forked from OSchip/llvm-project
1168 lines
45 KiB
C++
1168 lines
45 KiB
C++
//===- Relocations.cpp ----------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains platform-independent functions to process relocations.
|
|
// I'll describe the overview of this file here.
|
|
//
|
|
// Simple relocations are easy to handle for the linker. For example,
|
|
// for R_X86_64_PC64 relocs, the linker just has to fix up locations
|
|
// with the relative offsets to the target symbols. It would just be
|
|
// reading records from relocation sections and applying them to output.
|
|
//
|
|
// But not all relocations are that easy to handle. For example, for
|
|
// R_386_GOTOFF relocs, the linker has to create new GOT entries for
|
|
// symbols if they don't exist, and fix up locations with GOT entry
|
|
// offsets from the beginning of GOT section. So there is more than
|
|
// fixing addresses in relocation processing.
|
|
//
|
|
// ELF defines a large number of complex relocations.
|
|
//
|
|
// The functions in this file analyze relocations and do whatever needs
|
|
// to be done. It includes, but not limited to, the following.
|
|
//
|
|
// - create GOT/PLT entries
|
|
// - create new relocations in .dynsym to let the dynamic linker resolve
|
|
// them at runtime (since ELF supports dynamic linking, not all
|
|
// relocations can be resolved at link-time)
|
|
// - create COPY relocs and reserve space in .bss
|
|
// - replace expensive relocs (in terms of runtime cost) with cheap ones
|
|
// - error out infeasible combinations such as PIC and non-relative relocs
|
|
//
|
|
// Note that the functions in this file don't actually apply relocations
|
|
// because it doesn't know about the output file nor the output file buffer.
|
|
// It instead stores Relocation objects to InputSection's Relocations
|
|
// vector to let it apply later in InputSection::writeTo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Relocations.h"
|
|
#include "Config.h"
|
|
#include "LinkerScript.h"
|
|
#include "Memory.h"
|
|
#include "OutputSections.h"
|
|
#include "Strings.h"
|
|
#include "SymbolTable.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "Thunks.h"
|
|
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// Construct a message in the following format.
|
|
//
|
|
// >>> defined in /home/alice/src/foo.o
|
|
// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
|
|
// >>> /home/alice/src/bar.o:(.text+0x1)
|
|
template <class ELFT>
|
|
static std::string getLocation(InputSectionBase &S, const SymbolBody &Sym,
|
|
uint64_t Off) {
|
|
std::string Msg =
|
|
"\n>>> defined in " + toString(Sym.getFile()) + "\n>>> referenced by ";
|
|
std::string Src = S.getSrcMsg<ELFT>(Off);
|
|
if (!Src.empty())
|
|
Msg += Src + "\n>>> ";
|
|
return Msg + S.getObjMsg<ELFT>(Off);
|
|
}
|
|
|
|
static bool isPreemptible(const SymbolBody &Body, uint32_t Type) {
|
|
// In case of MIPS GP-relative relocations always resolve to a definition
|
|
// in a regular input file, ignoring the one-definition rule. So we,
|
|
// for example, should not attempt to create a dynamic relocation even
|
|
// if the target symbol is preemptible. There are two two MIPS GP-relative
|
|
// relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
|
|
// can be against a preemptible symbol.
|
|
// To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all
|
|
// relocation types occupy eight bit. In case of N64 ABI we extract first
|
|
// relocation from 3-in-1 packet because only the first relocation can
|
|
// be against a real symbol.
|
|
if (Config->EMachine == EM_MIPS) {
|
|
Type &= 0xff;
|
|
if (Type == R_MIPS_GPREL16 || Type == R_MICROMIPS_GPREL16 ||
|
|
Type == R_MICROMIPS_GPREL7_S2)
|
|
return false;
|
|
}
|
|
return Body.isPreemptible();
|
|
}
|
|
|
|
// This function is similar to the `handleTlsRelocation`. MIPS does not
|
|
// support any relaxations for TLS relocations so by factoring out MIPS
|
|
// handling in to the separate function we can simplify the code and do not
|
|
// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
|
|
// Mips has a custom MipsGotSection that handles the writing of GOT entries
|
|
// without dynamic relocations.
|
|
template <class ELFT>
|
|
static unsigned handleMipsTlsRelocation(uint32_t Type, SymbolBody &Body,
|
|
InputSectionBase &C, uint64_t Offset,
|
|
int64_t Addend, RelExpr Expr) {
|
|
if (Expr == R_MIPS_TLSLD) {
|
|
if (InX::MipsGot->addTlsIndex() && Config->Pic)
|
|
In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::MipsGot,
|
|
InX::MipsGot->getTlsIndexOff(), false,
|
|
nullptr, 0});
|
|
C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
|
|
if (Expr == R_MIPS_TLSGD) {
|
|
if (InX::MipsGot->addDynTlsEntry(Body) && Body.isPreemptible()) {
|
|
uint64_t Off = InX::MipsGot->getGlobalDynOffset(Body);
|
|
In<ELFT>::RelaDyn->addReloc(
|
|
{Target->TlsModuleIndexRel, InX::MipsGot, Off, false, &Body, 0});
|
|
if (Body.isPreemptible())
|
|
In<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, InX::MipsGot,
|
|
Off + Config->Wordsize, false, &Body, 0});
|
|
}
|
|
C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// This function is similar to the `handleMipsTlsRelocation`. ARM also does not
|
|
// support any relaxations for TLS relocations. ARM is logically similar to Mips
|
|
// in how it handles TLS, but Mips uses its own custom GOT which handles some
|
|
// of the cases that ARM uses GOT relocations for.
|
|
//
|
|
// We look for TLS global dynamic and local dynamic relocations, these may
|
|
// require the generation of a pair of GOT entries that have associated
|
|
// dynamic relocations. When the results of the dynamic relocations can be
|
|
// resolved at static link time we do so. This is necessary for static linking
|
|
// as there will be no dynamic loader to resolve them at load-time.
|
|
//
|
|
// The pair of GOT entries created are of the form
|
|
// GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
|
|
// GOT[e1] Offset of symbol in TLS block
|
|
template <class ELFT>
|
|
static unsigned handleARMTlsRelocation(uint32_t Type, SymbolBody &Body,
|
|
InputSectionBase &C, uint64_t Offset,
|
|
int64_t Addend, RelExpr Expr) {
|
|
// The Dynamic TLS Module Index Relocation for a symbol defined in an
|
|
// executable is always 1. If the target Symbol is not preemptible then
|
|
// we know the offset into the TLS block at static link time.
