forked from OSchip/llvm-project
3904 lines
141 KiB
C++
3904 lines
141 KiB
C++
//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Subclass of MipsTargetLowering specialized for mips32/64.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "MipsSEISelLowering.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsRegisterInfo.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mips-isel"
|
|
|
|
static cl::opt<bool>
|
|
UseMipsTailCalls("mips-tail-calls", cl::Hidden,
|
|
cl::desc("MIPS: permit tail calls."), cl::init(false));
|
|
|
|
static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
|
|
cl::desc("Expand double precision loads and "
|
|
"stores to their single precision "
|
|
"counterparts"));
|
|
|
|
MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI)
|
|
: MipsTargetLowering(TM, STI) {
|
|
// Set up the register classes
|
|
addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
|
|
|
|
if (Subtarget.isGP64bit())
|
|
addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
|
|
|
|
if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
|
|
// Expand all truncating stores and extending loads.
|
|
for (MVT VT0 : MVT::vector_valuetypes()) {
|
|
for (MVT VT1 : MVT::vector_valuetypes()) {
|
|
setTruncStoreAction(VT0, VT1, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasDSP()) {
|
|
MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
|
|
|
|
for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
|
|
addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
|
|
|
|
// Expand all builtin opcodes.
|
|
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
|
|
setOperationAction(Opc, VecTys[i], Expand);
|
|
|
|
setOperationAction(ISD::ADD, VecTys[i], Legal);
|
|
setOperationAction(ISD::SUB, VecTys[i], Legal);
|
|
setOperationAction(ISD::LOAD, VecTys[i], Legal);
|
|
setOperationAction(ISD::STORE, VecTys[i], Legal);
|
|
setOperationAction(ISD::BITCAST, VecTys[i], Legal);
|
|
}
|
|
|
|
setTargetDAGCombine(ISD::SHL);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
setTargetDAGCombine(ISD::VSELECT);
|
|
}
|
|
|
|
if (Subtarget.hasDSPR2())
|
|
setOperationAction(ISD::MUL, MVT::v2i16, Legal);
|
|
|
|
if (Subtarget.hasMSA()) {
|
|
addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
|
|
addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
|
|
addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
|
|
addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
|
|
addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
|
|
addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
|
|
addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
|
|
|
|
// f16 is a storage-only type, always promote it to f32.
|
|
addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
|
|
setOperationAction(ISD::SETCC, MVT::f16, Promote);
|
|
setOperationAction(ISD::BR_CC, MVT::f16, Promote);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
|
|
setOperationAction(ISD::SELECT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FADD, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSUB, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMUL, MVT::f16, Promote);
|
|
setOperationAction(ISD::FDIV, MVT::f16, Promote);
|
|
setOperationAction(ISD::FREM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMA, MVT::f16, Promote);
|
|
setOperationAction(ISD::FNEG, MVT::f16, Promote);
|
|
setOperationAction(ISD::FABS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FCEIL, MVT::f16, Promote);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
|
|
setOperationAction(ISD::FCOS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
|
|
setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FPOW, MVT::f16, Promote);
|
|
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
|
|
setOperationAction(ISD::FRINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSIN, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSQRT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FEXP, MVT::f16, Promote);
|
|
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
|
|
setOperationAction(ISD::FROUND, MVT::f16, Promote);
|
|
setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
|
|
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::VSELECT);
|
|
setTargetDAGCombine(ISD::XOR);
|
|
}
|
|
|
|
if (!Subtarget.useSoftFloat()) {
|
|
addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
|
|
|
|
// When dealing with single precision only, use libcalls
|
|
if (!Subtarget.isSingleFloat()) {
|
|
if (Subtarget.isFP64bit())
|
|
addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
|
|
else
|
|
addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
|
|
}
|
|
}
|
|
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
|
|
setOperationAction(ISD::MULHS, MVT::i32, Custom);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Custom);
|
|
|
|
if (Subtarget.hasCnMips())
|
|
setOperationAction(ISD::MUL, MVT::i64, Legal);
|
|
else if (Subtarget.isGP64bit())
|
|
setOperationAction(ISD::MUL, MVT::i64, Custom);
|
|
|
|
if (Subtarget.isGP64bit()) {
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
|
|
setOperationAction(ISD::MULHS, MVT::i64, Custom);
|
|
setOperationAction(ISD::MULHU, MVT::i64, Custom);
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i32, Custom);
|
|
|
|
setTargetDAGCombine(ISD::ADDE);
|
|
setTargetDAGCombine(ISD::SUBE);
|
|
setTargetDAGCombine(ISD::MUL);
|
|
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
|
|
|
|
if (NoDPLoadStore) {
|
|
setOperationAction(ISD::LOAD, MVT::f64, Custom);
|
|
setOperationAction(ISD::STORE, MVT::f64, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasMips32r6()) {
|
|
// MIPS32r6 replaces the accumulator-based multiplies with a three register
|
|
// instruction
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::MUL, MVT::i32, Legal);
|
|
setOperationAction(ISD::MULHS, MVT::i32, Legal);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Legal);
|
|
|
|
// MIPS32r6 replaces the accumulator-based division/remainder with separate
|
|
// three register division and remainder instructions.
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::i32, Legal);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Legal);
|
|
setOperationAction(ISD::SREM, MVT::i32, Legal);
|
|
setOperationAction(ISD::UREM, MVT::i32, Legal);
|
|
|
|
// MIPS32r6 replaces conditional moves with an equivalent that removes the
|
|
// need for three GPR read ports.
|
|
setOperationAction(ISD::SETCC, MVT::i32, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Legal);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::f32, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Legal);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
|
|
|
|
assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
|
|
setOperationAction(ISD::SETCC, MVT::f64, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Legal);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Legal);
|
|
|
|
// Floating point > and >= are supported via < and <=
|
|
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
|
|
|
|
setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
|
|
}
|
|
|
|
if (Subtarget.hasMips64r6()) {
|
|
// MIPS64r6 replaces the accumulator-based multiplies with a three register
|
|
// instruction
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::MUL, MVT::i64, Legal);
|
|
setOperationAction(ISD::MULHS, MVT::i64, Legal);
|
|
setOperationAction(ISD::MULHU, MVT::i64, Legal);
|
|
|
|
// MIPS32r6 replaces the accumulator-based division/remainder with separate
|
|
// three register division and remainder instructions.
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::i64, Legal);
|
|
setOperationAction(ISD::UDIV, MVT::i64, Legal);
|
|
setOperationAction(ISD::SREM, MVT::i64, Legal);
|
|
setOperationAction(ISD::UREM, MVT::i64, Legal);
|
|
|
|
// MIPS64r6 replaces conditional moves with an equivalent that removes the
|
|
// need for three GPR read ports.
|
|
setOperationAction(ISD::SETCC, MVT::i64, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Legal);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
|
|
}
|
|
|
|
computeRegisterProperties(Subtarget.getRegisterInfo());
|
|
}
|
|
|
|
const MipsTargetLowering *
|
|
llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI) {
|
|
return new MipsSETargetLowering(TM, STI);
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
|
|
if (VT == MVT::Untyped)
|
|
return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
|
|
|
|
return TargetLowering::getRepRegClassFor(VT);
|
|
}
|
|
|
|
// Enable MSA support for the given integer type and Register class.
|
|
void MipsSETargetLowering::
|
|
addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
|
|
addRegisterClass(Ty, RC);
|
|
|
|
// Expand all builtin opcodes.
|
|
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
|
|
setOperationAction(Opc, Ty, Expand);
|
|
|
|
setOperationAction(ISD::BITCAST, Ty, Legal);
|
|
setOperationAction(ISD::LOAD, Ty, Legal);
|
|
setOperationAction(ISD::STORE, Ty, Legal);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
|
|
setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
|
|
|
|
setOperationAction(ISD::ADD, Ty, Legal);
|
|
setOperationAction(ISD::AND, Ty, Legal);
|
|
setOperationAction(ISD::CTLZ, Ty, Legal);
|
|
setOperationAction(ISD::CTPOP, Ty, Legal);
|
|
setOperationAction(ISD::MUL, Ty, Legal);
|
|
setOperationAction(ISD::OR, Ty, Legal);
|
|
setOperationAction(ISD::SDIV, Ty, Legal);
|
|
setOperationAction(ISD::SREM, Ty, Legal);
|
|
setOperationAction(ISD::SHL, Ty, Legal);
|
|
setOperationAction(ISD::SRA, Ty, Legal);
|
|
setOperationAction(ISD::SRL, Ty, Legal);
|
|
setOperationAction(ISD::SUB, Ty, Legal);
|
|
setOperationAction(ISD::UDIV, Ty, Legal);
|
|
setOperationAction(ISD::UREM, Ty, Legal);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
|
|
setOperationAction(ISD::VSELECT, Ty, Legal);
|
|
setOperationAction(ISD::XOR, Ty, Legal);
|
|
|
|
if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
|
|
setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::SETCC, Ty, Legal);
|
|
setCondCodeAction(ISD::SETNE, Ty, Expand);
|
|
setCondCodeAction(ISD::SETGE, Ty, Expand);
|
|
setCondCodeAction(ISD::SETGT, Ty, Expand);
|
|
setCondCodeAction(ISD::SETUGE, Ty, Expand);
|
|
setCondCodeAction(ISD::SETUGT, Ty, Expand);
|
|
}
|
|
|
|
// Enable MSA support for the given floating-point type and Register class.
|
|
void MipsSETargetLowering::
|
|
addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
|
|
addRegisterClass(Ty, RC);
|
|
|
|
// Expand all builtin opcodes.
|
|
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
|
|
setOperationAction(Opc, Ty, Expand);
|
|
|
|
setOperationAction(ISD::LOAD, Ty, Legal);
|
|
setOperationAction(ISD::STORE, Ty, Legal);
|
|
setOperationAction(ISD::BITCAST, Ty, Legal);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
|
|
setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
|
|
|
|
if (Ty != MVT::v8f16) {
|
|
setOperationAction(ISD::FABS, Ty, Legal);
|
|
setOperationAction(ISD::FADD, Ty, Legal);
|
|
setOperationAction(ISD::FDIV, Ty, Legal);
|
|
setOperationAction(ISD::FEXP2, Ty, Legal);
|
|
setOperationAction(ISD::FLOG2, Ty, Legal);
|
|
setOperationAction(ISD::FMA, Ty, Legal);
|
|
setOperationAction(ISD::FMUL, Ty, Legal);
|
|
setOperationAction(ISD::FRINT, Ty, Legal);
|
|
setOperationAction(ISD::FSQRT, Ty, Legal);
|
|
setOperationAction(ISD::FSUB, Ty, Legal);
|
|
setOperationAction(ISD::VSELECT, Ty, Legal);
|
|
|
|
setOperationAction(ISD::SETCC, Ty, Legal);
|
|
setCondCodeAction(ISD::SETOGE, Ty, Expand);
|
|
setCondCodeAction(ISD::SETOGT, Ty, Expand);
|
|
setCondCodeAction(ISD::SETUGE, Ty, Expand);
|
|
setCondCodeAction(ISD::SETUGT, Ty, Expand);
|
|
setCondCodeAction(ISD::SETGE, Ty, Expand);
|
|
setCondCodeAction(ISD::SETGT, Ty, Expand);
|
|
}
|
|
}
|
|
|
|
bool
|
|
MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned,
|
|
unsigned,
|
|
bool *Fast) const {
|
|
MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
|
|
|
|
if (Subtarget.systemSupportsUnalignedAccess()) {
|
|
// MIPS32r6/MIPS64r6 is required to support unaligned access. It's
|
|
// implementation defined whether this is handled by hardware, software, or
|
|
// a hybrid of the two but it's expected that most implementations will
|
|
// handle the majority of cases in hardware.
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
|
|
switch (SVT) {
|
|
case MVT::i64:
|
|
case MVT::i32:
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch(Op.getOpcode()) {
|
|
case ISD::LOAD: return lowerLOAD(Op, DAG);
|
|
case ISD::STORE: return lowerSTORE(Op, DAG);
|
|
case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
|
|
case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
|
|
case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
|
|
case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
|
|
case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
|
|
case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
|
|
case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
|
|
DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG);
|
|
}
|
|
|
|
return MipsTargetLowering::LowerOperation(Op, DAG);
|
|
}
|
|
|
|
// selectMADD -
|
|
// Transforms a subgraph in CurDAG if the following pattern is found:
|
|
// (addc multLo, Lo0), (adde multHi, Hi0),
|
|
// where,
|
|
// multHi/Lo: product of multiplication
|
|
// Lo0: initial value of Lo register
|
|
// Hi0: initial value of Hi register
|
|
// Return true if pattern matching was successful.
|
|
static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
|
|
// ADDENode's second operand must be a flag output of an ADDC node in order
|
|
// for the matching to be successful.
|
|
SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
|
|
|
|
if (ADDCNode->getOpcode() != ISD::ADDC)
|
|
return false;
|
|
|
|
SDValue MultHi = ADDENode->getOperand(0);
|
|
SDValue MultLo = ADDCNode->getOperand(0);
|
|
SDNode *MultNode = MultHi.getNode();
|
|
unsigned MultOpc = MultHi.getOpcode();
|
|
|
|
// MultHi and MultLo must be generated by the same node,
|
|
if (MultLo.getNode() != MultNode)
|
|
return false;
|
|
|
|
// and it must be a multiplication.
|
|
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
|
|
return false;
|
|
|
|
// MultLo amd MultHi must be the first and second output of MultNode
|
|
// respectively.
|
|
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
|
|
return false;
|
|
|
|
// Transform this to a MADD only if ADDENode and ADDCNode are the only users
|
|
// of the values of MultNode, in which case MultNode will be removed in later
|
|
// phases.
|
|
// If there exist users other than ADDENode or ADDCNode, this function returns
|
|
// here, which will result in MultNode being mapped to a single MULT
|
|
// instruction node rather than a pair of MULT and MADD instructions being
|
|
// produced.
|
|
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
|
|
return false;
|
|
|
|
SDLoc DL(ADDENode);
|
|
|
|
// Initialize accumulator.
|
|
SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
|
|
ADDCNode->getOperand(1),
|
|
ADDENode->getOperand(1));
|
|
|
|
// create MipsMAdd(u) node
|
|
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
|
|
|
|
SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
|
|
MultNode->getOperand(0),// Factor 0
|
|
MultNode->getOperand(1),// Factor 1
|
|
ACCIn);
|
|
|
|
// replace uses of adde and addc here
|
|
if (!SDValue(ADDCNode, 0).use_empty()) {
|
|
SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
|
|
}
|
|
if (!SDValue(ADDENode, 0).use_empty()) {
|
|
SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// selectMSUB -
|
|
// Transforms a subgraph in CurDAG if the following pattern is found:
|
|
// (addc Lo0, multLo), (sube Hi0, multHi),
|
|
// where,
|
|
// multHi/Lo: product of multiplication
|
|
// Lo0: initial value of Lo register
|
|
// Hi0: initial value of Hi register
|
|
// Return true if pattern matching was successful.
