
return isMem() && getMemBase()->isMM16AsmReg();
}
template <unsigned Bits> bool isMemWithUimmOffsetSP() const {
return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
&& getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::SP);
}
template <unsigned Bits> bool isMemWithUimmWordAlignedOffsetSP() const {
return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
&& (getConstantMemOff() % 4 == 0) && getMemBase()->isRegIdx()
&& (getMemBase()->getGPR32Reg() == Mips::SP);
}
template <unsigned Bits, unsigned ShiftLeftAmount>
bool isScaledUImm() const {
return isConstantImm() &&
isShiftedUInt<Bits, ShiftLeftAmount>(getConstantImm());
}
template <unsigned Bits, unsigned ShiftLeftAmount>
bool isScaledSImm() const {
return isConstantImm() &&
isShiftedInt<Bits, ShiftLeftAmount>(getConstantImm());
}
bool isRegList16() const {
if (!isRegList())
return false;
int Size = RegList.List->size();
if (Size < 2 || Size > 5)
return false;
unsigned R0 = RegList.List->front();
unsigned R1 = RegList.List->back();
if (!((R0 == Mips::S0 && R1 == Mips::RA) ||
(R0 == Mips::S0_64 && R1 == Mips::RA_64)))
return false;
int PrevReg = *RegList.List->begin();
for (int i = 1; i < Size - 1; i++) {
int Reg = (*(RegList.List))[i];
if ( Reg != PrevReg + 1)
return false;
PrevReg = Reg;
}
return true;
}
bool isInvNum() const { return Kind == k_Immediate; }
bool isLSAImm() const {
if (!isConstantImm())
return false;
int64_t Val = getConstantImm();
return 1 <= Val && Val <= 4;
}
bool isRegList() const { return Kind == k_RegList; }
bool isMovePRegPair() const {
if (Kind != k_RegList || RegList.List->size() != 2)
return false;
unsigned R0 = RegList.List->front();
unsigned R1 = RegList.List->back();
if ((R0 == Mips::A1 && R1 == Mips::A2) ||
(R0 == Mips::A1 && R1 == Mips::A3) ||
(R0 == Mips::A2 && R1 == Mips::A3) ||
(R0 == Mips::A0 && R1 == Mips::S5) ||
(R0 == Mips::A0 && R1 == Mips::S6) ||
(R0 == Mips::A0 && R1 == Mips::A1) ||
(R0 == Mips::A0 && R1 == Mips::A2) ||
(R0 == Mips::A0 && R1 == Mips::A3))
return true;
return false;
}
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
bool isRegPair() const { return Kind == k_RegPair; }
unsigned getReg() const override {
// As a special case until we sort out the definition of div/divu, pretend
// that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
if (Kind == k_RegisterIndex && RegIdx.Index == 0 &&
RegIdx.Kind & RegKind_GPR)
return getGPR32Reg(); // FIXME: GPR64 too
assert(Kind == k_PhysRegister && "Invalid access!");
return PhysReg.Num;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate) && "Invalid access!");
return Imm.Val;
}
int64_t getConstantImm() const {
const MCExpr *Val = getImm();
return static_cast<const MCConstantExpr *>(Val)->getValue();
}
MipsOperand *getMemBase() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Base;
}
const MCExpr *getMemOff() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Off;
}
int64_t getConstantMemOff() const {
return static_cast<const MCConstantExpr *>(getMemOff())->getValue();
}
const SmallVectorImpl<unsigned> &getRegList() const {
assert((Kind == k_RegList) && "Invalid access!");
return *(RegList.List);
}
unsigned getRegPair() const {
assert((Kind == k_RegPair) && "Invalid access!");
return RegIdx.Index;
}
static std::unique_ptr<MipsOperand> CreateToken(StringRef Str, SMLoc S,
MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_Token, Parser);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
/// Create a numeric register (e.g. $1). The exact register remains
/// unresolved until an instruction successfully matches
static std::unique_ptr<MipsOperand>
createNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
DEBUG(dbgs() << "createNumericReg(" << Index << ", ...)\n");
return CreateReg(Index, RegKind_Numeric, RegInfo, S, E, Parser);
}
/// Create a register that is definitely a GPR.
/// This is typically only used for named registers such as $gp.
static std::unique_ptr<MipsOperand>
createGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_GPR, RegInfo, S, E, Parser);
}
/// Create a register that is definitely a FGR.
/// This is typically only used for named registers such as $f0.
static std::unique_ptr<MipsOperand>
createFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_FGR, RegInfo, S, E, Parser);
}
/// Create a register that is definitely a HWReg.
/// This is typically only used for named registers such as $hwr_cpunum.
static std::unique_ptr<MipsOperand>
createHWRegsReg(unsigned Index, const MCRegisterInfo *RegInfo,
SMLoc S, SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_HWRegs, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an FCC.
/// This is typically only used for named registers such as $fcc0.
static std::unique_ptr<MipsOperand>
createFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_FCC, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an ACC.
/// This is typically only used for named registers such as $ac0.
static std::unique_ptr<MipsOperand>
createACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_ACC, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an MSA128.
/// This is typically only used for named registers such as $w0.
static std::unique_ptr<MipsOperand>
createMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_MSA128, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an MSACtrl.
/// This is typically only used for named registers such as $msaaccess.
static std::unique_ptr<MipsOperand>
createMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_MSACtrl, RegInfo, S, E, Parser);
}
static std::unique_ptr<MipsOperand>
CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_Immediate, Parser);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<MipsOperand>
CreateMem(std::unique_ptr<MipsOperand> Base, const MCExpr *Off, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_Memory, Parser);
Op->Mem.Base = Base.release();
Op->Mem.Off = Off;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<MipsOperand>
CreateRegList(SmallVectorImpl<unsigned> &Regs, SMLoc StartLoc, SMLoc EndLoc,
MipsAsmParser &Parser) {
assert (Regs.size() > 0 && "Empty list not allowed");
auto Op = make_unique<MipsOperand>(k_RegList, Parser);
Op->RegList.List = new SmallVector<unsigned, 10>(Regs.begin(), Regs.end());
Op->StartLoc = StartLoc;
Op->EndLoc = EndLoc;
return Op;
}
static std::unique_ptr<MipsOperand>
CreateRegPair(unsigned RegNo, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_RegPair, Parser);
Op->RegIdx.Index = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
bool isGPRAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_GPR && RegIdx.Index <= 31;
}
bool isMM16AsmReg() const {
if (!(isRegIdx() && RegIdx.Kind))
return false;
return ((RegIdx.Index >= 2 && RegIdx.Index <= 7)
|| RegIdx.Index == 16 || RegIdx.Index == 17);
}
bool isMM16AsmRegZero() const {
if (!(isRegIdx() && RegIdx.Kind))
return false;
return (RegIdx.Index == 0 ||
(RegIdx.Index >= 2 && RegIdx.Index <= 7) ||
RegIdx.Index == 17);
}
bool isMM16AsmRegMoveP() const {
if (!(isRegIdx() && RegIdx.Kind))
return false;
return (RegIdx.Index == 0 || (RegIdx.Index >= 2 && RegIdx.Index <= 3) ||
(RegIdx.Index >= 16 && RegIdx.Index <= 20));
}
bool isFGRAsmReg() const {
// AFGR64 is $0-$15 but we handle this in getAFGR64()
return isRegIdx() && RegIdx.Kind & RegKind_FGR && RegIdx.Index <= 31;
}
bool isHWRegsAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_HWRegs && RegIdx.Index <= 31;
}
bool isCCRAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_CCR && RegIdx.Index <= 31;
}
bool isFCCAsmReg() const {
if (!(isRegIdx() && RegIdx.Kind & RegKind_FCC))
return false;
if (!AsmParser.hasEightFccRegisters())
return RegIdx.Index == 0;
return RegIdx.Index <= 7;
}
bool isACCAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_ACC && RegIdx.Index <= 3;
}
bool isCOP0AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_COP0 && RegIdx.Index <= 31;
}
bool isCOP2AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_COP2 && RegIdx.Index <= 31;
}
bool isCOP3AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_COP3 && RegIdx.Index <= 31;
}
bool isMSA128AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_MSA128 && RegIdx.Index <= 31;
}
bool isMSACtrlAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_MSACtrl && RegIdx.Index <= 7;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
virtual ~MipsOperand() {
switch (Kind) {
case k_Immediate:
break;
case k_Memory:
delete Mem.Base;
break;
case k_RegList:
delete RegList.List;
case k_PhysRegister:
case k_RegisterIndex:
case k_Token:
case k_RegPair:
break;
}
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case k_Immediate:
OS << "Imm<";
OS << *Imm.Val;
OS << ">";
break;
case k_Memory:
OS << "Mem<";
Mem.Base->print(OS);
OS << ", ";
OS << *Mem.Off;
OS << ">";
break;
case k_PhysRegister:
OS << "PhysReg<" << PhysReg.Num << ">";
break;
case k_RegisterIndex:
OS << "RegIdx<" << RegIdx.Index << ":" << RegIdx.Kind << ">";
break;
case k_Token:
OS << Tok.Data;
break;
case k_RegList:
OS << "RegList< ";
for (auto Reg : (*RegList.List))
OS << Reg << " ";
OS << ">";
break;
case k_RegPair:
OS << "RegPair<" << RegIdx.Index << "," << RegIdx.Index + 1 << ">";
break;
}
}
}; // class MipsOperand
} // namespace
namespace llvm {
extern const MCInstrDesc MipsInsts[];
}
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
return MipsInsts[Opcode];
}
static bool hasShortDelaySlot(unsigned Opcode) {
switch (Opcode) {
case Mips::JALS_MM:
case Mips::JALRS_MM:
case Mips::JALRS16_MM:
case Mips::BGEZALS_MM:
case Mips::BLTZALS_MM:
return true;
default:
return false;
}
}
static const MCSymbol *getSingleMCSymbol(const MCExpr *Expr) {
if (const MCSymbolRefExpr *SRExpr = dyn_cast<MCSymbolRefExpr>(Expr)) {
return &SRExpr->getSymbol();
}
if (const MCBinaryExpr *BExpr = dyn_cast<MCBinaryExpr>(Expr)) {
const MCSymbol *LHSSym = getSingleMCSymbol(BExpr->getLHS());
const MCSymbol *RHSSym = getSingleMCSymbol(BExpr->getRHS());
if (LHSSym)
return LHSSym;
if (RHSSym)
return RHSSym;
return nullptr;
}
if (const MCUnaryExpr *UExpr = dyn_cast<MCUnaryExpr>(Expr))
return getSingleMCSymbol(UExpr->getSubExpr());
return nullptr;
}
static unsigned countMCSymbolRefExpr(const MCExpr *Expr) {
if (isa<MCSymbolRefExpr>(Expr))
return 1;
if (const MCBinaryExpr *BExpr = dyn_cast<MCBinaryExpr>(Expr))
return countMCSymbolRefExpr(BExpr->getLHS()) +
countMCSymbolRefExpr(BExpr->getRHS());
if (const MCUnaryExpr *UExpr = dyn_cast<MCUnaryExpr>(Expr))
return countMCSymbolRefExpr(UExpr->getSubExpr());
return 0;
}
namespace {
void emitRX(unsigned Opcode, unsigned Reg0, MCOperand Op1, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
tmpInst.setOpcode(Opcode);
tmpInst.addOperand(MCOperand::createReg(Reg0));
tmpInst.addOperand(Op1);
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
void emitRI(unsigned Opcode, unsigned Reg0, int32_t Imm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
emitRX(Opcode, Reg0, MCOperand::createImm(Imm), IDLoc, Instructions);
}
void emitRR(unsigned Opcode, unsigned Reg0, unsigned Reg1, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
emitRX(Opcode, Reg0, MCOperand::createReg(Reg1), IDLoc, Instructions);
}
void emitII(unsigned Opcode, int16_t Imm1, int16_t Imm2, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
tmpInst.setOpcode(Opcode);
tmpInst.addOperand(MCOperand::createImm(Imm1));
tmpInst.addOperand(MCOperand::createImm(Imm2));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
void emitR(unsigned Opcode, unsigned Reg0, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
tmpInst.setOpcode(Opcode);
tmpInst.addOperand(MCOperand::createReg(Reg0));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
void emitRRX(unsigned Opcode, unsigned Reg0, unsigned Reg1, MCOperand Op2,
SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
tmpInst.setOpcode(Opcode);
tmpInst.addOperand(MCOperand::createReg(Reg0));
tmpInst.addOperand(MCOperand::createReg(Reg1));
tmpInst.addOperand(Op2);
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
void emitRRR(unsigned Opcode, unsigned Reg0, unsigned Reg1, unsigned Reg2,
SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
emitRRX(Opcode, Reg0, Reg1, MCOperand::createReg(Reg2), IDLoc,
Instructions);
}
void emitRRI(unsigned Opcode, unsigned Reg0, unsigned Reg1, int16_t Imm,
SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
emitRRX(Opcode, Reg0, Reg1, MCOperand::createImm(Imm), IDLoc,
Instructions);
}
void emitAppropriateDSLL(unsigned DstReg, unsigned SrcReg, int16_t ShiftAmount,
SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
if (ShiftAmount >= 32) {
emitRRI(Mips::DSLL32, DstReg, SrcReg, ShiftAmount - 32, IDLoc,
Instructions);
return;
}
emitRRI(Mips::DSLL, DstReg, SrcReg, ShiftAmount, IDLoc, Instructions);
}
} // end anonymous namespace.
bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
bool ExpandedJalSym = false;
Inst.setLoc(IDLoc);
if (MCID.isBranch() || MCID.isCall()) {
const unsigned Opcode = Inst.getOpcode();
MCOperand Offset;
switch (Opcode) {
default:
break;
case Mips::BBIT0:
case Mips::BBIT032:
case Mips::BBIT1:
case Mips::BBIT132:
assert(hasCnMips() && "instruction only valid for octeon cpus");
// Fall through
case Mips::BEQ:
case Mips::BNE:
case Mips::BEQ_MM:
case Mips::BNE_MM:
assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
Offset = Inst.getOperand(2);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(),
1LL << (inMicroMipsMode() ? 1 : 2)))
return Error(IDLoc, "branch to misaligned address");
break;
case Mips::BGEZ:
case Mips::BGTZ:
case Mips::BLEZ:
case Mips::BLTZ:
case Mips::BGEZAL:
case Mips::BLTZAL:
case Mips::BC1F:
case Mips::BC1T:
case Mips::BGEZ_MM:
case Mips::BGTZ_MM:
case Mips::BLEZ_MM:
case Mips::BLTZ_MM:
case Mips::BGEZAL_MM:
case Mips::BLTZAL_MM:
case Mips::BC1F_MM:
case Mips::BC1T_MM:
assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
Offset = Inst.getOperand(1);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(),
1LL << (inMicroMipsMode() ? 1 : 2)))
return Error(IDLoc, "branch to misaligned address");
break;
case Mips::BEQZ16_MM:
case Mips::BEQZC16_MMR6:
case Mips::BNEZ16_MM:
case Mips::BNEZC16_MMR6:
assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
Offset = Inst.getOperand(1);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isInt<8>(Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(), 2LL))
return Error(IDLoc, "branch to misaligned address");
break;
}
}
// SSNOP is deprecated on MIPS32r6/MIPS64r6
// We still accept it but it is a normal nop.
if (hasMips32r6() && Inst.getOpcode() == Mips::SSNOP) {
std::string ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6";
Warning(IDLoc, "ssnop is deprecated for " + ISA + " and is equivalent to a "
"nop instruction");
}
if (hasCnMips()) {
const unsigned Opcode = Inst.getOpcode();
MCOperand Opnd;
int Imm;
switch (Opcode) {
default:
break;
case Mips::BBIT0:
case Mips::BBIT032:
case Mips::BBIT1:
case Mips::BBIT132:
assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
// The offset is handled above
Opnd = Inst.getOperand(1);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > (Opcode == Mips::BBIT0 ||
Opcode == Mips::BBIT1 ? 63 : 31))
return Error(IDLoc, "immediate operand value out of range");
if (Imm > 31) {
Inst.setOpcode(Opcode == Mips::BBIT0 ? Mips::BBIT032
: Mips::BBIT132);
Inst.getOperand(1).setImm(Imm - 32);
}
break;
case Mips::SEQi:
case Mips::SNEi:
assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (!isInt<10>(Imm))
return Error(IDLoc, "immediate operand value out of range");
break;
}
}
// This expansion is not in a function called by tryExpandInstruction()
// because the pseudo-instruction doesn't have a distinct opcode.
if ((Inst.getOpcode() == Mips::JAL || Inst.getOpcode() == Mips::JAL_MM) &&
inPicMode()) {
warnIfNoMacro(IDLoc);
const MCExpr *JalExpr = Inst.getOperand(0).getExpr();
// We can do this expansion if there's only 1 symbol in the argument
// expression.
if (countMCSymbolRefExpr(JalExpr) > 1)
return Error(IDLoc, "jal doesn't support multiple symbols in PIC mode");
// FIXME: This is checking the expression can be handled by the later stages
// of the assembler. We ought to leave it to those later stages but
// we can't do that until we stop evaluateRelocExpr() rewriting the
// expressions into non-equivalent forms.
const MCSymbol *JalSym = getSingleMCSymbol(JalExpr);
// FIXME: Add support for label+offset operands (currently causes an error).
// FIXME: Add support for forward-declared local symbols.