|
|
bool NeedDynId = Body.isPreemptible() || Config->Shared;
|
|
bool NeedDynOff = Body.isPreemptible();
|
|
|
|
auto AddTlsReloc = [&](uint64_t Off, uint32_t Type, SymbolBody *Dest,
|
|
bool Dyn) {
|
|
if (Dyn)
|
|
In<ELFT>::RelaDyn->addReloc({Type, InX::Got, Off, false, Dest, 0});
|
|
else
|
|
InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
|
|
};
|
|
|
|
// Local Dynamic is for access to module local TLS variables, while still
|
|
// being suitable for being dynamically loaded via dlopen.
|
|
// GOT[e0] is the module index, with a special value of 0 for the current
|
|
// module. GOT[e1] is unused. There only needs to be one module index entry.
|
|
if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
|
|
AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
|
|
NeedDynId ? nullptr : &Body, NeedDynId);
|
|
C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
|
|
// Global Dynamic is the most general purpose access model. When we know
|
|
// the module index and offset of symbol in TLS block we can fill these in
|
|
// using static GOT relocations.
|
|
if (Expr == R_TLSGD_PC) {
|
|
if (InX::Got->addDynTlsEntry(Body)) {
|
|
uint64_t Off = InX::Got->getGlobalDynOffset(Body);
|
|
AddTlsReloc(Off, Target->TlsModuleIndexRel, &Body, NeedDynId);
|
|
AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Body,
|
|
NeedDynOff);
|
|
}
|
|
C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Returns the number of relocations processed.
|
|
template <class ELFT>
|
|
static unsigned
|
|
handleTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C,
|
|
typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
|
|
if (!(C.Flags & SHF_ALLOC))
|
|
return 0;
|
|
|
|
if (!Body.isTls())
|
|
return 0;
|
|
|
|
if (Config->EMachine == EM_ARM)
|
|
return handleARMTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr);
|
|
if (Config->EMachine == EM_MIPS)
|
|
return handleMipsTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr);
|
|
|
|
bool IsPreemptible = isPreemptible(Body, Type);
|
|
if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
|
|
Config->Shared) {
|
|
if (InX::Got->addDynTlsEntry(Body)) {
|
|
uint64_t Off = InX::Got->getGlobalDynOffset(Body);
|
|
In<ELFT>::RelaDyn->addReloc(
|
|
{Target->TlsDescRel, InX::Got, Off, !IsPreemptible, &Body, 0});
|
|
}
|
|
if (Expr != R_TLSDESC_CALL)
|
|
C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
|
|
if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) {
|
|
// Local-Dynamic relocs can be relaxed to Local-Exec.
|
|
if (!Config->Shared) {
|
|
C.Relocations.push_back(
|
|
{R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
|
|
return 2;
|
|
}
|
|
if (InX::Got->addTlsIndex())
|
|
In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::Got,
|
|
InX::Got->getTlsIndexOff(), false, nullptr,
|
|
0});
|
|
C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
|
|
// Local-Dynamic relocs can be relaxed to Local-Exec.
|
|
if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) {
|
|
C.Relocations.push_back(
|
|
{R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
|
|
if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD,
|
|
R_TLSGD_PC>(Expr)) {
|
|
if (Config->Shared) {
|
|
if (InX::Got->addDynTlsEntry(Body)) {
|
|
uint64_t Off = InX::Got->getGlobalDynOffset(Body);
|
|
In<ELFT>::RelaDyn->addReloc(
|
|
{Target->TlsModuleIndexRel, InX::Got, Off, false, &Body, 0});
|
|
|
|
// If the symbol is preemptible we need the dynamic linker to write
|
|
// the offset too.
|
|
uint64_t OffsetOff = Off + Config->Wordsize;
|
|
if (IsPreemptible)
|
|
In<ELFT>::RelaDyn->addReloc(
|
|
{Target->TlsOffsetRel, InX::Got, OffsetOff, false, &Body, 0});
|
|
else
|
|
InX::Got->Relocations.push_back(
|
|
{R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Body});
|
|
}
|
|
C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
|
|
// Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
|
|
// depending on the symbol being locally defined or not.
|
|
if (IsPreemptible) {
|
|
C.Relocations.push_back(
|
|
{Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
|
|
Offset, Addend, &Body});
|
|
if (!Body.isInGot()) {
|
|
InX::Got->addEntry(Body);
|
|
In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, InX::Got,
|
|
Body.getGotOffset(), false, &Body, 0});
|
|
}
|
|
} else {
|
|
C.Relocations.push_back(
|
|
{Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
|
|
Offset, Addend, &Body});
|
|
}
|
|
return Target->TlsGdRelaxSkip;
|
|
}
|
|
|
|
// Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
|
|
// defined.
|
|
if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
|
|
!Config->Shared && !IsPreemptible) {
|
|
C.Relocations.push_back(
|
|
{R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body});
|
|
return 1;
|
|
}
|
|
|
|
if (Expr == R_TLSDESC_CALL)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t getMipsPairType(uint32_t Type, const SymbolBody &Sym) {
|
|
switch (Type) {
|
|
case R_MIPS_HI16:
|
|
return R_MIPS_LO16;
|
|
case R_MIPS_GOT16:
|
|
return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
|
|
case R_MICROMIPS_GOT16:
|
|
return Sym.isLocal() ? R_MICROMIPS_LO16 : R_MIPS_NONE;
|
|
case R_MIPS_PCHI16:
|
|
return R_MIPS_PCLO16;
|
|
case R_MICROMIPS_HI16:
|
|
return R_MICROMIPS_LO16;
|
|
default:
|
|
return R_MIPS_NONE;
|
|
}
|
|
}
|
|
|
|
// True if non-preemptable symbol always has the same value regardless of where
|
|
// the DSO is loaded.
|
|
static bool isAbsolute(const SymbolBody &Body) {
|
|
if (Body.isUndefWeak())
|
|
return true;
|
|
if (const auto *DR = dyn_cast<DefinedRegular>(&Body))
|
|
return DR->Section == nullptr; // Absolute symbol.