|
|
static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
|
|
// SUBENode's second operand must be a flag output of an SUBC node in order
|
|
// for the matching to be successful.
|
|
SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
|
|
|
|
if (SUBCNode->getOpcode() != ISD::SUBC)
|
|
return false;
|
|
|
|
SDValue MultHi = SUBENode->getOperand(1);
|
|
SDValue MultLo = SUBCNode->getOperand(1);
|
|
SDNode *MultNode = MultHi.getNode();
|
|
unsigned MultOpc = MultHi.getOpcode();
|
|
|
|
// MultHi and MultLo must be generated by the same node,
|
|
if (MultLo.getNode() != MultNode)
|
|
return false;
|
|
|
|
// and it must be a multiplication.
|
|
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
|
|
return false;
|
|
|
|
// MultLo amd MultHi must be the first and second output of MultNode
|
|
// respectively.
|
|
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
|
|
return false;
|
|
|
|
// Transform this to a MSUB only if SUBENode and SUBCNode are the only users
|
|
// of the values of MultNode, in which case MultNode will be removed in later
|
|
// phases.
|
|
// If there exist users other than SUBENode or SUBCNode, this function returns
|
|
// here, which will result in MultNode being mapped to a single MULT
|
|
// instruction node rather than a pair of MULT and MSUB instructions being
|
|
// produced.
|
|
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
|
|
return false;
|
|
|
|
SDLoc DL(SUBENode);
|
|
|
|
// Initialize accumulator.
|
|
SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
|
|
SUBCNode->getOperand(0),
|
|
SUBENode->getOperand(0));
|
|
|
|
// create MipsSub(u) node
|
|
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
|
|
|
|
SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
|
|
MultNode->getOperand(0),// Factor 0
|
|
MultNode->getOperand(1),// Factor 1
|
|
ACCIn);
|
|
|
|
// replace uses of sube and subc here
|
|
if (!SDValue(SUBCNode, 0).use_empty()) {
|
|
SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
|
|
}
|
|
if (!SDValue(SUBENode, 0).use_empty()) {
|
|
SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
|
|
N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
|
|
//
|
|
// Performs the following transformations:
|
|
// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
|
|
// sign/zero-extension is completely overwritten by the new one performed by
|
|
// the ISD::AND.
|
|
// - Removes redundant zero extensions performed by an ISD::AND.
|
|
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (!Subtarget.hasMSA())
|
|
return SDValue();
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
unsigned Op0Opcode = Op0->getOpcode();
|
|
|
|
// (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
|
|
// where $d + 1 == 2^n and n == 32
|
|
// or $d + 1 == 2^n and n <= 32 and ZExt
|
|
// -> (MipsVExtractZExt $a, $b, $c)
|
|
if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
|
|
Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
|
|
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
|
|
|
|
if (!Mask)
|
|
return SDValue();
|
|
|
|
int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
|
|
|
|
if (Log2IfPositive <= 0)
|
|
return SDValue(); // Mask+1 is not a power of 2
|
|
|
|
SDValue Op0Op2 = Op0->getOperand(2);
|
|
EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
|
|
unsigned ExtendTySize = ExtendTy.getSizeInBits();
|
|
unsigned Log2 = Log2IfPositive;
|
|
|
|
if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
|
|
Log2 == ExtendTySize) {
|
|
SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
|
|
return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
|
|
Op0->getVTList(),
|
|
makeArrayRef(Ops, Op0->getNumOperands()));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Determine if the specified node is a constant vector splat.
|
|
//
|
|
// Returns true and sets Imm if:
|
|
// * N is a ISD::BUILD_VECTOR representing a constant splat
|
|
//
|
|
// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
|
|
// differences are that it assumes the MSA has already been checked and the
|
|
// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
|
|
// must not be in order for binsri.d to be selectable).
|
|
static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
|
|
BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
|
|
|
|
if (!Node)
|
|
return false;
|
|
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
|
|
8, !IsLittleEndian))
|
|
return false;
|
|
|
|
Imm = SplatValue;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Test whether the given node is an all-ones build_vector.
|
|
static bool isVectorAllOnes(SDValue N) {
|
|
// Look through bitcasts. Endianness doesn't matter because we are looking
|
|
// for an all-ones value.
|
|
if (N->getOpcode() == ISD::BITCAST)
|
|
N = N->getOperand(0);
|
|
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
|
|
|
|
if (!BVN)
|
|
return false;
|
|
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
// Endianness doesn't matter in this context because we are looking for
|
|
// an all-ones value.
|
|
if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
|
|
return SplatValue.isAllOnesValue();
|
|
|
|
return false;
|
|
}
|
|
|
|
// Test whether N is the bitwise inverse of OfNode.
|
|
static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
|
|
if (N->getOpcode() != ISD::XOR)
|
|
return false;
|
|
|
|
if (isVectorAllOnes(N->getOperand(0)))
|
|
return N->getOperand(1) == OfNode;
|
|
|
|
if (isVectorAllOnes(N->getOperand(1)))
|
|
return N->getOperand(0) == OfNode;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Perform combines where ISD::OR is the root node.
|
|
//
|
|
// Performs the following transformations:
|
|
// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
|
|
// where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
|
|
// vector type.
|
|
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (!Subtarget.hasMSA())
|
|
return SDValue();
|
|
|
|
EVT Ty = N->getValueType(0);
|
|
|
|
if (!Ty.is128BitVector())
|
|
return SDValue();
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
|
|
SDValue Op0Op0 = Op0->getOperand(0);
|
|
SDValue Op0Op1 = Op0->getOperand(1);
|
|
SDValue Op1Op0 = Op1->getOperand(0);
|
|
SDValue Op1Op1 = Op1->getOperand(1);
|
|
bool IsLittleEndian = !Subtarget.isLittle();
|
|
|
|
SDValue IfSet, IfClr, Cond;
|
|
bool IsConstantMask = false;
|
|
APInt Mask, InvMask;
|
|
|
|
// If Op0Op0 is an appropriate mask, try to find it's inverse in either
|
|
// Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
|
|
// looking.
|
|
// IfClr will be set if we find a valid match.
|
|
if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
|
|
Cond = Op0Op0;
|
|
IfSet = Op0Op1;
|
|
|
|
if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
|
|
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
|
|
IfClr = Op1Op1;
|
|
else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
|
|
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
|
|
IfClr = Op1Op0;
|
|
|
|
IsConstantMask = true;
|
|
}
|
|
|
|
// If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
|
|
// thing again using this mask.
|
|
// IfClr will be set if we find a valid match.
|
|
if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
|
|
Cond = Op0Op1;
|
|
IfSet = Op0Op0;
|
|
|
|
if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
|
|
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
|
|
IfClr = Op1Op1;
|
|
else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
|
|
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
|
|
IfClr = Op1Op0;
|
|
|
|
IsConstantMask = true;
|
|
}
|
|
|
|
// If IfClr is not yet set, try looking for a non-constant match.
|
|
// IfClr will be set if we find a valid match amongst the eight
|
|
// possibilities.
|
|
if (!IfClr.getNode()) {
|
|
if (isBitwiseInverse(Op0Op0, Op1Op0)) {
|
|
Cond = Op1Op0;
|
|
IfSet = Op1Op1;
|
|
IfClr = Op0Op1;
|
|
} else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
|
|
Cond = Op1Op0;
|
|
IfSet = Op1Op1;
|
|
IfClr = Op0Op0;
|
|
} else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
|
|
Cond = Op1Op1;
|
|
IfSet = Op1Op0;
|
|
IfClr = Op0Op1;
|
|
} else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
|
|
Cond = Op1Op1;
|
|
IfSet = Op1Op0;
|
|
IfClr = Op0Op0;
|
|
} else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
|
|
Cond = Op0Op0;
|
|
IfSet = Op0Op1;
|
|
IfClr = Op1Op1;
|
|
} else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
|
|
Cond = Op0Op0;
|
|
IfSet = Op0Op1;
|
|
IfClr = Op1Op0;
|
|
} else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
|
|
Cond = Op0Op1;
|
|
IfSet = Op0Op0;
|
|
IfClr = Op1Op1;
|
|
} else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
|
|
Cond = Op0Op1;
|
|
IfSet = Op0Op0;
|
|
IfClr = Op1Op0;
|
|
}
|
|
}
|
|
|
|
// At this point, IfClr will be set if we have a valid match.
|
|
if (!IfClr.getNode())
|
|
return SDValue();
|
|
|
|
assert(Cond.getNode() && IfSet.getNode());
|
|
|
|
// Fold degenerate cases.
|
|
if (IsConstantMask) {
|
|
if (Mask.isAllOnesValue())
|
|
return IfSet;
|
|
else if (Mask == 0)
|
|
return IfClr;
|
|
}
|
|
|
|
// Transform the DAG into an equivalent VSELECT.
|
|
return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
if (Subtarget.hasMips32() && N->getValueType(0) == MVT::i32 &&
|
|
selectMSUB(N, &DAG))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue genConstMult(SDValue X, uint64_t C, const SDLoc &DL, EVT VT,
|
|
EVT ShiftTy, SelectionDAG &DAG) {
|
|
// Clear the upper (64 - VT.sizeInBits) bits.
|
|
C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
|
|
|
|
// Return 0.
|
|
if (C == 0)
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
// Return x.
|
|
if (C == 1)
|
|
return X;
|
|
|
|
// If c is power of 2, return (shl x, log2(c)).
|
|
if (isPowerOf2_64(C))
|
|
return DAG.getNode(ISD::SHL, DL, VT, X,
|
|
DAG.getConstant(Log2_64(C), DL, ShiftTy));
|
|
|
|
unsigned Log2Ceil = Log2_64_Ceil(C);
|
|
uint64_t Floor = 1LL << Log2_64(C);
|
|
uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
|
|
|
|
// If |c - floor_c| <= |c - ceil_c|,
|
|
// where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
|
|
// return (add constMult(x, floor_c), constMult(x, c - floor_c)).
|
|
if (C - Floor <= Ceil - C) {
|
|
SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
|
|
SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
|
|
return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
|
|
}
|
|
|
|
// If |c - floor_c| > |c - ceil_c|,
|
|
// return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
|
|
SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
|
|
SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
|
|
return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
|
|
}
|
|
|
|
static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
|
|
const TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSETargetLowering *TL) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
|
|
if (!VT.isVector())
|
|
return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N), VT,
|
|
TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
|
|
DAG);
|
|
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
const MipsSubtarget &Subtarget) {
|
|
// See if this is a vector splat immediate node.
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
unsigned EltSize = Ty.getScalarSizeInBits();
|
|
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
|
|
|
|
if (!Subtarget.hasDSP())
|
|
return SDValue();
|
|
|
|
if (!BV ||
|
|
!BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
|
|
EltSize, !Subtarget.isLittle()) ||
|
|
(SplatBitSize != EltSize) ||
|
|
(SplatValue.getZExtValue() >= EltSize))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
|
|
DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
|
|
}
|
|
|
|
static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
EVT Ty = N->getValueType(0);
|
|
|
|
if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
|
|
return SDValue();
|
|
|
|
return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
|
|
}
|
|
|
|
// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
|
|
// constant splats into MipsISD::SHRA_DSP for DSPr2.
|
|
//
|
|
// Performs the following transformations:
|
|
// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
|
|
// sign/zero-extension is completely overwritten by the new one performed by
|
|
// the ISD::SRA and ISD::SHL nodes.
|
|
// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
|
|
// sequence.
|
|
//
|
|
// See performDSPShiftCombine for more information about the transformation
|
|
// used for DSPr2.
|
|
static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
EVT Ty = N->getValueType(0);
|
|
|
|
if (Subtarget.hasMSA()) {
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
// (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
|
|
// where $d + sizeof($c) == 32
|
|
// or $d + sizeof($c) <= 32 and SExt
|
|
// -> (MipsVExtractSExt $a, $b, $c)
|
|
if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
|
|
SDValue Op0Op0 = Op0->getOperand(0);
|
|
ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
|
|
|
|
if (!ShAmount)
|
|
return SDValue();
|
|
|
|
if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
|
|
Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
|
|
return SDValue();
|
|
|
|
EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
|
|
unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
|
|
|
|
if (TotalBits == 32 ||
|
|
(Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
|
|
TotalBits <= 32)) {
|
|
SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
|
|
Op0Op0->getOperand(2) };
|
|
return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
|
|
Op0Op0->getVTList(),
|
|
makeArrayRef(Ops, Op0Op0->getNumOperands()));
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
|
|
return SDValue();
|
|
|
|
return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
|
|
}
|
|
|
|
|
|
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
EVT Ty = N->getValueType(0);
|
|
|
|
if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
|
|
return SDValue();
|
|
|
|
return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
|
|
}
|
|
|
|
static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
|
|
bool IsV216 = (Ty == MVT::v2i16);
|
|
|
|
switch (CC) {
|
|
case ISD::SETEQ:
|
|
case ISD::SETNE: return true;
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE: return IsV216;
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE: return !IsV216;
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
|
|
EVT Ty = N->getValueType(0);
|
|
|
|
if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
|
|
return SDValue();
|
|
|
|
if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
|
|
N->getOperand(1), N->getOperand(2));
|
|
}
|
|
|
|
static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
|
|
EVT Ty = N->getValueType(0);
|
|
|
|
if (Ty.is128BitVector() && Ty.isInteger()) {
|
|
// Try the following combines:
|
|
// (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
|
|
// (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
|
|
// (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
|
|
// (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
|
|
// (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
|
|
// (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
|
|
// (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
|
|
// (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
|
|
// SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
|
|
// will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
|
|
// legalizer.
