forked from OSchip/llvm-project
249 lines
9.0 KiB
C++
249 lines
9.0 KiB
C++
//===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a MachineFunctionPass that inserts the appropriate
|
|
// XRay instrumentation instructions. We look for XRay-specific attributes
|
|
// on the function to determine whether we should insert the replacement
|
|
// operations.
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
struct InstrumentationOptions {
|
|
// Whether to emit PATCHABLE_TAIL_CALL.
|
|
bool HandleTailcall;
|
|
|
|
// Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of
|
|
// return, e.g. conditional return.
|
|
bool HandleAllReturns;
|
|
};
|
|
|
|
struct XRayInstrumentation : public MachineFunctionPass {
|
|
static char ID;
|
|
|
|
XRayInstrumentation() : MachineFunctionPass(ID) {
|
|
initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
// Replace the original RET instruction with the exit sled code ("patchable
|
|
// ret" pseudo-instruction), so that at runtime XRay can replace the sled
|
|
// with a code jumping to XRay trampoline, which calls the tracing handler
|
|
// and, in the end, issues the RET instruction.
|
|
// This is the approach to go on CPUs which have a single RET instruction,
|
|
// like x86/x86_64.
|
|
void replaceRetWithPatchableRet(MachineFunction &MF,
|
|
const TargetInstrInfo *TII,
|
|
InstrumentationOptions);
|
|
|
|
// Prepend the original return instruction with the exit sled code ("patchable
|
|
// function exit" pseudo-instruction), preserving the original return
|
|
// instruction just after the exit sled code.
|
|
// This is the approach to go on CPUs which have multiple options for the
|
|
// return instruction, like ARM. For such CPUs we can't just jump into the
|
|
// XRay trampoline and issue a single return instruction there. We rather
|
|
// have to call the trampoline and return from it to the original return
|
|
// instruction of the function being instrumented.
|
|
void prependRetWithPatchableExit(MachineFunction &MF,
|
|
const TargetInstrInfo *TII,
|
|
InstrumentationOptions);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void XRayInstrumentation::replaceRetWithPatchableRet(
|
|
MachineFunction &MF, const TargetInstrInfo *TII,
|
|
InstrumentationOptions op) {
|
|
// We look for *all* terminators and returns, then replace those with
|
|
// PATCHABLE_RET instructions.
|
|
SmallVector<MachineInstr *, 4> Terminators;
|
|
for (auto &MBB : MF) {
|
|
for (auto &T : MBB.terminators()) {
|
|
unsigned Opc = 0;
|
|
if (T.isReturn() &&
|
|
(op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
|
|
// Replace return instructions with:
|
|
// PATCHABLE_RET <Opcode>, <Operand>...
|
|
Opc = TargetOpcode::PATCHABLE_RET;
|
|
}
|
|
if (TII->isTailCall(T) && op.HandleTailcall) {
|
|
// Treat the tail call as a return instruction, which has a
|
|
// different-looking sled than the normal return case.
|
|
Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
|
|
}
|
|
if (Opc != 0) {
|
|
auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
|
|
.addImm(T.getOpcode());
|
|
for (auto &MO : T.operands())
|
|
MIB.add(MO);
|
|
Terminators.push_back(&T);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &I : Terminators)
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
void XRayInstrumentation::prependRetWithPatchableExit(
|
|
MachineFunction &MF, const TargetInstrInfo *TII,
|
|
InstrumentationOptions op) {
|
|
for (auto &MBB : MF)
|
|
for (auto &T : MBB.terminators()) {
|
|
unsigned Opc = 0;
|
|
if (T.isReturn() &&
|
|
(op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
|
|
Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
|
|
}
|
|
if (TII->isTailCall(T) && op.HandleTailcall) {
|
|
Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
|
|
}
|
|
if (Opc != 0) {
|
|
// Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
|
|
// PATCHABLE_TAIL_CALL .