// FIXME: Add expansion for when the LargeGOT option is enabled.
if (JalSym->isInSection() || JalSym->isTemporary()) {
if (isABI_O32()) {
// If it's a local symbol and the O32 ABI is being used, we expand to:
// lw $25, 0($gp)
// R_(MICRO)MIPS_GOT16 label
// addiu $25, $25, 0
// R_(MICRO)MIPS_LO16 label
// jalr $25
const MCExpr *Got16RelocExpr = evaluateRelocExpr(JalExpr, "got");
const MCExpr *Lo16RelocExpr = evaluateRelocExpr(JalExpr, "lo");
emitRRX(Mips::LW, Mips::T9, Mips::GP,
MCOperand::createExpr(Got16RelocExpr), IDLoc, Instructions);
emitRRX(Mips::ADDiu, Mips::T9, Mips::T9,
MCOperand::createExpr(Lo16RelocExpr), IDLoc, Instructions);
} else if (isABI_N32() || isABI_N64()) {
// If it's a local symbol and the N32/N64 ABIs are being used,
// we expand to:
// lw/ld $25, 0($gp)
// R_(MICRO)MIPS_GOT_DISP label
// jalr $25
const MCExpr *GotDispRelocExpr = evaluateRelocExpr(JalExpr, "got_disp");
emitRRX(ABI.ArePtrs64bit() ? Mips::LD : Mips::LW, Mips::T9, Mips::GP,
MCOperand::createExpr(GotDispRelocExpr), IDLoc, Instructions);
}
} else {
// If it's an external/weak symbol, we expand to:
// lw/ld $25, 0($gp)
// R_(MICRO)MIPS_CALL16 label
// jalr $25
const MCExpr *Call16RelocExpr = evaluateRelocExpr(JalExpr, "call16");
emitRRX(ABI.ArePtrs64bit() ? Mips::LD : Mips::LW, Mips::T9, Mips::GP,
MCOperand::createExpr(Call16RelocExpr), IDLoc, Instructions);
}
MCInst JalrInst;
if (IsCpRestoreSet && inMicroMipsMode())
JalrInst.setOpcode(Mips::JALRS_MM);
else
JalrInst.setOpcode(inMicroMipsMode() ? Mips::JALR_MM : Mips::JALR);
JalrInst.addOperand(MCOperand::createReg(Mips::RA));
JalrInst.addOperand(MCOperand::createReg(Mips::T9));
// FIXME: Add an R_(MICRO)MIPS_JALR relocation after the JALR.
// This relocation is supposed to be an optimization hint for the linker
// and is not necessary for correctness.
Inst = JalrInst;
ExpandedJalSym = true;
}
if (MCID.mayLoad() || MCID.mayStore()) {
// Check the offset of memory operand, if it is a symbol
// reference or immediate we may have to expand instructions.
for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
const MCOperandInfo &OpInfo = MCID.OpInfo[i];
if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
(OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
MCOperand &Op = Inst.getOperand(i);
if (Op.isImm()) {
int MemOffset = Op.getImm();
if (MemOffset < -32768 || MemOffset > 32767) {
// Offset can't exceed 16bit value.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true);
return false;
}
} else if (Op.isExpr()) {
const MCExpr *Expr = Op.getExpr();
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *SR =
static_cast<const MCSymbolRefExpr *>(Expr);
if (SR->getKind() == MCSymbolRefExpr::VK_None) {
// Expand symbol.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
} else if (!isEvaluated(Expr)) {
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
}
}
} // for
} // if load/store
if (inMicroMipsMode()) {
if (MCID.mayLoad()) {
// Try to create 16-bit GP relative load instruction.
for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
const MCOperandInfo &OpInfo = MCID.OpInfo[i];
if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
(OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
MCOperand &Op = Inst.getOperand(i);
if (Op.isImm()) {
int MemOffset = Op.getImm();
MCOperand &DstReg = Inst.getOperand(0);
MCOperand &BaseReg = Inst.getOperand(1);
if (isInt<9>(MemOffset) && (MemOffset % 4 == 0) &&
getContext().getRegisterInfo()->getRegClass(
Mips::GPRMM16RegClassID).contains(DstReg.getReg()) &&
(BaseReg.getReg() == Mips::GP ||
BaseReg.getReg() == Mips::GP_64)) {
emitRRI(Mips::LWGP_MM, DstReg.getReg(), Mips::GP, MemOffset,
IDLoc, Instructions);
return false;
}
}
}
} // for
} // if load
// TODO: Handle this with the AsmOperandClass.PredicateMethod.
MCOperand Opnd;
int Imm;
switch (Inst.getOpcode()) {
default:
break;
case Mips::ADDIUSP_MM:
Opnd = Inst.getOperand(0);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < -1032 || Imm > 1028 || (Imm < 8 && Imm > -12) ||
Imm % 4 != 0)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::SLL16_MM:
case Mips::SRL16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 1 || Imm > 8)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LI16_MM:
Opnd = Inst.getOperand(1);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < -1 || Imm > 126)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ADDIUR2_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (!(Imm == 1 || Imm == -1 ||
((Imm % 4 == 0) && Imm < 28 && Imm > 0)))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ANDI16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (!(Imm == 128 || (Imm >= 1 && Imm <= 4) || Imm == 7 || Imm == 8 ||
Imm == 15 || Imm == 16 || Imm == 31 || Imm == 32 || Imm == 63 ||
Imm == 64 || Imm == 255 || Imm == 32768 || Imm == 65535))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LBU16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < -1 || Imm > 14)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::SB16_MM:
case Mips::SB16_MMR6:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > 15)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LHU16_MM:
case Mips::SH16_MM:
case Mips::SH16_MMR6:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > 30 || (Imm % 2 != 0))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LW16_MM:
case Mips::SW16_MM:
case Mips::SW16_MMR6:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > 60 || (Imm % 4 != 0))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ADDIUPC_MM:
MCOperand Opnd = Inst.getOperand(1);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
int Imm = Opnd.getImm();
if ((Imm % 4 != 0) || !isInt<25>(Imm))
return Error(IDLoc, "immediate operand value out of range");
break;
}
}
MacroExpanderResultTy ExpandResult =
tryExpandInstruction(Inst, IDLoc, Instructions);
switch (ExpandResult) {
case MER_NotAMacro:
Instructions.push_back(Inst);
break;
case MER_Success:
break;
case MER_Fail:
return true;
}
// If this instruction has a delay slot and .set reorder is active,
// emit a NOP after it.
if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder())
createNop(hasShortDelaySlot(Inst.getOpcode()), IDLoc, Instructions);
if ((Inst.getOpcode() == Mips::JalOneReg ||
Inst.getOpcode() == Mips::JalTwoReg || ExpandedJalSym) &&
isPicAndNotNxxAbi()) {
if (IsCpRestoreSet) {
// We need a NOP between the JALR and the LW:
// If .set reorder has been used, we've already emitted a NOP.
// If .set noreorder has been used, we need to emit a NOP at this point.
if (!AssemblerOptions.back()->isReorder())
createNop(hasShortDelaySlot(Inst.getOpcode()), IDLoc, Instructions);
// Load the $gp from the stack.
SmallVector<MCInst, 3> LoadInsts;
createCpRestoreMemOp(true /*IsLoad*/, CpRestoreOffset /*StackOffset*/,
IDLoc, LoadInsts);
for (const MCInst &Inst : LoadInsts)
Instructions.push_back(Inst);
} else
Warning(IDLoc, "no .cprestore used in PIC mode");
}
return false;
}
MipsAsmParser::MacroExpanderResultTy
MipsAsmParser::tryExpandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
switch (Inst.getOpcode()) {
default:
return MER_NotAMacro;
case Mips::LoadImm32:
return expandLoadImm(Inst, true, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::LoadImm64:
return expandLoadImm(Inst, false, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::LoadAddrImm32:
case Mips::LoadAddrImm64:
assert(Inst.getOperand(0).isReg() && "expected register operand kind");
assert((Inst.getOperand(1).isImm() || Inst.getOperand(1).isExpr()) &&
"expected immediate operand kind");
return expandLoadAddress(Inst.getOperand(0).getReg(), Mips::NoRegister,
Inst.getOperand(1),
Inst.getOpcode() == Mips::LoadAddrImm32, IDLoc,
Instructions)
? MER_Fail
: MER_Success;
case Mips::LoadAddrReg32:
case Mips::LoadAddrReg64:
assert(Inst.getOperand(0).isReg() && "expected register operand kind");
assert(Inst.getOperand(1).isReg() && "expected register operand kind");
assert((Inst.getOperand(2).isImm() || Inst.getOperand(2).isExpr()) &&
"expected immediate operand kind");
return expandLoadAddress(Inst.getOperand(0).getReg(),
Inst.getOperand(1).getReg(), Inst.getOperand(2),
Inst.getOpcode() == Mips::LoadAddrReg32, IDLoc,
Instructions)
? MER_Fail
: MER_Success;
case Mips::B_MM_Pseudo:
case Mips::B_MMR6_Pseudo:
return expandUncondBranchMMPseudo(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::SWM_MM:
case Mips::LWM_MM:
return expandLoadStoreMultiple(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::JalOneReg:
case Mips::JalTwoReg:
return expandJalWithRegs(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::BneImm:
case Mips::BeqImm:
return expandBranchImm(Inst, IDLoc, Instructions) ? MER_Fail : MER_Success;
case Mips::BLT:
case Mips::BLE:
case Mips::BGE:
case Mips::BGT:
case Mips::BLTU:
case Mips::BLEU:
case Mips::BGEU:
case Mips::BGTU:
case Mips::BLTL:
case Mips::BLEL:
case Mips::BGEL:
case Mips::BGTL:
case Mips::BLTUL:
case Mips::BLEUL:
case Mips::BGEUL:
case Mips::BGTUL:
case Mips::BLTImmMacro:
case Mips::BLEImmMacro:
case Mips::BGEImmMacro:
case Mips::BGTImmMacro:
case Mips::BLTUImmMacro:
case Mips::BLEUImmMacro:
case Mips::BGEUImmMacro:
case Mips::BGTUImmMacro:
case Mips::BLTLImmMacro:
case Mips::BLELImmMacro:
case Mips::BGELImmMacro:
case Mips::BGTLImmMacro:
case Mips::BLTULImmMacro:
case Mips::BLEULImmMacro:
case Mips::BGEULImmMacro:
case Mips::BGTULImmMacro:
return expandCondBranches(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::SDivMacro:
return expandDiv(Inst, IDLoc, Instructions, false, true) ? MER_Fail
: MER_Success;
case Mips::DSDivMacro:
return expandDiv(Inst, IDLoc, Instructions, true, true) ? MER_Fail
: MER_Success;
case Mips::UDivMacro:
return expandDiv(Inst, IDLoc, Instructions, false, false) ? MER_Fail
: MER_Success;
case Mips::DUDivMacro:
return expandDiv(Inst, IDLoc, Instructions, true, false) ? MER_Fail
: MER_Success;
case Mips::PseudoTRUNC_W_S:
return expandTrunc(Inst, false, false, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::PseudoTRUNC_W_D32:
return expandTrunc(Inst, true, false, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::PseudoTRUNC_W_D:
return expandTrunc(Inst, true, true, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::Ulh:
return expandUlh(Inst, true, IDLoc, Instructions) ? MER_Fail : MER_Success;
case Mips::Ulhu:
return expandUlh(Inst, false, IDLoc, Instructions) ? MER_Fail : MER_Success;
case Mips::Ulw:
return expandUlw(Inst, IDLoc, Instructions) ? MER_Fail : MER_Success;
case Mips::NORImm:
return expandAliasImmediate(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::ADDi:
case Mips::ADDiu:
case Mips::SLTi:
case Mips::SLTiu:
if ((Inst.getNumOperands() == 3) && Inst.getOperand(0).isReg() &&
Inst.getOperand(1).isReg() && Inst.getOperand(2).isImm()) {
int64_t ImmValue = Inst.getOperand(2).getImm();
if (isInt<16>(ImmValue))
return MER_NotAMacro;
return expandAliasImmediate(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
}
return MER_NotAMacro;
case Mips::ANDi:
case Mips::ORi:
case Mips::XORi:
if ((Inst.getNumOperands() == 3) && Inst.getOperand(0).isReg() &&
Inst.getOperand(1).isReg() && Inst.getOperand(2).isImm()) {
int64_t ImmValue = Inst.getOperand(2).getImm();
if (isUInt<16>(ImmValue))
return MER_NotAMacro;
return expandAliasImmediate(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
}
return MER_NotAMacro;
case Mips::ROL:
case Mips::ROR:
return expandRotation(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::ROLImm:
case Mips::RORImm:
return expandRotationImm(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::DROL:
case Mips::DROR:
return expandDRotation(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::DROLImm:
case Mips::DRORImm:
return expandDRotationImm(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
case Mips::ABSMacro:
return expandAbs(Inst, IDLoc, Instructions) ? MER_Fail
: MER_Success;
}
}
bool MipsAsmParser::expandJalWithRegs(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
// Create a JALR instruction which is going to replace the pseudo-JAL.
MCInst JalrInst;
JalrInst.setLoc(IDLoc);
const MCOperand FirstRegOp = Inst.getOperand(0);
const unsigned Opcode = Inst.getOpcode();
if (Opcode == Mips::JalOneReg) {
// jal $rs => jalr $rs
if (IsCpRestoreSet && inMicroMipsMode()) {
JalrInst.setOpcode(Mips::JALRS16_MM);
JalrInst.addOperand(FirstRegOp);
} else if (inMicroMipsMode()) {
JalrInst.setOpcode(hasMips32r6() ? Mips::JALRC16_MMR6 : Mips::JALR16_MM);
JalrInst.addOperand(FirstRegOp);
} else {
JalrInst.setOpcode(Mips::JALR);
JalrInst.addOperand(MCOperand::createReg(Mips::RA));
JalrInst.addOperand(FirstRegOp);
}
} else if (Opcode == Mips::JalTwoReg) {
// jal $rd, $rs => jalr $rd, $rs
if (IsCpRestoreSet && inMicroMipsMode())
JalrInst.setOpcode(Mips::JALRS_MM);
else
JalrInst.setOpcode(inMicroMipsMode() ? Mips::JALR_MM : Mips::JALR);
JalrInst.addOperand(FirstRegOp);
const MCOperand SecondRegOp = Inst.getOperand(1);
JalrInst.addOperand(SecondRegOp);
}
Instructions.push_back(JalrInst);
// If .set reorder is active and branch instruction has a delay slot,
// emit a NOP after it.
const MCInstrDesc &MCID = getInstDesc(JalrInst.getOpcode());
if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder()) {
createNop(hasShortDelaySlot(JalrInst.getOpcode()), IDLoc, Instructions);
}
return false;
}
/// Can the value be represented by a unsigned N-bit value and a shift left?
template <unsigned N> static bool isShiftedUIntAtAnyPosition(uint64_t x) {
unsigned BitNum = findFirstSet(x);
return (x == x >> BitNum << BitNum) && isUInt<N>(x >> BitNum);
}
/// Load (or add) an immediate into a register.
///
/// @param ImmValue The immediate to load.
/// @param DstReg The register that will hold the immediate.
/// @param SrcReg A register to add to the immediate or Mips::NoRegister
/// for a simple initialization.
/// @param Is32BitImm Is ImmValue 32-bit or 64-bit?
/// @param IsAddress True if the immediate represents an address. False if it
/// is an integer.
/// @param IDLoc Location of the immediate in the source file.
/// @param Instructions The instructions emitted by this expansion.
bool MipsAsmParser::loadImmediate(int64_t ImmValue, unsigned DstReg,
unsigned SrcReg, bool Is32BitImm,
bool IsAddress, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
if (!Is32BitImm && !isGP64bit()) {
Error(IDLoc, "instruction requires a 64-bit architecture");
return true;
}
if (Is32BitImm) {
if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) {
// Sign extend up to 64-bit so that the predicates match the hardware
// behaviour. In particular, isInt<16>(0xffff8000) and similar should be
// true.
ImmValue = SignExtend64<32>(ImmValue);
} else {
Error(IDLoc, "instruction requires a 32-bit immediate");
return true;
}
}
unsigned ZeroReg = IsAddress ? ABI.GetNullPtr() : ABI.GetZeroReg();
unsigned AdduOp = !Is32BitImm ? Mips::DADDu : Mips::ADDu;
bool UseSrcReg = false;
if (SrcReg != Mips::NoRegister)
UseSrcReg = true;
unsigned TmpReg = DstReg;
if (UseSrcReg &&
getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, SrcReg)) {
// At this point we need AT to perform the expansions and we exit if it is
// not available.
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
TmpReg = ATReg;
}
if (isInt<16>(ImmValue)) {
if (!UseSrcReg)
SrcReg = ZeroReg;
// This doesn't quite follow the usual ABI expectations for N32 but matches
// traditional assembler behaviour. N32 would normally use addiu for both
// integers and addresses.
if (IsAddress && !Is32BitImm) {
emitRRI(Mips::DADDiu, DstReg, SrcReg, ImmValue, IDLoc, Instructions);
return false;
}
emitRRI(Mips::ADDiu, DstReg, SrcReg, ImmValue, IDLoc, Instructions);
return false;
}
if (isUInt<16>(ImmValue)) {
unsigned TmpReg = DstReg;
if (SrcReg == DstReg) {
TmpReg = getATReg(IDLoc);
if (!TmpReg)
return true;
}
emitRRI(Mips::ORi, TmpReg, ZeroReg, ImmValue, IDLoc, Instructions);
if (UseSrcReg)
emitRRR(ABI.GetPtrAdduOp(), DstReg, TmpReg, SrcReg, IDLoc, Instructions);
return false;
}
if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) {
warnIfNoMacro(IDLoc);
uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff;
uint16_t Bits15To0 = ImmValue & 0xffff;
if (!Is32BitImm && !isInt<32>(ImmValue)) {
// Traditional behaviour seems to special case this particular value. It's
// not clear why other masks are handled differently.
if (ImmValue == 0xffffffff) {
emitRI(Mips::LUi, TmpReg, 0xffff, IDLoc, Instructions);
emitRRI(Mips::DSRL32, TmpReg, TmpReg, 0, IDLoc, Instructions);
if (UseSrcReg)
emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, Instructions);
return false;
}
// Expand to an ORi instead of a LUi to avoid sign-extending into the
// upper 32 bits.
emitRRI(Mips::ORi, TmpReg, ZeroReg, Bits31To16, IDLoc, Instructions);
emitRRI(Mips::DSLL, TmpReg, TmpReg, 16, IDLoc, Instructions);
if (Bits15To0)
emitRRI(Mips::ORi, TmpReg, TmpReg, Bits15To0, IDLoc, Instructions);
if (UseSrcReg)
emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, Instructions);
return false;
}
emitRI(Mips::LUi, TmpReg, Bits31To16, IDLoc, Instructions);
if (Bits15To0)
emitRRI(Mips::ORi, TmpReg, TmpReg, Bits15To0, IDLoc, Instructions);
if (UseSrcReg)
emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, Instructions);
return false;
}
if (isShiftedUIntAtAnyPosition<16>(ImmValue)) {
if (Is32BitImm) {
Error(IDLoc, "instruction requires a 32-bit immediate");
return true;
}
// Traditionally, these immediates are shifted as little as possible and as
// such we align the most significant bit to bit 15 of our temporary.
unsigned FirstSet = findFirstSet((uint64_t)ImmValue);
unsigned LastSet = findLastSet((uint64_t)ImmValue);
unsigned ShiftAmount = FirstSet - (15 - (LastSet - FirstSet));
uint16_t Bits = (ImmValue >> ShiftAmount) & 0xffff;
emitRRI(Mips::ORi, TmpReg, ZeroReg, Bits, IDLoc, Instructions);
emitRRI(Mips::DSLL, TmpReg, TmpReg, ShiftAmount, IDLoc, Instructions);
if (UseSrcReg)
emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, Instructions);
return false;
}
warnIfNoMacro(IDLoc);
// The remaining case is packed with a sequence of dsll and ori with zeros
// being omitted and any neighbouring dsll's being coalesced.