|
|
SDValue Op0 = N->getOperand(0);
|
|
|
|
if (Op0->getOpcode() != ISD::SETCC)
|
|
return SDValue();
|
|
|
|
ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
|
|
bool Signed;
|
|
|
|
if (CondCode == ISD::SETLT || CondCode == ISD::SETLE)
|
|
Signed = true;
|
|
else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
|
|
Signed = false;
|
|
else
|
|
return SDValue();
|
|
|
|
SDValue Op1 = N->getOperand(1);
|
|
SDValue Op2 = N->getOperand(2);
|
|
SDValue Op0Op0 = Op0->getOperand(0);
|
|
SDValue Op0Op1 = Op0->getOperand(1);
|
|
|
|
if (Op1 == Op0Op0 && Op2 == Op0Op1)
|
|
return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
|
|
Ty, Op1, Op2);
|
|
else if (Op1 == Op0Op1 && Op2 == Op0Op0)
|
|
return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
|
|
Ty, Op1, Op2);
|
|
} else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
|
|
SDValue SetCC = N->getOperand(0);
|
|
|
|
if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
|
|
SetCC.getOperand(0), SetCC.getOperand(1),
|
|
N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
|
|
const MipsSubtarget &Subtarget) {
|
|
EVT Ty = N->getValueType(0);
|
|
|
|
if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
|
|
// Try the following combines:
|
|
// (xor (or $a, $b), (build_vector allones))
|
|
// (xor (or $a, $b), (bitcast (build_vector allones)))
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
SDValue NotOp;
|
|
|
|
if (ISD::isBuildVectorAllOnes(Op0.getNode()))
|
|
NotOp = Op1;
|
|
else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
|
|
NotOp = Op0;
|
|
else
|
|
return SDValue();
|
|
|
|
if (NotOp->getOpcode() == ISD::OR)
|
|
return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
|
|
NotOp->getOperand(1));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Val;
|
|
|
|
switch (N->getOpcode()) {
|
|
case ISD::ADDE:
|
|
return performADDECombine(N, DAG, DCI, Subtarget);
|
|
case ISD::AND:
|
|
Val = performANDCombine(N, DAG, DCI, Subtarget);
|
|
break;
|
|
case ISD::OR:
|
|
Val = performORCombine(N, DAG, DCI, Subtarget);
|
|
break;
|
|
case ISD::SUBE:
|
|
return performSUBECombine(N, DAG, DCI, Subtarget);
|
|
case ISD::MUL:
|
|
return performMULCombine(N, DAG, DCI, this);
|
|
case ISD::SHL:
|
|
Val = performSHLCombine(N, DAG, DCI, Subtarget);
|
|
break;
|
|
case ISD::SRA:
|
|
return performSRACombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SRL:
|
|
return performSRLCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::VSELECT:
|
|
return performVSELECTCombine(N, DAG);
|
|
case ISD::XOR:
|
|
Val = performXORCombine(N, DAG, Subtarget);
|
|
break;
|
|
case ISD::SETCC:
|
|
Val = performSETCCCombine(N, DAG);
|
|
break;
|
|
}
|
|
|
|
if (Val.getNode()) {
|
|
DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
|
|
N->printrWithDepth(dbgs(), &DAG);
|
|
dbgs() << "\n=> \n";
|
|
Val.getNode()->printrWithDepth(dbgs(), &DAG);
|
|
dbgs() << "\n");
|
|
return Val;
|
|
}
|
|
|
|
return MipsTargetLowering::PerformDAGCombine(N, DCI);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
|
|
case Mips::BPOSGE32_PSEUDO:
|
|
return emitBPOSGE32(MI, BB);
|
|
case Mips::SNZ_B_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
|
|
case Mips::SNZ_H_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
|
|
case Mips::SNZ_W_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
|
|
case Mips::SNZ_D_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
|
|
case Mips::SNZ_V_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
|
|
case Mips::SZ_B_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
|
|
case Mips::SZ_H_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
|
|
case Mips::SZ_W_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
|
|
case Mips::SZ_D_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
|
|
case Mips::SZ_V_PSEUDO:
|
|
return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
|
|
case Mips::COPY_FW_PSEUDO:
|
|
return emitCOPY_FW(MI, BB);
|
|
case Mips::COPY_FD_PSEUDO:
|
|
return emitCOPY_FD(MI, BB);
|
|
case Mips::INSERT_FW_PSEUDO:
|
|
return emitINSERT_FW(MI, BB);
|
|
case Mips::INSERT_FD_PSEUDO:
|
|
return emitINSERT_FD(MI, BB);
|
|
case Mips::INSERT_B_VIDX_PSEUDO:
|
|
case Mips::INSERT_B_VIDX64_PSEUDO:
|
|
return emitINSERT_DF_VIDX(MI, BB, 1, false);
|
|
case Mips::INSERT_H_VIDX_PSEUDO:
|
|
case Mips::INSERT_H_VIDX64_PSEUDO:
|
|
return emitINSERT_DF_VIDX(MI, BB, 2, false);
|
|
case Mips::INSERT_W_VIDX_PSEUDO:
|
|
case Mips::INSERT_W_VIDX64_PSEUDO:
|
|
return emitINSERT_DF_VIDX(MI, BB, 4, false);
|
|
case Mips::INSERT_D_VIDX_PSEUDO:
|
|
case Mips::INSERT_D_VIDX64_PSEUDO:
|
|
return emitINSERT_DF_VIDX(MI, BB, 8, false);
|
|
case Mips::INSERT_FW_VIDX_PSEUDO:
|
|
case Mips::INSERT_FW_VIDX64_PSEUDO:
|
|
return emitINSERT_DF_VIDX(MI, BB, 4, true);
|
|
case Mips::INSERT_FD_VIDX_PSEUDO:
|
|
case Mips::INSERT_FD_VIDX64_PSEUDO:
|
|
return emitINSERT_DF_VIDX(MI, BB, 8, true);
|
|
case Mips::FILL_FW_PSEUDO:
|
|
return emitFILL_FW(MI, BB);
|
|
case Mips::FILL_FD_PSEUDO:
|
|
return emitFILL_FD(MI, BB);
|
|
case Mips::FEXP2_W_1_PSEUDO:
|
|
return emitFEXP2_W_1(MI, BB);
|
|
case Mips::FEXP2_D_1_PSEUDO:
|
|
return emitFEXP2_D_1(MI, BB);
|
|
case Mips::ST_F16:
|
|
return emitST_F16_PSEUDO(MI, BB);
|
|
case Mips::LD_F16:
|
|
return emitLD_F16_PSEUDO(MI, BB);
|
|
case Mips::MSA_FP_EXTEND_W_PSEUDO:
|
|
return emitFPEXTEND_PSEUDO(MI, BB, false);
|
|
case Mips::MSA_FP_ROUND_W_PSEUDO:
|
|
return emitFPROUND_PSEUDO(MI, BB, false);
|
|
case Mips::MSA_FP_EXTEND_D_PSEUDO:
|
|
return emitFPEXTEND_PSEUDO(MI, BB, true);
|
|
case Mips::MSA_FP_ROUND_D_PSEUDO:
|
|
return emitFPROUND_PSEUDO(MI, BB, true);
|
|
}
|
|
}
|
|
|
|
bool MipsSETargetLowering::isEligibleForTailCallOptimization(
|
|
const CCState &CCInfo, unsigned NextStackOffset,
|
|
const MipsFunctionInfo &FI) const {
|
|
if (!UseMipsTailCalls)
|
|
return false;
|
|
|
|
// Exception has to be cleared with eret.
|
|
if (FI.isISR())
|
|
return false;
|
|
|
|
// Return false if either the callee or caller has a byval argument.
|
|
if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
|
|
return false;
|
|
|
|
// Return true if the callee's argument area is no larger than the
|
|
// caller's.
|
|
return NextStackOffset <= FI.getIncomingArgSize();
|
|
}
|
|
|
|
void MipsSETargetLowering::
|
|
getOpndList(SmallVectorImpl<SDValue> &Ops,
|
|
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
|
|
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
|
|
bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
|
|
SDValue Chain) const {
|
|
Ops.push_back(Callee);
|
|
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
|
|
InternalLinkage, IsCallReloc, CLI, Callee,
|
|
Chain);
|
|
}
|
|
|
|
SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
LoadSDNode &Nd = *cast<LoadSDNode>(Op);
|
|
|
|
if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
|
|
return MipsTargetLowering::lowerLOAD(Op, DAG);
|
|
|
|
// Replace a double precision load with two i32 loads and a buildpair64.
|
|
SDLoc DL(Op);
|
|
SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
|
|
EVT PtrVT = Ptr.getValueType();
|
|
|
|
// i32 load from lower address.
|
|
SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
|
|
Nd.getAlignment(), Nd.getMemOperand()->getFlags());
|
|
|
|
// i32 load from higher address.
|
|
Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
|
|
SDValue Hi = DAG.getLoad(
|
|
MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
|
|
std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags());
|
|
|
|
if (!Subtarget.isLittle())
|
|
std::swap(Lo, Hi);
|
|
|
|
SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
|
|
SDValue Ops[2] = {BP, Hi.getValue(1)};
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
StoreSDNode &Nd = *cast<StoreSDNode>(Op);
|
|
|
|
if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
|
|
return MipsTargetLowering::lowerSTORE(Op, DAG);
|
|
|
|
// Replace a double precision store with two extractelement64s and i32 stores.
|
|
SDLoc DL(Op);
|
|
SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
|
|
EVT PtrVT = Ptr.getValueType();
|
|
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Val, DAG.getConstant(0, DL, MVT::i32));
|
|
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Val, DAG.getConstant(1, DL, MVT::i32));
|
|
|
|
if (!Subtarget.isLittle())
|
|
std::swap(Lo, Hi);
|
|
|
|
// i32 store to lower address.
|
|
Chain =
|
|
DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(),
|
|
Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
|
|
|
|
// i32 store to higher address.
|
|
Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
|
|
return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
|
|
std::min(Nd.getAlignment(), 4U),
|
|
Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
|
|
}
|
|
|
|
SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
|
|
bool HasLo, bool HasHi,
|
|
SelectionDAG &DAG) const {
|
|
// MIPS32r6/MIPS64r6 removed accumulator based multiplies.
|
|
assert(!Subtarget.hasMips32r6());
|
|
|
|
EVT Ty = Op.getOperand(0).getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
SDValue Lo, Hi;
|
|
|
|
if (HasLo)
|
|
Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
|
|
if (HasHi)
|
|
Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
|
|
|
|
if (!HasLo || !HasHi)
|
|
return HasLo ? Lo : Hi;
|
|
|
|
SDValue Vals[] = { Lo, Hi };
|
|
return DAG.getMergeValues(Vals, DL);
|
|
}
|
|
|
|
static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
|
|
SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
|
|
DAG.getConstant(1, DL, MVT::i32));
|
|
return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
|
|
}
|
|
|
|
static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
|
|
SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
|
|
SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
|
|
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
|
|
}
|
|
|
|
// This function expands mips intrinsic nodes which have 64-bit input operands
|
|
// or output values.
|
|
//
|
|
// out64 = intrinsic-node in64
|
|
// =>
|
|
// lo = copy (extract-element (in64, 0))
|
|
// hi = copy (extract-element (in64, 1))
|
|
// mips-specific-node
|
|
// v0 = copy lo
|
|
// v1 = copy hi
|
|
// out64 = merge-values (v0, v1)
|
|
//
|
|
static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
|
|
SDLoc DL(Op);
|
|
bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
|
|
SmallVector<SDValue, 3> Ops;
|
|
unsigned OpNo = 0;
|
|
|
|
// See if Op has a chain input.
|
|
if (HasChainIn)
|
|
Ops.push_back(Op->getOperand(OpNo++));
|
|
|
|
// The next operand is the intrinsic opcode.
|
|
assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
|
|
|
|
// See if the next operand has type i64.
|
|
SDValue Opnd = Op->getOperand(++OpNo), In64;
|
|
|
|
if (Opnd.getValueType() == MVT::i64)
|
|
In64 = initAccumulator(Opnd, DL, DAG);
|
|
else
|
|
Ops.push_back(Opnd);
|
|
|
|
// Push the remaining operands.
|
|
for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
|
|
Ops.push_back(Op->getOperand(OpNo));
|
|
|
|
// Add In64 to the end of the list.
|
|
if (In64.getNode())
|
|
Ops.push_back(In64);
|
|
|
|
// Scan output.
|
|
SmallVector<EVT, 2> ResTys;
|
|
|
|
for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
|
|
I != E; ++I)
|
|
ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
|
|
|
|
// Create node.
|
|
SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
|
|
SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
|
|
|
|
if (!HasChainIn)
|
|
return Out;
|
|
|
|
assert(Val->getValueType(1) == MVT::Other);
|
|
SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
|
|
return DAG.getMergeValues(Vals, DL);
|
|
}
|
|
|
|
// Lower an MSA copy intrinsic into the specified SelectionDAG node
|
|
static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
|
|
SDLoc DL(Op);
|
|
SDValue Vec = Op->getOperand(1);
|
|
SDValue Idx = Op->getOperand(2);
|
|
EVT ResTy = Op->getValueType(0);
|
|
EVT EltTy = Vec->getValueType(0).getVectorElementType();
|
|
|
|
SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
|
|
DAG.getValueType(EltTy));
|
|
|
|
return Result;
|
|
}
|
|
|
|
static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
|
|
EVT ResVecTy = Op->getValueType(0);
|
|
EVT ViaVecTy = ResVecTy;
|
|
SDLoc DL(Op);
|
|
|
|
// When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
|
|
// LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
|
|
// lanes.
|
|
SDValue LaneA;
|
|
SDValue LaneB = Op->getOperand(2);
|
|
|
|
if (ResVecTy == MVT::v2i64) {
|
|
LaneA = DAG.getConstant(0, DL, MVT::i32);
|
|
ViaVecTy = MVT::v4i32;
|
|
} else
|
|
LaneA = LaneB;
|
|
|
|
SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
|
|
LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
|
|
|
|
SDValue Result = DAG.getBuildVector(
|
|
ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
|
|
|
|
if (ViaVecTy != ResVecTy)
|
|
Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
|
|
bool IsSigned = false) {
|
|
return DAG.getConstant(
|
|
APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
|
|
Op->getConstantOperandVal(ImmOp), IsSigned),
|
|
SDLoc(Op), Op->getValueType(0));
|
|
}
|
|
|
|
static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
|
|
bool BigEndian, SelectionDAG &DAG) {
|
|
EVT ViaVecTy = VecTy;
|
|
SDValue SplatValueA = SplatValue;
|
|
SDValue SplatValueB = SplatValue;
|
|
SDLoc DL(SplatValue);
|
|
|
|
if (VecTy == MVT::v2i64) {
|
|
// v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
|
|
ViaVecTy = MVT::v4i32;
|
|
|
|
SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
|
|
SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
|
|
DAG.getConstant(32, DL, MVT::i32));
|
|
SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
|
|
}
|
|
|
|
// We currently hold the parts in little endian order. Swap them if
|
|
// necessary.
|
|
if (BigEndian)
|
|
std::swap(SplatValueA, SplatValueB);
|
|
|
|
SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
|
|
SplatValueA, SplatValueB, SplatValueA, SplatValueB,
|
|
SplatValueA, SplatValueB, SplatValueA, SplatValueB,
|
|
SplatValueA, SplatValueB, SplatValueA, SplatValueB };
|
|
|
|
SDValue Result = DAG.getBuildVector(
|
|
ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
|
|
|
|
if (VecTy != ViaVecTy)
|
|
Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
|
|
unsigned Opc, SDValue Imm,
|
|
bool BigEndian) {
|
|
EVT VecTy = Op->getValueType(0);
|
|
SDValue Exp2Imm;
|
|
SDLoc DL(Op);
|
|
|
|
// The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
|
|
// here for now.