|
|
BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
|
|
auto &F = MF.getFunction();
|
|
auto InstrAttr = F.getFnAttribute("function-instrument");
|
|
bool AlwaysInstrument = !InstrAttr.hasAttribute(Attribute::None) &&
|
|
InstrAttr.isStringAttribute() &&
|
|
InstrAttr.getValueAsString() == "xray-always";
|
|
Attribute Attr = F.getFnAttribute("xray-instruction-threshold");
|
|
unsigned XRayThreshold = 0;
|
|
if (!AlwaysInstrument) {
|
|
if (Attr.hasAttribute(Attribute::None) || !Attr.isStringAttribute())
|
|
return false; // XRay threshold attribute not found.
|
|
if (Attr.getValueAsString().getAsInteger(10, XRayThreshold))
|
|
return false; // Invalid value for threshold.
|
|
|
|
// Count the number of MachineInstr`s in MachineFunction
|
|
int64_t MICount = 0;
|
|
for (const auto &MBB : MF)
|
|
MICount += MBB.size();
|
|
|
|
// Get MachineDominatorTree or compute it on the fly if it's unavailable
|
|
auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
|
|
MachineDominatorTree ComputedMDT;
|
|
if (!MDT) {
|
|
ComputedMDT.getBase().recalculate(MF);
|
|
MDT = &ComputedMDT;
|
|
}
|
|
|
|
// Get MachineLoopInfo or compute it on the fly if it's unavailable
|
|
auto *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
|
|
MachineLoopInfo ComputedMLI;
|
|
if (!MLI) {
|
|
ComputedMLI.getBase().analyze(MDT->getBase());
|
|
MLI = &ComputedMLI;
|
|
}
|
|
|
|
// Check if we have a loop.
|
|
// FIXME: Maybe make this smarter, and see whether the loops are dependent
|
|
// on inputs or side-effects?
|
|
if (MLI->empty() && MICount < XRayThreshold)
|
|
return false; // Function is too small and has no loops.
|
|
}
|
|
|
|
// We look for the first non-empty MachineBasicBlock, so that we can insert
|
|
// the function instrumentation in the appropriate place.
|
|
auto MBI = llvm::find_if(
|
|
MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
|
|
if (MBI == MF.end())
|
|
return false; // The function is empty.
|
|
|
|
auto *TII = MF.getSubtarget().getInstrInfo();
|
|
auto &FirstMBB = *MBI;
|
|
auto &FirstMI = *FirstMBB.begin();
|
|
|
|
if (!MF.getSubtarget().isXRaySupported()) {
|
|
FirstMI.emitError("An attempt to perform XRay instrumentation for an"
|
|
" unsupported target.");
|
|
return false;
|
|
}
|
|
|
|
// First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
|
|
// MachineFunction.
|
|
BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
|
|
TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
|
|
|
|
switch (MF.getTarget().getTargetTriple().getArch()) {
|
|
case Triple::ArchType::arm:
|
|
case Triple::ArchType::thumb:
|
|
case Triple::ArchType::aarch64:
|
|
case Triple::ArchType::mips:
|
|
case Triple::ArchType::mipsel:
|
|
case Triple::ArchType::mips64:
|
|
case Triple::ArchType::mips64el: {
|
|
// For the architectures which don't have a single return instruction
|
|
InstrumentationOptions op;
|
|
op.HandleTailcall = false;
|
|
op.HandleAllReturns = true;
|
|
prependRetWithPatchableExit(MF, TII, op);
|
|
break;
|
|
}
|
|
case Triple::ArchType::ppc64le: {
|
|
// PPC has conditional returns. Turn them into branch and plain returns.
|
|
InstrumentationOptions op;
|
|
op.HandleTailcall = false;
|
|
op.HandleAllReturns = true;
|
|
replaceRetWithPatchableRet(MF, TII, op);
|
|
break;
|
|
}
|
|
default: {
|
|
// For the architectures that have a single return instruction (such as
|
|
// RETQ on x86_64).
|
|
InstrumentationOptions op;
|
|
op.HandleTailcall = true;
|
|
op.HandleAllReturns = false;
|
|
replaceRetWithPatchableRet(MF, TII, op);
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
char XRayInstrumentation::ID = 0;
|
|
char &llvm::XRayInstrumentationID = XRayInstrumentation::ID;
|
|
INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation",
|
|
"Insert XRay ops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation",
|
|
"Insert XRay ops", false, false)
|