llvm-project/llvm/lib/Target/AArch64/AArch64MacroFusion.cpp

263 lines
8.7 KiB
C++

//===- AArch64MacroFusion.cpp - AArch64 Macro Fusion ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file This file contains the AArch64 implementation of the DAG scheduling mutation
// to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "AArch64MacroFusion.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#define DEBUG_TYPE "misched"
STATISTIC(NumFused, "Number of instr pairs fused");
using namespace llvm;
static cl::opt<bool> EnableMacroFusion("aarch64-misched-fusion", cl::Hidden,
cl::desc("Enable scheduling for macro fusion."), cl::init(true));
namespace {
/// \brief Verify that the instruction pair, First and Second,
/// should be scheduled back to back. Given an anchor instruction, if the other
/// instruction is unspecified, then verify that the anchor instruction may be
/// part of a pair at all.
static bool shouldScheduleAdjacent(const AArch64InstrInfo &TII,
const AArch64Subtarget &ST,
const MachineInstr *First,
const MachineInstr *Second) {
assert((First || Second) && "At least one instr must be specified");
unsigned FirstOpcode =
First ? First->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
unsigned SecondOpcode =
Second ? Second->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
if (ST.hasArithmeticBccFusion())
// Fuse CMN, CMP, TST followed by Bcc.
if (SecondOpcode == AArch64::Bcc)
switch (FirstOpcode) {
default:
return false;
case AArch64::ADDSWri:
case AArch64::ADDSWrr:
case AArch64::ADDSXri:
case AArch64::ADDSXrr:
case AArch64::ANDSWri:
case AArch64::ANDSWrr:
case AArch64::ANDSXri:
case AArch64::ANDSXrr:
case AArch64::SUBSWri:
case AArch64::SUBSWrr:
case AArch64::SUBSXri:
case AArch64::SUBSXrr:
case AArch64::BICSWrr:
case AArch64::BICSXrr:
return true;
case AArch64::ADDSWrs:
case AArch64::ADDSXrs:
case AArch64::ANDSWrs:
case AArch64::ANDSXrs:
case AArch64::SUBSWrs:
case AArch64::SUBSXrs:
case AArch64::BICSWrs:
case AArch64::BICSXrs:
// Shift value can be 0 making these behave like the "rr" variant...
return !TII.hasShiftedReg(*First);
case AArch64::INSTRUCTION_LIST_END:
return true;
}
if (ST.hasArithmeticCbzFusion())
// Fuse ALU operations followed by CBZ/CBNZ.
if (SecondOpcode == AArch64::CBNZW || SecondOpcode == AArch64::CBNZX ||
SecondOpcode == AArch64::CBZW || SecondOpcode == AArch64::CBZX)
switch (FirstOpcode) {
default:
return false;
case AArch64::ADDWri:
case AArch64::ADDWrr:
case AArch64::ADDXri:
case AArch64::ADDXrr:
case AArch64::ANDWri:
case AArch64::ANDWrr:
case AArch64::ANDXri:
case AArch64::ANDXrr:
case AArch64::EORWri:
case AArch64::EORWrr:
case AArch64::EORXri:
case AArch64::EORXrr:
case AArch64::ORRWri:
case AArch64::ORRWrr:
case AArch64::ORRXri:
case AArch64::ORRXrr:
case AArch64::SUBWri:
case AArch64::SUBWrr:
case AArch64::SUBXri:
case AArch64::SUBXrr:
return true;
case AArch64::ADDWrs:
case AArch64::ADDXrs:
case AArch64::ANDWrs:
case AArch64::ANDXrs:
case AArch64::SUBWrs:
case AArch64::SUBXrs:
case AArch64::BICWrs:
case AArch64::BICXrs:
// Shift value can be 0 making these behave like the "rr" variant...
return !TII.hasShiftedReg(*First);
case AArch64::INSTRUCTION_LIST_END:
return true;
}
if (ST.hasFuseAES())
// Fuse AES crypto operations.
switch(FirstOpcode) {
// AES encode.
case AArch64::AESErr:
return SecondOpcode == AArch64::AESMCrr ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// AES decode.
case AArch64::AESDrr:
return SecondOpcode == AArch64::AESIMCrr ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
}
if (ST.hasFuseLiterals())
// Fuse literal generation operations.
switch (FirstOpcode) {
// PC relative address.