|
|
if (VecTy == MVT::v2i64) {
|
|
if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
|
|
APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
|
|
|
|
SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
|
|
MVT::i32);
|
|
SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
|
|
|
|
if (BigEndian)
|
|
std::swap(BitImmLoOp, BitImmHiOp);
|
|
|
|
Exp2Imm = DAG.getNode(
|
|
ISD::BITCAST, DL, MVT::v2i64,
|
|
DAG.getBuildVector(MVT::v4i32, DL,
|
|
{BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
|
|
}
|
|
}
|
|
|
|
if (!Exp2Imm.getNode()) {
|
|
// We couldnt constant fold, do a vector shift instead
|
|
|
|
// Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
|
|
// only values 0-63 are valid.
|
|
if (VecTy == MVT::v2i64)
|
|
Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
|
|
|
|
Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
|
|
|
|
Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
|
|
Exp2Imm);
|
|
}
|
|
|
|
return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
|
|
}
|
|
|
|
static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
|
|
EVT ResTy = Op->getValueType(0);
|
|
SDLoc DL(Op);
|
|
SDValue One = DAG.getConstant(1, DL, ResTy);
|
|
SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
|
|
|
|
return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
|
|
DAG.getNOT(DL, Bit, ResTy));
|
|
}
|
|
|
|
static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
EVT ResTy = Op->getValueType(0);
|
|
APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
|
|
<< cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
|
|
SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
|
|
|
|
return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
|
|
}
|
|
|
|
SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue();
|
|
switch (Intrinsic) {
|
|
default:
|
|
return SDValue();
|
|
case Intrinsic::mips_shilo:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
|
|
case Intrinsic::mips_dpau_h_qbl:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
|
|
case Intrinsic::mips_dpau_h_qbr:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
|
|
case Intrinsic::mips_dpsu_h_qbl:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
|
|
case Intrinsic::mips_dpsu_h_qbr:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
|
|
case Intrinsic::mips_dpa_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
|
|
case Intrinsic::mips_dps_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
|
|
case Intrinsic::mips_dpax_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
|
|
case Intrinsic::mips_dpsx_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
|
|
case Intrinsic::mips_mulsa_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
|
|
case Intrinsic::mips_mult:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::Mult);
|
|
case Intrinsic::mips_multu:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::Multu);
|
|
case Intrinsic::mips_madd:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
|
|
case Intrinsic::mips_maddu:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
|
|
case Intrinsic::mips_msub:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MSub);
|
|
case Intrinsic::mips_msubu:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
|
|
case Intrinsic::mips_addv_b:
|
|
case Intrinsic::mips_addv_h:
|
|
case Intrinsic::mips_addv_w:
|
|
case Intrinsic::mips_addv_d:
|
|
return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_addvi_b:
|
|
case Intrinsic::mips_addvi_h:
|
|
case Intrinsic::mips_addvi_w:
|
|
case Intrinsic::mips_addvi_d:
|
|
return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_and_v:
|
|
return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_andi_b:
|
|
return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_bclr_b:
|
|
case Intrinsic::mips_bclr_h:
|
|
case Intrinsic::mips_bclr_w:
|
|
case Intrinsic::mips_bclr_d:
|
|
return lowerMSABitClear(Op, DAG);
|
|
case Intrinsic::mips_bclri_b:
|
|
case Intrinsic::mips_bclri_h:
|
|
case Intrinsic::mips_bclri_w:
|
|
case Intrinsic::mips_bclri_d:
|
|
return lowerMSABitClearImm(Op, DAG);
|
|
case Intrinsic::mips_binsli_b:
|
|
case Intrinsic::mips_binsli_h:
|
|
case Intrinsic::mips_binsli_w:
|
|
case Intrinsic::mips_binsli_d: {
|
|
// binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
|
|
EVT VecTy = Op->getValueType(0);
|
|
EVT EltTy = VecTy.getVectorElementType();
|
|
if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
|
|
report_fatal_error("Immediate out of range");
|
|
APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
|
|
Op->getConstantOperandVal(3));
|
|
return DAG.getNode(ISD::VSELECT, DL, VecTy,
|
|
DAG.getConstant(Mask, DL, VecTy, true),
|
|
Op->getOperand(2), Op->getOperand(1));
|
|
}
|
|
case Intrinsic::mips_binsri_b:
|
|
case Intrinsic::mips_binsri_h:
|
|
case Intrinsic::mips_binsri_w:
|
|
case Intrinsic::mips_binsri_d: {
|
|
// binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
|
|
EVT VecTy = Op->getValueType(0);
|
|
EVT EltTy = VecTy.getVectorElementType();
|
|
if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
|
|
report_fatal_error("Immediate out of range");
|
|
APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
|
|
Op->getConstantOperandVal(3));
|
|
return DAG.getNode(ISD::VSELECT, DL, VecTy,
|
|
DAG.getConstant(Mask, DL, VecTy, true),
|
|
Op->getOperand(2), Op->getOperand(1));
|
|
}
|
|
case Intrinsic::mips_bmnz_v:
|
|
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
|
|
Op->getOperand(2), Op->getOperand(1));
|
|
case Intrinsic::mips_bmnzi_b:
|
|
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
|
|
lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_bmz_v:
|
|
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_bmzi_b:
|
|
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
|
|
lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_bneg_b:
|
|
case Intrinsic::mips_bneg_h:
|
|
case Intrinsic::mips_bneg_w:
|
|
case Intrinsic::mips_bneg_d: {
|
|
EVT VecTy = Op->getValueType(0);
|
|
SDValue One = DAG.getConstant(1, DL, VecTy);
|
|
|
|
return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
|
|
DAG.getNode(ISD::SHL, DL, VecTy, One,
|
|
Op->getOperand(2)));
|
|
}
|
|
case Intrinsic::mips_bnegi_b:
|
|
case Intrinsic::mips_bnegi_h:
|
|
case Intrinsic::mips_bnegi_w:
|
|
case Intrinsic::mips_bnegi_d:
|
|
return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
|
|
!Subtarget.isLittle());
|
|
case Intrinsic::mips_bnz_b:
|
|
case Intrinsic::mips_bnz_h:
|
|
case Intrinsic::mips_bnz_w:
|
|
case Intrinsic::mips_bnz_d:
|
|
return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_bnz_v:
|
|
return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_bsel_v:
|
|
// bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
|
|
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(3),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_bseli_b:
|
|
// bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
|
|
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_bset_b:
|
|
case Intrinsic::mips_bset_h:
|
|
case Intrinsic::mips_bset_w:
|
|
case Intrinsic::mips_bset_d: {
|
|
EVT VecTy = Op->getValueType(0);
|
|
SDValue One = DAG.getConstant(1, DL, VecTy);
|
|
|
|
return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
|
|
DAG.getNode(ISD::SHL, DL, VecTy, One,
|
|
Op->getOperand(2)));
|
|
}
|
|
case Intrinsic::mips_bseti_b:
|
|
case Intrinsic::mips_bseti_h:
|
|
case Intrinsic::mips_bseti_w:
|
|
case Intrinsic::mips_bseti_d:
|
|
return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
|
|
!Subtarget.isLittle());
|
|
case Intrinsic::mips_bz_b:
|
|
case Intrinsic::mips_bz_h:
|
|
case Intrinsic::mips_bz_w:
|
|
case Intrinsic::mips_bz_d:
|
|
return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_bz_v:
|
|
return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_ceq_b:
|
|
case Intrinsic::mips_ceq_h:
|
|
case Intrinsic::mips_ceq_w:
|
|
case Intrinsic::mips_ceq_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETEQ);
|
|
case Intrinsic::mips_ceqi_b:
|
|
case Intrinsic::mips_ceqi_h:
|
|
case Intrinsic::mips_ceqi_w:
|
|
case Intrinsic::mips_ceqi_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
|
|
case Intrinsic::mips_cle_s_b:
|
|
case Intrinsic::mips_cle_s_h:
|
|
case Intrinsic::mips_cle_s_w:
|
|
case Intrinsic::mips_cle_s_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETLE);
|
|
case Intrinsic::mips_clei_s_b:
|
|
case Intrinsic::mips_clei_s_h:
|
|
case Intrinsic::mips_clei_s_w:
|
|
case Intrinsic::mips_clei_s_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
|
|
case Intrinsic::mips_cle_u_b:
|
|
case Intrinsic::mips_cle_u_h:
|
|
case Intrinsic::mips_cle_u_w:
|
|
case Intrinsic::mips_cle_u_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETULE);
|
|
case Intrinsic::mips_clei_u_b:
|
|
case Intrinsic::mips_clei_u_h:
|
|
case Intrinsic::mips_clei_u_w:
|
|
case Intrinsic::mips_clei_u_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
|
|
case Intrinsic::mips_clt_s_b:
|
|
case Intrinsic::mips_clt_s_h:
|
|
case Intrinsic::mips_clt_s_w:
|
|
case Intrinsic::mips_clt_s_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETLT);
|
|
case Intrinsic::mips_clti_s_b:
|
|
case Intrinsic::mips_clti_s_h:
|
|
case Intrinsic::mips_clti_s_w:
|
|
case Intrinsic::mips_clti_s_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
|
|
case Intrinsic::mips_clt_u_b:
|
|
case Intrinsic::mips_clt_u_h:
|
|
case Intrinsic::mips_clt_u_w:
|
|
case Intrinsic::mips_clt_u_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETULT);
|
|
case Intrinsic::mips_clti_u_b:
|
|
case Intrinsic::mips_clti_u_h:
|
|
case Intrinsic::mips_clti_u_w:
|
|
case Intrinsic::mips_clti_u_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
|
|
case Intrinsic::mips_copy_s_b:
|
|
case Intrinsic::mips_copy_s_h:
|
|
case Intrinsic::mips_copy_s_w:
|
|
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
|
|
case Intrinsic::mips_copy_s_d:
|
|
if (Subtarget.hasMips64())
|
|
// Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
|
|
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
|
|
else {
|
|
// Lower into the generic EXTRACT_VECTOR_ELT node and let the type
|
|
// legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
|
|
Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
}
|
|
case Intrinsic::mips_copy_u_b:
|
|
case Intrinsic::mips_copy_u_h:
|
|
case Intrinsic::mips_copy_u_w:
|
|
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
|
|
case Intrinsic::mips_copy_u_d:
|
|
if (Subtarget.hasMips64())
|
|
// Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
|
|
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
|
|
else {
|
|
// Lower into the generic EXTRACT_VECTOR_ELT node and let the type
|
|
// legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
|
|
// Note: When i64 is illegal, this results in copy_s.w instructions
|
|
// instead of copy_u.w instructions. This makes no difference to the
|
|
// behaviour since i64 is only illegal when the register file is 32-bit.
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
|
|
Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
}
|
|
case Intrinsic::mips_div_s_b:
|
|
case Intrinsic::mips_div_s_h:
|
|
case Intrinsic::mips_div_s_w:
|
|
case Intrinsic::mips_div_s_d:
|
|
return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_div_u_b:
|
|
case Intrinsic::mips_div_u_h:
|
|
case Intrinsic::mips_div_u_w:
|
|
case Intrinsic::mips_div_u_d:
|
|
return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_fadd_w:
|
|
case Intrinsic::mips_fadd_d: {
|
|
// TODO: If intrinsics have fast-math-flags, propagate them.
|
|
return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
}
|
|
// Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
|
|
case Intrinsic::mips_fceq_w:
|
|
case Intrinsic::mips_fceq_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETOEQ);
|
|
case Intrinsic::mips_fcle_w:
|
|
case Intrinsic::mips_fcle_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETOLE);
|
|
case Intrinsic::mips_fclt_w:
|
|
case Intrinsic::mips_fclt_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETOLT);
|
|
case Intrinsic::mips_fcne_w:
|
|
case Intrinsic::mips_fcne_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETONE);
|
|
case Intrinsic::mips_fcor_w:
|
|
case Intrinsic::mips_fcor_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETO);
|
|
case Intrinsic::mips_fcueq_w:
|
|
case Intrinsic::mips_fcueq_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETUEQ);
|
|
case Intrinsic::mips_fcule_w:
|
|
case Intrinsic::mips_fcule_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETULE);
|
|
case Intrinsic::mips_fcult_w:
|
|
case Intrinsic::mips_fcult_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETULT);
|
|
case Intrinsic::mips_fcun_w:
|
|
case Intrinsic::mips_fcun_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETUO);
|
|
case Intrinsic::mips_fcune_w:
|
|
case Intrinsic::mips_fcune_d:
|
|
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2), ISD::SETUNE);
|
|
case Intrinsic::mips_fdiv_w:
|
|
case Intrinsic::mips_fdiv_d: {
|
|
// TODO: If intrinsics have fast-math-flags, propagate them.
|
|
return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
}
|
|
case Intrinsic::mips_ffint_u_w:
|
|
case Intrinsic::mips_ffint_u_d:
|
|
return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_ffint_s_w:
|
|
case Intrinsic::mips_ffint_s_d:
|
|
return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_fill_b:
|
|
case Intrinsic::mips_fill_h:
|
|
case Intrinsic::mips_fill_w:
|
|
case Intrinsic::mips_fill_d: {
|
|
EVT ResTy = Op->getValueType(0);
|
|
SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
|
|
Op->getOperand(1));
|
|
|
|
// If ResTy is v2i64 then the type legalizer will break this node down into
|
|
// an equivalent v4i32.
|
|
return DAG.getBuildVector(ResTy, DL, Ops);
|
|
}
|
|
case Intrinsic::mips_fexp2_w:
|
|
case Intrinsic::mips_fexp2_d: {
|
|
// TODO: If intrinsics have fast-math-flags, propagate them.
|
|
EVT ResTy = Op->getValueType(0);
|
|
return DAG.getNode(
|
|
ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
|
|
DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
|
|
}
|
|
case Intrinsic::mips_flog2_w:
|
|
case Intrinsic::mips_flog2_d:
|
|
return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
|
|
case Intrinsic::mips_fmadd_w:
|
|
case Intrinsic::mips_fmadd_d:
|
|
return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
|
|
case Intrinsic::mips_fmul_w:
|
|
case Intrinsic::mips_fmul_d: {
|
|
// TODO: If intrinsics have fast-math-flags, propagate them.
|
|
return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
}
|
|
case Intrinsic::mips_fmsub_w:
|
|
case Intrinsic::mips_fmsub_d: {
|
|
// TODO: If intrinsics have fast-math-flags, propagate them.
