llvm-project/lldb/tools/debugserver/source/PThreadEvent.cpp

228 lines
7.8 KiB
C++

//===-- PThreadEvent.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/16/07.
//
//===----------------------------------------------------------------------===//
#include "PThreadEvent.h"
#include "errno.h"
#include "DNBLog.h"
PThreadEvent::PThreadEvent(uint32_t bits, uint32_t validBits) :
m_mutex(),
m_set_condition(),
m_reset_condition(),
m_bits(bits),
m_validBits(validBits),
m_reset_ack_mask(0)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, 0x%8.8x)", this, __FUNCTION__, bits, validBits);
}
PThreadEvent::~PThreadEvent()
{
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, __PRETTY_FUNCTION__);
}
uint32_t
PThreadEvent::NewEventBit()
{
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, __PRETTY_FUNCTION__);
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
uint32_t mask = 1;
while (mask & m_validBits)
mask <<= 1;
m_validBits |= mask;
return mask;
}
void
PThreadEvent::FreeEventBits(const uint32_t mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, mask);
if (mask)
{
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
m_bits &= ~mask;
m_validBits &= ~mask;
}
}
uint32_t
PThreadEvent::GetEventBits() const
{
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, __PRETTY_FUNCTION__);
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
uint32_t bits = m_bits;
return bits;
}
// Replace the event bits with a new bitmask value
void
PThreadEvent::ReplaceEventBits(const uint32_t bits)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, bits);
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
// Make sure we have some bits and that they aren't already set...
if (m_bits != bits)
{
// Figure out which bits are changing
uint32_t changed_bits = m_bits ^ bits;
// Set the new bit values
m_bits = bits;
// If any new bits are set, then broadcast
if (changed_bits & m_bits)
m_set_condition.Broadcast();
}
}
// Set one or more event bits and broadcast if any new event bits get set
// that weren't already set.
void
PThreadEvent::SetEvents(const uint32_t mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, mask);
// Make sure we have some bits to set
if (mask)
{
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Set the all event bits that are set in 'mask'
m_bits |= mask;
// Broadcast only if any extra bits got set.
if (old != m_bits)
m_set_condition.Broadcast();
}
}
// Reset one or more event bits
void
PThreadEvent::ResetEvents(const uint32_t mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, mask);
if (mask)
{
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Clear the all event bits that are set in 'mask'
m_bits &= ~mask;
// Broadcast only if any extra bits got reset.
if (old != m_bits)
m_reset_condition.Broadcast();
}
}
//----------------------------------------------------------------------
// Wait until 'timeout_abstime' for any events that are set in
// 'mask'. If 'timeout_abstime' is NULL, then wait forever.
//----------------------------------------------------------------------
uint32_t
PThreadEvent::WaitForSetEvents(const uint32_t mask, const struct timespec *timeout_abstime) const
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this, __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
do
{
// Check our predicate (event bits) in case any are already set
if (mask & m_bits)
{
uint32_t bits_set = mask & m_bits;
// Our PThreadMutex::Locker will automatically unlock our mutex
return bits_set;
}
if (timeout_abstime)
{
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait (m_set_condition.Condition(), m_mutex.Mutex(), timeout_abstime);
// Retest our predicate in case of a race condition right at the end
// of the timeout.
if (err == ETIMEDOUT)
{
uint32_t bits_set = mask & m_bits;
return bits_set;
}
}
else
{
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait (m_set_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
return 0;
}
//----------------------------------------------------------------------
// Wait until 'timeout_abstime' for any events in 'mask' to reset.
// If 'timeout_abstime' is NULL, then wait forever.
//----------------------------------------------------------------------
uint32_t
PThreadEvent::WaitForEventsToReset(const uint32_t mask, const struct timespec *timeout_abstime) const
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this, __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
do
{
// Check our predicate (event bits) each time through this do loop
if ((mask & m_bits) == 0)
{
// All the bits requested have been reset, return zero indicating
// which bits from the mask were still set (none of them)
return 0;
}
if (timeout_abstime)
{
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait (m_reset_condition.Condition(), m_mutex.Mutex(), timeout_abstime);
}
else
{
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait (m_reset_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
// Return a mask indicating which bits (if any) were still set
return mask & m_bits;
}
uint32_t
PThreadEvent::WaitForResetAck (const uint32_t mask, const struct timespec *timeout_abstime) const
{
if (mask & m_reset_ack_mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this, __FUNCTION__, mask, timeout_abstime);
return WaitForEventsToReset (mask & m_reset_ack_mask, timeout_abstime);
}
return 0;
}