// The highest 32-bit's are equivalent to a 32-bit immediate load.
// Load bits 32-63 of ImmValue into bits 0-31 of the temporary register.
if (loadImmediate(ImmValue >> 32, TmpReg, Mips::NoRegister, true, false,
IDLoc, Instructions))
return false;
// Shift and accumulate into the register. If a 16-bit chunk is zero, then
// skip it and defer the shift to the next chunk.
unsigned ShiftCarriedForwards = 16;
for (int BitNum = 16; BitNum >= 0; BitNum -= 16) {
uint16_t ImmChunk = (ImmValue >> BitNum) & 0xffff;
if (ImmChunk != 0) {
emitAppropriateDSLL(TmpReg, TmpReg, ShiftCarriedForwards, IDLoc,
Instructions);
emitRRI(Mips::ORi, TmpReg, TmpReg, ImmChunk, IDLoc, Instructions);
ShiftCarriedForwards = 0;
}
ShiftCarriedForwards += 16;
}
ShiftCarriedForwards -= 16;
// Finish any remaining shifts left by trailing zeros.
if (ShiftCarriedForwards)
emitAppropriateDSLL(TmpReg, TmpReg, ShiftCarriedForwards, IDLoc,
Instructions);
if (UseSrcReg)
emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, Instructions);
return false;
}
bool MipsAsmParser::expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister,
Is32BitImm, false, IDLoc, Instructions))
return true;
return false;
}
bool MipsAsmParser::expandLoadAddress(unsigned DstReg, unsigned BaseReg,
const MCOperand &Offset,
bool Is32BitAddress, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
// la can't produce a usable address when addresses are 64-bit.
if (Is32BitAddress && ABI.ArePtrs64bit()) {
// FIXME: Demote this to a warning and continue as if we had 'dla' instead.
// We currently can't do this because we depend on the equality
// operator and N64 can end up with a GPR32/GPR64 mismatch.
Error(IDLoc, "la used to load 64-bit address");
// Continue as if we had 'dla' instead.
Is32BitAddress = false;
}
// dla requires 64-bit addresses.
if (!Is32BitAddress && !hasMips3()) {
Error(IDLoc, "instruction requires a 64-bit architecture");
return true;
}
if (!Offset.isImm())
return loadAndAddSymbolAddress(Offset.getExpr(), DstReg, BaseReg,
Is32BitAddress, IDLoc, Instructions);
if (!ABI.ArePtrs64bit()) {
// Continue as if we had 'la' whether we had 'la' or 'dla'.
Is32BitAddress = true;
}
return loadImmediate(Offset.getImm(), DstReg, BaseReg, Is32BitAddress, true,
IDLoc, Instructions);
}
bool MipsAsmParser::loadAndAddSymbolAddress(
const MCExpr *SymExpr, unsigned DstReg, unsigned SrcReg, bool Is32BitSym,
SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
warnIfNoMacro(IDLoc);
const MCExpr *Symbol = cast<MCExpr>(SymExpr);
const MipsMCExpr *HiExpr = MipsMCExpr::create(
MCSymbolRefExpr::VK_Mips_ABS_HI, Symbol, getContext());
const MipsMCExpr *LoExpr = MipsMCExpr::create(
MCSymbolRefExpr::VK_Mips_ABS_LO, Symbol, getContext());
bool UseSrcReg = SrcReg != Mips::NoRegister;
// This is the 64-bit symbol address expansion.
if (ABI.ArePtrs64bit() && isGP64bit()) {
// We always need AT for the 64-bit expansion.
// If it is not available we exit.
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
const MipsMCExpr *HighestExpr = MipsMCExpr::create(
MCSymbolRefExpr::VK_Mips_HIGHEST, Symbol, getContext());
const MipsMCExpr *HigherExpr = MipsMCExpr::create(
MCSymbolRefExpr::VK_Mips_HIGHER, Symbol, getContext());
if (UseSrcReg &&
getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg,
SrcReg)) {
// If $rs is the same as $rd:
// (d)la $rd, sym($rd) => lui $at, %highest(sym)
// daddiu $at, $at, %higher(sym)
// dsll $at, $at, 16
// daddiu $at, $at, %hi(sym)
// dsll $at, $at, 16
// daddiu $at, $at, %lo(sym)
// daddu $rd, $at, $rd
emitRX(Mips::LUi, ATReg, MCOperand::createExpr(HighestExpr), IDLoc,
Instructions);
emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(HigherExpr),
IDLoc, Instructions);
emitRRI(Mips::DSLL, ATReg, ATReg, 16, IDLoc, Instructions);
emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(HiExpr), IDLoc,
Instructions);
emitRRI(Mips::DSLL, ATReg, ATReg, 16, IDLoc, Instructions);
emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(LoExpr), IDLoc,
Instructions);
emitRRR(Mips::DADDu, DstReg, ATReg, SrcReg, IDLoc, Instructions);
return false;
}
// Otherwise, if the $rs is different from $rd or if $rs isn't specified:
// (d)la $rd, sym/sym($rs) => lui $rd, %highest(sym)
// lui $at, %hi(sym)
// daddiu $rd, $rd, %higher(sym)
// daddiu $at, $at, %lo(sym)
// dsll32 $rd, $rd, 0
// daddu $rd, $rd, $at
// (daddu $rd, $rd, $rs)
emitRX(Mips::LUi, DstReg, MCOperand::createExpr(HighestExpr), IDLoc,
Instructions);
emitRX(Mips::LUi, ATReg, MCOperand::createExpr(HiExpr), IDLoc,
Instructions);
emitRRX(Mips::DADDiu, DstReg, DstReg, MCOperand::createExpr(HigherExpr),
IDLoc, Instructions);
emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(LoExpr), IDLoc,
Instructions);
emitRRI(Mips::DSLL32, DstReg, DstReg, 0, IDLoc, Instructions);
emitRRR(Mips::DADDu, DstReg, DstReg, ATReg, IDLoc, Instructions);
if (UseSrcReg)
emitRRR(Mips::DADDu, DstReg, DstReg, SrcReg, IDLoc, Instructions);
return false;
}
// And now, the 32-bit symbol address expansion:
// If $rs is the same as $rd:
// (d)la $rd, sym($rd) => lui $at, %hi(sym)
// ori $at, $at, %lo(sym)
// addu $rd, $at, $rd
// Otherwise, if the $rs is different from $rd or if $rs isn't specified:
// (d)la $rd, sym/sym($rs) => lui $rd, %hi(sym)
// ori $rd, $rd, %lo(sym)
// (addu $rd, $rd, $rs)
unsigned TmpReg = DstReg;
if (UseSrcReg &&
getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, SrcReg)) {
// If $rs is the same as $rd, we need to use AT.
// If it is not available we exit.
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
TmpReg = ATReg;
}
emitRX(Mips::LUi, TmpReg, MCOperand::createExpr(HiExpr), IDLoc, Instructions);
emitRRX(Mips::ADDiu, TmpReg, TmpReg, MCOperand::createExpr(LoExpr), IDLoc,
Instructions);
if (UseSrcReg)
emitRRR(Mips::ADDu, DstReg, TmpReg, SrcReg, IDLoc, Instructions);
else
assert(
getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, TmpReg));
return false;
}
bool MipsAsmParser::expandUncondBranchMMPseudo(
MCInst &Inst, SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
assert(getInstDesc(Inst.getOpcode()).getNumOperands() == 1 &&
"unexpected number of operands");
MCOperand Offset = Inst.getOperand(0);
if (Offset.isExpr()) {
Inst.clear();
Inst.setOpcode(Mips::BEQ_MM);
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createExpr(Offset.getExpr()));
} else {
assert(Offset.isImm() && "expected immediate operand kind");
if (isInt<11>(Offset.getImm())) {
// If offset fits into 11 bits then this instruction becomes microMIPS
// 16-bit unconditional branch instruction.
if (inMicroMipsMode())
Inst.setOpcode(hasMips32r6() ? Mips::BC16_MMR6 : Mips::B16_MM);
} else {
if (!isInt<17>(Offset.getImm()))
Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(), 1LL << 1))
Error(IDLoc, "branch to misaligned address");
Inst.clear();
Inst.setOpcode(Mips::BEQ_MM);
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createImm(Offset.getImm()));
}
}
Instructions.push_back(Inst);
// If .set reorder is active and branch instruction has a delay slot,
// emit a NOP after it.
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder())
createNop(true, IDLoc, Instructions);
return false;
}
bool MipsAsmParser::expandBranchImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &MemOffsetOp = Inst.getOperand(2);
assert((MemOffsetOp.isImm() || MemOffsetOp.isExpr()) &&
"expected immediate or expression operand");
unsigned OpCode = 0;
switch(Inst.getOpcode()) {
case Mips::BneImm:
OpCode = Mips::BNE;
break;
case Mips::BeqImm:
OpCode = Mips::BEQ;
break;
default:
llvm_unreachable("Unknown immediate branch pseudo-instruction.");
break;
}
int64_t ImmValue = ImmOp.getImm();
if (ImmValue == 0)
emitRRX(OpCode, DstRegOp.getReg(), Mips::ZERO, MemOffsetOp, IDLoc,
Instructions);
else {
warnIfNoMacro(IDLoc);
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
if (loadImmediate(ImmValue, ATReg, Mips::NoRegister, !isGP64bit(), true,
IDLoc, Instructions))
return true;
emitRRX(OpCode, DstRegOp.getReg(), ATReg, MemOffsetOp, IDLoc, Instructions);
}
return false;
}
void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions,
bool isLoad, bool isImmOpnd) {
MCOperand HiOperand, LoOperand;
unsigned TmpRegNum;
// 1st operand is either the source or destination register.
assert(Inst.getOperand(0).isReg() && "expected register operand kind");
unsigned RegOpNum = Inst.getOperand(0).getReg();
// 2nd operand is the base register.
assert(Inst.getOperand(1).isReg() && "expected register operand kind");
unsigned BaseRegNum = Inst.getOperand(1).getReg();
// 3rd operand is either an immediate or expression.
if (isImmOpnd) {
assert(Inst.getOperand(2).isImm() && "expected immediate operand kind");
unsigned ImmOffset = Inst.getOperand(2).getImm();
unsigned LoOffset = ImmOffset & 0x0000ffff;
unsigned HiOffset = (ImmOffset & 0xffff0000) >> 16;
// If msb of LoOffset is 1(negative number) we must increment HiOffset.
if (LoOffset & 0x8000)
HiOffset++;
LoOperand = MCOperand::createImm(LoOffset);
HiOperand = MCOperand::createImm(HiOffset);
} else {
const MCExpr *ExprOffset = Inst.getOperand(2).getExpr();
LoOperand = MCOperand::createExpr(evaluateRelocExpr(ExprOffset, "lo"));
HiOperand = MCOperand::createExpr(evaluateRelocExpr(ExprOffset, "hi"));
}
// These are some of the types of expansions we perform here:
// 1) lw $8, sym => lui $8, %hi(sym)
// lw $8, %lo(sym)($8)
// 2) lw $8, offset($9) => lui $8, %hi(offset)
// add $8, $8, $9
// lw $8, %lo(offset)($9)
// 3) lw $8, offset($8) => lui $at, %hi(offset)
// add $at, $at, $8
// lw $8, %lo(offset)($at)
// 4) sw $8, sym => lui $at, %hi(sym)
// sw $8, %lo(sym)($at)
// 5) sw $8, offset($8) => lui $at, %hi(offset)
// add $at, $at, $8
// sw $8, %lo(offset)($at)
// 6) ldc1 $f0, sym => lui $at, %hi(sym)
// ldc1 $f0, %lo(sym)($at)
//
// For load instructions we can use the destination register as a temporary
// if base and dst are different (examples 1 and 2) and if the base register
// is general purpose otherwise we must use $at (example 6) and error if it's
// not available. For stores we must use $at (examples 4 and 5) because we
// must not clobber the source register setting up the offset.
const MCInstrDesc &Desc = getInstDesc(Inst.getOpcode());
int16_t RegClassOp0 = Desc.OpInfo[0].RegClass;
unsigned RegClassIDOp0 =
getContext().getRegisterInfo()->getRegClass(RegClassOp0).getID();
bool IsGPR = (RegClassIDOp0 == Mips::GPR32RegClassID) ||
(RegClassIDOp0 == Mips::GPR64RegClassID);
if (isLoad && IsGPR && (BaseRegNum != RegOpNum))
TmpRegNum = RegOpNum;
else {
// At this point we need AT to perform the expansions and we exit if it is
// not available.
TmpRegNum = getATReg(IDLoc);
if (!TmpRegNum)
return;
}
emitRX(Mips::LUi, TmpRegNum, HiOperand, IDLoc, Instructions);
// Add temp register to base.
if (BaseRegNum != Mips::ZERO)
emitRRR(Mips::ADDu, TmpRegNum, TmpRegNum, BaseRegNum, IDLoc, Instructions);
// And finally, create original instruction with low part
// of offset and new base.
emitRRX(Inst.getOpcode(), RegOpNum, TmpRegNum, LoOperand, IDLoc, Instructions);
}
bool
MipsAsmParser::expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned OpNum = Inst.getNumOperands();
unsigned Opcode = Inst.getOpcode();
unsigned NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM32_MM : Mips::LWM32_MM;
assert (Inst.getOperand(OpNum - 1).isImm() &&
Inst.getOperand(OpNum - 2).isReg() &&
Inst.getOperand(OpNum - 3).isReg() && "Invalid instruction operand.");
if (OpNum < 8 && Inst.getOperand(OpNum - 1).getImm() <= 60 &&
Inst.getOperand(OpNum - 1).getImm() >= 0 &&
(Inst.getOperand(OpNum - 2).getReg() == Mips::SP ||
Inst.getOperand(OpNum - 2).getReg() == Mips::SP_64) &&
(Inst.getOperand(OpNum - 3).getReg() == Mips::RA ||
Inst.getOperand(OpNum - 3).getReg() == Mips::RA_64)) {
// It can be implemented as SWM16 or LWM16 instruction.
if (inMicroMipsMode() && hasMips32r6())
NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM16_MMR6 : Mips::LWM16_MMR6;
else
NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM16_MM : Mips::LWM16_MM;
}
Inst.setOpcode(NewOpcode);
Instructions.push_back(Inst);
return false;
}
bool MipsAsmParser::expandCondBranches(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
bool EmittedNoMacroWarning = false;
unsigned PseudoOpcode = Inst.getOpcode();
unsigned SrcReg = Inst.getOperand(0).getReg();
const MCOperand &TrgOp = Inst.getOperand(1);
const MCExpr *OffsetExpr = Inst.getOperand(2).getExpr();
unsigned ZeroSrcOpcode, ZeroTrgOpcode;
bool ReverseOrderSLT, IsUnsigned, IsLikely, AcceptsEquality;
unsigned TrgReg;
if (TrgOp.isReg())
TrgReg = TrgOp.getReg();
else if (TrgOp.isImm()) {
warnIfNoMacro(IDLoc);
EmittedNoMacroWarning = true;
TrgReg = getATReg(IDLoc);
if (!TrgReg)
return true;
switch(PseudoOpcode) {
default:
llvm_unreachable("unknown opcode for branch pseudo-instruction");
case Mips::BLTImmMacro:
PseudoOpcode = Mips::BLT;
break;
case Mips::BLEImmMacro:
PseudoOpcode = Mips::BLE;
break;
case Mips::BGEImmMacro:
PseudoOpcode = Mips::BGE;
break;
case Mips::BGTImmMacro:
PseudoOpcode = Mips::BGT;
break;
case Mips::BLTUImmMacro:
PseudoOpcode = Mips::BLTU;
break;
case Mips::BLEUImmMacro:
PseudoOpcode = Mips::BLEU;
break;
case Mips::BGEUImmMacro:
PseudoOpcode = Mips::BGEU;
break;
case Mips::BGTUImmMacro:
PseudoOpcode = Mips::BGTU;
break;
case Mips::BLTLImmMacro:
PseudoOpcode = Mips::BLTL;
break;
case Mips::BLELImmMacro:
PseudoOpcode = Mips::BLEL;
break;
case Mips::BGELImmMacro:
PseudoOpcode = Mips::BGEL;
break;
case Mips::BGTLImmMacro:
PseudoOpcode = Mips::BGTL;
break;
case Mips::BLTULImmMacro:
PseudoOpcode = Mips::BLTUL;
break;
case Mips::BLEULImmMacro:
PseudoOpcode = Mips::BLEUL;
break;
case Mips::BGEULImmMacro:
PseudoOpcode = Mips::BGEUL;
break;
case Mips::BGTULImmMacro:
PseudoOpcode = Mips::BGTUL;
break;
}
if (loadImmediate(TrgOp.getImm(), TrgReg, Mips::NoRegister, !isGP64bit(),
false, IDLoc, Instructions))
return true;
}
switch (PseudoOpcode) {
case Mips::BLT:
case Mips::BLTU:
case Mips::BLTL:
case Mips::BLTUL:
AcceptsEquality = false;
ReverseOrderSLT = false;
IsUnsigned = ((PseudoOpcode == Mips::BLTU) || (PseudoOpcode == Mips::BLTUL));
IsLikely = ((PseudoOpcode == Mips::BLTL) || (PseudoOpcode == Mips::BLTUL));
ZeroSrcOpcode = Mips::BGTZ;
ZeroTrgOpcode = Mips::BLTZ;
break;
case Mips::BLE:
case Mips::BLEU:
case Mips::BLEL:
case Mips::BLEUL:
AcceptsEquality = true;
ReverseOrderSLT = true;
IsUnsigned = ((PseudoOpcode == Mips::BLEU) || (PseudoOpcode == Mips::BLEUL));
IsLikely = ((PseudoOpcode == Mips::BLEL) || (PseudoOpcode == Mips::BLEUL));
ZeroSrcOpcode = Mips::BGEZ;
ZeroTrgOpcode = Mips::BLEZ;
break;
case Mips::BGE:
case Mips::BGEU:
case Mips::BGEL:
case Mips::BGEUL:
AcceptsEquality = true;
ReverseOrderSLT = false;
IsUnsigned = ((PseudoOpcode == Mips::BGEU) || (PseudoOpcode == Mips::BGEUL));
IsLikely = ((PseudoOpcode == Mips::BGEL) || (PseudoOpcode == Mips::BGEUL));
ZeroSrcOpcode = Mips::BLEZ;
ZeroTrgOpcode = Mips::BGEZ;
break;
case Mips::BGT:
case Mips::BGTU:
case Mips::BGTL:
case Mips::BGTUL:
AcceptsEquality = false;
ReverseOrderSLT = true;
IsUnsigned = ((PseudoOpcode == Mips::BGTU) || (PseudoOpcode == Mips::BGTUL));
IsLikely = ((PseudoOpcode == Mips::BGTL) || (PseudoOpcode == Mips::BGTUL));
ZeroSrcOpcode = Mips::BLTZ;
ZeroTrgOpcode = Mips::BGTZ;
break;
default:
llvm_unreachable("unknown opcode for branch pseudo-instruction");
}
bool IsTrgRegZero = (TrgReg == Mips::ZERO);
bool IsSrcRegZero = (SrcReg == Mips::ZERO);
if (IsSrcRegZero && IsTrgRegZero) {
// FIXME: All of these Opcode-specific if's are needed for compatibility
// with GAS' behaviour. However, they may not generate the most efficient
// code in some circumstances.