case AArch64::ADRP:
return SecondOpcode == AArch64::ADDXri ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// 32 bit immediate.
case AArch64::MOVZWi:
return (SecondOpcode == AArch64::MOVKWi &&
Second->getOperand(3).getImm() == 16) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// Lower half of 64 bit immediate.
case AArch64::MOVZXi:
return (SecondOpcode == AArch64::MOVKXi &&
Second->getOperand(3).getImm() == 16) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// Upper half of 64 bit immediate.
case AArch64::MOVKXi:
return First->getOperand(3).getImm() == 32 &&
((SecondOpcode == AArch64::MOVKXi &&
Second->getOperand(3).getImm() == 48) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END);
}
return false;
}
/// \brief Implement the fusion of instruction pairs in the scheduling
/// DAG, anchored at the instruction in ASU. Preds
/// indicates if its dependencies in \param APreds are predecessors instead of
/// successors.
static bool scheduleAdjacentImpl(ScheduleDAGMI *DAG, SUnit *ASU,
SmallVectorImpl<SDep> &APreds, bool Preds) {
const AArch64InstrInfo *TII = static_cast<const AArch64InstrInfo *>(DAG->TII);
const AArch64Subtarget &ST = DAG->MF.getSubtarget<AArch64Subtarget>();
const MachineInstr *AMI = ASU->getInstr();
if (!AMI || AMI->isPseudo() || AMI->isTransient() ||
(Preds && !shouldScheduleAdjacent(*TII, ST, nullptr, AMI)) ||
(!Preds && !shouldScheduleAdjacent(*TII, ST, AMI, nullptr)))
return false;
for (SDep &BDep : APreds) {
if (BDep.isWeak())
continue;
SUnit *BSU = BDep.getSUnit();
const MachineInstr *BMI = BSU->getInstr();
if (!BMI || BMI->isPseudo() || BMI->isTransient() ||
(Preds && !shouldScheduleAdjacent(*TII, ST, BMI, AMI)) ||
(!Preds && !shouldScheduleAdjacent(*TII, ST, AMI, BMI)))
continue;
// Create a single weak edge between the adjacent instrs. The only
// effect is to cause bottom-up scheduling to heavily prioritize the
// clustered instrs.
if (Preds)
DAG->addEdge(ASU, SDep(BSU, SDep::Cluster));
else
DAG->addEdge(BSU, SDep(ASU, SDep::Cluster));
// Adjust the latency between the 1st instr and its predecessors/successors.
for (SDep &Dep : APreds)
if (Dep.getSUnit() == BSU)
Dep.setLatency(0);
// Adjust the latency between the 2nd instr and its successors/predecessors.
auto &BSuccs = Preds ? BSU->Succs : BSU->Preds;
for (SDep &Dep : BSuccs)
if (Dep.getSUnit() == ASU)
Dep.setLatency(0);
++NumFused;
DEBUG({ SUnit *LSU = Preds ? BSU : ASU;
SUnit *RSU = Preds ? ASU : BSU;
const MachineInstr *LMI = Preds ? BMI : AMI;
const MachineInstr *RMI = Preds ? AMI : BMI;
dbgs() << DAG->MF.getName() << "(): Macro fuse ";
LSU->print(dbgs(), DAG);
dbgs() << " - ";
RSU->print(dbgs(), DAG);
dbgs() << " / " <<
TII->getName(LMI->getOpcode()) << " - " <<
TII->getName(RMI->getOpcode()) << '\n';
});
return true;
}
return false;
}
/// \brief Post-process the DAG to create cluster edges between instructions
/// that may be fused by the processor into a single operation.
class AArch64MacroFusion : public ScheduleDAGMutation {
public:
AArch64MacroFusion() {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
void AArch64MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
// For each of the SUnits in the scheduling block, try to fuse the instruction
// in it with one in its successors.
for (SUnit &ASU : DAG->SUnits)
scheduleAdjacentImpl(DAG, &ASU, ASU.Succs, false);
// Try to fuse the instruction in the ExitSU with one in its predecessors.
scheduleAdjacentImpl(DAG, &DAG->ExitSU, DAG->ExitSU.Preds, true);
}
} // end namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation> createAArch64MacroFusionDAGMutation () {
return EnableMacroFusion ? make_unique<AArch64MacroFusion>() : nullptr;
}
} // end namespace llvm