llvm-project/clang/lib/Serialization/ASTReader.cpp

8526 lines
301 KiB
C++

//===--- ASTReader.cpp - AST File Reader ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTReader class, which reads AST files.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTReader.h"
#include "ASTCommon.h"
#include "ASTReaderInternals.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/VersionTuple.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTDeserializationListener.h"
#include "clang/Serialization/GlobalModuleIndex.h"
#include "clang/Serialization/ModuleManager.h"
#include "clang/Serialization/SerializationDiagnostic.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdio>
#include <iterator>
#include <system_error>
using namespace clang;
using namespace clang::serialization;
using namespace clang::serialization::reader;
using llvm::BitstreamCursor;
//===----------------------------------------------------------------------===//
// ChainedASTReaderListener implementation
//===----------------------------------------------------------------------===//
bool
ChainedASTReaderListener::ReadFullVersionInformation(StringRef FullVersion) {
return First->ReadFullVersionInformation(FullVersion) ||
Second->ReadFullVersionInformation(FullVersion);
}
void ChainedASTReaderListener::ReadModuleName(StringRef ModuleName) {
First->ReadModuleName(ModuleName);
Second->ReadModuleName(ModuleName);
}
void ChainedASTReaderListener::ReadModuleMapFile(StringRef ModuleMapPath) {
First->ReadModuleMapFile(ModuleMapPath);
Second->ReadModuleMapFile(ModuleMapPath);
}
bool
ChainedASTReaderListener::ReadLanguageOptions(const LangOptions &LangOpts,
bool Complain,
bool AllowCompatibleDifferences) {
return First->ReadLanguageOptions(LangOpts, Complain,
AllowCompatibleDifferences) ||
Second->ReadLanguageOptions(LangOpts, Complain,
AllowCompatibleDifferences);
}
bool
ChainedASTReaderListener::ReadTargetOptions(const TargetOptions &TargetOpts,
bool Complain) {
return First->ReadTargetOptions(TargetOpts, Complain) ||
Second->ReadTargetOptions(TargetOpts, Complain);
}
bool ChainedASTReaderListener::ReadDiagnosticOptions(
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, bool Complain) {
return First->ReadDiagnosticOptions(DiagOpts, Complain) ||
Second->ReadDiagnosticOptions(DiagOpts, Complain);
}
bool
ChainedASTReaderListener::ReadFileSystemOptions(const FileSystemOptions &FSOpts,
bool Complain) {
return First->ReadFileSystemOptions(FSOpts, Complain) ||
Second->ReadFileSystemOptions(FSOpts, Complain);
}
bool ChainedASTReaderListener::ReadHeaderSearchOptions(
const HeaderSearchOptions &HSOpts, bool Complain) {
return First->ReadHeaderSearchOptions(HSOpts, Complain) ||
Second->ReadHeaderSearchOptions(HSOpts, Complain);
}
bool ChainedASTReaderListener::ReadPreprocessorOptions(
const PreprocessorOptions &PPOpts, bool Complain,
std::string &SuggestedPredefines) {
return First->ReadPreprocessorOptions(PPOpts, Complain,
SuggestedPredefines) ||
Second->ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines);
}
void ChainedASTReaderListener::ReadCounter(const serialization::ModuleFile &M,
unsigned Value) {
First->ReadCounter(M, Value);
Second->ReadCounter(M, Value);
}
bool ChainedASTReaderListener::needsInputFileVisitation() {
return First->needsInputFileVisitation() ||
Second->needsInputFileVisitation();
}
bool ChainedASTReaderListener::needsSystemInputFileVisitation() {
return First->needsSystemInputFileVisitation() ||
Second->needsSystemInputFileVisitation();
}
void ChainedASTReaderListener::visitModuleFile(StringRef Filename) {
First->visitModuleFile(Filename);
Second->visitModuleFile(Filename);
}
bool ChainedASTReaderListener::visitInputFile(StringRef Filename,
bool isSystem,
bool isOverridden) {
bool Continue = false;
if (First->needsInputFileVisitation() &&
(!isSystem || First->needsSystemInputFileVisitation()))
Continue |= First->visitInputFile(Filename, isSystem, isOverridden);
if (Second->needsInputFileVisitation() &&
(!isSystem || Second->needsSystemInputFileVisitation()))
Continue |= Second->visitInputFile(Filename, isSystem, isOverridden);
return Continue;
}
//===----------------------------------------------------------------------===//
// PCH validator implementation
//===----------------------------------------------------------------------===//
ASTReaderListener::~ASTReaderListener() {}
/// \brief Compare the given set of language options against an existing set of
/// language options.
///
/// \param Diags If non-NULL, diagnostics will be emitted via this engine.
/// \param AllowCompatibleDifferences If true, differences between compatible
/// language options will be permitted.