|
|
return false;
|
|
}
|
|
|
|
static bool isAbsoluteValue(const SymbolBody &Body) {
|
|
return isAbsolute(Body) || Body.isTls();
|
|
}
|
|
|
|
// Returns true if Expr refers a PLT entry.
|
|
static bool needsPlt(RelExpr Expr) {
|
|
return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr);
|
|
}
|
|
|
|
// Returns true if Expr refers a GOT entry. Note that this function
|
|
// returns false for TLS variables even though they need GOT, because
|
|
// TLS variables uses GOT differently than the regular variables.
|
|
static bool needsGot(RelExpr Expr) {
|
|
return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
|
|
R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
|
|
R_GOT_FROM_END>(Expr);
|
|
}
|
|
|
|
// True if this expression is of the form Sym - X, where X is a position in the
|
|
// file (PC, or GOT for example).
|
|
static bool isRelExpr(RelExpr Expr) {
|
|
return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
|
|
R_PAGE_PC, R_RELAX_GOT_PC>(Expr);
|
|
}
|
|
|
|
// Returns true if a given relocation can be computed at link-time.
|
|
//
|
|
// For instance, we know the offset from a relocation to its target at
|
|
// link-time if the relocation is PC-relative and refers a
|
|
// non-interposable function in the same executable. This function
|
|
// will return true for such relocation.
|
|
//
|
|
// If this function returns false, that means we need to emit a
|
|
// dynamic relocation so that the relocation will be fixed at load-time.
|
|
template <class ELFT>
|
|
static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
|
|
const SymbolBody &Body,
|
|
InputSectionBase &S, uint64_t RelOff) {
|
|
// These expressions always compute a constant
|
|
if (isRelExprOneOf<R_SIZE, R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
|
|
R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
|
|
R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC,
|
|
R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC, R_TLSGD,
|
|
R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT>(E))
|
|
return true;
|
|
|
|
// These never do, except if the entire file is position dependent or if
|
|
// only the low bits are used.
|
|
if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
|
|
return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
|
|
|
|
if (isPreemptible(Body, Type))
|
|
return false;
|
|
if (!Config->Pic)
|
|
return true;
|
|
|
|
// For the target and the relocation, we want to know if they are
|
|
// absolute or relative.
|
|
bool AbsVal = isAbsoluteValue(Body);
|
|
bool RelE = isRelExpr(E);
|
|
if (AbsVal && !RelE)
|
|
return true;
|
|
if (!AbsVal && RelE)
|
|
return true;
|
|
if (!AbsVal && !RelE)
|
|
return Target->usesOnlyLowPageBits(Type);
|
|
|
|
// Relative relocation to an absolute value. This is normally unrepresentable,
|
|
// but if the relocation refers to a weak undefined symbol, we allow it to
|
|
// resolve to the image base. This is a little strange, but it allows us to
|
|
// link function calls to such symbols. Normally such a call will be guarded
|
|
// with a comparison, which will load a zero from the GOT.
|
|
// Another special case is MIPS _gp_disp symbol which represents offset
|
|
// between start of a function and '_gp' value and defined as absolute just
|
|
// to simplify the code.
|
|
assert(AbsVal && RelE);
|
|
if (Body.isUndefWeak())
|
|
return true;
|
|
|
|
error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
|
|
toString(Body) + getLocation<ELFT>(S, Body, RelOff));
|
|
return true;
|
|
}
|
|
|
|
static RelExpr toPlt(RelExpr Expr) {
|
|
if (Expr == R_PPC_OPD)
|
|
return R_PPC_PLT_OPD;
|
|
if (Expr == R_PC)
|
|
return R_PLT_PC;
|
|
if (Expr == R_PAGE_PC)
|
|
return R_PLT_PAGE_PC;
|
|
if (Expr == R_ABS)
|
|
return R_PLT;
|
|
return Expr;
|
|
}
|
|
|
|
static RelExpr fromPlt(RelExpr Expr) {
|
|
// We decided not to use a plt. Optimize a reference to the plt to a
|
|
// reference to the symbol itself.
|
|
if (Expr == R_PLT_PC)
|
|
return R_PC;
|
|
if (Expr == R_PPC_PLT_OPD)
|
|
return R_PPC_OPD;
|
|
if (Expr == R_PLT)
|
|
return R_ABS;
|
|
return Expr;
|
|
}
|
|
|
|
// Returns true if a given shared symbol is in a read-only segment in a DSO.
|
|
template <class ELFT> static bool isReadOnly(SharedSymbol *SS) {
|
|
typedef typename ELFT::Phdr Elf_Phdr;
|
|
uint64_t Value = SS->getValue<ELFT>();
|
|
|
|
// Determine if the symbol is read-only by scanning the DSO's program headers.
|
|
const SharedFile<ELFT> *File = SS->getFile<ELFT>();
|
|
for (const Elf_Phdr &Phdr : check(File->getObj().program_headers()))
|
|
if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
|
|
!(Phdr.p_flags & ELF::PF_W) && Value >= Phdr.p_vaddr &&
|
|
Value < Phdr.p_vaddr + Phdr.p_memsz)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Returns symbols at the same offset as a given symbol, including SS itself.
|
|
//
|
|
// If two or more symbols are at the same offset, and at least one of
|
|
// them are copied by a copy relocation, all of them need to be copied.
|
|
// Otherwise, they would refer different places at runtime.
|
|
template <class ELFT>
|
|
static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) {
|
|
typedef typename ELFT::Sym Elf_Sym;
|
|
|
|
SharedFile<ELFT> *File = SS->getFile<ELFT>();
|
|
uint64_t Shndx = SS->getShndx<ELFT>();
|
|
uint64_t Value = SS->getValue<ELFT>();
|
|
|
|
std::vector<SharedSymbol *> Ret;
|
|
for (const Elf_Sym &S : File->getGlobalELFSyms()) {
|
|
if (S.st_shndx != Shndx || S.st_value != Value)
|
|
continue;
|
|
StringRef Name = check(S.getName(File->getStringTable()));
|
|
SymbolBody *Sym = Symtab->find(Name);
|
|
if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
|
|
Ret.push_back(Alias);
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
// Reserve space in .bss or .bss.rel.ro for copy relocation.
