llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp

1282 lines
46 KiB
C++

//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMBuildAttrs.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "InstPrinter/ARMInstPrinter.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMMCInstLower.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
namespace llvm {
namespace ARM {
enum DW_ISA {
DW_ISA_ARM_thumb = 1,
DW_ISA_ARM_arm = 2
};
}
}
namespace {
class ARMAsmPrinter : public AsmPrinter {
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when printing asm code for different targets.
const ARMSubtarget *Subtarget;
/// AFI - Keep a pointer to ARMFunctionInfo for the current
/// MachineFunction.
ARMFunctionInfo *AFI;
/// MCP - Keep a pointer to constantpool entries of the current
/// MachineFunction.
const MachineConstantPool *MCP;
public:
explicit ARMAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer), AFI(NULL), MCP(NULL) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
}
virtual const char *getPassName() const {
return "ARM Assembly Printer";
}
void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O,
const char *Modifier = 0);
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O);
virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O);
void EmitJumpTable(const MachineInstr *MI);
void EmitJump2Table(const MachineInstr *MI);
virtual void EmitInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F);
virtual void EmitConstantPool() {} // we emit constant pools customly!
virtual void EmitFunctionEntryLabel();
void EmitStartOfAsmFile(Module &M);
void EmitEndOfAsmFile(Module &M);
private:
// Helpers for EmitStartOfAsmFile() and EmitEndOfAsmFile()
void emitAttributes();
void emitTextAttribute(ARMBuildAttrs::SpecialAttr attr, StringRef v);
void emitAttribute(ARMBuildAttrs::AttrType attr, int v);
// Helper for ELF .o only
void emitARMAttributeSection();
public:
void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS);
MachineLocation getDebugValueLocation(const MachineInstr *MI) const {
MachineLocation Location;
assert (MI->getNumOperands() == 4 && "Invalid no. of machine operands!");
// Frame address. Currently handles register +- offset only.
if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm())
Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
else {
DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n");
}
return Location;
}
virtual unsigned getISAEncoding() {
// ARM/Darwin adds ISA to the DWARF info for each function.
if (!Subtarget->isTargetDarwin())
return 0;
return Subtarget->isThumb() ?
llvm::ARM::DW_ISA_ARM_thumb : llvm::ARM::DW_ISA_ARM_arm;
}
MCSymbol *GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const;
MCSymbol *GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const;
MCSymbol *GetARMSJLJEHLabel(void) const;
/// EmitMachineConstantPoolValue - Print a machine constantpool value to
/// the .s file.
virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
EmitMachineConstantPoolValue(MCPV, OS);
OutStreamer.EmitRawText(OS.str());
}
void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV,
raw_ostream &O) {
switch (TM.getTargetData()->getTypeAllocSize(MCPV->getType())) {
case 1: O << MAI->getData8bitsDirective(0); break;
case 2: O << MAI->getData16bitsDirective(0); break;
case 4: O << MAI->getData32bitsDirective(0); break;
default: assert(0 && "Unknown CPV size");
}
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
if (ACPV->isLSDA()) {
O << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
} else if (ACPV->isBlockAddress()) {
O << *GetBlockAddressSymbol(ACPV->getBlockAddress());
} else if (ACPV->isGlobalValue()) {
const GlobalValue *GV = ACPV->getGV();
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
if (!isIndirect)
O << *Mang->getSymbol(GV);
else {
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
O << *Sym;
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(Sym) :
MMIMachO.getGVStubEntry(Sym);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
}
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
O << *GetExternalSymbolSymbol(ACPV->getSymbol());
}
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
O << "-(" << MAI->getPrivateGlobalPrefix() << "PC"
<< getFunctionNumber() << "_" << ACPV->getLabelId()
<< "+" << (unsigned)ACPV->getPCAdjustment();
if (ACPV->mustAddCurrentAddress())
O << "-.";
O << ')';
}
}
};
} // end of anonymous namespace
void ARMAsmPrinter::EmitFunctionEntryLabel() {
if (AFI->isThumbFunction()) {
OutStreamer.EmitRawText(StringRef("\t.code\t16"));
if (!Subtarget->isTargetDarwin())
OutStreamer.EmitRawText(StringRef("\t.thumb_func"));
else {
// This needs to emit to a temporary string to get properly quoted
// MCSymbols when they have spaces in them.