///
/// \returns true if the languagae options mis-match, false otherwise.
static bool checkLanguageOptions(const LangOptions &LangOpts,
const LangOptions &ExistingLangOpts,
DiagnosticsEngine *Diags,
bool AllowCompatibleDifferences = true) {
#define LANGOPT(Name, Bits, Default, Description) \
if (ExistingLangOpts.Name != LangOpts.Name) { \
if (Diags) \
Diags->Report(diag::err_pch_langopt_mismatch) \
<< Description << LangOpts.Name << ExistingLangOpts.Name; \
return true; \
}
#define VALUE_LANGOPT(Name, Bits, Default, Description) \
if (ExistingLangOpts.Name != LangOpts.Name) { \
if (Diags) \
Diags->Report(diag::err_pch_langopt_value_mismatch) \
<< Description; \
return true; \
}
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
if (ExistingLangOpts.get##Name() != LangOpts.get##Name()) { \
if (Diags) \
Diags->Report(diag::err_pch_langopt_value_mismatch) \
<< Description; \
return true; \
}
#define COMPATIBLE_LANGOPT(Name, Bits, Default, Description) \
if (!AllowCompatibleDifferences) \
LANGOPT(Name, Bits, Default, Description)
#define COMPATIBLE_ENUM_LANGOPT(Name, Bits, Default, Description) \
if (!AllowCompatibleDifferences) \
ENUM_LANGOPT(Name, Bits, Default, Description)
#define BENIGN_LANGOPT(Name, Bits, Default, Description)
#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
#include "clang/Basic/LangOptions.def"
if (ExistingLangOpts.ObjCRuntime != LangOpts.ObjCRuntime) {
if (Diags)
Diags->Report(diag::err_pch_langopt_value_mismatch)
<< "target Objective-C runtime";
return true;
}
if (ExistingLangOpts.CommentOpts.BlockCommandNames !=
LangOpts.CommentOpts.BlockCommandNames) {
if (Diags)
Diags->Report(diag::err_pch_langopt_value_mismatch)
<< "block command names";
return true;
}
return false;
}
/// \brief Compare the given set of target options against an existing set of
/// target options.
///
/// \param Diags If non-NULL, diagnostics will be emitted via this engine.
///
/// \returns true if the target options mis-match, false otherwise.
static bool checkTargetOptions(const TargetOptions &TargetOpts,
const TargetOptions &ExistingTargetOpts,
DiagnosticsEngine *Diags) {
#define CHECK_TARGET_OPT(Field, Name) \
if (TargetOpts.Field != ExistingTargetOpts.Field) { \
if (Diags) \
Diags->Report(diag::err_pch_targetopt_mismatch) \
<< Name << TargetOpts.Field << ExistingTargetOpts.Field; \
return true; \
}
CHECK_TARGET_OPT(Triple, "target");
CHECK_TARGET_OPT(CPU, "target CPU");
CHECK_TARGET_OPT(ABI, "target ABI");
#undef CHECK_TARGET_OPT
// Compare feature sets.
SmallVector<StringRef, 4> ExistingFeatures(
ExistingTargetOpts.FeaturesAsWritten.begin(),
ExistingTargetOpts.FeaturesAsWritten.end());
SmallVector<StringRef, 4> ReadFeatures(TargetOpts.FeaturesAsWritten.begin(),
TargetOpts.FeaturesAsWritten.end());
std::sort(ExistingFeatures.begin(), ExistingFeatures.end());
std::sort(ReadFeatures.begin(), ReadFeatures.end());
unsigned ExistingIdx = 0, ExistingN = ExistingFeatures.size();
unsigned ReadIdx = 0, ReadN = ReadFeatures.size();
while (ExistingIdx < ExistingN && ReadIdx < ReadN) {
if (ExistingFeatures[ExistingIdx] == ReadFeatures[ReadIdx]) {
++ExistingIdx;
++ReadIdx;
continue;
}
if (ReadFeatures[ReadIdx] < ExistingFeatures[ExistingIdx]) {
if (Diags)
Diags->Report(diag::err_pch_targetopt_feature_mismatch)
<< false << ReadFeatures[ReadIdx];
return true;
}
if (Diags)
Diags->Report(diag::err_pch_targetopt_feature_mismatch)
<< true << ExistingFeatures[ExistingIdx];
return true;
}
if (ExistingIdx < ExistingN) {
if (Diags)
Diags->Report(diag::err_pch_targetopt_feature_mismatch)
<< true << ExistingFeatures[ExistingIdx];
return true;
}
if (ReadIdx < ReadN) {
if (Diags)
Diags->Report(diag::err_pch_targetopt_feature_mismatch)
<< false << ReadFeatures[ReadIdx];
return true;
}
return false;
}
bool
PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts,
bool Complain,
bool AllowCompatibleDifferences) {
const LangOptions &ExistingLangOpts = PP.getLangOpts();
return checkLanguageOptions(LangOpts, ExistingLangOpts,
Complain ? &Reader.Diags : nullptr,
AllowCompatibleDifferences);
}
bool PCHValidator::ReadTargetOptions(const TargetOptions &TargetOpts,
bool Complain) {
const TargetOptions &ExistingTargetOpts = PP.getTargetInfo().getTargetOpts();
return checkTargetOptions(TargetOpts, ExistingTargetOpts,
Complain? &Reader.Diags : nullptr);
}
namespace {
typedef llvm::StringMap<std::pair<StringRef, bool /*IsUndef*/> >
MacroDefinitionsMap;
typedef llvm::DenseMap<DeclarationName, SmallVector<NamedDecl *, 8> >
DeclsMap;
}
static bool checkDiagnosticGroupMappings(DiagnosticsEngine &StoredDiags,
DiagnosticsEngine &Diags,
bool Complain) {
typedef DiagnosticsEngine::Level Level;
// Check current mappings for new -Werror mappings, and the stored mappings
// for cases that were explicitly mapped to *not* be errors that are now
// errors because of options like -Werror.