|
|
//
|
|
// The copy relocation is pretty much a hack. If you use a copy relocation
|
|
// in your program, not only the symbol name but the symbol's size, RW/RO
|
|
// bit and alignment become part of the ABI. In addition to that, if the
|
|
// symbol has aliases, the aliases become part of the ABI. That's subtle,
|
|
// but if you violate that implicit ABI, that can cause very counter-
|
|
// intuitive consequences.
|
|
//
|
|
// So, what is the copy relocation? It's for linking non-position
|
|
// independent code to DSOs. In an ideal world, all references to data
|
|
// exported by DSOs should go indirectly through GOT. But if object files
|
|
// are compiled as non-PIC, all data references are direct. There is no
|
|
// way for the linker to transform the code to use GOT, as machine
|
|
// instructions are already set in stone in object files. This is where
|
|
// the copy relocation takes a role.
|
|
//
|
|
// A copy relocation instructs the dynamic linker to copy data from a DSO
|
|
// to a specified address (which is usually in .bss) at load-time. If the
|
|
// static linker (that's us) finds a direct data reference to a DSO
|
|
// symbol, it creates a copy relocation, so that the symbol can be
|
|
// resolved as if it were in .bss rather than in a DSO.
|
|
//
|
|
// As you can see in this function, we create a copy relocation for the
|
|
// dynamic linker, and the relocation contains not only symbol name but
|
|
// various other informtion about the symbol. So, such attributes become a
|
|
// part of the ABI.
|
|
//
|
|
// Note for application developers: I can give you a piece of advice if
|
|
// you are writing a shared library. You probably should export only
|
|
// functions from your library. You shouldn't export variables.
|
|
//
|
|
// As an example what can happen when you export variables without knowing
|
|
// the semantics of copy relocations, assume that you have an exported
|
|
// variable of type T. It is an ABI-breaking change to add new members at
|
|
// end of T even though doing that doesn't change the layout of the
|
|
// existing members. That's because the space for the new members are not
|
|
// reserved in .bss unless you recompile the main program. That means they
|
|
// are likely to overlap with other data that happens to be laid out next
|
|
// to the variable in .bss. This kind of issue is sometimes very hard to
|
|
// debug. What's a solution? Instead of exporting a varaible V from a DSO,
|
|
// define an accessor getV().
|
|
template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) {
|
|
// Copy relocation against zero-sized symbol doesn't make sense.
|
|
uint64_t SymSize = SS->template getSize<ELFT>();
|
|
if (SymSize == 0)
|
|
fatal("cannot create a copy relocation for symbol " + toString(*SS));
|
|
|
|
// See if this symbol is in a read-only segment. If so, preserve the symbol's
|
|
// memory protection by reserving space in the .bss.rel.ro section.
|
|
bool IsReadOnly = isReadOnly<ELFT>(SS);
|
|
BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
|
|
SymSize, SS->getAlignment<ELFT>());
|
|
if (IsReadOnly)
|
|
InX::BssRelRo->getParent()->addSection(Sec);
|
|
else
|
|
InX::Bss->getParent()->addSection(Sec);
|
|
|
|
// Look through the DSO's dynamic symbol table for aliases and create a
|
|
// dynamic symbol for each one. This causes the copy relocation to correctly
|
|
// interpose any aliases.
|
|
for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) {
|
|
Sym->CopyRelSec = Sec;
|
|
Sym->IsPreemptible = false;
|
|
Sym->symbol()->IsUsedInRegularObj = true;
|
|
}
|
|
|
|
In<ELFT>::RelaDyn->addReloc({Target->CopyRel, Sec, 0, false, SS, 0});
|
|
}
|
|
|
|
static void errorOrWarn(const Twine &Msg) {
|
|
if (!Config->NoinhibitExec)
|
|
error(Msg);
|
|
else
|
|
warn(Msg);
|
|
}
|
|
|
|
template <class ELFT>
|
|
static RelExpr adjustExpr(SymbolBody &Body, RelExpr Expr, uint32_t Type,
|
|
const uint8_t *Data, InputSectionBase &S,
|
|
typename ELFT::uint RelOff) {
|
|
if (Body.isGnuIFunc()) {
|
|
Expr = toPlt(Expr);
|
|
} else if (!isPreemptible(Body, Type)) {
|
|
if (needsPlt(Expr))
|
|
Expr = fromPlt(Expr);
|
|
if (Expr == R_GOT_PC && !isAbsoluteValue(Body))
|
|
Expr = Target->adjustRelaxExpr(Type, Data, Expr);
|
|
}
|
|
|
|
bool IsWrite = !Config->ZText || (S.Flags & SHF_WRITE);
|
|
if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, S, RelOff))
|
|
return Expr;
|
|
|
|
// If we got here we know that this relocation would require the dynamic
|
|
// linker to write a value to read only memory.
|
|
|
|
// If the relocation is to a weak undef, give up on it and produce a
|
|
// non preemptible 0.
|
|
if (Body.isUndefWeak()) {
|
|
Body.IsPreemptible = false;
|
|
return Expr;
|
|
}
|
|
|
|
// We can hack around it if we are producing an executable and
|
|
// the refered symbol can be preemepted to refer to the executable.
|
|
if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
|
|
error("can't create dynamic relocation " + toString(Type) + " against " +
|
|
(Body.getName().empty() ? "local symbol"
|
|
: "symbol: " + toString(Body)) +
|
|
" in readonly segment; recompile object files with -fPIC" +
|
|
getLocation<ELFT>(S, Body, RelOff));
|
|
return Expr;
|
|
}
|
|
|
|
if (Body.getVisibility() != STV_DEFAULT) {
|
|
error("cannot preempt symbol: " + toString(Body) +
|
|
getLocation<ELFT>(S, Body, RelOff));
|
|
return Expr;
|
|
}
|
|
|
|
if (Body.isObject()) {
|
|
// Produce a copy relocation.
