llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp

570 lines
20 KiB
C++

//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMCallLowering.h"
#include "ARMLegalizerInfo.h"
#ifdef LLVM_BUILD_GLOBAL_ISEL
#include "ARMRegisterBankInfo.h"
#endif
#include "ARMSubtarget.h"
#include "ARMMacroFusion.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "ARMTargetTransformInfo.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ExecutionDepsFix.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/GISelAccessor.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <memory>
#include <string>
using namespace llvm;
static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
cl::desc("Inhibit optimization of S->D register accesses on A15"),
cl::init(false));
static cl::opt<bool>
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
cl::desc("Run SimplifyCFG after expanding atomic operations"
" to make use of cmpxchg flow-based information"),
cl::init(true));
static cl::opt<bool>
EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
cl::desc("Enable ARM load/store optimization pass"),
cl::init(true));
// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
EnableGlobalMerge("arm-global-merge", cl::Hidden,
cl::desc("Enable the global merge pass"));
namespace llvm {
void initializeARMExecutionDepsFixPass(PassRegistry&);
}
extern "C" void LLVMInitializeARMTarget() {
// Register the target.
RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeGlobalISel(Registry);
initializeARMLoadStoreOptPass(Registry);
initializeARMPreAllocLoadStoreOptPass(Registry);
initializeARMConstantIslandsPass(Registry);
initializeARMExecutionDepsFixPass(Registry);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
if (TT.isOSBinFormatMachO())
return llvm::make_unique<TargetLoweringObjectFileMachO>();
if (TT.isOSWindows())
return llvm::make_unique<TargetLoweringObjectFileCOFF>();
return llvm::make_unique<ARMElfTargetObjectFile>();
}
static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple &TT, StringRef CPU,
const TargetOptions &Options) {
if (Options.MCOptions.getABIName() == "aapcs16")
return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
else if (Options.MCOptions.getABIName().startswith("aapcs"))
return ARMBaseTargetMachine::ARM_ABI_AAPCS;
else if (Options.MCOptions.getABIName().startswith("apcs"))
return ARMBaseTargetMachine::ARM_ABI_APCS;
assert(Options.MCOptions.getABIName().empty() &&
"Unknown target-abi option!");
ARMBaseTargetMachine::ARMABI TargetABI =
ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
unsigned ArchKind = ARM::parseCPUArch(CPU);
StringRef ArchName = ARM::getArchName(ArchKind);
// FIXME: This is duplicated code from the front end and should be unified.
if (TT.isOSBinFormatMachO()) {
if (TT.getEnvironment() == Triple::EABI ||
(TT.getOS() == Triple::UnknownOS && TT.isOSBinFormatMachO()) ||
ARM::parseArchProfile(ArchName) == ARM::PK_M) {
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
} else if (TT.isWatchABI()) {
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16;
} else {
TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
}
} else if (TT.isOSWindows()) {
// FIXME: this is invalid for WindowsCE
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
} else {
// Select the default based on the platform.
switch (TT.getEnvironment()) {
case Triple::Android:
case Triple::GNUEABI:
case Triple::GNUEABIHF:
case Triple::MuslEABI:
case Triple::MuslEABIHF:
case Triple::EABIHF:
case Triple::EABI:
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
break;
case Triple::GNU:
TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
break;
default:
if (TT.isOSNetBSD())
TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
else
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
break;
}
}
return TargetABI;
}
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
const TargetOptions &Options,
bool isLittle) {
auto ABI = computeTargetABI(TT, CPU, Options);
std::string Ret;
if (isLittle)
// Little endian.
Ret += "e";
else
// Big endian.
Ret += "E";
Ret += DataLayout::getManglingComponent(TT);
// Pointers are 32 bits and aligned to 32 bits.
Ret += "-p:32:32";
// ABIs other than APCS have 64 bit integers with natural alignment.
if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-i64:64";
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
// bits, others to 64 bits. We always try to align to 64 bits.
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-f64:32:64";
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
// to 64. We always ty to give them natural alignment.