if (PseudoOpcode == Mips::BLT) {
emitRX(Mips::BLTZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc,
Instructions);
return false;
}
if (PseudoOpcode == Mips::BLE) {
emitRX(Mips::BLEZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc,
Instructions);
Warning(IDLoc, "branch is always taken");
return false;
}
if (PseudoOpcode == Mips::BGE) {
emitRX(Mips::BGEZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc,
Instructions);
Warning(IDLoc, "branch is always taken");
return false;
}
if (PseudoOpcode == Mips::BGT) {
emitRX(Mips::BGTZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc,
Instructions);
return false;
}
if (PseudoOpcode == Mips::BGTU) {
emitRRX(Mips::BNE, Mips::ZERO, Mips::ZERO,
MCOperand::createExpr(OffsetExpr), IDLoc, Instructions);
return false;
}
if (AcceptsEquality) {
// If both registers are $0 and the pseudo-branch accepts equality, it
// will always be taken, so we emit an unconditional branch.
emitRRX(Mips::BEQ, Mips::ZERO, Mips::ZERO,
MCOperand::createExpr(OffsetExpr), IDLoc, Instructions);
Warning(IDLoc, "branch is always taken");
return false;
}
// If both registers are $0 and the pseudo-branch does not accept
// equality, it will never be taken, so we don't have to emit anything.
return false;
}
if (IsSrcRegZero || IsTrgRegZero) {
if ((IsSrcRegZero && PseudoOpcode == Mips::BGTU) ||
(IsTrgRegZero && PseudoOpcode == Mips::BLTU)) {
// If the $rs is $0 and the pseudo-branch is BGTU (0 > x) or
// if the $rt is $0 and the pseudo-branch is BLTU (x < 0),
// the pseudo-branch will never be taken, so we don't emit anything.
// This only applies to unsigned pseudo-branches.
return false;
}
if ((IsSrcRegZero && PseudoOpcode == Mips::BLEU) ||
(IsTrgRegZero && PseudoOpcode == Mips::BGEU)) {
// If the $rs is $0 and the pseudo-branch is BLEU (0 <= x) or
// if the $rt is $0 and the pseudo-branch is BGEU (x >= 0),
// the pseudo-branch will always be taken, so we emit an unconditional
// branch.
// This only applies to unsigned pseudo-branches.
emitRRX(Mips::BEQ, Mips::ZERO, Mips::ZERO,
MCOperand::createExpr(OffsetExpr), IDLoc, Instructions);
Warning(IDLoc, "branch is always taken");
return false;
}
if (IsUnsigned) {
// If the $rs is $0 and the pseudo-branch is BLTU (0 < x) or
// if the $rt is $0 and the pseudo-branch is BGTU (x > 0),
// the pseudo-branch will be taken only when the non-zero register is
// different from 0, so we emit a BNEZ.
//
// If the $rs is $0 and the pseudo-branch is BGEU (0 >= x) or
// if the $rt is $0 and the pseudo-branch is BLEU (x <= 0),
// the pseudo-branch will be taken only when the non-zero register is
// equal to 0, so we emit a BEQZ.
//
// Because only BLEU and BGEU branch on equality, we can use the
// AcceptsEquality variable to decide when to emit the BEQZ.
emitRRX(AcceptsEquality ? Mips::BEQ : Mips::BNE,
IsSrcRegZero ? TrgReg : SrcReg, Mips::ZERO,
MCOperand::createExpr(OffsetExpr), IDLoc, Instructions);
return false;
}
// If we have a signed pseudo-branch and one of the registers is $0,
// we can use an appropriate compare-to-zero branch. We select which one
// to use in the switch statement above.
emitRX(IsSrcRegZero ? ZeroSrcOpcode : ZeroTrgOpcode,
IsSrcRegZero ? TrgReg : SrcReg, MCOperand::createExpr(OffsetExpr),
IDLoc, Instructions);
return false;
}
// If neither the SrcReg nor the TrgReg are $0, we need AT to perform the
// expansions. If it is not available, we return.
unsigned ATRegNum = getATReg(IDLoc);
if (!ATRegNum)
return true;
if (!EmittedNoMacroWarning)
warnIfNoMacro(IDLoc);
// SLT fits well with 2 of our 4 pseudo-branches:
// BLT, where $rs < $rt, translates into "slt $at, $rs, $rt" and
// BGT, where $rs > $rt, translates into "slt $at, $rt, $rs".
// If the result of the SLT is 1, we branch, and if it's 0, we don't.
// This is accomplished by using a BNEZ with the result of the SLT.
//
// The other 2 pseudo-branches are opposites of the above 2 (BGE with BLT
// and BLE with BGT), so we change the BNEZ into a a BEQZ.
// Because only BGE and BLE branch on equality, we can use the
// AcceptsEquality variable to decide when to emit the BEQZ.
// Note that the order of the SLT arguments doesn't change between
// opposites.
//
// The same applies to the unsigned variants, except that SLTu is used
// instead of SLT.
emitRRR(IsUnsigned ? Mips::SLTu : Mips::SLT, ATRegNum,
ReverseOrderSLT ? TrgReg : SrcReg, ReverseOrderSLT ? SrcReg : TrgReg,
IDLoc, Instructions);
emitRRX(IsLikely ? (AcceptsEquality ? Mips::BEQL : Mips::BNEL)
: (AcceptsEquality ? Mips::BEQ : Mips::BNE),
ATRegNum, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc,
Instructions);
return false;
}
bool MipsAsmParser::expandDiv(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions,
const bool IsMips64, const bool Signed) {
if (hasMips32r6()) {
Error(IDLoc, "instruction not supported on mips32r6 or mips64r6");
return false;
}
warnIfNoMacro(IDLoc);
const MCOperand &RsRegOp = Inst.getOperand(0);
assert(RsRegOp.isReg() && "expected register operand kind");
unsigned RsReg = RsRegOp.getReg();
const MCOperand &RtRegOp = Inst.getOperand(1);
assert(RtRegOp.isReg() && "expected register operand kind");
unsigned RtReg = RtRegOp.getReg();
unsigned DivOp;
unsigned ZeroReg;
if (IsMips64) {
DivOp = Signed ? Mips::DSDIV : Mips::DUDIV;
ZeroReg = Mips::ZERO_64;
} else {
DivOp = Signed ? Mips::SDIV : Mips::UDIV;
ZeroReg = Mips::ZERO;
}
bool UseTraps = useTraps();
if (RsReg == Mips::ZERO || RsReg == Mips::ZERO_64) {
if (RtReg == Mips::ZERO || RtReg == Mips::ZERO_64)
Warning(IDLoc, "dividing zero by zero");
if (IsMips64) {
if (Signed && (RtReg == Mips::ZERO || RtReg == Mips::ZERO_64)) {
if (UseTraps) {
emitRRI(Mips::TEQ, RtReg, ZeroReg, 0x7, IDLoc, Instructions);
return false;
}
emitII(Mips::BREAK, 0x7, 0, IDLoc, Instructions);
return false;
}
} else {
emitRR(DivOp, RsReg, RtReg, IDLoc, Instructions);
return false;
}
}
if (RtReg == Mips::ZERO || RtReg == Mips::ZERO_64) {
Warning(IDLoc, "division by zero");
if (Signed) {
if (UseTraps) {
emitRRI(Mips::TEQ, RtReg, ZeroReg, 0x7, IDLoc, Instructions);
return false;
}
emitII(Mips::BREAK, 0x7, 0, IDLoc, Instructions);
return false;
}
}
// FIXME: The values for these two BranchTarget variables may be different in
// micromips. These magic numbers need to be removed.
unsigned BranchTargetNoTraps;
unsigned BranchTarget;
if (UseTraps) {
BranchTarget = IsMips64 ? 12 : 8;
emitRRI(Mips::TEQ, RtReg, ZeroReg, 0x7, IDLoc, Instructions);
} else {
BranchTarget = IsMips64 ? 20 : 16;
BranchTargetNoTraps = 8;
// Branch to the li instruction.
emitRRI(Mips::BNE, RtReg, ZeroReg, BranchTargetNoTraps, IDLoc,
Instructions);
}
emitRR(DivOp, RsReg, RtReg, IDLoc, Instructions);
if (!UseTraps)
emitII(Mips::BREAK, 0x7, 0, IDLoc, Instructions);
if (!Signed) {
emitR(Mips::MFLO, RsReg, IDLoc, Instructions);
return false;
}
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
emitRRI(Mips::ADDiu, ATReg, ZeroReg, -1, IDLoc, Instructions);
if (IsMips64) {
// Branch to the mflo instruction.
emitRRI(Mips::BNE, RtReg, ATReg, BranchTarget, IDLoc, Instructions);
emitRRI(Mips::ADDiu, ATReg, ZeroReg, 1, IDLoc, Instructions);
emitRRI(Mips::DSLL32, ATReg, ATReg, 0x1f, IDLoc, Instructions);
} else {
// Branch to the mflo instruction.
emitRRI(Mips::BNE, RtReg, ATReg, BranchTarget, IDLoc, Instructions);
emitRI(Mips::LUi, ATReg, (uint16_t)0x8000, IDLoc, Instructions);
}
if (UseTraps)
emitRRI(Mips::TEQ, RsReg, ATReg, 0x6, IDLoc, Instructions);
else {
// Branch to the mflo instruction.
emitRRI(Mips::BNE, RsReg, ATReg, BranchTargetNoTraps, IDLoc, Instructions);
emitRRI(Mips::SLL, ZeroReg, ZeroReg, 0, IDLoc, Instructions);
emitII(Mips::BREAK, 0x6, 0, IDLoc, Instructions);
}
emitR(Mips::MFLO, RsReg, IDLoc, Instructions);
return false;
}
bool MipsAsmParser::expandTrunc(MCInst &Inst, bool IsDouble, bool Is64FPU,
SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
assert(Inst.getNumOperands() == 3 && "Invalid operand count");
assert(Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg() &&
Inst.getOperand(2).isReg() && "Invalid instruction operand.");
unsigned FirstReg = Inst.getOperand(0).getReg();
unsigned SecondReg = Inst.getOperand(1).getReg();
unsigned ThirdReg = Inst.getOperand(2).getReg();
if (hasMips1() && !hasMips2()) {
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
emitRR(Mips::CFC1, ThirdReg, Mips::RA, IDLoc, Instructions);
emitRR(Mips::CFC1, ThirdReg, Mips::RA, IDLoc, Instructions);
createNop(false, IDLoc, Instructions);
emitRRI(Mips::ORi, ATReg, ThirdReg, 0x3, IDLoc, Instructions);
emitRRI(Mips::XORi, ATReg, ATReg, 0x2, IDLoc, Instructions);
emitRR(Mips::CTC1, Mips::RA, ATReg, IDLoc, Instructions);
createNop(false, IDLoc, Instructions);
emitRR(IsDouble ? (Is64FPU ? Mips::CVT_W_D64 : Mips::CVT_W_D32)
: Mips::CVT_W_S,
FirstReg, SecondReg, IDLoc, Instructions);
emitRR(Mips::CTC1, Mips::RA, ThirdReg, IDLoc, Instructions);
createNop(false, IDLoc, Instructions);
return false;
}
emitRR(IsDouble ? (Is64FPU ? Mips::TRUNC_W_D64 : Mips::TRUNC_W_D32)
: Mips::TRUNC_W_S,
FirstReg, SecondReg, IDLoc, Instructions);
return false;
}
bool MipsAsmParser::expandUlh(MCInst &Inst, bool Signed, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
if (hasMips32r6() || hasMips64r6()) {
Error(IDLoc, "instruction not supported on mips32r6 or mips64r6");
return false;
}
warnIfNoMacro(IDLoc);
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &OffsetImmOp = Inst.getOperand(2);
assert(OffsetImmOp.isImm() && "expected immediate operand kind");
unsigned DstReg = DstRegOp.getReg();
unsigned SrcReg = SrcRegOp.getReg();
int64_t OffsetValue = OffsetImmOp.getImm();
// NOTE: We always need AT for ULHU, as it is always used as the source
// register for one of the LBu's.
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
// When the value of offset+1 does not fit in 16 bits, we have to load the
// offset in AT, (D)ADDu the original source register (if there was one), and
// then use AT as the source register for the 2 generated LBu's.
bool LoadedOffsetInAT = false;
if (!isInt<16>(OffsetValue + 1) || !isInt<16>(OffsetValue)) {
LoadedOffsetInAT = true;
if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(),
true, IDLoc, Instructions))
return true;
// NOTE: We do this (D)ADDu here instead of doing it in loadImmediate()
// because it will make our output more similar to GAS'. For example,
// generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9",
// instead of just an "ori $1, $9, 32768".
// NOTE: If there is no source register specified in the ULHU, the parser
// will interpret it as $0.
if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64)
createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions);
}
unsigned FirstLbuDstReg = LoadedOffsetInAT ? DstReg : ATReg;
unsigned SecondLbuDstReg = LoadedOffsetInAT ? ATReg : DstReg;
unsigned LbuSrcReg = LoadedOffsetInAT ? ATReg : SrcReg;
int64_t FirstLbuOffset = 0, SecondLbuOffset = 0;
if (isLittle()) {
FirstLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1);
SecondLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue;
} else {
FirstLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue;
SecondLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1);
}
unsigned SllReg = LoadedOffsetInAT ? DstReg : ATReg;
emitRRI(Signed ? Mips::LB : Mips::LBu, FirstLbuDstReg, LbuSrcReg,
FirstLbuOffset, IDLoc, Instructions);
emitRRI(Mips::LBu, SecondLbuDstReg, LbuSrcReg, SecondLbuOffset, IDLoc,
Instructions);
emitRRI(Mips::SLL, SllReg, SllReg, 8, IDLoc, Instructions);
emitRRR(Mips::OR, DstReg, DstReg, ATReg, IDLoc, Instructions);
return false;
}
bool MipsAsmParser::expandUlw(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
if (hasMips32r6() || hasMips64r6()) {
Error(IDLoc, "instruction not supported on mips32r6 or mips64r6");
return false;
}
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &OffsetImmOp = Inst.getOperand(2);
assert(OffsetImmOp.isImm() && "expected immediate operand kind");
unsigned SrcReg = SrcRegOp.getReg();
int64_t OffsetValue = OffsetImmOp.getImm();
unsigned ATReg = 0;
// When the value of offset+3 does not fit in 16 bits, we have to load the
// offset in AT, (D)ADDu the original source register (if there was one), and
// then use AT as the source register for the generated LWL and LWR.
bool LoadedOffsetInAT = false;
if (!isInt<16>(OffsetValue + 3) || !isInt<16>(OffsetValue)) {
ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
LoadedOffsetInAT = true;
warnIfNoMacro(IDLoc);
if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(),
true, IDLoc, Instructions))
return true;
// NOTE: We do this (D)ADDu here instead of doing it in loadImmediate()
// because it will make our output more similar to GAS'. For example,
// generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9",
// instead of just an "ori $1, $9, 32768".