|
|
auto *B = cast<SharedSymbol>(&Body);
|
|
if (!B->CopyRelSec) {
|
|
if (Config->ZNocopyreloc)
|
|
error("unresolvable relocation " + toString(Type) +
|
|
" against symbol '" + toString(*B) +
|
|
"'; recompile with -fPIC or remove '-z nocopyreloc'" +
|
|
getLocation<ELFT>(S, Body, RelOff));
|
|
|
|
addCopyRelSymbol<ELFT>(B);
|
|
}
|
|
return Expr;
|
|
}
|
|
|
|
if (Body.isFunc()) {
|
|
// This handles a non PIC program call to function in a shared library. In
|
|
// an ideal world, we could just report an error saying the relocation can
|
|
// overflow at runtime. In the real world with glibc, crt1.o has a
|
|
// R_X86_64_PC32 pointing to libc.so.
|
|
//
|
|
// The general idea on how to handle such cases is to create a PLT entry and
|
|
// use that as the function value.
|
|
//
|
|
// For the static linking part, we just return a plt expr and everything
|
|
// else will use the the PLT entry as the address.
|
|
//
|
|
// The remaining problem is making sure pointer equality still works. We
|
|
// need the help of the dynamic linker for that. We let it know that we have
|
|
// a direct reference to a so symbol by creating an undefined symbol with a
|
|
// non zero st_value. Seeing that, the dynamic linker resolves the symbol to
|
|
// the value of the symbol we created. This is true even for got entries, so
|
|
// pointer equality is maintained. To avoid an infinite loop, the only entry
|
|
// that points to the real function is a dedicated got entry used by the
|
|
// plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
|
|
// R_386_JMP_SLOT, etc).
|
|
Body.NeedsPltAddr = true;
|
|
Body.IsPreemptible = false;
|
|
return toPlt(Expr);
|
|
}
|
|
|
|
errorOrWarn("symbol '" + toString(Body) + "' defined in " +
|
|
toString(Body.getFile()) + " has no type");
|
|
return Expr;
|
|
}
|
|
|
|
// Returns an addend of a given relocation. If it is RELA, an addend
|
|
// is in a relocation itself. If it is REL, we need to read it from an
|
|
// input section.
|
|
template <class ELFT, class RelTy>
|
|
static int64_t computeAddend(const RelTy &Rel, const uint8_t *Buf) {
|
|
uint32_t Type = Rel.getType(Config->IsMips64EL);
|
|
int64_t A = RelTy::IsRela
|
|
? getAddend<ELFT>(Rel)
|
|
: Target->getImplicitAddend(Buf + Rel.r_offset, Type);
|
|
|
|
if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
|
|
A += getPPC64TocBase();
|
|
return A;
|
|
}
|
|
|
|
// MIPS has an odd notion of "paired" relocations to calculate addends.
|
|
// For example, if a relocation is of R_MIPS_HI16, there must be a
|
|
// R_MIPS_LO16 relocation after that, and an addend is calculated using
|
|
// the two relocations.
|
|
template <class ELFT, class RelTy>
|
|
static int64_t computeMipsAddend(const RelTy &Rel, InputSectionBase &Sec,
|
|
RelExpr Expr, SymbolBody &Body,
|
|
const RelTy *End) {
|
|
if (Expr == R_MIPS_GOTREL && Body.isLocal())
|
|
return Sec.getFile<ELFT>()->MipsGp0;
|
|
|
|
// The ABI says that the paired relocation is used only for REL.
|
|
// See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
if (RelTy::IsRela)
|
|
return 0;
|
|
|
|
uint32_t Type = Rel.getType(Config->IsMips64EL);
|
|
uint32_t PairTy = getMipsPairType(Type, Body);
|
|
if (PairTy == R_MIPS_NONE)
|
|
return 0;
|
|
|
|
const uint8_t *Buf = Sec.Data.data();
|
|
uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);
|
|
|
|
// To make things worse, paired relocations might not be contiguous in
|
|
// the relocation table, so we need to do linear search. *sigh*
|
|
for (const RelTy *RI = &Rel; RI != End; ++RI) {
|
|
if (RI->getType(Config->IsMips64EL) != PairTy)
|
|
continue;
|
|
if (RI->getSymbol(Config->IsMips64EL) != SymIndex)
|
|
continue;
|
|
|
|
return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);
|
|
}
|
|
|
|
warn("can't find matching " + toString(PairTy) + " relocation for " +
|
|
toString(Type));
|
|
return 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void reportUndefined(SymbolBody &Sym, InputSectionBase &S,
|
|
uint64_t Offset) {
|
|
if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
|
|
return;
|
|
|
|
bool CanBeExternal = Sym.symbol()->computeBinding() != STB_LOCAL &&
|
|
Sym.getVisibility() == STV_DEFAULT;
|
|
if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
|
|
return;
|
|
|
|
std::string Msg =
|
|
"undefined symbol: " + toString(Sym) + "\n>>> referenced by ";
|
|
|
|
std::string Src = S.getSrcMsg<ELFT>(Offset);
|
|
if (!Src.empty())
|
|
Msg += Src + "\n>>> ";
|
|
Msg += S.getObjMsg<ELFT>(Offset);
|
|
|
|
if (Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal)
|
|
warn(Msg);
|
|
else
|
|
errorOrWarn(Msg);
|
|
}
|
|
|
|
template <class RelTy>
|
|
static std::pair<uint32_t, uint32_t>
|
|
mergeMipsN32RelTypes(uint32_t Type, uint32_t Offset, RelTy *I, RelTy *E) {
|
|
// MIPS N32 ABI treats series of successive relocations with the same offset
|
|
// as a single relocation. The similar approach used by N64 ABI, but this ABI
|
|
// packs all relocations into the single relocation record. Here we emulate
|
|
// this for the N32 ABI. Iterate over relocation with the same offset and put
|
|
// theirs types into the single bit-set.
|
|
uint32_t Processed = 0;
|
|
for (; I != E && Offset == I->r_offset; ++I) {
|
|
++Processed;
|
|
Type |= I->getType(Config->IsMips64EL) << (8 * Processed);
|
|
}
|
|
return std::make_pair(Type, Processed);
|
|
}
|
|
|
|
// .eh_frame sections are mergeable input sections, so their input
|
|
// offsets are not linearly mapped to output section. For each input
|
|
// offset, we need to find a section piece containing the offset and
|
|
// add the piece's base address to the input offset to compute the
|
|
// output offset. That isn't cheap.
|
|
//
|
|
// This class is to speed up the offset computation. When we process
|
|
// relocations, we access offsets in the monotonically increasing
|
|
// order. So we can optimize for that access pattern.
