forked from OSchip/llvm-project
105 lines
2.9 KiB
LLVM
105 lines
2.9 KiB
LLVM
; This test tries to ensure that the inliner successfully invalidates function
|
|
; analyses after inlining into the function body.
|
|
;
|
|
; The strategy for these tests is to compute domtree over all the functions,
|
|
; then run the inliner, and then verify the domtree. Then we can arrange the
|
|
; inline to disturb the domtree (easy) and detect any stale cached entries in
|
|
; the verifier. We do the initial computation both *inside* the CGSCC walk and
|
|
; in a pre-step to make sure both work.
|
|
;
|
|
; RUN: opt < %s -passes='function(require<domtree>),cgscc(inline,function(verify<domtree>))' -S | FileCheck %s
|
|
; RUN: opt < %s -passes='cgscc(function(require<domtree>),inline,function(verify<domtree>))' -S | FileCheck %s
|
|
|
|
; An external function used to control branches.
|
|
declare i1 @flag()
|
|
; CHECK-LABEL: declare i1 @flag()
|
|
|
|
; The utility function with interesting control flow that gets inlined below to
|
|
; perturb the dominator tree.
|
|
define internal void @callee() {
|
|
; CHECK-LABEL: @callee
|
|
entry:
|
|
%ptr = alloca i8
|
|
%flag = call i1 @flag()
|
|
br i1 %flag, label %then, label %else
|
|
|
|
then:
|
|
store volatile i8 42, i8* %ptr
|
|
br label %return
|
|
|
|
else:
|
|
store volatile i8 -42, i8* %ptr
|
|
br label %return
|
|
|
|
return:
|
|
ret void
|
|
}
|
|
|
|
|
|
; The 'test1_' prefixed functions test the basic scenario of inlining
|
|
; destroying dominator tree.
|
|
|
|
define void @test1_caller() {
|
|
; CHECK-LABEL: define void @test1_caller()
|
|
entry:
|
|
call void @callee()
|
|
; CHECK-NOT: @callee
|
|
ret void
|
|
; CHECK: ret void
|
|
}
|
|
|
|
|
|
; The 'test2_' prefixed functions test the scenario of not inlining preserving
|
|
; dominators.
|
|
|
|
define void @test2_caller() {
|
|
; CHECK-LABEL: define void @test2_caller()
|
|
entry:
|
|
call void @callee() noinline
|
|
; CHECK: call void @callee
|
|
ret void
|
|
; CHECK: ret void
|
|
}
|
|
|
|
|
|
; The 'test3_' prefixed functions test the scenario of not inlining preserving
|
|
; dominators after splitting an SCC into two smaller SCCs.
|
|
|
|
; This function ends up split into a separate SCC, which can cause its analyses
|
|
; to become stale if the splitting doesn't properly invalidate things. Also, as
|
|
; a consequence of being split out, test3_f is too large to inline by the time
|
|
; we get here.
|
|
define void @test3_g() {
|
|
; CHECK-LABEL: define void @test3_g()
|
|
entry:
|
|
; Create the second edge in the SCC cycle.
|
|
call void @test3_f()
|
|
; CHECK: call void @test3_f()
|
|
|
|
; Pull interesting CFG into this function.
|
|
call void @callee()
|
|
; CHECK-NOT: call void @callee()
|
|
|
|
ret void
|
|
; CHECK: ret void
|
|
}
|
|
|
|
; The second function gets visited first and we end up inlining everything we
|
|
; can into this routine. That splits test3_g into a separate SCC that is enqued
|
|
; for later processing.
|
|
define void @test3_f() {
|
|
; CHECK-LABEL: define void @test3_f()
|
|
entry:
|
|
; Create the first edge in the SCC cycle.
|
|
call void @test3_g()
|
|
; CHECK-NOT: @test3_g()
|
|
; CHECK: call void @test3_f()
|
|
|
|
; Pull interesting CFG into this function.
|
|
call void @callee()
|
|
; CHECK-NOT: call void @callee()
|
|
|
|
ret void
|
|
; CHECK: ret void
|
|
}
|