// NOTE: If there is no source register specified in the ULW, the parser
// will interpret it as $0.
if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64)
createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions);
}
unsigned FinalSrcReg = LoadedOffsetInAT ? ATReg : SrcReg;
int64_t LeftLoadOffset = 0, RightLoadOffset = 0;
if (isLittle()) {
LeftLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3);
RightLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue;
} else {
LeftLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue;
RightLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3);
}
emitRRI(Mips::LWL, DstRegOp.getReg(), FinalSrcReg, LeftLoadOffset, IDLoc,
Instructions);
emitRRI(Mips::LWR, DstRegOp.getReg(), FinalSrcReg, RightLoadOffset, IDLoc,
Instructions);
return false;
}
bool MipsAsmParser::expandAliasImmediate(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
assert (Inst.getNumOperands() == 3 && "Invalid operand count");
assert (Inst.getOperand(0).isReg() &&
Inst.getOperand(1).isReg() &&
Inst.getOperand(2).isImm() && "Invalid instruction operand.");
unsigned ATReg = Mips::NoRegister;
unsigned FinalDstReg = Mips::NoRegister;
unsigned DstReg = Inst.getOperand(0).getReg();
unsigned SrcReg = Inst.getOperand(1).getReg();
int64_t ImmValue = Inst.getOperand(2).getImm();
bool Is32Bit = isInt<32>(ImmValue) || isUInt<32>(ImmValue);
unsigned FinalOpcode = Inst.getOpcode();
if (DstReg == SrcReg) {
ATReg = getATReg(Inst.getLoc());
if (!ATReg)
return true;
FinalDstReg = DstReg;
DstReg = ATReg;
}
if (!loadImmediate(ImmValue, DstReg, Mips::NoRegister, Is32Bit, false, Inst.getLoc(), Instructions)) {
switch (FinalOpcode) {
default:
llvm_unreachable("unimplemented expansion");
case (Mips::ADDi):
FinalOpcode = Mips::ADD;
break;
case (Mips::ADDiu):
FinalOpcode = Mips::ADDu;
break;
case (Mips::ANDi):
FinalOpcode = Mips::AND;
break;
case (Mips::NORImm):
FinalOpcode = Mips::NOR;
break;
case (Mips::ORi):
FinalOpcode = Mips::OR;
break;
case (Mips::SLTi):
FinalOpcode = Mips::SLT;
break;
case (Mips::SLTiu):
FinalOpcode = Mips::SLTu;
break;
case (Mips::XORi):
FinalOpcode = Mips::XOR;
break;
}
if (FinalDstReg == Mips::NoRegister)
emitRRR(FinalOpcode, DstReg, DstReg, SrcReg, IDLoc, Instructions);
else
emitRRR(FinalOpcode, FinalDstReg, FinalDstReg, DstReg, IDLoc,
Instructions);
return false;
}
return true;
}
bool MipsAsmParser::expandRotation(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned ATReg = Mips::NoRegister;
unsigned DReg = Inst.getOperand(0).getReg();
unsigned SReg = Inst.getOperand(1).getReg();
unsigned TReg = Inst.getOperand(2).getReg();
unsigned TmpReg = DReg;
unsigned FirstShift = Mips::NOP;
unsigned SecondShift = Mips::NOP;
if (hasMips32r2()) {
if (DReg == SReg) {
TmpReg = getATReg(Inst.getLoc());
if (!TmpReg)
return true;
}
if (Inst.getOpcode() == Mips::ROL) {
emitRRR(Mips::SUBu, TmpReg, Mips::ZERO, TReg, Inst.getLoc(), Instructions);
emitRRR(Mips::ROTRV, DReg, SReg, TmpReg, Inst.getLoc(), Instructions);
return false;
}
if (Inst.getOpcode() == Mips::ROR) {
emitRRR(Mips::ROTRV, DReg, SReg, TReg, Inst.getLoc(), Instructions);
return false;
}
return true;
}
if (hasMips32()) {
switch (Inst.getOpcode()) {
default:
llvm_unreachable("unexpected instruction opcode");
case Mips::ROL:
FirstShift = Mips::SRLV;
SecondShift = Mips::SLLV;
break;
case Mips::ROR:
FirstShift = Mips::SLLV;
SecondShift = Mips::SRLV;
break;
}
ATReg = getATReg(Inst.getLoc());
if (!ATReg)
return true;
emitRRR(Mips::SUBu, ATReg, Mips::ZERO, TReg, Inst.getLoc(), Instructions);
emitRRR(FirstShift, ATReg, SReg, ATReg, Inst.getLoc(), Instructions);
emitRRR(SecondShift, DReg, SReg, TReg, Inst.getLoc(), Instructions);
emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), Instructions);
return false;
}
return true;
}
bool MipsAsmParser::expandRotationImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned ATReg = Mips::NoRegister;
unsigned DReg = Inst.getOperand(0).getReg();
unsigned SReg = Inst.getOperand(1).getReg();
int64_t ImmValue = Inst.getOperand(2).getImm();
unsigned FirstShift = Mips::NOP;
unsigned SecondShift = Mips::NOP;
if (hasMips32r2()) {
if (Inst.getOpcode() == Mips::ROLImm) {
uint64_t MaxShift = 32;
uint64_t ShiftValue = ImmValue;
if (ImmValue != 0)
ShiftValue = MaxShift - ImmValue;
emitRRI(Mips::ROTR, DReg, SReg, ShiftValue, Inst.getLoc(), Instructions);
return false;
}
if (Inst.getOpcode() == Mips::RORImm) {
emitRRI(Mips::ROTR, DReg, SReg, ImmValue, Inst.getLoc(), Instructions);
return false;
}
return true;
}
if (hasMips32()) {
if (ImmValue == 0) {
emitRRI(Mips::SRL, DReg, SReg, 0, Inst.getLoc(), Instructions);
return false;
}
switch (Inst.getOpcode()) {
default:
llvm_unreachable("unexpected instruction opcode");
case Mips::ROLImm:
FirstShift = Mips::SLL;
SecondShift = Mips::SRL;
break;
case Mips::RORImm:
FirstShift = Mips::SRL;
SecondShift = Mips::SLL;
break;
}
ATReg = getATReg(Inst.getLoc());
if (!ATReg)
return true;
emitRRI(FirstShift, ATReg, SReg, ImmValue, Inst.getLoc(), Instructions);
emitRRI(SecondShift, DReg, SReg, 32 - ImmValue, Inst.getLoc(), Instructions);
emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), Instructions);
return false;
}
return true;
}
bool MipsAsmParser::expandDRotation(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned ATReg = Mips::NoRegister;
unsigned DReg = Inst.getOperand(0).getReg();
unsigned SReg = Inst.getOperand(1).getReg();
unsigned TReg = Inst.getOperand(2).getReg();
unsigned TmpReg = DReg;
unsigned FirstShift = Mips::NOP;
unsigned SecondShift = Mips::NOP;
if (hasMips64r2()) {
if (TmpReg == SReg) {
TmpReg = getATReg(Inst.getLoc());
if (!TmpReg)
return true;
}
if (Inst.getOpcode() == Mips::DROL) {
emitRRR(Mips::DSUBu, TmpReg, Mips::ZERO, TReg, Inst.getLoc(), Instructions);
emitRRR(Mips::DROTRV, DReg, SReg, TmpReg, Inst.getLoc(), Instructions);
return false;
}
if (Inst.getOpcode() == Mips::DROR) {
emitRRR(Mips::DROTRV, DReg, SReg, TReg, Inst.getLoc(), Instructions);
return false;
}
return true;
}
if (hasMips64()) {
switch (Inst.getOpcode()) {
default:
llvm_unreachable("unexpected instruction opcode");
case Mips::DROL:
FirstShift = Mips::DSRLV;
SecondShift = Mips::DSLLV;
break;
case Mips::DROR:
FirstShift = Mips::DSLLV;
SecondShift = Mips::DSRLV;
break;
}
ATReg = getATReg(Inst.getLoc());
if (!ATReg)
return true;
emitRRR(Mips::DSUBu, ATReg, Mips::ZERO, TReg, Inst.getLoc(), Instructions);
emitRRR(FirstShift, ATReg, SReg, ATReg, Inst.getLoc(), Instructions);
emitRRR(SecondShift, DReg, SReg, TReg, Inst.getLoc(), Instructions);
emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), Instructions);
return false;
}
return true;
}
bool MipsAsmParser::expandDRotationImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned ATReg = Mips::NoRegister;
unsigned DReg = Inst.getOperand(0).getReg();
unsigned SReg = Inst.getOperand(1).getReg();
int64_t ImmValue = Inst.getOperand(2).getImm() % 64;
unsigned FirstShift = Mips::NOP;
unsigned SecondShift = Mips::NOP;
MCInst TmpInst;
if (hasMips64r2()) {
unsigned FinalOpcode = Mips::NOP;
if (ImmValue == 0)
FinalOpcode = Mips::DROTR;
else if (ImmValue % 32 == 0)
FinalOpcode = Mips::DROTR32;
else if ((ImmValue >= 1) && (ImmValue <= 32)) {
if (Inst.getOpcode() == Mips::DROLImm)
FinalOpcode = Mips::DROTR32;
else
FinalOpcode = Mips::DROTR;
} else if (ImmValue >= 33) {
if (Inst.getOpcode() == Mips::DROLImm)
FinalOpcode = Mips::DROTR;
else
FinalOpcode = Mips::DROTR32;
}
uint64_t ShiftValue = ImmValue % 32;
if (Inst.getOpcode() == Mips::DROLImm)
ShiftValue = (32 - ImmValue % 32) % 32;
emitRRI(FinalOpcode, DReg, SReg, ShiftValue, Inst.getLoc(), Instructions);
return false;
}
if (hasMips64()) {
if (ImmValue == 0) {
emitRRI(Mips::DSRL, DReg, SReg, 0, Inst.getLoc(), Instructions);
return false;
}
switch (Inst.getOpcode()) {
default:
llvm_unreachable("unexpected instruction opcode");
case Mips::DROLImm:
if ((ImmValue >= 1) && (ImmValue <= 31)) {
FirstShift = Mips::DSLL;
SecondShift = Mips::DSRL32;
}
if (ImmValue == 32) {
FirstShift = Mips::DSLL32;
SecondShift = Mips::DSRL32;
}
if ((ImmValue >= 33) && (ImmValue <= 63)) {
FirstShift = Mips::DSLL32;
SecondShift = Mips::DSRL;
}
break;
case Mips::DRORImm:
if ((ImmValue >= 1) && (ImmValue <= 31)) {
FirstShift = Mips::DSRL;
SecondShift = Mips::DSLL32;
}
if (ImmValue == 32) {
FirstShift = Mips::DSRL32;
SecondShift = Mips::DSLL32;
}
if ((ImmValue >= 33) && (ImmValue <= 63)) {
FirstShift = Mips::DSRL32;
SecondShift = Mips::DSLL;
}
break;
}
ATReg = getATReg(Inst.getLoc());
if (!ATReg)
return true;
emitRRI(FirstShift, ATReg, SReg, ImmValue % 32, Inst.getLoc(), Instructions);
emitRRI(SecondShift, DReg, SReg, (32 - ImmValue % 32) % 32, Inst.getLoc(), Instructions);
emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), Instructions);
return false;
}
return true;
}
bool MipsAsmParser::expandAbs(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned FirstRegOp = Inst.getOperand(0).getReg();
unsigned SecondRegOp = Inst.getOperand(1).getReg();
emitRI(Mips::BGEZ, SecondRegOp, 8, IDLoc, Instructions);
if (FirstRegOp != SecondRegOp)
emitRRR(Mips::ADDu, FirstRegOp, SecondRegOp, Mips::ZERO, IDLoc, Instructions);
else
createNop(false, IDLoc, Instructions);
emitRRR(Mips::SUB, FirstRegOp, Mips::ZERO, SecondRegOp, IDLoc, Instructions);
return false;
}
void MipsAsmParser::createNop(bool hasShortDelaySlot, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
if (hasShortDelaySlot)
emitRR(Mips::MOVE16_MM, Mips::ZERO, Mips::ZERO, IDLoc, Instructions);
else
emitRRI(Mips::SLL, Mips::ZERO, Mips::ZERO, 0, IDLoc, Instructions);
}
void MipsAsmParser::createAddu(unsigned DstReg, unsigned SrcReg,
unsigned TrgReg, bool Is64Bit,
SmallVectorImpl<MCInst> &Instructions) {
emitRRR(Is64Bit ? Mips::DADDu : Mips::ADDu, DstReg, SrcReg, TrgReg, SMLoc(),
Instructions);
}
void MipsAsmParser::createCpRestoreMemOp(
bool IsLoad, int StackOffset, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
// If the offset can not fit into 16 bits, we need to expand.
if (!isInt<16>(StackOffset)) {
MCInst MemInst;
MemInst.setOpcode(IsLoad ? Mips::LW : Mips::SW);
MemInst.addOperand(MCOperand::createReg(Mips::GP));
MemInst.addOperand(MCOperand::createReg(Mips::SP));
MemInst.addOperand(MCOperand::createImm(StackOffset));
expandMemInst(MemInst, IDLoc, Instructions, IsLoad, true /*HasImmOpnd*/);
return;
}
emitRRI(IsLoad ? Mips::LW : Mips::SW, Mips::GP, Mips::SP, StackOffset, IDLoc,
Instructions);
}
unsigned MipsAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
// As described by the Mips32r2 spec, the registers Rd and Rs for
// jalr.hb must be different.
unsigned Opcode = Inst.getOpcode();
if (Opcode == Mips::JALR_HB &&
(Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()))
return Match_RequiresDifferentSrcAndDst;
return Match_Success;
}
static SMLoc RefineErrorLoc(const SMLoc Loc, const OperandVector &Operands,
uint64_t ErrorInfo) {
if (ErrorInfo != ~0ULL && ErrorInfo < Operands.size()) {
SMLoc ErrorLoc = Operands[ErrorInfo]->getStartLoc();
if (ErrorLoc == SMLoc())
return Loc;
return ErrorLoc;
}
return Loc;
}
bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success: {
if (processInstruction(Inst, IDLoc, Instructions))
return true;
for (unsigned i = 0; i < Instructions.size(); i++)
Out.EmitInstruction(Instructions[i], getSTI());
return false;
}
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = Operands[ErrorInfo]->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
case Match_RequiresDifferentSrcAndDst:
return Error(IDLoc, "source and destination must be different");
case Match_Immz:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected '0'");
case Match_UImm1_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 1-bit unsigned immediate");
case Match_UImm2_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 2-bit unsigned immediate");
case Match_UImm2_1:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range 1 .. 4");
case Match_UImm3_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 3-bit unsigned immediate");
case Match_UImm4_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 4-bit unsigned immediate");
case Match_SImm4_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 4-bit signed immediate");
case Match_UImm5_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 5-bit unsigned immediate");
case Match_SImm5_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 5-bit signed immediate");
case Match_UImm5_1:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range 1 .. 32");
case Match_UImm5_32:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range 32 .. 63");
case Match_UImm5_33:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range 33 .. 64");
case Match_UImm5_0_Report_UImm6:
// This is used on UImm5 operands that have a corresponding UImm5_32
// operand to avoid confusing the user.
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 6-bit unsigned immediate");
case Match_UImm5_Lsl2:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected both 7-bit unsigned immediate and multiple of 4");
case Match_UImmRange2_64:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range 2 .. 64");
case Match_UImm6_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 6-bit unsigned immediate");
case Match_UImm6_Lsl2:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected both 8-bit unsigned immediate and multiple of 4");
case Match_SImm6_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 6-bit signed immediate");
case Match_UImm7_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 7-bit unsigned immediate");
case Match_UImm7_N1:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range -1 .. 126");
case Match_SImm7_Lsl2:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected both 9-bit signed immediate and multiple of 4");
case Match_UImm8_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 8-bit unsigned immediate");
case Match_UImm10_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 10-bit unsigned immediate");
case Match_SImm10_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 10-bit signed immediate");
case Match_SImm11_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 11-bit signed immediate");
case Match_UImm16:
case Match_UImm16_Relaxed:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 16-bit unsigned immediate");
case Match_SImm16:
case Match_SImm16_Relaxed:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 16-bit signed immediate");
case Match_UImm20_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 20-bit unsigned immediate");
case Match_UImm26_0:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected 26-bit unsigned immediate");
case Match_MemSImm9:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with 9-bit signed offset");
case Match_MemGPSImm9:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with $gp and 9-bit signed offset");
case Match_MemSImm10:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with 10-bit signed offset");
case Match_MemSImm10Lsl1:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with 11-bit signed offset and multiple of 2");
case Match_MemSImm10Lsl2:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with 12-bit signed offset and multiple of 4");
case Match_MemSImm10Lsl3:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with 13-bit signed offset and multiple of 8");
case Match_MemSImm11:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with 11-bit signed offset");
case Match_MemSImm16:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected memory with 16-bit signed offset");
}
llvm_unreachable("Implement any new match types added!");
}
void MipsAsmParser::warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc) {
if (RegIndex != 0 && AssemblerOptions.back()->getATRegIndex() == RegIndex)
Warning(Loc, "used $at (currently $" + Twine(RegIndex) +
") without \".set noat\"");
}
void MipsAsmParser::warnIfNoMacro(SMLoc Loc) {
if (!AssemblerOptions.back()->isMacro())
Warning(Loc, "macro instruction expanded into multiple instructions");
}
void
MipsAsmParser::printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
SMRange Range, bool ShowColors) {
getSourceManager().PrintMessage(Range.Start, SourceMgr::DK_Warning, Msg,
Range, SMFixIt(Range, FixMsg),
ShowColors);
}
int MipsAsmParser::matchCPURegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("zero", 0)
.Case("at", 1)
.Case("a0", 4)
.Case("a1", 5)
.Case("a2", 6)
.Case("a3", 7)
.Case("v0", 2)
.Case("v1", 3)
.Case("s0", 16)
.Case("s1", 17)
.Case("s2", 18)
.Case("s3", 19)
.Case("s4", 20)
.Case("s5", 21)
.Case("s6", 22)
.Case("s7", 23)
.Case("k0", 26)
.Case("k1", 27)
.Case("gp", 28)
.Case("sp", 29)
.Case("fp", 30)
.Case("s8", 30)
.Case("ra", 31)
.Case("t0", 8)
.Case("t1", 9)
.Case("t2", 10)
.Case("t3", 11)
.Case("t4", 12)
.Case("t5", 13)
.Case("t6", 14)
.Case("t7", 15)
.Case("t8", 24)
.Case("t9", 25)
.Default(-1);
if (!(isABI_N32() || isABI_N64()))
return CC;
if (12 <= CC && CC <= 15) {
// Name is one of t4-t7
AsmToken RegTok = getLexer().peekTok();
SMRange RegRange = RegTok.getLocRange();
StringRef FixedName = StringSwitch<StringRef>(Name)
.Case("t4", "t0")
.Case("t5", "t1")
.Case("t6", "t2")
.Case("t7", "t3")
.Default("");
assert(FixedName != "" && "Register name is not one of t4-t7.");
printWarningWithFixIt("register names $t4-$t7 are only available in O32.",
"Did you mean $" + FixedName + "?", RegRange);
}
// Although SGI documentation just cuts out t0-t3 for n32/n64,
// GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
// We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
if (8 <= CC && CC <= 11)
CC += 4;
if (CC == -1)
CC = StringSwitch<unsigned>(Name)
.Case("a4", 8)
.Case("a5", 9)
.Case("a6", 10)
.Case("a7", 11)
.Case("kt0", 26)
.Case("kt1", 27)
.Default(-1);
return CC;
}
int MipsAsmParser::matchHWRegsRegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("hwr_cpunum", 0)
.Case("hwr_synci_step", 1)
.Case("hwr_cc", 2)
.Case("hwr_ccres", 3)
.Case("hwr_ulr", 29)
.Default(-1);
return CC;
}
int MipsAsmParser::matchFPURegisterName(StringRef Name) {
if (Name[0] == 'f') {
StringRef NumString = Name.substr(1);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 31) // Maximum index for fpu register.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchFCCRegisterName(StringRef Name) {
if (Name.startswith("fcc")) {
StringRef NumString = Name.substr(3);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 7) // There are only 8 fcc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchACRegisterName(StringRef Name) {
if (Name.startswith("ac")) {
StringRef NumString = Name.substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 3) // There are only 3 acc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchMSA128RegisterName(StringRef Name) {
unsigned IntVal;
if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal))
return -1;
if (IntVal > 31)
return -1;
return IntVal;
}
int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("msair", 0)
.Case("msacsr", 1)
.Case("msaaccess", 2)
.Case("msasave", 3)
.Case("msamodify", 4)
.Case("msarequest", 5)
.Case("msamap", 6)
.Case("msaunmap", 7)
.Default(-1);
return CC;
}
unsigned MipsAsmParser::getATReg(SMLoc Loc) {
unsigned ATIndex = AssemblerOptions.back()->getATRegIndex();
if (ATIndex == 0) {
reportParseError(Loc,
"pseudo-instruction requires $at, which is not available");
return 0;
}
unsigned AT = getReg(
(isGP64bit()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, ATIndex);
return AT;
}
unsigned MipsAsmParser::getReg(int RC, int RegNo) {
return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo);
}
unsigned MipsAsmParser::getGPR(int RegNo) {
return getReg(isGP64bit() ? Mips::GPR64RegClassID : Mips::GPR32RegClassID,
RegNo);
}
int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
if (RegNum >
getContext().getRegisterInfo()->getRegClass(RegClass).getNumRegs() - 1)
return -1;
return getReg(RegClass, RegNum);
}
bool MipsAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseOperand\n");
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
DEBUG(dbgs() << ".. Generic Parser\n");
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Dollar: {
// Parse the register.