SmallString<128> Tmp;
raw_svector_ostream OS(Tmp);
OS << "\t.thumb_func\t" << *CurrentFnSym;
OutStreamer.EmitRawText(OS.str());
}
}
OutStreamer.EmitLabel(CurrentFnSym);
}
/// runOnMachineFunction - This uses the EmitInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
return AsmPrinter::runOnMachineFunction(MF);
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned TF = MO.getTargetFlags();
switch (MO.getType()) {
default:
assert(0 && "<unknown operand type>");
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
assert(!MO.getSubReg() && "Subregs should be eliminated!");
O << ARMInstPrinter::getRegisterName(Reg);
break;
}
case MachineOperand::MO_Immediate: {
int64_t Imm = MO.getImm();
O << '#';
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF == ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF == ARMII::MO_HI16))
O << ":upper16:";
O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << *Mang->getSymbol(GV);
printOffset(MO.getOffset(), O);
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
O << *GetExternalSymbolSymbol(MO.getSymbolName());
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << *GetCPISymbol(MO.getIndex());
break;
case MachineOperand::MO_JumpTableIndex:
O << *GetJTISymbol(MO.getIndex());
break;
}
}
//===--------------------------------------------------------------------===//
MCSymbol *ARMAsmPrinter::
GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel(void) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
<< getFunctionNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "["
<< ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
<< "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
O << MI->getOperand(OpNum).getImm();
return false;
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'Q':
case 'R':
case 'H':
report_fatal_error("llvm does not support 'Q', 'R', and 'H' modifiers!");
return true;
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
return false;
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
Reloc::Model RelocM = TM.getRelocationModel();
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
// Declare all the text sections up front (before the DWARF sections
// emitted by AsmPrinter::doInitialization) so the assembler will keep
// them together at the beginning of the object file. This helps
// avoid out-of-range branches that are due a fundamental limitation of
// the way symbol offsets are encoded with the current Darwin ARM
// relocations.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(
getObjFileLowering());
OutStreamer.SwitchSection(TLOFMacho.getTextSection());
OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection());
if (RelocM == Reloc::DynamicNoPIC) {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__symbol_stub4",
MCSectionMachO::S_SYMBOL_STUBS,
12, SectionKind::getText());
OutStreamer.SwitchSection(sect);
} else {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
MCSectionMachO::S_SYMBOL_STUBS,
16, SectionKind::getText());
OutStreamer.SwitchSection(sect);
}
const MCSection *StaticInitSect =
OutContext.getMachOSection("__TEXT", "__StaticInit",
MCSectionMachO::S_REGULAR |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
SectionKind::getText());
OutStreamer.SwitchSection(StaticInitSect);
}
}
// Use unified assembler syntax.
OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
// Emit ARM Build Attributes
if (Subtarget->isTargetELF()) {
emitAttributes();
}
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::
Create(Stubs[i].second.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
}
//===----------------------------------------------------------------------===//
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
// FIXME:
// The following seem like one-off assembler flags, but they actually need
// to appear in the .ARM.attributes section in ELF.
// Instead of subclassing the MCELFStreamer, we do the work here.
void ARMAsmPrinter::emitAttributes() {
emitARMAttributeSection();
std::string CPUString = Subtarget->getCPUString();
emitTextAttribute(ARMBuildAttrs::SEL_CPU, CPUString);
// FIXME: Emit FPU type
if (Subtarget->hasVFP2())
emitAttribute(ARMBuildAttrs::VFP_arch, 2);
// Signal various FP modes.
if (!UnsafeFPMath) {
emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 1);
emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 1);
}
if (NoInfsFPMath && NoNaNsFPMath)
emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 1);
else
emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 3);
// 8-bytes alignment stuff.
emitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
emitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard) {
emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
emitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
}
// FIXME: Should we signal R9 usage?
}
void ARMAsmPrinter::emitARMAttributeSection() {
// <format-version>
// [ <section-length> "vendor-name"
// [ <file-tag> <size> <attribute>*
// | <section-tag> <size> <section-number>* 0 <attribute>*
// | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
// ]+
// ]*
if (OutStreamer.hasRawTextSupport())
return;
const ARMElfTargetObjectFile &TLOFELF =
static_cast<const ARMElfTargetObjectFile &>
(getObjFileLowering());
OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
// Fixme: Still more to do here.