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-v64:32:64-v128:32:128";
else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
Ret += "-v128:64:128";
// Try to align aggregates to 32 bits (the default is 64 bits, which has no
// particular hardware support on 32-bit ARM).
Ret += "-a:0:32";
// Integer registers are 32 bits.
Ret += "-n32";
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
// aligned everywhere else.
if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
Ret += "-S128";
else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
Ret += "-S64";
else
Ret += "-S32";
return Ret;
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
Optional<Reloc::Model> RM) {
if (!RM.hasValue())
// Default relocation model on Darwin is PIC.
return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
assert(TT.isOSBinFormatELF() &&
"ROPI/RWPI currently only supported for ELF");
// DynamicNoPIC is only used on darwin.
if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
return Reloc::Static;
return *RM;
}
/// Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
CPU, FS, Options, getEffectiveRelocModel(TT, RM), CM,
OL),
TargetABI(computeTargetABI(TT, CPU, Options)),
TLOF(createTLOF(getTargetTriple())),
Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
// Default to triple-appropriate float ABI
if (Options.FloatABIType == FloatABI::Default)
this->Options.FloatABIType =
Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
// Default to triple-appropriate EABI
if (Options.EABIVersion == EABI::Default ||
Options.EABIVersion == EABI::Unknown) {
// musl is compatible with glibc with regard to EABI version
if (Subtarget.isTargetGNUAEABI() || Subtarget.isTargetMuslAEABI())
this->Options.EABIVersion = EABI::GNU;
else
this->Options.EABIVersion = EABI::EABI5;
}
initAsmInfo();
if (!Subtarget.isThumb() && !Subtarget.hasARMOps())
report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
"support ARM mode execution!");
}
ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
#ifdef LLVM_BUILD_GLOBAL_ISEL
namespace {
struct ARMGISelActualAccessor : public GISelAccessor {
std::unique_ptr<CallLowering> CallLoweringInfo;
std::unique_ptr<InstructionSelector> InstSelector;
std::unique_ptr<LegalizerInfo> Legalizer;
std::unique_ptr<RegisterBankInfo> RegBankInfo;
const CallLowering *getCallLowering() const override {
return CallLoweringInfo.get();
}
const InstructionSelector *getInstructionSelector() const override {
return InstSelector.get();
}
const LegalizerInfo *getLegalizerInfo() const override {
return Legalizer.get();
}
const RegisterBankInfo *getRegBankInfo() const override {
return RegBankInfo.get();
}
};
} // end anonymous namespace
#endif
const ARMSubtarget *
ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString().str()
: TargetCPU;
std::string FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString().str()
: TargetFS;
// FIXME: This is related to the code below to reset the target options,
// we need to know whether or not the soft float flag is set on the
// function before we can generate a subtarget. We also need to use
// it as a key for the subtarget since that can be the only difference
// between two functions.
bool SoftFloat =
F.getFnAttribute("use-soft-float").getValueAsString() == "true";
// If the soft float attribute is set on the function turn on the soft float
// subtarget feature.
if (SoftFloat)
FS += FS.empty() ? "+soft-float" : ",+soft-float";
auto &I = SubtargetMap[CPU + FS];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
#ifndef LLVM_BUILD_GLOBAL_ISEL
GISelAccessor *GISel = new GISelAccessor();
#else
ARMGISelActualAccessor *GISel = new ARMGISelActualAccessor();
GISel->CallLoweringInfo.reset(new ARMCallLowering(*I->getTargetLowering()));
GISel->Legalizer.reset(new ARMLegalizerInfo(*I));
auto *RBI = new ARMRegisterBankInfo(*I->getRegisterInfo());
// FIXME: At this point, we can't rely on Subtarget having RBI.
// It's awkward to mix passing RBI and the Subtarget; should we pass
// TII/TRI as well?
GISel->InstSelector.reset(createARMInstructionSelector(*this, *I, *RBI));
GISel->RegBankInfo.reset(RBI);
#endif
I->setGISelAccessor(*GISel);
}
return I.get();
}
TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis([this](const Function &F) {
return TargetTransformInfo(ARMTTIImpl(this, F));
});
}
ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
ARMBaseTargetMachine &getARMTargetMachine() const {
return getTM<ARMBaseTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
// add DAG Mutations here.