SMLoc S = Parser.getTok().getLoc();
// Almost all registers have been parsed by custom parsers. There is only
// one exception to this. $zero (and it's alias $0) will reach this point
// for div, divu, and similar instructions because it is not an operand
// to the instruction definition but an explicit register. Special case
// this situation for now.
if (parseAnyRegister(Operands) != MatchOperand_NoMatch)
return false;
// Maybe it is a symbol reference.
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().getOrCreateSymbol("$" + Identifier);
// Otherwise create a symbol reference.
const MCExpr *Res =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E, *this));
return false;
}
// Else drop to expression parsing.
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::Tilde:
case AsmToken::String: {
DEBUG(dbgs() << ".. generic integer\n");
OperandMatchResultTy ResTy = parseImm(Operands);
return ResTy != MatchOperand_Success;
}
case AsmToken::Percent: {
// It is a symbol reference or constant expression.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc(); // Start location of the operand.
if (parseRelocOperand(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
return false;
} // case AsmToken::Percent
} // switch(getLexer().getKind())
return true;
}
const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
StringRef RelocStr) {
const MCExpr *Res;
// Check the type of the expression.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) {
// It's a constant, evaluate reloc value.
int16_t Val;
switch (getVariantKind(RelocStr)) {
case MCSymbolRefExpr::VK_Mips_ABS_LO:
// Get the 1st 16-bits.
Val = MCE->getValue() & 0xffff;
break;
case MCSymbolRefExpr::VK_Mips_ABS_HI:
case MCSymbolRefExpr::VK_Mips_GOT:
// Get the 2nd 16-bits. Also add 1 if bit 15 is 1, to compensate for low
// 16 bits being negative.
Val = ((MCE->getValue() + 0x8000) >> 16) & 0xffff;
break;
case MCSymbolRefExpr::VK_Mips_HIGHER:
// Get the 3rd 16-bits.
Val = ((MCE->getValue() + 0x80008000LL) >> 32) & 0xffff;
break;
case MCSymbolRefExpr::VK_Mips_HIGHEST:
// Get the 4th 16-bits.
Val = ((MCE->getValue() + 0x800080008000LL) >> 48) & 0xffff;
break;
default:
report_fatal_error("unsupported reloc value");
}
return MCConstantExpr::create(Val, getContext());
}
if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) {
// It's a symbol, create a symbolic expression from the symbol.
const MCSymbol *Symbol = &MSRE->getSymbol();
MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
Res = MCSymbolRefExpr::create(Symbol, VK, getContext());
return Res;
}
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
// Try to create target expression.
if (MipsMCExpr::isSupportedBinaryExpr(VK, BE))
return MipsMCExpr::create(VK, Expr, getContext());
const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr);
const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr);
Res = MCBinaryExpr::create(BE->getOpcode(), LExp, RExp, getContext());
return Res;
}
if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) {
const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr);
Res = MCUnaryExpr::create(UN->getOpcode(), UnExp, getContext());
return Res;
}
// Just return the original expression.
return Expr;
}
bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
switch (Expr->getKind()) {
case MCExpr::Constant:
return true;
case MCExpr::SymbolRef:
return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None);
case MCExpr::Binary:
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
if (!isEvaluated(BE->getLHS()))
return false;
return isEvaluated(BE->getRHS());
}
case MCExpr::Unary:
return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr());
case MCExpr::Target:
return true;
}
return false;
}
bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the % token.
const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
if (Tok.isNot(AsmToken::Identifier))
return true;
std::string Str = Tok.getIdentifier();
Parser.Lex(); // Eat the identifier.
// Now make an expression from the rest of the operand.
const MCExpr *IdVal;
SMLoc EndLoc;
if (getLexer().getKind() == AsmToken::LParen) {
while (1) {
Parser.Lex(); // Eat the '(' token.
if (getLexer().getKind() == AsmToken::Percent) {
Parser.Lex(); // Eat the % token.
const AsmToken &nextTok = Parser.getTok();
if (nextTok.isNot(AsmToken::Identifier))
return true;
Str += "(%";
Str += nextTok.getIdentifier();
Parser.Lex(); // Eat the identifier.
if (getLexer().getKind() != AsmToken::LParen)
return true;
} else
break;
}
if (getParser().parseParenExpression(IdVal, EndLoc))
return true;
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex(); // Eat the ')' token.
} else
return true; // Parenthesis must follow the relocation operand.
Res = evaluateRelocExpr(IdVal, Str);
return false;
}
bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
OperandMatchResultTy ResTy = parseAnyRegister(Operands);
if (ResTy == MatchOperand_Success) {
assert(Operands.size() == 1);
MipsOperand &Operand = static_cast<MipsOperand &>(*Operands.front());
StartLoc = Operand.getStartLoc();
EndLoc = Operand.getEndLoc();
// AFAIK, we only support numeric registers and named GPR's in CFI
// directives.
// Don't worry about eating tokens before failing. Using an unrecognised
// register is a parse error.
if (Operand.isGPRAsmReg()) {
// Resolve to GPR32 or GPR64 appropriately.
RegNo = isGP64bit() ? Operand.getGPR64Reg() : Operand.getGPR32Reg();
}
return (RegNo == (unsigned)-1);
}
assert(Operands.size() == 0);
return (RegNo == (unsigned)-1);
}
bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
MCAsmParser &Parser = getParser();
SMLoc S;
bool Result = true;
unsigned NumOfLParen = 0;
while (getLexer().getKind() == AsmToken::LParen) {
Parser.Lex();
++NumOfLParen;
}
switch (getLexer().getKind()) {
default:
return true;
case AsmToken::Identifier:
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Minus:
case AsmToken::Plus:
if (isParenExpr)
Result = getParser().parseParenExprOfDepth(NumOfLParen, Res, S);
else
Result = (getParser().parseExpression(Res));
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex();
break;
case AsmToken::Percent:
Result = parseRelocOperand(Res);
}
return Result;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMemOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseMemOperand\n");
const MCExpr *IdVal = nullptr;
SMLoc S;
bool isParenExpr = false;
MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch;
// First operand is the offset.
S = Parser.getTok().getLoc();
if (getLexer().getKind() == AsmToken::LParen) {
Parser.Lex();
isParenExpr = true;
}
if (getLexer().getKind() != AsmToken::Dollar) {
if (parseMemOffset(IdVal, isParenExpr))
return MatchOperand_ParseFail;
const AsmToken &Tok = Parser.getTok(); // Get the next token.
if (Tok.isNot(AsmToken::LParen)) {
MipsOperand &Mnemonic = static_cast<MipsOperand &>(*Operands[0]);
if (Mnemonic.getToken() == "la" || Mnemonic.getToken() == "dla") {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::EndOfStatement)) {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
// Zero register assumed, add a memory operand with ZERO as its base.
// "Base" will be managed by k_Memory.
auto Base = MipsOperand::createGPRReg(0, getContext().getRegisterInfo(),
S, E, *this);
Operands.push_back(
MipsOperand::CreateMem(std::move(Base), IdVal, S, E, *this));
return MatchOperand_Success;
}
Error(Parser.getTok().getLoc(), "'(' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the '(' token.
}
Res = parseAnyRegister(Operands);
if (Res != MatchOperand_Success)
return Res;
if (Parser.getTok().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "')' expected");
return MatchOperand_ParseFail;
}
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat the ')' token.
if (!IdVal)
IdVal = MCConstantExpr::create(0, getContext());
// Replace the register operand with the memory operand.
std::unique_ptr<MipsOperand> op(
static_cast<MipsOperand *>(Operands.back().release()));
// Remove the register from the operands.
// "op" will be managed by k_Memory.
Operands.pop_back();
// Add the memory operand.
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) {
int64_t Imm;
if (IdVal->evaluateAsAbsolute(Imm))
IdVal = MCConstantExpr::create(Imm, getContext());
else if (BE->getLHS()->getKind() != MCExpr::SymbolRef)
IdVal = MCBinaryExpr::create(BE->getOpcode(), BE->getRHS(), BE->getLHS(),
getContext());
}
Operands.push_back(MipsOperand::CreateMem(std::move(op), IdVal, S, E, *this));
return MatchOperand_Success;
}
bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
MCSymbol *Sym = getContext().lookupSymbol(Parser.getTok().getIdentifier());
if (Sym) {
SMLoc S = Parser.getTok().getLoc();
const MCExpr *Expr;
if (Sym->isVariable())
Expr = Sym->getVariableValue();
else
return false;
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
StringRef DefSymbol = Ref->getSymbol().getName();
if (DefSymbol.startswith("$")) {
OperandMatchResultTy ResTy =
matchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S);
if (ResTy == MatchOperand_Success) {
Parser.Lex();
return true;
} else if (ResTy == MatchOperand_ParseFail)
llvm_unreachable("Should never ParseFail");
return false;
}
} else if (Expr->getKind() == MCExpr::Constant) {
Parser.Lex();
const MCConstantExpr *Const = static_cast<const MCConstantExpr *>(Expr);
Operands.push_back(
MipsOperand::CreateImm(Const, S, Parser.getTok().getLoc(), *this));
return true;
}
}
return false;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
StringRef Identifier,
SMLoc S) {
int Index = matchCPURegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createGPRReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchHWRegsRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createHWRegsReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchFPURegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createFGRReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchFCCRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createFCCReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchACRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createACCReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchMSA128RegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createMSA128Reg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchMSA128CtrlRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createMSACtrlReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) {
MCAsmParser &Parser = getParser();
auto Token = Parser.getLexer().peekTok(false);
if (Token.is(AsmToken::Identifier)) {
DEBUG(dbgs() << ".. identifier\n");
StringRef Identifier = Token.getIdentifier();
OperandMatchResultTy ResTy =
matchAnyRegisterNameWithoutDollar(Operands, Identifier, S);
return ResTy;
} else if (Token.is(AsmToken::Integer)) {
DEBUG(dbgs() << ".. integer\n");
Operands.push_back(MipsOperand::createNumericReg(
Token.getIntVal(), getContext().getRegisterInfo(), S, Token.getLoc(),
*this));
return MatchOperand_Success;
}
DEBUG(dbgs() << Parser.getTok().getKind() << "\n");
return MatchOperand_NoMatch;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseAnyRegister(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseAnyRegister\n");
auto Token = Parser.getTok();
SMLoc S = Token.getLoc();
if (Token.isNot(AsmToken::Dollar)) {
DEBUG(dbgs() << ".. !$ -> try sym aliasing\n");
if (Token.is(AsmToken::Identifier)) {
if (searchSymbolAlias(Operands))
return MatchOperand_Success;
}
DEBUG(dbgs() << ".. !symalias -> NoMatch\n");
return MatchOperand_NoMatch;
}
DEBUG(dbgs() << ".. $\n");
OperandMatchResultTy ResTy = matchAnyRegisterWithoutDollar(Operands, S);
if (ResTy == MatchOperand_Success) {
Parser.Lex(); // $
Parser.Lex(); // identifier
}
return ResTy;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::Tilde:
case AsmToken::String:
break;
}
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseJumpTarget(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseJumpTarget\n");
SMLoc S = getLexer().getLoc();
// Integers and expressions are acceptable
OperandMatchResultTy ResTy = parseImm(Operands);
if (ResTy != MatchOperand_NoMatch)
return ResTy;
// Registers are a valid target and have priority over symbols.
ResTy = parseAnyRegister(Operands);
if (ResTy != MatchOperand_NoMatch)
return ResTy;
const MCExpr *Expr = nullptr;
if (Parser.parseExpression(Expr)) {
// We have no way of knowing if a symbol was consumed so we must ParseFail
return MatchOperand_ParseFail;
}
Operands.push_back(
MipsOperand::CreateImm(Expr, S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseInvNum(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const MCExpr *IdVal;
// If the first token is '$' we may have register operand.
if (Parser.getTok().is(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal);
assert(MCE && "Unexpected MCExpr type.");
int64_t Val = MCE->getValue();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(
MCConstantExpr::create(0 - Val, getContext()), S, E, *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseLSAImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Integer:
break;
}
const MCExpr *Expr;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
int64_t Val;
if (!Expr->evaluateAsAbsolute(Val)) {
Error(S, "expected immediate value");
return MatchOperand_ParseFail;
}
// The LSA instruction allows a 2-bit unsigned immediate. For this reason
// and because the CPU always adds one to the immediate field, the allowed
// range becomes 1..4. We'll only check the range here and will deal
// with the addition/subtraction when actually decoding/encoding
// the instruction.
if (Val < 1 || Val > 4) {
Error(S, "immediate not in range (1..4)");
return MatchOperand_ParseFail;
}
Operands.push_back(
MipsOperand::CreateImm(Expr, S, Parser.getTok().getLoc(), *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseRegisterList(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SmallVector<unsigned, 10> Regs;
unsigned RegNo;
unsigned PrevReg = Mips::NoRegister;
bool RegRange = false;
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_ParseFail;
SMLoc S = Parser.getTok().getLoc();
while (parseAnyRegister(TmpOperands) == MatchOperand_Success) {
SMLoc E = getLexer().getLoc();
MipsOperand &Reg = static_cast<MipsOperand &>(*TmpOperands.back());
RegNo = isGP64bit() ? Reg.getGPR64Reg() : Reg.getGPR32Reg();
if (RegRange) {
// Remove last register operand because registers from register range
// should be inserted first.
if ((isGP64bit() && RegNo == Mips::RA_64) ||
(!isGP64bit() && RegNo == Mips::RA)) {
Regs.push_back(RegNo);
} else {
unsigned TmpReg = PrevReg + 1;
while (TmpReg <= RegNo) {
if ((((TmpReg < Mips::S0) || (TmpReg > Mips::S7)) && !isGP64bit()) ||
(((TmpReg < Mips::S0_64) || (TmpReg > Mips::S7_64)) &&
isGP64bit())) {
Error(E, "invalid register operand");
return MatchOperand_ParseFail;
}
PrevReg = TmpReg;
Regs.push_back(TmpReg++);
}
}
RegRange = false;
} else {
if ((PrevReg == Mips::NoRegister) &&
((isGP64bit() && (RegNo != Mips::S0_64) && (RegNo != Mips::RA_64)) ||
(!isGP64bit() && (RegNo != Mips::S0) && (RegNo != Mips::RA)))) {
Error(E, "$16 or $31 expected");
return MatchOperand_ParseFail;
} else if (!(((RegNo == Mips::FP || RegNo == Mips::RA ||
(RegNo >= Mips::S0 && RegNo <= Mips::S7)) &&
!isGP64bit()) ||
((RegNo == Mips::FP_64 || RegNo == Mips::RA_64 ||
(RegNo >= Mips::S0_64 && RegNo <= Mips::S7_64)) &&
isGP64bit()))) {
Error(E, "invalid register operand");
return MatchOperand_ParseFail;
} else if ((PrevReg != Mips::NoRegister) && (RegNo != PrevReg + 1) &&
((RegNo != Mips::FP && RegNo != Mips::RA && !isGP64bit()) ||
(RegNo != Mips::FP_64 && RegNo != Mips::RA_64 &&
isGP64bit()))) {
Error(E, "consecutive register numbers expected");
return MatchOperand_ParseFail;
}
Regs.push_back(RegNo);
}
if (Parser.getTok().is(AsmToken::Minus))
RegRange = true;
if (!Parser.getTok().isNot(AsmToken::Minus) &&
!Parser.getTok().isNot(AsmToken::Comma)) {
Error(E, "',' or '-' expected");
return MatchOperand_ParseFail;
}
Lex(); // Consume comma or minus
if (Parser.getTok().isNot(AsmToken::Dollar))
break;
PrevReg = RegNo;
}
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this));
parseMemOperand(Operands);
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseRegisterPair(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
if (parseAnyRegister(Operands) != MatchOperand_Success)
return MatchOperand_ParseFail;
SMLoc E = Parser.getTok().getLoc();
MipsOperand &Op = static_cast<MipsOperand &>(*Operands.back());
unsigned Reg = Op.getGPR32Reg();
Operands.pop_back();
Operands.push_back(MipsOperand::CreateRegPair(Reg, S, E, *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMovePRegPair(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands;
SmallVector<unsigned, 10> Regs;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_ParseFail;
SMLoc S = Parser.getTok().getLoc();
if (parseAnyRegister(TmpOperands) != MatchOperand_Success)
return MatchOperand_ParseFail;
MipsOperand *Reg = &static_cast<MipsOperand &>(*TmpOperands.back());
unsigned RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg();
Regs.push_back(RegNo);
SMLoc E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::Comma)) {
Error(E, "',' expected");
return MatchOperand_ParseFail;
}
// Remove comma.