|
|
EVT ResTy = Op->getValueType(0);
|
|
return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
|
|
DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
|
|
Op->getOperand(2), Op->getOperand(3)));
|
|
}
|
|
case Intrinsic::mips_frint_w:
|
|
case Intrinsic::mips_frint_d:
|
|
return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
|
|
case Intrinsic::mips_fsqrt_w:
|
|
case Intrinsic::mips_fsqrt_d:
|
|
return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
|
|
case Intrinsic::mips_fsub_w:
|
|
case Intrinsic::mips_fsub_d: {
|
|
// TODO: If intrinsics have fast-math-flags, propagate them.
|
|
return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
}
|
|
case Intrinsic::mips_ftrunc_u_w:
|
|
case Intrinsic::mips_ftrunc_u_d:
|
|
return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_ftrunc_s_w:
|
|
case Intrinsic::mips_ftrunc_s_d:
|
|
return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_ilvev_b:
|
|
case Intrinsic::mips_ilvev_h:
|
|
case Intrinsic::mips_ilvev_w:
|
|
case Intrinsic::mips_ilvev_d:
|
|
return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_ilvl_b:
|
|
case Intrinsic::mips_ilvl_h:
|
|
case Intrinsic::mips_ilvl_w:
|
|
case Intrinsic::mips_ilvl_d:
|
|
return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_ilvod_b:
|
|
case Intrinsic::mips_ilvod_h:
|
|
case Intrinsic::mips_ilvod_w:
|
|
case Intrinsic::mips_ilvod_d:
|
|
return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_ilvr_b:
|
|
case Intrinsic::mips_ilvr_h:
|
|
case Intrinsic::mips_ilvr_w:
|
|
case Intrinsic::mips_ilvr_d:
|
|
return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_insert_b:
|
|
case Intrinsic::mips_insert_h:
|
|
case Intrinsic::mips_insert_w:
|
|
case Intrinsic::mips_insert_d:
|
|
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
|
|
case Intrinsic::mips_insve_b:
|
|
case Intrinsic::mips_insve_h:
|
|
case Intrinsic::mips_insve_w:
|
|
case Intrinsic::mips_insve_d: {
|
|
// Report an error for out of range values.
|
|
int64_t Max;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::mips_insve_b: Max = 15; break;
|
|
case Intrinsic::mips_insve_h: Max = 7; break;
|
|
case Intrinsic::mips_insve_w: Max = 3; break;
|
|
case Intrinsic::mips_insve_d: Max = 1; break;
|
|
default: llvm_unreachable("Unmatched intrinsic");
|
|
}
|
|
int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
|
|
if (Value < 0 || Value > Max)
|
|
report_fatal_error("Immediate out of range");
|
|
return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
}
|
|
case Intrinsic::mips_ldi_b:
|
|
case Intrinsic::mips_ldi_h:
|
|
case Intrinsic::mips_ldi_w:
|
|
case Intrinsic::mips_ldi_d:
|
|
return lowerMSASplatImm(Op, 1, DAG, true);
|
|
case Intrinsic::mips_lsa:
|
|
case Intrinsic::mips_dlsa: {
|
|
EVT ResTy = Op->getValueType(0);
|
|
return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
|
|
DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
|
|
Op->getOperand(2), Op->getOperand(3)));
|
|
}
|
|
case Intrinsic::mips_maddv_b:
|
|
case Intrinsic::mips_maddv_h:
|
|
case Intrinsic::mips_maddv_w:
|
|
case Intrinsic::mips_maddv_d: {
|
|
EVT ResTy = Op->getValueType(0);
|
|
return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
|
|
DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
|
|
Op->getOperand(2), Op->getOperand(3)));
|
|
}
|
|
case Intrinsic::mips_max_s_b:
|
|
case Intrinsic::mips_max_s_h:
|
|
case Intrinsic::mips_max_s_w:
|
|
case Intrinsic::mips_max_s_d:
|
|
return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_max_u_b:
|
|
case Intrinsic::mips_max_u_h:
|
|
case Intrinsic::mips_max_u_w:
|
|
case Intrinsic::mips_max_u_d:
|
|
return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_maxi_s_b:
|
|
case Intrinsic::mips_maxi_s_h:
|
|
case Intrinsic::mips_maxi_s_w:
|
|
case Intrinsic::mips_maxi_s_d:
|
|
return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
|
|
case Intrinsic::mips_maxi_u_b:
|
|
case Intrinsic::mips_maxi_u_h:
|
|
case Intrinsic::mips_maxi_u_w:
|
|
case Intrinsic::mips_maxi_u_d:
|
|
return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_min_s_b:
|
|
case Intrinsic::mips_min_s_h:
|
|
case Intrinsic::mips_min_s_w:
|
|
case Intrinsic::mips_min_s_d:
|
|
return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_min_u_b:
|
|
case Intrinsic::mips_min_u_h:
|
|
case Intrinsic::mips_min_u_w:
|
|
case Intrinsic::mips_min_u_d:
|
|
return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_mini_s_b:
|
|
case Intrinsic::mips_mini_s_h:
|
|
case Intrinsic::mips_mini_s_w:
|
|
case Intrinsic::mips_mini_s_d:
|
|
return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
|
|
case Intrinsic::mips_mini_u_b:
|
|
case Intrinsic::mips_mini_u_h:
|
|
case Intrinsic::mips_mini_u_w:
|
|
case Intrinsic::mips_mini_u_d:
|
|
return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_mod_s_b:
|
|
case Intrinsic::mips_mod_s_h:
|
|
case Intrinsic::mips_mod_s_w:
|
|
case Intrinsic::mips_mod_s_d:
|
|
return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_mod_u_b:
|
|
case Intrinsic::mips_mod_u_h:
|
|
case Intrinsic::mips_mod_u_w:
|
|
case Intrinsic::mips_mod_u_d:
|
|
return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_mulv_b:
|
|
case Intrinsic::mips_mulv_h:
|
|
case Intrinsic::mips_mulv_w:
|
|
case Intrinsic::mips_mulv_d:
|
|
return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_msubv_b:
|
|
case Intrinsic::mips_msubv_h:
|
|
case Intrinsic::mips_msubv_w:
|
|
case Intrinsic::mips_msubv_d: {
|
|
EVT ResTy = Op->getValueType(0);
|
|
return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
|
|
DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
|
|
Op->getOperand(2), Op->getOperand(3)));
|
|
}
|
|
case Intrinsic::mips_nlzc_b:
|
|
case Intrinsic::mips_nlzc_h:
|
|
case Intrinsic::mips_nlzc_w:
|
|
case Intrinsic::mips_nlzc_d:
|
|
return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
|
|
case Intrinsic::mips_nor_v: {
|
|
SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
return DAG.getNOT(DL, Res, Res->getValueType(0));
|
|
}
|
|
case Intrinsic::mips_nori_b: {
|
|
SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
|
|
Op->getOperand(1),
|
|
lowerMSASplatImm(Op, 2, DAG));
|
|
return DAG.getNOT(DL, Res, Res->getValueType(0));
|
|
}
|
|
case Intrinsic::mips_or_v:
|
|
return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_ori_b:
|
|
return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_pckev_b:
|
|
case Intrinsic::mips_pckev_h:
|
|
case Intrinsic::mips_pckev_w:
|
|
case Intrinsic::mips_pckev_d:
|
|
return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_pckod_b:
|
|
case Intrinsic::mips_pckod_h:
|
|
case Intrinsic::mips_pckod_w:
|
|
case Intrinsic::mips_pckod_d:
|
|
return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2));
|
|
case Intrinsic::mips_pcnt_b:
|
|
case Intrinsic::mips_pcnt_h:
|
|
case Intrinsic::mips_pcnt_w:
|
|
case Intrinsic::mips_pcnt_d:
|
|
return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
|
|
case Intrinsic::mips_sat_s_b:
|
|
case Intrinsic::mips_sat_s_h:
|
|
case Intrinsic::mips_sat_s_w:
|
|
case Intrinsic::mips_sat_s_d:
|
|
case Intrinsic::mips_sat_u_b:
|
|
case Intrinsic::mips_sat_u_h:
|
|
case Intrinsic::mips_sat_u_w:
|
|
case Intrinsic::mips_sat_u_d: {
|
|
// Report an error for out of range values.
|
|
int64_t Max;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::mips_sat_s_b:
|
|
case Intrinsic::mips_sat_u_b: Max = 7; break;
|
|
case Intrinsic::mips_sat_s_h:
|
|
case Intrinsic::mips_sat_u_h: Max = 15; break;
|
|
case Intrinsic::mips_sat_s_w:
|
|
case Intrinsic::mips_sat_u_w: Max = 31; break;
|
|
case Intrinsic::mips_sat_s_d:
|
|
case Intrinsic::mips_sat_u_d: Max = 63; break;
|
|
default: llvm_unreachable("Unmatched intrinsic");
|
|
}
|
|
int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
|
|
if (Value < 0 || Value > Max)
|
|
report_fatal_error("Immediate out of range");
|
|
return SDValue();
|
|
}
|
|
case Intrinsic::mips_shf_b:
|
|
case Intrinsic::mips_shf_h:
|
|
case Intrinsic::mips_shf_w: {
|
|
int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
|
|
if (Value < 0 || Value > 255)
|
|
report_fatal_error("Immediate out of range");
|
|
return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
|
|
Op->getOperand(2), Op->getOperand(1));
|
|
}
|
|
case Intrinsic::mips_sldi_b:
|
|
case Intrinsic::mips_sldi_h:
|
|
case Intrinsic::mips_sldi_w:
|
|
case Intrinsic::mips_sldi_d: {
|
|
// Report an error for out of range values.
|
|
int64_t Max;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::mips_sldi_b: Max = 15; break;
|
|
case Intrinsic::mips_sldi_h: Max = 7; break;
|
|
case Intrinsic::mips_sldi_w: Max = 3; break;
|
|
case Intrinsic::mips_sldi_d: Max = 1; break;
|
|
default: llvm_unreachable("Unmatched intrinsic");
|
|
}
|
|
int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
|
|
if (Value < 0 || Value > Max)
|
|
report_fatal_error("Immediate out of range");
|
|
return SDValue();
|
|
}
|
|
case Intrinsic::mips_sll_b:
|
|
case Intrinsic::mips_sll_h:
|
|
case Intrinsic::mips_sll_w:
|
|
case Intrinsic::mips_sll_d:
|
|
return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_slli_b:
|
|
case Intrinsic::mips_slli_h:
|
|
case Intrinsic::mips_slli_w:
|
|
case Intrinsic::mips_slli_d:
|
|
return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_splat_b:
|
|
case Intrinsic::mips_splat_h:
|
|
case Intrinsic::mips_splat_w:
|
|
case Intrinsic::mips_splat_d:
|
|
// We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
|
|
// masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
|
|
// EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
|
|
// Instead we lower to MipsISD::VSHF and match from there.
|
|
return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
|
|
lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_splati_b:
|
|
case Intrinsic::mips_splati_h:
|
|
case Intrinsic::mips_splati_w:
|
|
case Intrinsic::mips_splati_d:
|
|
return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
|
|
lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
|
|
Op->getOperand(1));
|
|
case Intrinsic::mips_sra_b:
|
|
case Intrinsic::mips_sra_h:
|
|
case Intrinsic::mips_sra_w:
|
|
case Intrinsic::mips_sra_d:
|
|
return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_srai_b:
|
|
case Intrinsic::mips_srai_h:
|
|
case Intrinsic::mips_srai_w:
|
|
case Intrinsic::mips_srai_d:
|
|
return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_srari_b:
|
|
case Intrinsic::mips_srari_h:
|
|
case Intrinsic::mips_srari_w:
|
|
case Intrinsic::mips_srari_d: {
|
|
// Report an error for out of range values.
|
|
int64_t Max;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::mips_srari_b: Max = 7; break;
|
|
case Intrinsic::mips_srari_h: Max = 15; break;
|
|
case Intrinsic::mips_srari_w: Max = 31; break;
|
|
case Intrinsic::mips_srari_d: Max = 63; break;
|
|
default: llvm_unreachable("Unmatched intrinsic");
|
|
}
|
|
int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
|
|
if (Value < 0 || Value > Max)
|
|
report_fatal_error("Immediate out of range");
|
|
return SDValue();
|
|
}
|
|
case Intrinsic::mips_srl_b:
|
|
case Intrinsic::mips_srl_h:
|
|
case Intrinsic::mips_srl_w:
|
|
case Intrinsic::mips_srl_d:
|
|
return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_srli_b:
|
|
case Intrinsic::mips_srli_h:
|
|
case Intrinsic::mips_srli_w:
|
|
case Intrinsic::mips_srli_d:
|
|
return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_srlri_b:
|
|
case Intrinsic::mips_srlri_h:
|
|
case Intrinsic::mips_srlri_w:
|
|
case Intrinsic::mips_srlri_d: {
|
|
// Report an error for out of range values.
|
|
int64_t Max;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::mips_srlri_b: Max = 7; break;
|
|
case Intrinsic::mips_srlri_h: Max = 15; break;
|
|
case Intrinsic::mips_srlri_w: Max = 31; break;
|
|
case Intrinsic::mips_srlri_d: Max = 63; break;
|
|
default: llvm_unreachable("Unmatched intrinsic");
|
|
}
|
|
int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
|
|
if (Value < 0 || Value > Max)
|
|
report_fatal_error("Immediate out of range");
|
|
return SDValue();
|
|
}
|
|
case Intrinsic::mips_subv_b:
|
|
case Intrinsic::mips_subv_h:
|
|
case Intrinsic::mips_subv_w:
|
|
case Intrinsic::mips_subv_d:
|
|
return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_subvi_b:
|
|
case Intrinsic::mips_subvi_h:
|
|
case Intrinsic::mips_subvi_w:
|
|
case Intrinsic::mips_subvi_d:
|
|
return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::mips_vshf_b:
|
|
case Intrinsic::mips_vshf_h:
|
|
case Intrinsic::mips_vshf_w:
|
|
case Intrinsic::mips_vshf_d:
|
|
return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
|
|
Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
|
|
case Intrinsic::mips_xor_v:
|
|
return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
|
|
Op->getOperand(2));
|
|
case Intrinsic::mips_xori_b:
|
|
return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
|
|
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
|
|
case Intrinsic::thread_pointer: {
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
|
|
}
|
|
}
|
|
}
|
|
|
|
static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
|
|
const MipsSubtarget &Subtarget) {
|
|
SDLoc DL(Op);
|
|
SDValue ChainIn = Op->getOperand(0);
|
|
SDValue Address = Op->getOperand(2);
|
|
SDValue Offset = Op->getOperand(3);
|
|
EVT ResTy = Op->getValueType(0);
|
|
EVT PtrTy = Address->getValueType(0);
|
|
|
|
// For N64 addresses have the underlying type MVT::i64. This intrinsic
|
|
// however takes an i32 signed constant offset. The actual type of the
|
|
// intrinsic is a scaled signed i10.