|
|
//
|
|
// For sections other than .eh_frame, this class doesn't do anything.
|
|
namespace {
|
|
class OffsetGetter {
|
|
public:
|
|
explicit OffsetGetter(InputSectionBase &Sec) {
|
|
if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) {
|
|
P = Eh->Pieces;
|
|
Size = Eh->Pieces.size();
|
|
}
|
|
}
|
|
|
|
// Translates offsets in input sections to offsets in output sections.
|
|
// Given offset must increase monotonically. We assume that P is
|
|
// sorted by InputOff.
|
|
uint64_t get(uint64_t Off) {
|
|
if (P.empty())
|
|
return Off;
|
|
|
|
while (I != Size && P[I].InputOff + P[I].Size <= Off)
|
|
++I;
|
|
if (I == Size)
|
|
return Off;
|
|
|
|
// P must be contiguous, so there must be no holes in between.
|
|
assert(P[I].InputOff <= Off && "Relocation not in any piece");
|
|
|
|
// Offset -1 means that the piece is dead (i.e. garbage collected).
|
|
if (P[I].OutputOff == -1)
|
|
return -1;
|
|
return P[I].OutputOff + Off - P[I].InputOff;
|
|
}
|
|
|
|
private:
|
|
ArrayRef<EhSectionPiece> P;
|
|
size_t I = 0;
|
|
size_t Size;
|
|
};
|
|
} // namespace
|
|
|
|
template <class ELFT, class GotPltSection>
|
|
static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
|
|
RelocationSection<ELFT> *Rel, uint32_t Type,
|
|
SymbolBody &Sym, bool UseSymVA) {
|
|
Plt->addEntry<ELFT>(Sym);
|
|
GotPlt->addEntry(Sym);
|
|
Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0});
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void addGotEntry(SymbolBody &Sym, bool Preemptible) {
|
|
InX::Got->addEntry(Sym);
|
|
|
|
uint64_t Off = Sym.getGotOffset();
|
|
uint32_t DynType;
|
|
RelExpr Expr = R_ABS;
|
|
|
|
if (Sym.isTls()) {
|
|
DynType = Target->TlsGotRel;
|
|
Expr = R_TLS;
|
|
} else if (!Preemptible && Config->Pic && !isAbsolute(Sym)) {
|
|
DynType = Target->RelativeRel;
|
|
} else {
|
|
DynType = Target->GotRel;
|
|
}
|
|
|
|
bool Constant = !Preemptible && !(Config->Pic && !isAbsolute(Sym));
|
|
if (!Constant)
|
|
In<ELFT>::RelaDyn->addReloc(
|
|
{DynType, InX::Got, Off, !Preemptible, &Sym, 0});
|
|
|
|
if (Constant || (!Config->IsRela && !Preemptible))
|
|
InX::Got->Relocations.push_back({Expr, DynType, Off, 0, &Sym});
|
|
}
|
|
|
|
// The reason we have to do this early scan is as follows
|
|
// * To mmap the output file, we need to know the size
|
|
// * For that, we need to know how many dynamic relocs we will have.
|
|
// It might be possible to avoid this by outputting the file with write:
|
|
// * Write the allocated output sections, computing addresses.
|
|
// * Apply relocations, recording which ones require a dynamic reloc.
|
|
// * Write the dynamic relocations.
|
|
// * Write the rest of the file.
|
|
// This would have some drawbacks. For example, we would only know if .rela.dyn
|
|
// is needed after applying relocations. If it is, it will go after rw and rx
|
|
// sections. Given that it is ro, we will need an extra PT_LOAD. This
|
|
// complicates things for the dynamic linker and means we would have to reserve
|
|
// space for the extra PT_LOAD even if we end up not using it.
|
|
template <class ELFT, class RelTy>
|
|
static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
|
|
OffsetGetter GetOffset(Sec);
|
|
|
|
for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) {
|
|
const RelTy &Rel = *I;
|
|
SymbolBody &Body = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
|
|
uint32_t Type = Rel.getType(Config->IsMips64EL);
|
|
|
|
if (Config->MipsN32Abi) {
|
|
uint32_t Processed;
|
|
std::tie(Type, Processed) =
|
|
mergeMipsN32RelTypes(Type, Rel.r_offset, I + 1, End);
|
|
I += Processed;
|
|
}
|
|
|
|
// Compute the offset of this section in the output section.
|
|
uint64_t Offset = GetOffset.get(Rel.r_offset);
|
|
if (Offset == uint64_t(-1))
|
|
continue;
|
|
|
|
// Report undefined symbols. The fact that we report undefined
|
|
// symbols here means that we report undefined symbols only when
|
|
// they have relocations pointing to them. We don't care about
|
|
// undefined symbols that are in dead-stripped sections.
|
|
if (!Body.isLocal() && Body.isUndefined() && !Body.symbol()->isWeak())
|
|
reportUndefined<ELFT>(Body, Sec, Rel.r_offset);
|
|
|
|
RelExpr Expr = Target->getRelExpr(Type, Body, *Sec.File,
|
|
Sec.Data.begin() + Rel.r_offset);
|
|
|
|
// Ignore "hint" relocations because they are only markers for relaxation.
|
|
if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
|
|
continue;
|
|
|
|
bool Preemptible = isPreemptible(Body, Type);
|
|
Expr = adjustExpr<ELFT>(Body, Expr, Type, Sec.Data.data() + Rel.r_offset,
|
|
Sec, Rel.r_offset);
|
|
if (ErrorCount)
|
|
continue;
|
|
|
|
// This relocation does not require got entry, but it is relative to got and
|
|
// needs it to be created. Here we request for that.
|
|
if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
|
|
R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
|
|
InX::Got->HasGotOffRel = true;
|
|
|
|
// Read an addend.
|
|
int64_t Addend = computeAddend<ELFT>(Rel, Sec.Data.data());
|
|
if (Config->EMachine == EM_MIPS)
|
|
Addend += computeMipsAddend<ELFT>(Rel, Sec, Expr, Body, End);
|
|
|
|
// Process some TLS relocations, including relaxing TLS relocations.
|
|
// Note that this function does not handle all TLS relocations.