}
void ARMAsmPrinter::emitAttribute(ARMBuildAttrs::AttrType attr, int v) {
if (OutStreamer.hasRawTextSupport()) {
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(attr) + ", " + Twine(v));
} else {
assert(0 && "ELF .ARM.attributes unimplemented");
}
}
void ARMAsmPrinter::emitTextAttribute(ARMBuildAttrs::SpecialAttr attr,
StringRef val) {
switch (attr) {
default: assert(0 && "Unimplemented ARMBuildAttrs::SpecialAttr"); break;
case ARMBuildAttrs::SEL_CPU:
if (OutStreamer.hasRawTextSupport()) {
if (val != "generic") {
OutStreamer.EmitRawText("\t.cpu " + val);
}
} else {
// FIXME: ELF
}
}
}
//===----------------------------------------------------------------------===//
static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = 1;
if (Opcode == ARM::BR_JTadd)
OpNum = 2;
else if (Opcode == ARM::BR_JTm)
OpNum = 3;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
// Construct an MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr)
//
// For example, a table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .word (LBB0 - LJTI_0_0)
// .word (LBB1 - LJTI_0_0)
const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
if (TM.getRelocationModel() == Reloc::PIC_)
Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
OutContext),
OutContext);
OutStreamer.EmitValue(Expr, 4);
}
}
void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
unsigned OffsetWidth = 4;
if (MI->getOpcode() == ARM::t2TBB)
OffsetWidth = 1;
else if (MI->getOpcode() == ARM::t2TBH)
OffsetWidth = 2;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
OutContext);
// If this isn't a TBB or TBH, the entries are direct branch instructions.
if (OffsetWidth == 4) {
MCInst BrInst;
BrInst.setOpcode(ARM::t2B);
BrInst.addOperand(MCOperand::CreateExpr(MBBSymbolExpr));
OutStreamer.EmitInstruction(BrInst);
continue;
}
// Otherwise it's an offset from the dispatch instruction. Construct an
// MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr) / 2
//
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .byte (LBB0 - LJTI_0_0) / 2
// .byte (LBB1 - LJTI_0_0) / 2
const MCExpr *Expr =
MCBinaryExpr::CreateSub(MBBSymbolExpr,
MCSymbolRefExpr::Create(JTISymbol, OutContext),
OutContext);
Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
OutContext);
OutStreamer.EmitValue(Expr, OffsetWidth);
}
// Make sure the instruction that follows TBB is 2-byte aligned.
// FIXME: Constant island pass should insert an "ALIGN" instruction instead.
if (MI->getOpcode() == ARM::t2TBB)
EmitAlignment(1);
}
void ARMAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
raw_ostream &OS) {
unsigned NOps = MI->getNumOperands();
assert(NOps==4);
OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
// cast away const; DIetc do not take const operands for some reason.
DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
OS << V.getName();
OS << " <- ";
// Frame address. Currently handles register +- offset only.
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS);
OS << ']';
OS << "+";
printOperand(MI, NOps-2, OS);
}
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
ARMMCInstLower MCInstLowering(OutContext, *Mang, *this);
switch (MI->getOpcode()) {
case ARM::t2MOVi32imm:
assert(0 && "Should be lowered by thumb2it pass");
default: break;
case ARM::DBG_VALUE: {
if (isVerbose() && OutStreamer.hasRawTextSupport()) {
SmallString<128> TmpStr;
raw_svector_ostream OS(TmpStr);
PrintDebugValueComment(MI, OS);
OutStreamer.EmitRawText(StringRef(OS.str()));
}
return;
}
case ARM::tPICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::tADDhirr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::ADDrr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
// Add 's' bit operand (always reg0 for this)
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICSTR:
case ARM::PICSTRB:
case ARM::PICSTRH:
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICLDRH:
case ARM::PICLDRSB:
case ARM::PICLDRSH: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// OP r0, [pc, r0]
// The LCP0 label is referenced by a constant pool entry in order to get
// a PC-relative address at the ldr instruction.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the load
unsigned Opcode;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case ARM::PICSTR: Opcode = ARM::STR; break;
case ARM::PICSTRB: Opcode = ARM::STRB; break;
case ARM::PICSTRH: Opcode = ARM::STRH; break;
case ARM::PICLDR: Opcode = ARM::LDR; break;
case ARM::PICLDRB: Opcode = ARM::LDRB; break;
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
}
MCInst LdStInst;
LdStInst.setOpcode(Opcode);
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
LdStInst.addOperand(MCOperand::CreateReg(ARM::PC));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
LdStInst.addOperand(MCOperand::CreateImm(0));
// Add predicate operands.
LdStInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
OutStreamer.EmitInstruction(LdStInst);
return;
}
case ARM::CONSTPOOL_ENTRY: {
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
EmitAlignment(2);
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(MCPE.Val.ConstVal);
return;
}
case ARM::MOVi2pieces: {
// FIXME: We'd like to remove the asm string in the .td file, but the
// This is a hack that lowers as a two instruction sequence.
unsigned DstReg = MI->getOperand(0).getReg();
unsigned ImmVal = (unsigned)MI->getOperand(1).getImm();
unsigned SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal);
unsigned SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal);
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(DstReg));
TmpInst.addOperand(MCOperand::CreateImm(SOImmValV1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ORRri);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // inreg
TmpInst.addOperand(MCOperand::CreateImm(SOImmValV2)); // so_imm
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::MOVi32imm: {
// FIXME: We'd like to remove the asm string in the .td file, but the
// This is a hack that lowers as a two instruction sequence.
unsigned DstReg = MI->getOperand(0).getReg();
const MachineOperand &MO = MI->getOperand(1);
MCOperand V1, V2;
if (MO.isImm()) {
unsigned ImmVal = (unsigned)MI->getOperand(1).getImm();
V1 = MCOperand::CreateImm(ImmVal & 65535);
V2 = MCOperand::CreateImm(ImmVal >> 16);
} else if (MO.isGlobal()) {
MCSymbol *Symbol = MCInstLowering.GetGlobalAddressSymbol(MO.getGlobal());
const MCSymbolRefExpr *SymRef1 =
MCSymbolRefExpr::Create(Symbol,
MCSymbolRefExpr::VK_ARM_LO16, OutContext);
const MCSymbolRefExpr *SymRef2 =
MCSymbolRefExpr::Create(Symbol,
MCSymbolRefExpr::VK_ARM_HI16, OutContext);
V1 = MCOperand::CreateExpr(SymRef1);
V2 = MCOperand::CreateExpr(SymRef2);
} else {
// FIXME: External symbol?
MI->dump();
llvm_unreachable("cannot handle this operand");
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi16);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(V1); // lower16(imm)
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVTi16);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // srcreg
TmpInst.addOperand(V2); // upper16(imm)
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::t2TBB:
case ARM::t2TBH:
case ARM::t2BR_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
OutStreamer.EmitInstruction(TmpInst);
EmitJump2Table(MI);
return;
}
case ARM::tBR_JTr:
case ARM::BR_JTr:
case ARM::BR_JTm:
case ARM::BR_JTadd: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
OutStreamer.EmitInstruction(TmpInst);
EmitJumpTable(MI);
return;
}
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.long 0xe7ffdefe @ trap
uint32_t Val = 0xe7ffdefeUL;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 4);
return;
}
break;
}
case ARM::tTRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.short 57086 @ trap
uint16_t Val = 0xdefe;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 2);
return;
}
break;
}
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// mov $val, pc
// adds $val, #7
// str $val, [$src, #4]
// movs r0, #0
// b 1f
// movs r0, #1
// 1:
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
MCSymbol *Label = GetARMSJLJEHLabel();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVgpr2tgpr);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// 's' bit operand
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tADDi3);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
// 's' bit operand
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateImm(7));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tSTR);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #4. The operand value is scaled by 4 for the
// tSTR instruction.
TmpInst.addOperand(MCOperand::CreateImm(1));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
MCInst TmpInst;
TmpInst.setOpcode(ARM::tB);
TmpInst.addOperand(MCOperand::CreateExpr(SymbolExpr));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
OutStreamer.EmitLabel(Label);
return;
}
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::Int_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// add $val, pc, #8
// str $val, [$src, #+4]
// mov r0, #0
// add pc, pc, #0
// mov r0, #1
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::STR);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::Int_eh_sjlj_longjmp: {
// ldr sp, [$src, #8]
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::BRIND);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::tInt_eh_sjlj_longjmp: {
// ldr $scratch, [$src, #8]
// mov sp, $scratch
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDR);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #8. The operand value is scaled by 4 for the
// tSTR instruction.
TmpInst.addOperand(MCOperand::CreateImm(2));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVtgpr2gpr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDR);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(1));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDR);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tBX_RET_vararg);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
}
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
OutStreamer.EmitInstruction(TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
static MCInstPrinter *createARMMCInstPrinter(const Target &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI) {
if (SyntaxVariant == 0)
return new ARMInstPrinter(MAI);
return 0;
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
TargetRegistry::RegisterMCInstPrinter(TheARMTarget, createARMMCInstPrinter);
TargetRegistry::RegisterMCInstPrinter(TheThumbTarget, createARMMCInstPrinter);
}