|
|
if (Subtarget.isABI_N64())
|
|
Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
|
|
|
|
Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
|
|
return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
|
|
/* Alignment = */ 16);
|
|
}
|
|
|
|
SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
|
|
switch (Intr) {
|
|
default:
|
|
return SDValue();
|
|
case Intrinsic::mips_extp:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
|
|
case Intrinsic::mips_extpdp:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
|
|
case Intrinsic::mips_extr_w:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
|
|
case Intrinsic::mips_extr_r_w:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
|
|
case Intrinsic::mips_extr_rs_w:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
|
|
case Intrinsic::mips_extr_s_h:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
|
|
case Intrinsic::mips_mthlip:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
|
|
case Intrinsic::mips_mulsaq_s_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
|
|
case Intrinsic::mips_maq_s_w_phl:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
|
|
case Intrinsic::mips_maq_s_w_phr:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
|
|
case Intrinsic::mips_maq_sa_w_phl:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
|
|
case Intrinsic::mips_maq_sa_w_phr:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
|
|
case Intrinsic::mips_dpaq_s_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
|
|
case Intrinsic::mips_dpsq_s_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
|
|
case Intrinsic::mips_dpaq_sa_l_w:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
|
|
case Intrinsic::mips_dpsq_sa_l_w:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
|
|
case Intrinsic::mips_dpaqx_s_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
|
|
case Intrinsic::mips_dpaqx_sa_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
|
|
case Intrinsic::mips_dpsqx_s_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
|
|
case Intrinsic::mips_dpsqx_sa_w_ph:
|
|
return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
|
|
case Intrinsic::mips_ld_b:
|
|
case Intrinsic::mips_ld_h:
|
|
case Intrinsic::mips_ld_w:
|
|
case Intrinsic::mips_ld_d:
|
|
return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
|
|
}
|
|
}
|
|
|
|
static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
|
|
const MipsSubtarget &Subtarget) {
|
|
SDLoc DL(Op);
|
|
SDValue ChainIn = Op->getOperand(0);
|
|
SDValue Value = Op->getOperand(2);
|
|
SDValue Address = Op->getOperand(3);
|
|
SDValue Offset = Op->getOperand(4);
|
|
EVT PtrTy = Address->getValueType(0);
|
|
|
|
// For N64 addresses have the underlying type MVT::i64. This intrinsic
|
|
// however takes an i32 signed constant offset. The actual type of the
|
|
// intrinsic is a scaled signed i10.
|
|
if (Subtarget.isABI_N64())
|
|
Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
|
|
|
|
Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
|
|
|
|
return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
|
|
/* Alignment = */ 16);
|
|
}
|
|
|
|
SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
|
|
switch (Intr) {
|
|
default:
|
|
return SDValue();
|
|
case Intrinsic::mips_st_b:
|
|
case Intrinsic::mips_st_h:
|
|
case Intrinsic::mips_st_w:
|
|
case Intrinsic::mips_st_d:
|
|
return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
|
|
}
|
|
}
|
|
|
|
/// \brief Check if the given BuildVectorSDNode is a splat.
|
|
/// This method currently relies on DAG nodes being reused when equivalent,
|
|
/// so it's possible for this to return false even when isConstantSplat returns
|
|
/// true.
|
|
static bool isSplatVector(const BuildVectorSDNode *N) {
|
|
unsigned int nOps = N->getNumOperands();
|
|
assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
|
|
|
|
SDValue Operand0 = N->getOperand(0);
|
|
|
|
for (unsigned int i = 1; i < nOps; ++i) {
|
|
if (N->getOperand(i) != Operand0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
|
|
//
|
|
// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
|
|
// choose to sign-extend but we could have equally chosen zero-extend. The
|
|
// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
|
|
// result into this node later (possibly changing it to a zero-extend in the
|
|
// process).
|
|
SDValue MipsSETargetLowering::
|
|
lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT ResTy = Op->getValueType(0);
|
|
SDValue Op0 = Op->getOperand(0);
|
|
EVT VecTy = Op0->getValueType(0);
|
|
|
|
if (!VecTy.is128BitVector())
|
|
return SDValue();
|
|
|
|
if (ResTy.isInteger()) {
|
|
SDValue Op1 = Op->getOperand(1);
|
|
EVT EltTy = VecTy.getVectorElementType();
|
|
return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
|
|
DAG.getValueType(EltTy));
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
static bool isConstantOrUndef(const SDValue Op) {
|
|
if (Op->isUndef())
|
|
return true;
|
|
if (isa<ConstantSDNode>(Op))
|
|
return true;
|
|
if (isa<ConstantFPSDNode>(Op))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
|
|
for (unsigned i = 0; i < Op->getNumOperands(); ++i)
|
|
if (isConstantOrUndef(Op->getOperand(i)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
|
|
// backend.
|
|
//
|
|
// Lowers according to the following rules:
|
|
// - Constant splats are legal as-is as long as the SplatBitSize is a power of
|
|
// 2 less than or equal to 64 and the value fits into a signed 10-bit
|
|
// immediate
|
|
// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
|
|
// is a power of 2 less than or equal to 64 and the value does not fit into a
|
|
// signed 10-bit immediate
|
|
// - Non-constant splats are legal as-is.
|
|
// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
|
|
// - All others are illegal and must be expanded.
|
|
SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
|
|
EVT ResTy = Op->getValueType(0);
|
|
SDLoc DL(Op);
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
|
|
return SDValue();
|
|
|
|
if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, 8,
|
|
!Subtarget.isLittle()) && SplatBitSize <= 64) {
|
|
// We can only cope with 8, 16, 32, or 64-bit elements
|
|
if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
|
|
SplatBitSize != 64)
|
|
return SDValue();
|
|
|
|
// If the value isn't an integer type we will have to bitcast
|
|
// from an integer type first. Also, if there are any undefs, we must
|
|
// lower them to defined values first.
|
|
if (ResTy.isInteger() && !HasAnyUndefs)
|
|
return Op;
|
|
|
|
EVT ViaVecTy;
|
|
|
|
switch (SplatBitSize) {
|
|
default:
|
|
return SDValue();
|
|
case 8:
|
|
ViaVecTy = MVT::v16i8;
|
|
break;
|
|
case 16:
|
|
ViaVecTy = MVT::v8i16;
|
|
break;
|
|
case 32:
|
|
ViaVecTy = MVT::v4i32;
|
|
break;
|
|
case 64:
|
|
// There's no fill.d to fall back on for 64-bit values
|
|
return SDValue();
|
|
}
|
|
|
|
// SelectionDAG::getConstant will promote SplatValue appropriately.
|
|
SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
|
|
|
|
// Bitcast to the type we originally wanted
|
|
if (ViaVecTy != ResTy)
|
|
Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
|
|
|
|
return Result;
|
|
} else if (isSplatVector(Node))
|
|
return Op;
|
|
else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
|
|
// Use INSERT_VECTOR_ELT operations rather than expand to stores.
|
|
// The resulting code is the same length as the expansion, but it doesn't
|
|
// use memory operations
|
|
EVT ResTy = Node->getValueType(0);
|
|
|
|
assert(ResTy.isVector());
|
|
|
|
unsigned NumElts = ResTy.getVectorNumElements();
|
|
SDValue Vector = DAG.getUNDEF(ResTy);
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
|
|
Node->getOperand(i),
|
|
DAG.getConstant(i, DL, MVT::i32));
|
|
}
|
|
return Vector;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into SHF (if possible).
|
|
//
|
|
// SHF splits the vector into blocks of four elements, then shuffles these
|
|
// elements according to a <4 x i2> constant (encoded as an integer immediate).
|
|
//
|
|
// It is therefore possible to lower into SHF when the mask takes the form:
|
|
// <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
|
|
// When undef's appear they are treated as if they were whatever value is
|
|
// necessary in order to fit the above forms.
|
|
//
|
|
// For example:
|
|
// %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
|
|
// <8 x i32> <i32 3, i32 2, i32 1, i32 0,
|
|
// i32 7, i32 6, i32 5, i32 4>
|
|
// is lowered to:
|
|
// (SHF_H $w0, $w1, 27)
|
|
// where the 27 comes from:
|
|
// 3 + (2 << 2) + (1 << 4) + (0 << 6)
|
|
static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
int SHFIndices[4] = { -1, -1, -1, -1 };
|
|
|
|
if (Indices.size() < 4)
|
|
return SDValue();
|
|
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
for (unsigned j = i; j < Indices.size(); j += 4) {
|
|
int Idx = Indices[j];
|
|
|
|
// Convert from vector index to 4-element subvector index
|
|
// If an index refers to an element outside of the subvector then give up
|
|
if (Idx != -1) {
|
|
Idx -= 4 * (j / 4);
|
|
if (Idx < 0 || Idx >= 4)
|
|
return SDValue();
|
|
}
|
|
|
|
// If the mask has an undef, replace it with the current index.
|
|
// Note that it might still be undef if the current index is also undef
|
|
if (SHFIndices[i] == -1)
|
|
SHFIndices[i] = Idx;
|
|
|
|
// Check that non-undef values are the same as in the mask. If they
|
|
// aren't then give up
|
|
if (!(Idx == -1 || Idx == SHFIndices[i]))
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// Calculate the immediate. Replace any remaining undefs with zero
|
|
APInt Imm(32, 0);
|
|
for (int i = 3; i >= 0; --i) {
|
|
int Idx = SHFIndices[i];
|
|
|
|
if (Idx == -1)
|
|
Idx = 0;
|
|
|
|
Imm <<= 2;
|
|
Imm |= Idx & 0x3;
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(MipsISD::SHF, DL, ResTy,
|
|
DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
|
|
}
|
|
|
|
/// Determine whether a range fits a regular pattern of values.
|
|
/// This function accounts for the possibility of jumping over the End iterator.
|
|
template <typename ValType>
|
|
static bool
|
|
fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
|
|
unsigned CheckStride,
|
|
typename SmallVectorImpl<ValType>::const_iterator End,
|
|
ValType ExpectedIndex, unsigned ExpectedIndexStride) {
|
|
auto &I = Begin;
|
|
|
|
while (I != End) {
|
|
if (*I != -1 && *I != ExpectedIndex)
|
|
return false;
|
|
ExpectedIndex += ExpectedIndexStride;
|
|
|
|
// Incrementing past End is undefined behaviour so we must increment one
|
|
// step at a time and check for End at each step.
|
|
for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
|
|
; // Empty loop body.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Determine whether VECTOR_SHUFFLE is a SPLATI.
|
|
//
|
|
// It is a SPLATI when the mask is:
|
|
// <x, x, x, ...>
|
|
// where x is any valid index.
|
|
//
|
|
// When undef's appear in the mask they are treated as if they were whatever
|
|
// value is necessary in order to fit the above form.
|
|
static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
assert((Indices.size() % 2) == 0);
|
|
|
|
int SplatIndex = -1;
|
|
for (const auto &V : Indices) {
|
|
if (V != -1) {
|
|
SplatIndex = V;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
|
|
0);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into ILVEV (if possible).
|
|
//
|
|
// ILVEV interleaves the even elements from each vector.
|
|
//
|
|
// It is possible to lower into ILVEV when the mask consists of two of the
|
|
// following forms interleaved:
|
|
// <0, 2, 4, ...>
|
|
// <n, n+2, n+4, ...>
|
|
// where n is the number of elements in the vector.
|
|
// For example:
|
|
// <0, 0, 2, 2, 4, 4, ...>
|
|
// <0, n, 2, n+2, 4, n+4, ...>
|
|
//
|
|
// When undef's appear in the mask they are treated as if they were whatever
|
|
// value is necessary in order to fit the above forms.
|
|
static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
assert((Indices.size() % 2) == 0);
|
|
|
|
SDValue Wt;
|
|
SDValue Ws;
|
|
const auto &Begin = Indices.begin();
|
|
const auto &End = Indices.end();
|
|
|
|
// Check even elements are taken from the even elements of one half or the
|
|
// other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
|
|
Wt = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
|
|
Wt = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
// Check odd elements are taken from the even elements of one half or the
|
|
// other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
|
|
Ws = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
|
|
Ws = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into ILVOD (if possible).
|
|
//
|
|
// ILVOD interleaves the odd elements from each vector.
|
|
//
|
|
// It is possible to lower into ILVOD when the mask consists of two of the
|
|
// following forms interleaved:
|
|
// <1, 3, 5, ...>
|
|
// <n+1, n+3, n+5, ...>
|
|
// where n is the number of elements in the vector.
|
|
// For example:
|
|
// <1, 1, 3, 3, 5, 5, ...>
|
|
// <1, n+1, 3, n+3, 5, n+5, ...>
|
|
//
|
|
// When undef's appear in the mask they are treated as if they were whatever
|
|
// value is necessary in order to fit the above forms.
|
|
static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
assert((Indices.size() % 2) == 0);
|
|
|
|
SDValue Wt;
|
|
SDValue Ws;
|
|
const auto &Begin = Indices.begin();
|
|
const auto &End = Indices.end();
|
|
|
|
// Check even elements are taken from the odd elements of one half or the
|
|
// other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
|
|
Wt = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
|
|
Wt = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
// Check odd elements are taken from the odd elements of one half or the
|
|
// other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
|
|
Ws = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
|
|
Ws = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into ILVR (if possible).
|
|
//
|
|
// ILVR interleaves consecutive elements from the right (lowest-indexed) half of
|
|
// each vector.
|
|
//
|
|
// It is possible to lower into ILVR when the mask consists of two of the
|
|
// following forms interleaved:
|
|
// <0, 1, 2, ...>
|
|
// <n, n+1, n+2, ...>
|
|
// where n is the number of elements in the vector.
|
|
// For example:
|
|
// <0, 0, 1, 1, 2, 2, ...>
|
|
// <0, n, 1, n+1, 2, n+2, ...>
|
|
//
|
|
// When undef's appear in the mask they are treated as if they were whatever
|
|
// value is necessary in order to fit the above forms.
|
|
static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
assert((Indices.size() % 2) == 0);
|
|
|
|
SDValue Wt;
|
|
SDValue Ws;
|
|
const auto &Begin = Indices.begin();
|
|
const auto &End = Indices.end();
|
|
|
|
// Check even elements are taken from the right (lowest-indexed) elements of
|
|
// one half or the other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
|
|
Wt = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
|
|
Wt = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
// Check odd elements are taken from the right (lowest-indexed) elements of
|
|
// one half or the other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
|
|
Ws = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
|
|
Ws = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into ILVL (if possible).
|
|
//
|
|
// ILVL interleaves consecutive elements from the left (highest-indexed) half
|
|
// of each vector.