|
|
if (unsigned Processed =
|
|
handleTlsRelocation<ELFT>(Type, Body, Sec, Offset, Addend, Expr)) {
|
|
I += (Processed - 1);
|
|
continue;
|
|
}
|
|
|
|
// If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
|
|
if (needsPlt(Expr) && !Body.isInPlt()) {
|
|
if (Body.isGnuIFunc() && !Preemptible)
|
|
addPltEntry(InX::Iplt, InX::IgotPlt, In<ELFT>::RelaIplt,
|
|
Target->IRelativeRel, Body, true);
|
|
else
|
|
addPltEntry(InX::Plt, InX::GotPlt, In<ELFT>::RelaPlt, Target->PltRel,
|
|
Body, !Preemptible);
|
|
}
|
|
|
|
// Create a GOT slot if a relocation needs GOT.
|
|
if (needsGot(Expr)) {
|
|
if (Config->EMachine == EM_MIPS) {
|
|
// MIPS ABI has special rules to process GOT entries and doesn't
|
|
// require relocation entries for them. A special case is TLS
|
|
// relocations. In that case dynamic loader applies dynamic
|
|
// relocations to initialize TLS GOT entries.
|
|
// See "Global Offset Table" in Chapter 5 in the following document
|
|
// for detailed description:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
InX::MipsGot->addEntry(Body, Addend, Expr);
|
|
if (Body.isTls() && Body.isPreemptible())
|
|
In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, InX::MipsGot,
|
|
Body.getGotOffset(), false, &Body, 0});
|
|
} else if (!Body.isInGot()) {
|
|
addGotEntry<ELFT>(Body, Preemptible);
|
|
}
|
|
}
|
|
|
|
if (!needsPlt(Expr) && !needsGot(Expr) && isPreemptible(Body, Type)) {
|
|
// We don't know anything about the finaly symbol. Just ask the dynamic
|
|
// linker to handle the relocation for us.
|
|
if (!Target->isPicRel(Type))
|
|
errorOrWarn(
|
|
"relocation " + toString(Type) +
|
|
" cannot be used against shared object; recompile with -fPIC" +
|
|
getLocation<ELFT>(Sec, Body, Offset));
|
|
|
|
In<ELFT>::RelaDyn->addReloc(
|
|
{Target->getDynRel(Type), &Sec, Offset, false, &Body, Addend});
|
|
|
|
// MIPS ABI turns using of GOT and dynamic relocations inside out.
|
|
// While regular ABI uses dynamic relocations to fill up GOT entries
|
|
// MIPS ABI requires dynamic linker to fills up GOT entries using
|
|
// specially sorted dynamic symbol table. This affects even dynamic
|
|
// relocations against symbols which do not require GOT entries
|
|
// creation explicitly, i.e. do not have any GOT-relocations. So if
|
|
// a preemptible symbol has a dynamic relocation we anyway have
|
|
// to create a GOT entry for it.
|
|
// If a non-preemptible symbol has a dynamic relocation against it,
|
|
// dynamic linker takes it st_value, adds offset and writes down
|
|
// result of the dynamic relocation. In case of preemptible symbol
|
|
// dynamic linker performs symbol resolution, writes the symbol value
|
|
// to the GOT entry and reads the GOT entry when it needs to perform
|
|
// a dynamic relocation.
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
|
|
if (Config->EMachine == EM_MIPS)
|
|
InX::MipsGot->addEntry(Body, Addend, Expr);
|
|
continue;
|
|
}
|
|
|
|
// If the relocation points to something in the file, we can process it.
|
|
bool IsConstant =
|
|
isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, Sec, Rel.r_offset);
|
|
|
|
// The size is not going to change, so we fold it in here.
|
|
if (Expr == R_SIZE)
|
|
Addend += Body.getSize<ELFT>();
|
|
|
|
// If the output being produced is position independent, the final value
|
|
// is still not known. In that case we still need some help from the
|
|
// dynamic linker. We can however do better than just copying the incoming
|
|
// relocation. We can process some of it and and just ask the dynamic
|
|
// linker to add the load address.
|
|
if (!IsConstant)
|
|
In<ELFT>::RelaDyn->addReloc(
|
|
{Target->RelativeRel, &Sec, Offset, true, &Body, Addend});
|
|
|
|
// If the produced value is a constant, we just remember to write it
|
|
// when outputting this section. We also have to do it if the format
|
|
// uses Elf_Rel, since in that case the written value is the addend.
|
|
if (IsConstant || !RelTy::IsRela)
|
|
Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
|
|
if (S.AreRelocsRela)
|
|
scanRelocs<ELFT>(S, S.relas<ELFT>());
|
|
else
|
|
scanRelocs<ELFT>(S, S.rels<ELFT>());
|
|
}
|
|
|
|
// Insert the Thunks for OutputSection OS into their designated place
|
|
// in the Sections vector, and recalculate the InputSection output section
|
|
// offsets.
|
|
// This may invalidate any output section offsets stored outside of InputSection
|
|
void ThunkCreator::mergeThunks() {
|
|
for (auto &KV : ThunkSections) {
|
|
std::vector<InputSection *> *ISR = KV.first;
|
|
std::vector<ThunkSection *> &Thunks = KV.second;
|
|
|
|
// Order Thunks in ascending OutSecOff
|
|
auto ThunkCmp = [](const ThunkSection *A, const ThunkSection *B) {
|
|
return A->OutSecOff < B->OutSecOff;
|
|
};
|
|
std::stable_sort(Thunks.begin(), Thunks.end(), ThunkCmp);
|
|
|
|
// Merge sorted vectors of Thunks and InputSections by OutSecOff
|
|
std::vector<InputSection *> Tmp;
|
|
Tmp.reserve(ISR->size() + Thunks.size());
|
|
auto MergeCmp = [](const InputSection *A, const InputSection *B) {
|
|
// std::merge requires a strict weak ordering.
|
|
if (A->OutSecOff < B->OutSecOff)
|
|
return true;
|
|
if (A->OutSecOff == B->OutSecOff)
|
|
// Check if Thunk is immediately before any specific Target InputSection
|
|
// for example Mips LA25 Thunks.