Parser.Lex();
if (parseAnyRegister(TmpOperands) != MatchOperand_Success)
return MatchOperand_ParseFail;
Reg = &static_cast<MipsOperand &>(*TmpOperands.back());
RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg();
Regs.push_back(RegNo);
Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this));
return MatchOperand_Success;
}
MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
MCSymbolRefExpr::VariantKind VK =
StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
.Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
.Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
.Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
.Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
.Case("got", MCSymbolRefExpr::VK_Mips_GOT)
.Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
.Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
.Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
.Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
.Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
.Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
.Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
.Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
.Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
.Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
.Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
.Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
.Case("got_hi", MCSymbolRefExpr::VK_Mips_GOT_HI16)
.Case("got_lo", MCSymbolRefExpr::VK_Mips_GOT_LO16)
.Case("call_hi", MCSymbolRefExpr::VK_Mips_CALL_HI16)
.Case("call_lo", MCSymbolRefExpr::VK_Mips_CALL_LO16)
.Case("higher", MCSymbolRefExpr::VK_Mips_HIGHER)
.Case("highest", MCSymbolRefExpr::VK_Mips_HIGHEST)
.Case("pcrel_hi", MCSymbolRefExpr::VK_Mips_PCREL_HI16)
.Case("pcrel_lo", MCSymbolRefExpr::VK_Mips_PCREL_LO16)
.Default(MCSymbolRefExpr::VK_None);
assert(VK != MCSymbolRefExpr::VK_None);
return VK;
}
/// Sometimes (i.e. load/stores) the operand may be followed immediately by
/// either this.
/// ::= '(', register, ')'
/// handle it before we iterate so we don't get tripped up by the lack of
/// a comma.
bool MipsAsmParser::parseParenSuffix(StringRef Name, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LParen)) {
Operands.push_back(
MipsOperand::CreateToken("(", getLexer().getLoc(), *this));
Parser.Lex();
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (Parser.getTok().isNot(AsmToken::RParen)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token, expected ')'");
}
Operands.push_back(
MipsOperand::CreateToken(")", getLexer().getLoc(), *this));
Parser.Lex();
}
return false;
}
/// Sometimes (i.e. in MSA) the operand may be followed immediately by
/// either one of these.
/// ::= '[', register, ']'
/// ::= '[', integer, ']'
/// handle it before we iterate so we don't get tripped up by the lack of
/// a comma.
bool MipsAsmParser::parseBracketSuffix(StringRef Name,
OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LBrac)) {
Operands.push_back(
MipsOperand::CreateToken("[", getLexer().getLoc(), *this));
Parser.Lex();
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (Parser.getTok().isNot(AsmToken::RBrac)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token, expected ']'");
}
Operands.push_back(
MipsOperand::CreateToken("]", getLexer().getLoc(), *this));
Parser.Lex();
}
return false;
}
bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "ParseInstruction\n");
// We have reached first instruction, module directive are now forbidden.
getTargetStreamer().forbidModuleDirective();
// Check if we have valid mnemonic
if (!mnemonicIsValid(Name, 0)) {
Parser.eatToEndOfStatement();
return Error(NameLoc, "unknown instruction");
}
// First operand in MCInst is instruction mnemonic.
Operands.push_back(MipsOperand::CreateToken(Name, NameLoc, *this));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (getLexer().is(AsmToken::LBrac) && parseBracketSuffix(Name, Operands))
return true;
// AFAIK, parenthesis suffixes are never on the first operand
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
// Parse bracket and parenthesis suffixes before we iterate
if (getLexer().is(AsmToken::LBrac)) {
if (parseBracketSuffix(Name, Operands))
return true;
} else if (getLexer().is(AsmToken::LParen) &&
parseParenSuffix(Name, Operands))
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::reportParseError(Twine ErrorMsg) {
MCAsmParser &Parser = getParser();
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::reportParseError(SMLoc Loc, Twine ErrorMsg) {
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::parseSetNoAtDirective() {
MCAsmParser &Parser = getParser();
// Line should look like: ".set noat".
// Set the $at register to $0.
AssemblerOptions.back()->setATRegIndex(0);
Parser.Lex(); // Eat "noat".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveSetNoAt();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAtDirective() {
// Line can be: ".set at", which sets $at to $1
// or ".set at=$reg", which sets $at to $reg.
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "at".
if (getLexer().is(AsmToken::EndOfStatement)) {
// No register was specified, so we set $at to $1.
AssemblerOptions.back()->setATRegIndex(1);
getTargetStreamer().emitDirectiveSetAt();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
if (getLexer().isNot(AsmToken::Equal)) {
reportParseError("unexpected token, expected equals sign");
return false;
}
Parser.Lex(); // Eat "=".
if (getLexer().isNot(AsmToken::Dollar)) {
if (getLexer().is(AsmToken::EndOfStatement)) {
reportParseError("no register specified");
return false;
} else {
reportParseError("unexpected token, expected dollar sign '$'");
return false;
}
}
Parser.Lex(); // Eat "$".
// Find out what "reg" is.
unsigned AtRegNo;
const AsmToken &Reg = Parser.getTok();
if (Reg.is(AsmToken::Identifier)) {
AtRegNo = matchCPURegisterName(Reg.getIdentifier());
} else if (Reg.is(AsmToken::Integer)) {
AtRegNo = Reg.getIntVal();
} else {
reportParseError("unexpected token, expected identifier or integer");
return false;
}
// Check if $reg is a valid register. If it is, set $at to $reg.
if (!AssemblerOptions.back()->setATRegIndex(AtRegNo)) {
reportParseError("invalid register");
return false;
}
Parser.Lex(); // Eat "reg".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveSetAtWithArg(AtRegNo);
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetReorderDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
AssemblerOptions.back()->setReorder();
getTargetStreamer().emitDirectiveSetReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoReorderDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
AssemblerOptions.back()->setNoReorder();
getTargetStreamer().emitDirectiveSetNoReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMacroDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
AssemblerOptions.back()->setMacro();
getTargetStreamer().emitDirectiveSetMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMacroDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
if (AssemblerOptions.back()->isReorder()) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
AssemblerOptions.back()->setNoMacro();
getTargetStreamer().emitDirectiveSetNoMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMsaDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
setFeatureBits(Mips::FeatureMSA, "msa");
getTargetStreamer().emitDirectiveSetMsa();
return false;
}
bool MipsAsmParser::parseSetNoMsaDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
clearFeatureBits(Mips::FeatureMSA, "msa");
getTargetStreamer().emitDirectiveSetNoMsa();
return false;
}
bool MipsAsmParser::parseSetNoDspDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "nodsp".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
clearFeatureBits(Mips::FeatureDSP, "dsp");
getTargetStreamer().emitDirectiveSetNoDsp();
return false;
}
bool MipsAsmParser::parseSetMips16Directive() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "mips16".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
setFeatureBits(Mips::FeatureMips16, "mips16");
getTargetStreamer().emitDirectiveSetMips16();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMips16Directive() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "nomips16".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
clearFeatureBits(Mips::FeatureMips16, "mips16");
getTargetStreamer().emitDirectiveSetNoMips16();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetFpDirective() {
MCAsmParser &Parser = getParser();
MipsABIFlagsSection::FpABIKind FpAbiVal;
// Line can be: .set fp=32
// .set fp=xx
// .set fp=64
Parser.Lex(); // Eat fp token
AsmToken Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Equal)) {
reportParseError("unexpected token, expected equals sign '='");
return false;
}
Parser.Lex(); // Eat '=' token.
Tok = Parser.getTok();
if (!parseFpABIValue(FpAbiVal, ".set"))
return false;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveSetFp(FpAbiVal);
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetOddSPRegDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "oddspreg".
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
clearFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
getTargetStreamer().emitDirectiveSetOddSPReg();
return false;
}
bool MipsAsmParser::parseSetNoOddSPRegDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "nooddspreg".
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
setFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
getTargetStreamer().emitDirectiveSetNoOddSPReg();
return false;
}
bool MipsAsmParser::parseSetPopDirective() {
MCAsmParser &Parser = getParser();
SMLoc Loc = getLexer().getLoc();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
// Always keep an element on the options "stack" to prevent the user
// from changing the initial options. This is how we remember them.
if (AssemblerOptions.size() == 2)
return reportParseError(Loc, ".set pop with no .set push");
MCSubtargetInfo &STI = copySTI();
AssemblerOptions.pop_back();
setAvailableFeatures(
ComputeAvailableFeatures(AssemblerOptions.back()->getFeatures()));
STI.setFeatureBits(AssemblerOptions.back()->getFeatures());
getTargetStreamer().emitDirectiveSetPop();
return false;
}
bool MipsAsmParser::parseSetPushDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
// Create a copy of the current assembler options environment and push it.
AssemblerOptions.push_back(
make_unique<MipsAssemblerOptions>(AssemblerOptions.back().get()));
getTargetStreamer().emitDirectiveSetPush();
return false;
}
bool MipsAsmParser::parseSetSoftFloatDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
setFeatureBits(Mips::FeatureSoftFloat, "soft-float");
getTargetStreamer().emitDirectiveSetSoftFloat();
return false;
}
bool MipsAsmParser::parseSetHardFloatDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
clearFeatureBits(Mips::FeatureSoftFloat, "soft-float");
getTargetStreamer().emitDirectiveSetHardFloat();
return false;
}
bool MipsAsmParser::parseSetAssignment() {
StringRef Name;
const MCExpr *Value;
MCAsmParser &Parser = getParser();
if (Parser.parseIdentifier(Name))
reportParseError("expected identifier after .set");
if (getLexer().isNot(AsmToken::Comma))
return reportParseError("unexpected token, expected comma");
Lex(); // Eat comma
if (Parser.parseExpression(Value))
return reportParseError("expected valid expression after comma");
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
Sym->setVariableValue(Value);
return false;
}
bool MipsAsmParser::parseSetMips0Directive() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
// Reset assembler options to their initial values.
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(AssemblerOptions.front()->getFeatures()));
STI.setFeatureBits(AssemblerOptions.front()->getFeatures());
AssemblerOptions.back()->setFeatures(AssemblerOptions.front()->getFeatures());
getTargetStreamer().emitDirectiveSetMips0();
return false;
}
bool MipsAsmParser::parseSetArchDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::Equal))
return reportParseError("unexpected token, expected equals sign");
Parser.Lex();
StringRef Arch;
if (Parser.parseIdentifier(Arch))
return reportParseError("expected arch identifier");
StringRef ArchFeatureName =
StringSwitch<StringRef>(Arch)
.Case("mips1", "mips1")
.Case("mips2", "mips2")
.Case("mips3", "mips3")
.Case("mips4", "mips4")
.Case("mips5", "mips5")
.Case("mips32", "mips32")
.Case("mips32r2", "mips32r2")
.Case("mips32r3", "mips32r3")
.Case("mips32r5", "mips32r5")
.Case("mips32r6", "mips32r6")
.Case("mips64", "mips64")
.Case("mips64r2", "mips64r2")
.Case("mips64r3", "mips64r3")
.Case("mips64r5", "mips64r5")
.Case("mips64r6", "mips64r6")
.Case("cnmips", "cnmips")
.Case("r4000", "mips3") // This is an implementation of Mips3.
.Default("");
if (ArchFeatureName.empty())
return reportParseError("unsupported architecture");
selectArch(ArchFeatureName);
getTargetStreamer().emitDirectiveSetArch(Arch);
return false;
}
bool MipsAsmParser::parseSetFeature(uint64_t Feature) {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
switch (Feature) {
default:
llvm_unreachable("Unimplemented feature");
case Mips::FeatureDSP:
setFeatureBits(Mips::FeatureDSP, "dsp");
getTargetStreamer().emitDirectiveSetDsp();
break;
case Mips::FeatureMicroMips:
getTargetStreamer().emitDirectiveSetMicroMips();
break;
case Mips::FeatureMips1:
selectArch("mips1");
getTargetStreamer().emitDirectiveSetMips1();
break;
case Mips::FeatureMips2:
selectArch("mips2");
getTargetStreamer().emitDirectiveSetMips2();
break;
case Mips::FeatureMips3:
selectArch("mips3");
getTargetStreamer().emitDirectiveSetMips3();
break;
case Mips::FeatureMips4:
selectArch("mips4");
getTargetStreamer().emitDirectiveSetMips4();
break;
case Mips::FeatureMips5:
selectArch("mips5");
getTargetStreamer().emitDirectiveSetMips5();
break;
case Mips::FeatureMips32:
selectArch("mips32");
getTargetStreamer().emitDirectiveSetMips32();
break;
case Mips::FeatureMips32r2:
selectArch("mips32r2");
getTargetStreamer().emitDirectiveSetMips32R2();
break;
case Mips::FeatureMips32r3:
selectArch("mips32r3");
getTargetStreamer().emitDirectiveSetMips32R3();
break;
case Mips::FeatureMips32r5:
selectArch("mips32r5");
getTargetStreamer().emitDirectiveSetMips32R5();
break;
case Mips::FeatureMips32r6:
selectArch("mips32r6");
getTargetStreamer().emitDirectiveSetMips32R6();
break;
case Mips::FeatureMips64:
selectArch("mips64");
getTargetStreamer().emitDirectiveSetMips64();
break;
case Mips::FeatureMips64r2:
selectArch("mips64r2");
getTargetStreamer().emitDirectiveSetMips64R2();
break;
case Mips::FeatureMips64r3:
selectArch("mips64r3");
getTargetStreamer().emitDirectiveSetMips64R3();
break;
case Mips::FeatureMips64r5:
selectArch("mips64r5");
getTargetStreamer().emitDirectiveSetMips64R5();
break;
case Mips::FeatureMips64r6:
selectArch("mips64r6");
getTargetStreamer().emitDirectiveSetMips64R6();
break;
}
return false;
}
bool MipsAsmParser::eatComma(StringRef ErrorStr) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Comma)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorStr);
}
Parser.Lex(); // Eat the comma.
return true;
}
// Used to determine if .cpload, .cprestore, and .cpsetup have any effect.
// In this class, it is only used for .cprestore.
// FIXME: Only keep track of IsPicEnabled in one place, instead of in both
// MipsTargetELFStreamer and MipsAsmParser.
bool MipsAsmParser::isPicAndNotNxxAbi() {
return inPicMode() && !(isABI_N32() || isABI_N64());
}
bool MipsAsmParser::parseDirectiveCpLoad(SMLoc Loc) {
if (AssemblerOptions.back()->isReorder())
Warning(Loc, ".cpload should be inside a noreorder section");
if (inMips16Mode()) {
reportParseError(".cpload is not supported in Mips16 mode");
return false;
}
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Reg;
OperandMatchResultTy ResTy = parseAnyRegister(Reg);
if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
reportParseError("expected register containing function address");
return false;
}
MipsOperand &RegOpnd = static_cast<MipsOperand &>(*Reg[0]);
if (!RegOpnd.isGPRAsmReg()) {
reportParseError(RegOpnd.getStartLoc(), "invalid register");
return false;
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveCpLoad(RegOpnd.getGPR32Reg());
return false;
}
bool MipsAsmParser::parseDirectiveCpRestore(SMLoc Loc) {
MCAsmParser &Parser = getParser();
// Note that .cprestore is ignored if used with the N32 and N64 ABIs or if it
// is used in non-PIC mode.
if (inMips16Mode()) {
reportParseError(".cprestore is not supported in Mips16 mode");
return false;
}
// Get the stack offset value.
const MCExpr *StackOffset;
int64_t StackOffsetVal;
if (Parser.parseExpression(StackOffset)) {
reportParseError("expected stack offset value");
return false;
}
if (!StackOffset->evaluateAsAbsolute(StackOffsetVal)) {
reportParseError("stack offset is not an absolute expression");
return false;
}
if (StackOffsetVal < 0) {
Warning(Loc, ".cprestore with negative stack offset has no effect");
IsCpRestoreSet = false;
} else {
IsCpRestoreSet = true;
CpRestoreOffset = StackOffsetVal;
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
// Store the $gp on the stack.