|
|
//
|
|
// It is possible to lower into ILVL when the mask consists of two of the
|
|
// following forms interleaved:
|
|
// <x, x+1, x+2, ...>
|
|
// <n+x, n+x+1, n+x+2, ...>
|
|
// where n is the number of elements in the vector and x is half n.
|
|
// For example:
|
|
// <x, x, x+1, x+1, x+2, x+2, ...>
|
|
// <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
|
|
//
|
|
// When undef's appear in the mask they are treated as if they were whatever
|
|
// value is necessary in order to fit the above forms.
|
|
static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
assert((Indices.size() % 2) == 0);
|
|
|
|
unsigned HalfSize = Indices.size() / 2;
|
|
SDValue Wt;
|
|
SDValue Ws;
|
|
const auto &Begin = Indices.begin();
|
|
const auto &End = Indices.end();
|
|
|
|
// Check even elements are taken from the left (highest-indexed) elements of
|
|
// one half or the other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
|
|
Wt = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
|
|
Wt = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
// Check odd elements are taken from the left (highest-indexed) elements of
|
|
// one half or the other and pick an operand accordingly.
|
|
if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
|
|
Ws = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
|
|
1))
|
|
Ws = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into PCKEV (if possible).
|
|
//
|
|
// PCKEV copies the even elements of each vector into the result vector.
|
|
//
|
|
// It is possible to lower into PCKEV when the mask consists of two of the
|
|
// following forms concatenated:
|
|
// <0, 2, 4, ...>
|
|
// <n, n+2, n+4, ...>
|
|
// where n is the number of elements in the vector.
|
|
// For example:
|
|
// <0, 2, 4, ..., 0, 2, 4, ...>
|
|
// <0, 2, 4, ..., n, n+2, n+4, ...>
|
|
//
|
|
// When undef's appear in the mask they are treated as if they were whatever
|
|
// value is necessary in order to fit the above forms.
|
|
static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
assert((Indices.size() % 2) == 0);
|
|
|
|
SDValue Wt;
|
|
SDValue Ws;
|
|
const auto &Begin = Indices.begin();
|
|
const auto &Mid = Indices.begin() + Indices.size() / 2;
|
|
const auto &End = Indices.end();
|
|
|
|
if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
|
|
Wt = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
|
|
Wt = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
|
|
Ws = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
|
|
Ws = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into PCKOD (if possible).
|
|
//
|
|
// PCKOD copies the odd elements of each vector into the result vector.
|
|
//
|
|
// It is possible to lower into PCKOD when the mask consists of two of the
|
|
// following forms concatenated:
|
|
// <1, 3, 5, ...>
|
|
// <n+1, n+3, n+5, ...>
|
|
// where n is the number of elements in the vector.
|
|
// For example:
|
|
// <1, 3, 5, ..., 1, 3, 5, ...>
|
|
// <1, 3, 5, ..., n+1, n+3, n+5, ...>
|
|
//
|
|
// When undef's appear in the mask they are treated as if they were whatever
|
|
// value is necessary in order to fit the above forms.
|
|
static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
assert((Indices.size() % 2) == 0);
|
|
|
|
SDValue Wt;
|
|
SDValue Ws;
|
|
const auto &Begin = Indices.begin();
|
|
const auto &Mid = Indices.begin() + Indices.size() / 2;
|
|
const auto &End = Indices.end();
|
|
|
|
if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
|
|
Wt = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
|
|
Wt = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
|
|
Ws = Op->getOperand(0);
|
|
else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
|
|
Ws = Op->getOperand(1);
|
|
else
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into VSHF.
|
|
//
|
|
// This mostly consists of converting the shuffle indices in Indices into a
|
|
// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
|
|
// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
|
|
// if the type is v8i16 and all the indices are less than 8 then the second
|
|
// operand is unused and can be replaced with anything. We choose to replace it
|
|
// with the used operand since this reduces the number of instructions overall.
|
|
static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
|
|
SmallVector<int, 16> Indices,
|
|
SelectionDAG &DAG) {
|
|
SmallVector<SDValue, 16> Ops;
|
|
SDValue Op0;
|
|
SDValue Op1;
|
|
EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
|
|
EVT MaskEltTy = MaskVecTy.getVectorElementType();
|
|
bool Using1stVec = false;
|
|
bool Using2ndVec = false;
|
|
SDLoc DL(Op);
|
|
int ResTyNumElts = ResTy.getVectorNumElements();
|
|
|
|
for (int i = 0; i < ResTyNumElts; ++i) {
|
|
// Idx == -1 means UNDEF
|
|
int Idx = Indices[i];
|
|
|
|
if (0 <= Idx && Idx < ResTyNumElts)
|
|
Using1stVec = true;
|
|
if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
|
|
Using2ndVec = true;
|
|
}
|
|
|
|
for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
|
|
++I)
|
|
Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
|
|
|
|
SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
|
|
|
|
if (Using1stVec && Using2ndVec) {
|
|
Op0 = Op->getOperand(0);
|
|
Op1 = Op->getOperand(1);
|
|
} else if (Using1stVec)
|
|
Op0 = Op1 = Op->getOperand(0);
|
|
else if (Using2ndVec)
|
|
Op0 = Op1 = Op->getOperand(1);
|
|
else
|
|
llvm_unreachable("shuffle vector mask references neither vector operand?");
|
|
|
|
// VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
|
|
// <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
|
|
// VSHF concatenates the vectors in a bitwise fashion:
|
|
// <0b00, 0b01> + <0b10, 0b11> ->
|
|
// 0b0100 + 0b1110 -> 0b01001110
|
|
// <0b10, 0b11, 0b00, 0b01>
|
|
// We must therefore swap the operands to get the correct result.
|
|
return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
|
|
}
|
|
|
|
// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
|
|
// indices in the shuffle.
|
|
SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
|
|
EVT ResTy = Op->getValueType(0);
|
|
|
|
if (!ResTy.is128BitVector())
|
|
return SDValue();
|
|
|
|
int ResTyNumElts = ResTy.getVectorNumElements();
|
|
SmallVector<int, 16> Indices;
|
|
|
|
for (int i = 0; i < ResTyNumElts; ++i)
|
|
Indices.push_back(Node->getMaskElt(i));
|
|
|
|
// splati.[bhwd] is preferable to the others but is matched from
|
|
// MipsISD::VSHF.
|
|
if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
|
|
return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
|
|
SDValue Result;
|
|
if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
|
|
return Result;
|
|
if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
|
|
return Result;
|
|
if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
|
|
return Result;
|
|
if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
|
|
return Result;
|
|
if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
|
|
return Result;
|
|
if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
|
|
return Result;
|
|
if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
|
|
return Result;
|
|
return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
// $bb:
|
|
// bposge32_pseudo $vr0
|
|
// =>
|
|
// $bb:
|
|
// bposge32 $tbb
|
|
// $fbb:
|
|
// li $vr2, 0
|
|
// b $sink
|
|
// $tbb:
|
|
// li $vr1, 1
|
|
// $sink:
|
|
// $vr0 = phi($vr2, $fbb, $vr1, $tbb)
|
|
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, FBB);
|
|
F->insert(It, TBB);
|
|
F->insert(It, Sink);
|
|
|
|
// Transfer the remainder of BB and its successor edges to Sink.
|
|
Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
Sink->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Add successors.
|
|
BB->addSuccessor(FBB);
|
|
BB->addSuccessor(TBB);
|
|
FBB->addSuccessor(Sink);
|
|
TBB->addSuccessor(Sink);
|
|
|
|
// Insert the real bposge32 instruction to $BB.
|
|
BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
|
|
// Insert the real bposge32c instruction to $BB.
|
|
BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
|
|
|
|
// Fill $FBB.
|
|
unsigned VR2 = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
|
|
.addReg(Mips::ZERO).addImm(0);
|
|
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
|
|
|
|
// Fill $TBB.
|
|
unsigned VR1 = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
|
|
.addReg(Mips::ZERO).addImm(1);
|
|
|
|
// Insert phi function to $Sink.
|
|
BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
|
|
MI.getOperand(0).getReg())
|
|
.addReg(VR2)
|
|
.addMBB(FBB)
|
|
.addReg(VR1)
|
|
.addMBB(TBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return Sink;
|
|
}
|
|
|
|
MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
|
|
MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
|
|
// $bb:
|
|
// vany_nonzero $rd, $ws
|
|
// =>
|
|
// $bb:
|
|
// bnz.b $ws, $tbb
|
|
// b $fbb
|
|
// $fbb:
|
|
// li $rd1, 0
|
|
// b $sink
|
|
// $tbb:
|
|
// li $rd2, 1
|
|
// $sink:
|
|
// $rd = phi($rd1, $fbb, $rd2, $tbb)
|
|
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, FBB);
|
|
F->insert(It, TBB);
|
|
F->insert(It, Sink);
|
|
|
|
// Transfer the remainder of BB and its successor edges to Sink.
|
|
Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
Sink->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Add successors.
|
|
BB->addSuccessor(FBB);
|
|
BB->addSuccessor(TBB);
|
|
FBB->addSuccessor(Sink);
|
|
TBB->addSuccessor(Sink);
|
|
|
|
// Insert the real bnz.b instruction to $BB.
|
|
BuildMI(BB, DL, TII->get(BranchOp))
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addMBB(TBB);
|
|
|
|
// Fill $FBB.
|
|
unsigned RD1 = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
|
|
.addReg(Mips::ZERO).addImm(0);
|
|
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
|
|
|
|
// Fill $TBB.
|
|
unsigned RD2 = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
|
|
.addReg(Mips::ZERO).addImm(1);
|
|
|
|
// Insert phi function to $Sink.
|
|
BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
|
|
MI.getOperand(0).getReg())
|
|
.addReg(RD1)
|
|
.addMBB(FBB)
|
|
.addReg(RD2)
|
|
.addMBB(TBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return Sink;
|
|
}
|
|
|
|
// Emit the COPY_FW pseudo instruction.
|
|
//
|
|
// copy_fw_pseudo $fd, $ws, n
|
|
// =>
|
|
// copy_u_w $rt, $ws, $n
|
|
// mtc1 $rt, $fd
|
|
//
|
|
// When n is zero, the equivalent operation can be performed with (potentially)
|
|
// zero instructions due to register overlaps. This optimization is never valid
|
|
// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Fd = MI.getOperand(0).getReg();
|
|
unsigned Ws = MI.getOperand(1).getReg();
|
|
unsigned Lane = MI.getOperand(2).getImm();
|
|
|
|
if (Lane == 0) {
|
|
unsigned Wt = Ws;
|
|
if (!Subtarget.useOddSPReg()) {
|
|
// We must copy to an even-numbered MSA register so that the
|
|
// single-precision sub-register is also guaranteed to be even-numbered.
|
|
Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
|
|
}
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
|
|
} else {
|
|
unsigned Wt = RegInfo.createVirtualRegister(
|
|
Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
|
|
&Mips::MSA128WEvensRegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
|
|
}
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the COPY_FD pseudo instruction.
|
|
//
|
|
// copy_fd_pseudo $fd, $ws, n
|
|
// =>
|
|
// splati.d $wt, $ws, $n
|
|
// copy $fd, $wt:sub_64
|
|
//
|
|
// When n is zero, the equivalent operation can be performed with (potentially)
|
|
// zero instructions due to register overlaps. This optimization is always
|
|
// valid because FR=1 mode which is the only supported mode in MSA.
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
assert(Subtarget.isFP64bit());
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
unsigned Fd = MI.getOperand(0).getReg();
|
|
unsigned Ws = MI.getOperand(1).getReg();
|
|
unsigned Lane = MI.getOperand(2).getImm() * 2;
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
if (Lane == 0)
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
|
|
else {
|
|
unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
|
|
}
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the INSERT_FW pseudo instruction.
|
|
//
|
|
// insert_fw_pseudo $wd, $wd_in, $n, $fs
|
|
// =>
|
|
// subreg_to_reg $wt:sub_lo, $fs
|
|
// insve_w $wd[$n], $wd_in, $wt[0]
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Wd = MI.getOperand(0).getReg();
|
|
unsigned Wd_in = MI.getOperand(1).getReg();
|
|
unsigned Lane = MI.getOperand(2).getImm();
|
|
unsigned Fs = MI.getOperand(3).getReg();
|
|
unsigned Wt = RegInfo.createVirtualRegister(
|
|
Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
|
|
&Mips::MSA128WEvensRegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
|
|
.addImm(0)
|
|
.addReg(Fs)
|
|
.addImm(Mips::sub_lo);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
|
|
.addReg(Wd_in)
|
|
.addImm(Lane)
|
|
.addReg(Wt)
|
|
.addImm(0);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the INSERT_FD pseudo instruction.
|
|
//
|
|
// insert_fd_pseudo $wd, $fs, n
|
|
// =>
|
|
// subreg_to_reg $wt:sub_64, $fs
|
|
// insve_d $wd[$n], $wd_in, $wt[0]
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
assert(Subtarget.isFP64bit());
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Wd = MI.getOperand(0).getReg();
|
|
unsigned Wd_in = MI.getOperand(1).getReg();
|
|
unsigned Lane = MI.getOperand(2).getImm();
|
|
unsigned Fs = MI.getOperand(3).getReg();
|
|
unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
|
|
.addImm(0)
|
|
.addReg(Fs)
|
|
.addImm(Mips::sub_64);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
|
|
.addReg(Wd_in)
|
|
.addImm(Lane)
|
|
.addReg(Wt)
|
|
.addImm(0);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
|
|
//
|
|
// For integer:
|
|
// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
|
|
// =>
|
|
// (SLL $lanetmp1, $lane, <log2size)
|
|
// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
|
|
// (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
|
|
// (NEG $lanetmp2, $lanetmp1)
|
|
// (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
|
|
//
|
|
// For floating point:
|
|
// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
|
|
// =>
|
|
// (SUBREG_TO_REG $wt, $fs, <subreg>)
|
|
// (SLL $lanetmp1, $lane, <log2size)
|
|
// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
|
|
// (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
|
|
// (NEG $lanetmp2, $lanetmp1)
|
|
// (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
|
|
MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
|
|
MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
|
|
bool IsFP) const {
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Wd = MI.getOperand(0).getReg();
|
|
unsigned SrcVecReg = MI.getOperand(1).getReg();
|
|
unsigned LaneReg = MI.getOperand(2).getReg();
|
|
unsigned SrcValReg = MI.getOperand(3).getReg();
|
|
|
|
const TargetRegisterClass *VecRC = nullptr;
|
|
// FIXME: This should be true for N32 too.