|
|
if (auto *TA = dyn_cast<ThunkSection>(A))
|
|
if (TA && TA->getTargetInputSection() == B)
|
|
return true;
|
|
return false;
|
|
};
|
|
std::merge(ISR->begin(), ISR->end(), Thunks.begin(), Thunks.end(),
|
|
std::back_inserter(Tmp), MergeCmp);
|
|
*ISR = std::move(Tmp);
|
|
}
|
|
}
|
|
|
|
static uint32_t findEndOfFirstNonExec(OutputSection &Cmd) {
|
|
for (BaseCommand *Base : Cmd.Commands)
|
|
if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
|
|
for (auto *IS : ISD->Sections)
|
|
if ((IS->Flags & SHF_EXECINSTR) == 0)
|
|
return IS->OutSecOff + IS->getSize();
|
|
return 0;
|
|
}
|
|
|
|
ThunkSection *ThunkCreator::getOSThunkSec(OutputSection *OS,
|
|
std::vector<InputSection *> *ISR) {
|
|
if (CurTS == nullptr) {
|
|
uint32_t Off = findEndOfFirstNonExec(*OS);
|
|
CurTS = addThunkSection(OS, ISR, Off);
|
|
}
|
|
return CurTS;
|
|
}
|
|
|
|
// Add a Thunk that needs to be placed in a ThunkSection that immediately
|
|
// precedes its Target.
|
|
ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
|
|
ThunkSection *TS = ThunkedSections.lookup(IS);
|
|
if (TS)
|
|
return TS;
|
|
|
|
// Find InputSectionRange within Target Output Section (TOS) that the
|
|
// InputSection (IS) that we need to precede is in.
|
|
OutputSection *TOS = IS->getParent();
|
|
std::vector<InputSection *> *Range = nullptr;
|
|
for (BaseCommand *BC : TOS->Commands)
|
|
if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
|
|
InputSection *first = ISD->Sections.front();
|
|
InputSection *last = ISD->Sections.back();
|
|
if (IS->OutSecOff >= first->OutSecOff &&
|
|
IS->OutSecOff <= last->OutSecOff) {
|
|
Range = &ISD->Sections;
|
|
break;
|
|
}
|
|
}
|
|
TS = addThunkSection(TOS, Range, IS->OutSecOff);
|
|
ThunkedSections[IS] = TS;
|
|
return TS;
|
|
}
|
|
|
|
ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
|
|
std::vector<InputSection *> *ISR,
|
|
uint64_t Off) {
|
|
auto *TS = make<ThunkSection>(OS, Off);
|
|
ThunkSections[ISR].push_back(TS);
|
|
return TS;
|
|
}
|
|
|
|
std::pair<Thunk *, bool> ThunkCreator::getThunk(SymbolBody &Body,
|
|
uint32_t Type) {
|
|
auto Res = ThunkedSymbols.insert({&Body, std::vector<Thunk *>()});
|
|
if (!Res.second) {
|
|
// Check existing Thunks for Body to see if they can be reused
|
|
for (Thunk *ET : Res.first->second)
|
|
if (ET->isCompatibleWith(Type))
|
|
return std::make_pair(ET, false);
|
|
}
|
|
// No existing compatible Thunk in range, create a new one
|
|
Thunk *T = addThunk(Type, Body);
|
|
Res.first->second.push_back(T);
|
|
return std::make_pair(T, true);
|
|
}
|
|
|
|
// Call Fn on every executable InputSection accessed via the linker script
|
|
// InputSectionDescription::Sections.
|
|
void ThunkCreator::forEachExecInputSection(
|
|
ArrayRef<OutputSection *> OutputSections,
|
|
std::function<void(OutputSection *, std::vector<InputSection *> *,
|
|
InputSection *)>
|
|
Fn) {
|
|
for (OutputSection *OS : OutputSections) {
|
|
if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
|
|
continue;
|
|
for (BaseCommand *BC : OS->Commands)
|
|
if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
|
|
CurTS = nullptr;
|
|
for (InputSection *IS : ISD->Sections)
|
|
Fn(OS, &ISD->Sections, IS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process all relocations from the InputSections that have been assigned
|
|
// to OutputSections and redirect through Thunks if needed.
|
|
//
|
|
// createThunks must be called after scanRelocs has created the Relocations for
|
|
// each InputSection. It must be called before the static symbol table is
|
|
// finalized. If any Thunks are added to an OutputSection the output section
|
|
// offsets of the InputSections will change.
|
|
//
|
|
// FIXME: All Thunks are assumed to be in range of the relocation. Range
|
|
// extension Thunks are not yet supported.
|
|
bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
|
|
if (Pass > 0)
|
|
ThunkSections.clear();
|
|
|
|
// Create all the Thunks and insert them into synthetic ThunkSections. The
|
|
// ThunkSections are later inserted back into the OutputSection.
|
|
|
|
// We separate the creation of ThunkSections from the insertion of the
|
|
// ThunkSections back into the OutputSection as ThunkSections are not always
|
|
// inserted into the same OutputSection as the caller.
|
|
forEachExecInputSection(OutputSections, [&](OutputSection *OS,
|
|
std::vector<InputSection *> *ISR,
|
|
InputSection *IS) {
|
|
for (Relocation &Rel : IS->Relocations) {
|
|
SymbolBody &Body = *Rel.Sym;
|
|
if (Thunks.find(&Body) != Thunks.end() ||
|
|
!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Body))
|
|
continue;
|
|
Thunk *T;
|
|
bool IsNew;
|
|
std::tie(T, IsNew) = getThunk(Body, Rel.Type);
|
|
if (IsNew) {
|
|
// Find or create a ThunkSection for the new Thunk
|
|
ThunkSection *TS;
|
|
if (auto *TIS = T->getTargetInputSection())
|
|
TS = getISThunkSec(TIS);
|
|
else
|
|
TS = getOSThunkSec(OS, ISR);
|
|
TS->addThunk(T);
|
|
Thunks[T->ThunkSym] = T;
|
|
}
|
|
// Redirect relocation to Thunk, we never go via the PLT to a Thunk
|
|
Rel.Sym = T->ThunkSym;
|
|
Rel.Expr = fromPlt(Rel.Expr);
|
|
}
|
|
});
|
|
// Merge all created synthetic ThunkSections back into OutputSection
|
|
mergeThunks();
|
|
++Pass;
|
|
return !ThunkSections.empty();
|
|
}
|
|
|
|
template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
|
|
template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
|
|
template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
|
|
template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
|