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
if (ST.hasFusion())
DAG->addMutation(createARMMacroFusionDAGMutation());
return DAG;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
// add DAG Mutations here.
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
if (ST.hasFusion())
DAG->addMutation(createARMMacroFusionDAGMutation());
return DAG;
}
void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
#ifdef LLVM_BUILD_GLOBAL_ISEL
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
#endif
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
class ARMExecutionDepsFix : public ExecutionDepsFix {
public:
static char ID;
ARMExecutionDepsFix() : ExecutionDepsFix(ID, ARM::DPRRegClass) {}
StringRef getPassName() const override {
return "ARM Execution Dependency Fix";
}
};
char ARMExecutionDepsFix::ID;
} // end anonymous namespace
INITIALIZE_PASS(ARMExecutionDepsFix, "arm-execution-deps-fix",
"ARM Execution Dependency Fix", false, false)
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
return new ARMPassConfig(*this, PM);
}
void ARMPassConfig::addIRPasses() {
if (TM->Options.ThreadModel == ThreadModel::Single)
addPass(createLowerAtomicPass());
else
addPass(createAtomicExpandPass());
// Cmpxchg instructions are often used with a subsequent comparison to
// determine whether it succeeded. We can exploit existing control-flow in
// ldrex/strex loops to simplify this, but it needs tidying up.
if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
addPass(createCFGSimplificationPass(-1, [this](const Function &F) {
const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
}));
TargetPassConfig::addIRPasses();
// Match interleaved memory accesses to ldN/stN intrinsics.
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createInterleavedAccessPass());
}
bool ARMPassConfig::addPreISel() {
if ((TM->getOptLevel() != CodeGenOpt::None &&
EnableGlobalMerge == cl::BOU_UNSET) ||
EnableGlobalMerge == cl::BOU_TRUE) {
// FIXME: This is using the thumb1 only constant value for
// maximal global offset for merging globals. We may want
// to look into using the old value for non-thumb1 code of
// 4095 based on the TargetMachine, but this starts to become
// tricky when doing code gen per function.
bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
(EnableGlobalMerge == cl::BOU_UNSET);
// Merging of extern globals is enabled by default on non-Mach-O as we
// expect it to be generally either beneficial or harmless. On Mach-O it
// is disabled as we emit the .subsections_via_symbols directive which
// means that merging extern globals is not safe.
bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
MergeExternalByDefault));
}
return false;
}
bool ARMPassConfig::addInstSelector() {
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
return false;
}
#ifdef LLVM_BUILD_GLOBAL_ISEL
bool ARMPassConfig::addIRTranslator() {
addPass(new IRTranslator());
return false;
}
bool ARMPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool ARMPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool ARMPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect());
return false;
}
#endif
void ARMPassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(createMLxExpansionPass());
if (EnableARMLoadStoreOpt)
addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
if (!DisableA15SDOptimization)
addPass(createA15SDOptimizerPass());
}
}
void ARMPassConfig::addPreSched2() {
if (getOptLevel() != CodeGenOpt::None) {
if (EnableARMLoadStoreOpt)
addPass(createARMLoadStoreOptimizationPass());
addPass(new ARMExecutionDepsFix());
}
// Expand some pseudo instructions into multiple instructions to allow
// proper scheduling.
addPass(createARMExpandPseudoPass());
if (getOptLevel() != CodeGenOpt::None) {
// in v8, IfConversion depends on Thumb instruction widths
addPass(createThumb2SizeReductionPass([this](const Function &F) {
return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
}));
addPass(createIfConverter([](const MachineFunction &MF) {
return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
}));
}
addPass(createThumb2ITBlockPass());
}
void ARMPassConfig::addPreEmitPass() {
addPass(createThumb2SizeReductionPass());
// Constant island pass work on unbundled instructions.
addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
return MF.getSubtarget<ARMSubtarget>().isThumb2();
}));
// Don't optimize barriers at -O0.
if (getOptLevel() != CodeGenOpt::None)
addPass(createARMOptimizeBarriersPass());
addPass(createARMConstantIslandPass());
}