SmallVector<MCInst, 3> StoreInsts;
createCpRestoreMemOp(false /*IsLoad*/, CpRestoreOffset /*StackOffset*/, Loc,
StoreInsts);
getTargetStreamer().emitDirectiveCpRestore(StoreInsts, CpRestoreOffset);
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseDirectiveCPSetup() {
MCAsmParser &Parser = getParser();
unsigned FuncReg;
unsigned Save;
bool SaveIsReg = true;
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch) {
reportParseError("expected register containing function address");
Parser.eatToEndOfStatement();
return false;
}
MipsOperand &FuncRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!FuncRegOpnd.isGPRAsmReg()) {
reportParseError(FuncRegOpnd.getStartLoc(), "invalid register");
Parser.eatToEndOfStatement();
return false;
}
FuncReg = FuncRegOpnd.getGPR32Reg();
TmpReg.clear();
if (!eatComma("unexpected token, expected comma"))
return true;
ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch) {
const MCExpr *OffsetExpr;
int64_t OffsetVal;
SMLoc ExprLoc = getLexer().getLoc();
if (Parser.parseExpression(OffsetExpr) ||
!OffsetExpr->evaluateAsAbsolute(OffsetVal)) {
reportParseError(ExprLoc, "expected save register or stack offset");
Parser.eatToEndOfStatement();
return false;
}
Save = OffsetVal;
SaveIsReg = false;
} else {
MipsOperand &SaveOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!SaveOpnd.isGPRAsmReg()) {
reportParseError(SaveOpnd.getStartLoc(), "invalid register");
Parser.eatToEndOfStatement();
return false;
}
Save = SaveOpnd.getGPR32Reg();
}
if (!eatComma("unexpected token, expected comma"))
return true;
const MCExpr *Expr;
if (Parser.parseExpression(Expr)) {
reportParseError("expected expression");
return false;
}
if (Expr->getKind() != MCExpr::SymbolRef) {
reportParseError("expected symbol");
return false;
}
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
CpSaveLocation = Save;
CpSaveLocationIsRegister = SaveIsReg;
getTargetStreamer().emitDirectiveCpsetup(FuncReg, Save, Ref->getSymbol(),
SaveIsReg);
return false;
}
bool MipsAsmParser::parseDirectiveCPReturn() {
getTargetStreamer().emitDirectiveCpreturn(CpSaveLocation,
CpSaveLocationIsRegister);
return false;
}
bool MipsAsmParser::parseDirectiveNaN() {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "2008") {
Parser.Lex();
getTargetStreamer().emitDirectiveNaN2008();
return false;
} else if (Tok.getString() == "legacy") {
Parser.Lex();
getTargetStreamer().emitDirectiveNaNLegacy();
return false;
}
}
// If we don't recognize the option passed to the .nan
// directive (e.g. no option or unknown option), emit an error.
reportParseError("invalid option in .nan directive");
return false;
}
bool MipsAsmParser::parseDirectiveSet() {
MCAsmParser &Parser = getParser();
// Get the next token.
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "noat") {
return parseSetNoAtDirective();
} else if (Tok.getString() == "at") {
return parseSetAtDirective();
} else if (Tok.getString() == "arch") {
return parseSetArchDirective();
} else if (Tok.getString() == "fp") {
return parseSetFpDirective();
} else if (Tok.getString() == "oddspreg") {
return parseSetOddSPRegDirective();
} else if (Tok.getString() == "nooddspreg") {
return parseSetNoOddSPRegDirective();
} else if (Tok.getString() == "pop") {
return parseSetPopDirective();
} else if (Tok.getString() == "push") {
return parseSetPushDirective();
} else if (Tok.getString() == "reorder") {
return parseSetReorderDirective();
} else if (Tok.getString() == "noreorder") {
return parseSetNoReorderDirective();
} else if (Tok.getString() == "macro") {
return parseSetMacroDirective();
} else if (Tok.getString() == "nomacro") {
return parseSetNoMacroDirective();
} else if (Tok.getString() == "mips16") {
return parseSetMips16Directive();
} else if (Tok.getString() == "nomips16") {
return parseSetNoMips16Directive();
} else if (Tok.getString() == "nomicromips") {
getTargetStreamer().emitDirectiveSetNoMicroMips();
Parser.eatToEndOfStatement();
return false;
} else if (Tok.getString() == "micromips") {
return parseSetFeature(Mips::FeatureMicroMips);
} else if (Tok.getString() == "mips0") {
return parseSetMips0Directive();
} else if (Tok.getString() == "mips1") {
return parseSetFeature(Mips::FeatureMips1);
} else if (Tok.getString() == "mips2") {
return parseSetFeature(Mips::FeatureMips2);
} else if (Tok.getString() == "mips3") {
return parseSetFeature(Mips::FeatureMips3);
} else if (Tok.getString() == "mips4") {
return parseSetFeature(Mips::FeatureMips4);
} else if (Tok.getString() == "mips5") {
return parseSetFeature(Mips::FeatureMips5);
} else if (Tok.getString() == "mips32") {
return parseSetFeature(Mips::FeatureMips32);
} else if (Tok.getString() == "mips32r2") {
return parseSetFeature(Mips::FeatureMips32r2);
} else if (Tok.getString() == "mips32r3") {
return parseSetFeature(Mips::FeatureMips32r3);
} else if (Tok.getString() == "mips32r5") {
return parseSetFeature(Mips::FeatureMips32r5);
} else if (Tok.getString() == "mips32r6") {
return parseSetFeature(Mips::FeatureMips32r6);
} else if (Tok.getString() == "mips64") {
return parseSetFeature(Mips::FeatureMips64);
} else if (Tok.getString() == "mips64r2") {
return parseSetFeature(Mips::FeatureMips64r2);
} else if (Tok.getString() == "mips64r3") {
return parseSetFeature(Mips::FeatureMips64r3);
} else if (Tok.getString() == "mips64r5") {
return parseSetFeature(Mips::FeatureMips64r5);
} else if (Tok.getString() == "mips64r6") {
return parseSetFeature(Mips::FeatureMips64r6);
} else if (Tok.getString() == "dsp") {
return parseSetFeature(Mips::FeatureDSP);
} else if (Tok.getString() == "nodsp") {
return parseSetNoDspDirective();
} else if (Tok.getString() == "msa") {
return parseSetMsaDirective();
} else if (Tok.getString() == "nomsa") {
return parseSetNoMsaDirective();
} else if (Tok.getString() == "softfloat") {
return parseSetSoftFloatDirective();
} else if (Tok.getString() == "hardfloat") {
return parseSetHardFloatDirective();
} else {
// It is just an identifier, look for an assignment.
parseSetAssignment();
return false;
}
return true;
}
/// parseDataDirective
/// ::= .word [ expression (, expression)* ]
bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token, expected comma");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// parseDirectiveGpWord
/// ::= .gpword local_sym
bool MipsAsmParser::parseDirectiveGpWord() {
MCAsmParser &Parser = getParser();
const MCExpr *Value;
// EmitGPRel32Value requires an expression, so we are using base class
// method to evaluate the expression.
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitGPRel32Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getLoc(),
"unexpected token, expected end of statement");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
/// parseDirectiveGpDWord
/// ::= .gpdword local_sym
bool MipsAsmParser::parseDirectiveGpDWord() {
MCAsmParser &Parser = getParser();
const MCExpr *Value;
// EmitGPRel64Value requires an expression, so we are using base class
// method to evaluate the expression.
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitGPRel64Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getLoc(),
"unexpected token, expected end of statement");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
bool MipsAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token, expected identifier");
Parser.eatToEndOfStatement();
return false;
}
StringRef Option = Tok.getIdentifier();
if (Option == "pic0") {
// MipsAsmParser needs to know if the current PIC mode changes.
IsPicEnabled = false;
getTargetStreamer().emitDirectiveOptionPic0();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
Parser.eatToEndOfStatement();
}
return false;
}
if (Option == "pic2") {
// MipsAsmParser needs to know if the current PIC mode changes.
IsPicEnabled = true;
getTargetStreamer().emitDirectiveOptionPic2();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
Parser.eatToEndOfStatement();
}
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(),
"unknown option, expected 'pic0' or 'pic2'");
Parser.eatToEndOfStatement();
return false;
}
/// parseInsnDirective
/// ::= .insn
bool MipsAsmParser::parseInsnDirective() {
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
// The actual label marking happens in
// MipsELFStreamer::createPendingLabelRelocs().
getTargetStreamer().emitDirectiveInsn();
getParser().Lex(); // Eat EndOfStatement token.
return false;
}
/// parseSSectionDirective
/// ::= .sbss
/// ::= .sdata
bool MipsAsmParser::parseSSectionDirective(StringRef Section, unsigned Type) {
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
MCSection *ELFSection = getContext().getELFSection(
Section, Type, ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_MIPS_GPREL);
getParser().getStreamer().SwitchSection(ELFSection);
getParser().Lex(); // Eat EndOfStatement token.
return false;
}
/// parseDirectiveModule
/// ::= .module oddspreg
/// ::= .module nooddspreg
/// ::= .module fp=value
/// ::= .module softfloat
/// ::= .module hardfloat
bool MipsAsmParser::parseDirectiveModule() {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
SMLoc L = Lexer.getLoc();
if (!getTargetStreamer().isModuleDirectiveAllowed()) {
// TODO : get a better message.
reportParseError(".module directive must appear before any code");
return false;
}
StringRef Option;
if (Parser.parseIdentifier(Option)) {
reportParseError("expected .module option identifier");
return false;
}
if (Option == "oddspreg") {
clearModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
// Synchronize the abiflags information with the FeatureBits information we
// changed above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated abiflags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted at the end).
getTargetStreamer().emitDirectiveModuleOddSPReg();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else if (Option == "nooddspreg") {
if (!isABI_O32()) {
Error(L, "'.module nooddspreg' requires the O32 ABI");
return false;
}
setModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
// Synchronize the abiflags information with the FeatureBits information we
// changed above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated abiflags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted at the end).
getTargetStreamer().emitDirectiveModuleOddSPReg();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else if (Option == "fp") {
return parseDirectiveModuleFP();
} else if (Option == "softfloat") {
setModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float");
// Synchronize the ABI Flags information with the FeatureBits information we
// updated above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated ABI Flags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted later).
getTargetStreamer().emitDirectiveModuleSoftFloat();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else if (Option == "hardfloat") {
clearModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float");
// Synchronize the ABI Flags information with the FeatureBits information we
// updated above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated ABI Flags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted later).
getTargetStreamer().emitDirectiveModuleHardFloat();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else {
return Error(L, "'" + Twine(Option) + "' is not a valid .module option.");
}
}
/// parseDirectiveModuleFP
/// ::= =32
/// ::= =xx
/// ::= =64
bool MipsAsmParser::parseDirectiveModuleFP() {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
if (Lexer.isNot(AsmToken::Equal)) {
reportParseError("unexpected token, expected equals sign '='");
return false;
}
Parser.Lex(); // Eat '=' token.
MipsABIFlagsSection::FpABIKind FpABI;
if (!parseFpABIValue(FpABI, ".module"))
return false;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
// Synchronize the abiflags information with the FeatureBits information we
// changed above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated abiflags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted at the end).
getTargetStreamer().emitDirectiveModuleFP();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
StringRef Directive) {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
bool ModuleLevelOptions = Directive == ".module";
if (Lexer.is(AsmToken::Identifier)) {
StringRef Value = Parser.getTok().getString();
Parser.Lex();
if (Value != "xx") {
reportParseError("unsupported value, expected 'xx', '32' or '64'");
return false;
}
if (!isABI_O32()) {
reportParseError("'" + Directive + " fp=xx' requires the O32 ABI");
return false;
}
FpABI = MipsABIFlagsSection::FpABIKind::XX;
if (ModuleLevelOptions) {
setModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
} else {
setFeatureBits(Mips::FeatureFPXX, "fpxx");
clearFeatureBits(Mips::FeatureFP64Bit, "fp64");
}
return true;
}
if (Lexer.is(AsmToken::Integer)) {
unsigned Value = Parser.getTok().getIntVal();
Parser.Lex();
if (Value != 32 && Value != 64) {
reportParseError("unsupported value, expected 'xx', '32' or '64'");
return false;
}
if (Value == 32) {
if (!isABI_O32()) {
reportParseError("'" + Directive + " fp=32' requires the O32 ABI");
return false;
}
FpABI = MipsABIFlagsSection::FpABIKind::S32;
if (ModuleLevelOptions) {
clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
} else {
clearFeatureBits(Mips::FeatureFPXX, "fpxx");
clearFeatureBits(Mips::FeatureFP64Bit, "fp64");
}
} else {
FpABI = MipsABIFlagsSection::FpABIKind::S64;
if (ModuleLevelOptions) {
clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
setModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
} else {
clearFeatureBits(Mips::FeatureFPXX, "fpxx");
setFeatureBits(Mips::FeatureFP64Bit, "fp64");
}
}
return true;
}
return false;
}
bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".cpload")
return parseDirectiveCpLoad(DirectiveID.getLoc());
if (IDVal == ".cprestore")
return parseDirectiveCpRestore(DirectiveID.getLoc());
if (IDVal == ".dword") {
parseDataDirective(8, DirectiveID.getLoc());
return false;
}
if (IDVal == ".ent") {
StringRef SymbolName;
if (Parser.parseIdentifier(SymbolName)) {
reportParseError("expected identifier after .ent");
return false;
}
// There's an undocumented extension that allows an integer to
// follow the name of the procedure which AFAICS is ignored by GAS.
// Example: .ent foo,2
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
// Even though we accept this undocumented extension for compatibility
// reasons, the additional integer argument does not actually change
// the behaviour of the '.ent' directive, so we would like to discourage
// its use. We do this by not referring to the extended version in
// error messages which are not directly related to its use.
reportParseError("unexpected token, expected end of statement");
return false;
}
Parser.Lex(); // Eat the comma.
const MCExpr *DummyNumber;
int64_t DummyNumberVal;
// If the user was explicitly trying to use the extended version,
// we still give helpful extension-related error messages.
if (Parser.parseExpression(DummyNumber)) {
reportParseError("expected number after comma");
return false;
}
if (!DummyNumber->evaluateAsAbsolute(DummyNumberVal)) {
reportParseError("expected an absolute expression after comma");
return false;
}
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(SymbolName);
getTargetStreamer().emitDirectiveEnt(*Sym);
CurrentFn = Sym;
IsCpRestoreSet = false;
return false;
}
if (IDVal == ".end") {
StringRef SymbolName;
if (Parser.parseIdentifier(SymbolName)) {
reportParseError("expected identifier after .end");
return false;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
if (CurrentFn == nullptr) {
reportParseError(".end used without .ent");
return false;
}
if ((SymbolName != CurrentFn->getName())) {
reportParseError(".end symbol does not match .ent symbol");
return false;
}
getTargetStreamer().emitDirectiveEnd(SymbolName);
CurrentFn = nullptr;
IsCpRestoreSet = false;
return false;
}
if (IDVal == ".frame") {
// .frame $stack_reg, frame_size_in_bytes, $return_reg
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
reportParseError("expected stack register");
return false;
}
MipsOperand &StackRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!StackRegOpnd.isGPRAsmReg()) {
reportParseError(StackRegOpnd.getStartLoc(),
"expected general purpose register");
return false;
}
unsigned StackReg = StackRegOpnd.getGPR32Reg();
if (Parser.getTok().is(AsmToken::Comma))
Parser.Lex();
else {
reportParseError("unexpected token, expected comma");
return false;
}
// Parse the frame size.
const MCExpr *FrameSize;
int64_t FrameSizeVal;
if (Parser.parseExpression(FrameSize)) {
reportParseError("expected frame size value");
return false;
}
if (!FrameSize->evaluateAsAbsolute(FrameSizeVal)) {
reportParseError("frame size not an absolute expression");
return false;
}
if (Parser.getTok().is(AsmToken::Comma))
Parser.Lex();
else {
reportParseError("unexpected token, expected comma");
return false;
}
// Parse the return register.
TmpReg.clear();
ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
reportParseError("expected return register");
return false;
}
MipsOperand &ReturnRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!ReturnRegOpnd.isGPRAsmReg()) {
reportParseError(ReturnRegOpnd.getStartLoc(),
"expected general purpose register");
return false;
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitFrame(StackReg, FrameSizeVal,
ReturnRegOpnd.getGPR32Reg());
IsCpRestoreSet = false;
return false;
}
if (IDVal == ".set") {
return parseDirectiveSet();
}
if (IDVal == ".mask" || IDVal == ".fmask") {
// .mask bitmask, frame_offset
// bitmask: One bit for each register used.
// frame_offset: Offset from Canonical Frame Address ($sp on entry) where
// first register is expected to be saved.
// Examples:
// .mask 0x80000000, -4
// .fmask 0x80000000, -4
//
// Parse the bitmask
const MCExpr *BitMask;
int64_t BitMaskVal;
if (Parser.parseExpression(BitMask)) {
reportParseError("expected bitmask value");
return false;
}
if (!BitMask->evaluateAsAbsolute(BitMaskVal)) {
reportParseError("bitmask not an absolute expression");
return false;
}
if (Parser.getTok().is(AsmToken::Comma))
Parser.Lex();
else {
reportParseError("unexpected token, expected comma");
return false;
}
// Parse the frame_offset
const MCExpr *FrameOffset;
int64_t FrameOffsetVal;
if (Parser.parseExpression(FrameOffset)) {
reportParseError("expected frame offset value");
return false;
}
if (!FrameOffset->evaluateAsAbsolute(FrameOffsetVal)) {
reportParseError("frame offset not an absolute expression");
return false;
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
if (IDVal == ".mask")
getTargetStreamer().emitMask(BitMaskVal, FrameOffsetVal);
else
getTargetStreamer().emitFMask(BitMaskVal, FrameOffsetVal);
return false;
}
if (IDVal == ".nan")
return parseDirectiveNaN();
if (IDVal == ".gpword") {
parseDirectiveGpWord();
return false;
}
if (IDVal == ".gpdword") {
parseDirectiveGpDWord();
return false;
}
if (IDVal == ".word") {
parseDataDirective(4, DirectiveID.getLoc());
return false;
}
if (IDVal == ".hword") {
parseDataDirective(2, DirectiveID.getLoc());
return false;
}
if (IDVal == ".option")
return parseDirectiveOption();
if (IDVal == ".abicalls") {
getTargetStreamer().emitDirectiveAbiCalls();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
// Clear line
Parser.eatToEndOfStatement();
}
return false;
}
if (IDVal == ".cpsetup")
return parseDirectiveCPSetup();
if (IDVal == ".cpreturn")
return parseDirectiveCPReturn();
if (IDVal == ".module")
return parseDirectiveModule();
if (IDVal == ".llvm_internal_mips_reallow_module_directive")
return parseInternalDirectiveReallowModule();
if (IDVal == ".insn")
return parseInsnDirective();
if (IDVal == ".sbss")
return parseSSectionDirective(IDVal, ELF::SHT_NOBITS);
if (IDVal == ".sdata")
return parseSSectionDirective(IDVal, ELF::SHT_PROGBITS);
return true;
}
bool MipsAsmParser::parseInternalDirectiveReallowModule() {
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().reallowModuleDirective();
getParser().Lex(); // Eat EndOfStatement token.
return false;
}
extern "C" void LLVMInitializeMipsAsmParser() {
RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "MipsGenAsmMatcher.inc"