|
|
const TargetRegisterClass *GPRRC =
|
|
Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
|
|
unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
|
|
unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
|
|
unsigned EltLog2Size;
|
|
unsigned InsertOp = 0;
|
|
unsigned InsveOp = 0;
|
|
switch (EltSizeInBytes) {
|
|
default:
|
|
llvm_unreachable("Unexpected size");
|
|
case 1:
|
|
EltLog2Size = 0;
|
|
InsertOp = Mips::INSERT_B;
|
|
InsveOp = Mips::INSVE_B;
|
|
VecRC = &Mips::MSA128BRegClass;
|
|
break;
|
|
case 2:
|
|
EltLog2Size = 1;
|
|
InsertOp = Mips::INSERT_H;
|
|
InsveOp = Mips::INSVE_H;
|
|
VecRC = &Mips::MSA128HRegClass;
|
|
break;
|
|
case 4:
|
|
EltLog2Size = 2;
|
|
InsertOp = Mips::INSERT_W;
|
|
InsveOp = Mips::INSVE_W;
|
|
VecRC = &Mips::MSA128WRegClass;
|
|
break;
|
|
case 8:
|
|
EltLog2Size = 3;
|
|
InsertOp = Mips::INSERT_D;
|
|
InsveOp = Mips::INSVE_D;
|
|
VecRC = &Mips::MSA128DRegClass;
|
|
break;
|
|
}
|
|
|
|
if (IsFP) {
|
|
unsigned Wt = RegInfo.createVirtualRegister(VecRC);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
|
|
.addImm(0)
|
|
.addReg(SrcValReg)
|
|
.addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
|
|
SrcValReg = Wt;
|
|
}
|
|
|
|
// Convert the lane index into a byte index
|
|
if (EltSizeInBytes != 1) {
|
|
unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
|
|
BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
|
|
.addReg(LaneReg)
|
|
.addImm(EltLog2Size);
|
|
LaneReg = LaneTmp1;
|
|
}
|
|
|
|
// Rotate bytes around so that the desired lane is element zero
|
|
unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
|
|
.addReg(SrcVecReg)
|
|
.addReg(SrcVecReg)
|
|
.addReg(LaneReg, 0, SubRegIdx);
|
|
|
|
unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
|
|
if (IsFP) {
|
|
// Use insve.df to insert to element zero
|
|
BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
|
|
.addReg(WdTmp1)
|
|
.addImm(0)
|
|
.addReg(SrcValReg)
|
|
.addImm(0);
|
|
} else {
|
|
// Use insert.df to insert to element zero
|
|
BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
|
|
.addReg(WdTmp1)
|
|
.addReg(SrcValReg)
|
|
.addImm(0);
|
|
}
|
|
|
|
// Rotate elements the rest of the way for a full rotation.
|
|
// sld.df inteprets $rt modulo the number of columns so we only need to negate
|
|
// the lane index to do this.
|
|
unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
|
|
BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
|
|
LaneTmp2)
|
|
.addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
|
|
.addReg(LaneReg);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
|
|
.addReg(WdTmp2)
|
|
.addReg(WdTmp2)
|
|
.addReg(LaneTmp2, 0, SubRegIdx);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the FILL_FW pseudo instruction.
|
|
//
|
|
// fill_fw_pseudo $wd, $fs
|
|
// =>
|
|
// implicit_def $wt1
|
|
// insert_subreg $wt2:subreg_lo, $wt1, $fs
|
|
// splati.w $wd, $wt2[0]
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Wd = MI.getOperand(0).getReg();
|
|
unsigned Fs = MI.getOperand(1).getReg();
|
|
unsigned Wt1 = RegInfo.createVirtualRegister(
|
|
Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
|
|
: &Mips::MSA128WEvensRegClass);
|
|
unsigned Wt2 = RegInfo.createVirtualRegister(
|
|
Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
|
|
: &Mips::MSA128WEvensRegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
|
|
.addReg(Wt1)
|
|
.addReg(Fs)
|
|
.addImm(Mips::sub_lo);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the FILL_FD pseudo instruction.
|
|
//
|
|
// fill_fd_pseudo $wd, $fs
|
|
// =>
|
|
// implicit_def $wt1
|
|
// insert_subreg $wt2:subreg_64, $wt1, $fs
|
|
// splati.d $wd, $wt2[0]
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
assert(Subtarget.isFP64bit());
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Wd = MI.getOperand(0).getReg();
|
|
unsigned Fs = MI.getOperand(1).getReg();
|
|
unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
|
|
unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
|
|
.addReg(Wt1)
|
|
.addReg(Fs)
|
|
.addImm(Mips::sub_64);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
|
|
// register.
|
|
//
|
|
// STF16 MSA128F16:$wd, mem_simm10:$addr
|
|
// =>
|
|
// copy_u.h $rtemp,$wd[0]
|
|
// sh $rtemp, $addr
|
|
//
|
|
// Safety: We can't use st.h & co as they would over write the memory after
|
|
// the destination. It would require half floats be allocated 16 bytes(!) of
|
|
// space.
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Ws = MI.getOperand(0).getReg();
|
|
unsigned Rt = MI.getOperand(1).getReg();
|
|
const MachineMemOperand &MMO = **MI.memoperands_begin();
|
|
unsigned Imm = MMO.getOffset();
|
|
|
|
// Caution: A load via the GOT can expand to a GPR32 operand, a load via
|
|
// spill and reload can expand as a GPR64 operand. Examine the
|
|
// operand in detail and default to ABI.
|
|
const TargetRegisterClass *RC =
|
|
MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
|
|
: (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
|
|
: &Mips::GPR64RegClass);
|
|
const bool UsingMips32 = RC == &Mips::GPR32RegClass;
|
|
unsigned Rs = RegInfo.createVirtualRegister(RC);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
|
|
BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
|
|
.addReg(Rs)
|
|
.addReg(Rt)
|
|
.addImm(Imm)
|
|
.addMemOperand(BB->getParent()->getMachineMemOperand(
|
|
&MMO, MMO.getOffset(), MMO.getSize()));
|
|
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
// Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
|
|
//
|
|
// LD_F16 MSA128F16:$wd, mem_simm10:$addr
|
|
// =>
|
|
// lh $rtemp, $addr
|
|
// fill.h $wd, $rtemp
|
|
//
|
|
// Safety: We can't use ld.h & co as they over-read from the source.
|
|
// Additionally, if the address is not modulo 16, 2 cases can occur:
|
|
// a) Segmentation fault as the load instruction reads from a memory page
|
|
// memory it's not supposed to.
|
|
// b) The load crosses an implementation specific boundary, requiring OS
|
|
// intervention.
|
|
//
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Wd = MI.getOperand(0).getReg();
|
|
|
|
// Caution: A load via the GOT can expand to a GPR32 operand, a load via
|
|
// spill and reload can expand as a GPR64 operand. Examine the
|
|
// operand in detail and default to ABI.
|
|
const TargetRegisterClass *RC =
|
|
MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
|
|
: (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
|
|
: &Mips::GPR64RegClass);
|
|
|
|
const bool UsingMips32 = RC == &Mips::GPR32RegClass;
|
|
unsigned Rt = RegInfo.createVirtualRegister(RC);
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
|
|
for (unsigned i = 1; i < MI.getNumOperands(); i++)
|
|
MIB.add(MI.getOperand(i));
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
|
|
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
// Emit the FPROUND_PSEUDO instruction.
|
|
//
|
|
// Round an FGR64Opnd, FGR32Opnd to an f16.
|
|
//
|
|
// Safety: Cycle the operand through the GPRs so the result always ends up
|
|
// the correct MSA register.
|
|
//
|
|
// FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
|
|
// / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
|
|
// (which they can be, as the MSA registers are defined to alias the
|
|
// FPU's 64 bit and 32 bit registers) the result can be accessed using
|
|
// the correct register class. That requires operands be tie-able across
|
|
// register classes which have a sub/super register class relationship.
|
|
//
|
|
// For FPG32Opnd:
|
|
//
|
|
// FPROUND MSA128F16:$wd, FGR32Opnd:$fs
|
|
// =>
|
|
// mfc1 $rtemp, $fs
|
|
// fill.w $rtemp, $wtemp
|
|
// fexdo.w $wd, $wtemp, $wtemp
|
|
//
|
|
// For FPG64Opnd on mips32r2+:
|
|
//
|
|
// FPROUND MSA128F16:$wd, FGR64Opnd:$fs
|
|
// =>
|
|
// mfc1 $rtemp, $fs
|
|
// fill.w $rtemp, $wtemp
|
|
// mfhc1 $rtemp2, $fs
|
|
// insert.w $wtemp[1], $rtemp2
|
|
// insert.w $wtemp[3], $rtemp2
|
|
// fexdo.w $wtemp2, $wtemp, $wtemp
|
|
// fexdo.h $wd, $temp2, $temp2
|
|
//
|
|
// For FGR64Opnd on mips64r2+:
|
|
//
|
|
// FPROUND MSA128F16:$wd, FGR64Opnd:$fs
|
|
// =>
|
|
// dmfc1 $rtemp, $fs
|
|
// fill.d $rtemp, $wtemp
|
|
// fexdo.w $wtemp2, $wtemp, $wtemp
|
|
// fexdo.h $wd, $wtemp2, $wtemp2
|
|
//
|
|
// Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
|
|
// undef bits are "just right" and the exception enable bits are
|
|
// set. By using fill.w to replicate $fs into all elements over
|
|
// insert.w for one element, we avoid that potiential case. If
|
|
// fexdo.[hw] causes an exception in, the exception is valid and it
|
|
// occurs for all elements.
|
|
//
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
bool IsFGR64) const {
|
|
|
|
// Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
|
|
// here. It's technically doable to support MIPS32 here, but the ISA forbids
|
|
// it.
|
|
assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
|
|
|
|
bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Wd = MI.getOperand(0).getReg();
|
|
unsigned Fs = MI.getOperand(1).getReg();
|
|
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
|
|
const TargetRegisterClass *GPRRC =
|
|
IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
|
|
unsigned MFC1Opc = IsFGR64onMips64 ? Mips::DMFC1 : Mips::MFC1;
|
|
unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
|
|
|
|
// Perform the register class copy as mentioned above.
|
|
unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
|
|
BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
|
|
BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
|
|
unsigned WPHI = Wtemp;
|
|
|
|
if (!Subtarget.hasMips64() && IsFGR64) {
|
|
unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
|
|
unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
|
|
unsigned Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
|
|
.addReg(Wtemp)
|
|
.addReg(Rtemp2)
|
|
.addImm(1);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
|
|
.addReg(Wtemp2)
|
|
.addReg(Rtemp2)
|
|
.addImm(3);
|
|
WPHI = Wtemp3;
|
|
}
|
|
|
|
if (IsFGR64) {
|
|
unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
|
|
.addReg(WPHI)
|
|
.addReg(WPHI);
|
|
WPHI = Wtemp2;
|
|
}
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
|
|
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
// Emit the FPEXTEND_PSEUDO instruction.
|
|
//
|
|
// Expand an f16 to either a FGR32Opnd or FGR64Opnd.
|
|
//
|
|
// Safety: Cycle the result through the GPRs so the result always ends up
|
|
// the correct floating point register.
|
|
//
|
|
// FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
|
|
// / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
|
|
// (which they can be, as the MSA registers are defined to alias the
|
|
// FPU's 64 bit and 32 bit registers) the result can be accessed using
|
|
// the correct register class. That requires operands be tie-able across
|
|
// register classes which have a sub/super register class relationship. I
|
|
// haven't checked.
|
|
//
|
|
// For FGR32Opnd:
|
|
//
|
|
// FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
|
|
// =>
|
|
// fexupr.w $wtemp, $ws
|
|
// copy_s.w $rtemp, $ws[0]
|
|
// mtc1 $rtemp, $fd
|
|
//
|
|
// For FGR64Opnd on Mips64:
|
|
//
|
|
// FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
|
|
// =>
|
|
// fexupr.w $wtemp, $ws
|
|
// fexupr.d $wtemp2, $wtemp
|
|
// copy_s.d $rtemp, $wtemp2s[0]
|
|
// dmtc1 $rtemp, $fd
|
|
//
|
|
// For FGR64Opnd on Mips32:
|
|
//
|
|
// FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
|
|
// =>
|
|
// fexupr.w $wtemp, $ws
|
|
// fexupr.d $wtemp2, $wtemp
|
|
// copy_s.w $rtemp, $wtemp2[0]
|
|
// mtc1 $rtemp, $ftemp
|
|
// copy_s.w $rtemp2, $wtemp2[1]
|
|
// $fd = mthc1 $rtemp2, $ftemp
|
|
//
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
bool IsFGR64) const {
|
|
|
|
// Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
|
|
// here. It's technically doable to support MIPS32 here, but the ISA forbids
|
|
// it.
|
|
assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
|
|
|
|
bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
|
|
bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Fd = MI.getOperand(0).getReg();
|
|
unsigned Ws = MI.getOperand(1).getReg();
|
|
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
const TargetRegisterClass *GPRRC =
|
|
IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
|
|
unsigned MTC1Opc = IsFGR64onMips64 ? Mips::DMTC1 : Mips::MTC1;
|
|
unsigned COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
|
|
|
|
unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
|
|
unsigned WPHI = Wtemp;
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
|
|
if (IsFGR64) {
|
|
WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
|
|
}
|
|
|
|
// Perform the safety regclass copy mentioned above.
|
|
unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
|
|
unsigned FPRPHI = IsFGR64onMips32
|
|
? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
|
|
: Fd;
|
|
BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
|
|
BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
|
|
|
|
if (IsFGR64onMips32) {
|
|
unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
|
|
.addReg(WPHI)
|
|
.addImm(1);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
|
|
.addReg(FPRPHI)
|
|
.addReg(Rtemp2);
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
// Emit the FEXP2_W_1 pseudo instructions.
|
|
//
|
|
// fexp2_w_1_pseudo $wd, $wt
|
|
// =>
|
|
// ldi.w $ws, 1
|
|
// fexp2.w $wd, $ws, $wt
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
|
|
unsigned Ws1 = RegInfo.createVirtualRegister(RC);
|
|
unsigned Ws2 = RegInfo.createVirtualRegister(RC);
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
// Splat 1.0 into a vector
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
|
|
|
|
// Emit 1.0 * fexp2(Wt)
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
|
|
.addReg(Ws2)
|
|
.addReg(MI.getOperand(1).getReg());
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Emit the FEXP2_D_1 pseudo instructions.
|
|
//
|
|
// fexp2_d_1_pseudo $wd, $wt
|
|
// =>
|
|
// ldi.d $ws, 1
|
|
// fexp2.d $wd, $ws, $wt
|
|
MachineBasicBlock *
|
|
MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
|
|
unsigned Ws1 = RegInfo.createVirtualRegister(RC);
|
|
unsigned Ws2 = RegInfo.createVirtualRegister(RC);
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
// Splat 1.0 into a vector
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
|
|
|
|
// Emit 1.0 * fexp2(Wt)
|
|
BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
|
|
.addReg(Ws2)
|
|
.addReg(MI.getOperand(1).getReg());
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|