DiagnosticsEngine *MappingSources[] = { &Diags, &StoredDiags };
for (DiagnosticsEngine *MappingSource : MappingSources) {
for (auto DiagIDMappingPair : MappingSource->getDiagnosticMappings()) {
diag::kind DiagID = DiagIDMappingPair.first;
Level CurLevel = Diags.getDiagnosticLevel(DiagID, SourceLocation());
if (CurLevel < DiagnosticsEngine::Error)
continue; // not significant
Level StoredLevel =
StoredDiags.getDiagnosticLevel(DiagID, SourceLocation());
if (StoredLevel < DiagnosticsEngine::Error) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror=" +
Diags.getDiagnosticIDs()->getWarningOptionForDiag(DiagID).str();
return true;
}
}
}
return false;
}
static bool isExtHandlingFromDiagsError(DiagnosticsEngine &Diags) {
diag::Severity Ext = Diags.getExtensionHandlingBehavior();
if (Ext == diag::Severity::Warning && Diags.getWarningsAsErrors())
return true;
return Ext >= diag::Severity::Error;
}
static bool checkDiagnosticMappings(DiagnosticsEngine &StoredDiags,
DiagnosticsEngine &Diags,
bool IsSystem, bool Complain) {
// Top-level options
if (IsSystem) {
if (Diags.getSuppressSystemWarnings())
return false;
// If -Wsystem-headers was not enabled before, be conservative
if (StoredDiags.getSuppressSystemWarnings()) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Wsystem-headers";
return true;
}
}
if (Diags.getWarningsAsErrors() && !StoredDiags.getWarningsAsErrors()) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror";
return true;
}
if (Diags.getWarningsAsErrors() && Diags.getEnableAllWarnings() &&
!StoredDiags.getEnableAllWarnings()) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Weverything -Werror";
return true;
}
if (isExtHandlingFromDiagsError(Diags) &&
!isExtHandlingFromDiagsError(StoredDiags)) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-pedantic-errors";
return true;
}
return checkDiagnosticGroupMappings(StoredDiags, Diags, Complain);
}
bool PCHValidator::ReadDiagnosticOptions(
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, bool Complain) {
DiagnosticsEngine &ExistingDiags = PP.getDiagnostics();
IntrusiveRefCntPtr<DiagnosticIDs> DiagIDs(ExistingDiags.getDiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
new DiagnosticsEngine(DiagIDs, DiagOpts.get()));
// This should never fail, because we would have processed these options
// before writing them to an ASTFile.
ProcessWarningOptions(*Diags, *DiagOpts, /*Report*/false);
ModuleManager &ModuleMgr = Reader.getModuleManager();
assert(ModuleMgr.size() >= 1 && "what ASTFile is this then");
// If the original import came from a file explicitly generated by the user,
// don't check the diagnostic mappings.
// FIXME: currently this is approximated by checking whether this is not a
// module import of an implicitly-loaded module file.
// Note: ModuleMgr.rbegin() may not be the current module, but it must be in
// the transitive closure of its imports, since unrelated modules cannot be
// imported until after this module finishes validation.
ModuleFile *TopImport = *ModuleMgr.rbegin();
while (!TopImport->ImportedBy.empty())
TopImport = TopImport->ImportedBy[0];
if (TopImport->Kind != MK_ImplicitModule)
return false;
StringRef ModuleName = TopImport->ModuleName;
assert(!ModuleName.empty() && "diagnostic options read before module name");
Module *M = PP.getHeaderSearchInfo().lookupModule(ModuleName);
assert(M && "missing module");
// FIXME: if the diagnostics are incompatible, save a DiagnosticOptions that
// contains the union of their flags.
return checkDiagnosticMappings(*Diags, ExistingDiags, M->IsSystem, Complain);
}
/// \brief Collect the macro definitions provided by the given preprocessor
/// options.
static void
collectMacroDefinitions(const PreprocessorOptions &PPOpts,
MacroDefinitionsMap &Macros,
SmallVectorImpl<StringRef> *MacroNames = nullptr) {
for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
StringRef Macro = PPOpts.Macros[I].first;
bool IsUndef = PPOpts.Macros[I].second;
std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
StringRef MacroName = MacroPair.first;
StringRef MacroBody = MacroPair.second;
// For an #undef'd macro, we only care about the name.
if (IsUndef) {
if (MacroNames && !Macros.count(MacroName))
MacroNames->push_back(MacroName);
Macros[MacroName] = std::make_pair("", true);
continue;
}
// For a #define'd macro, figure out the actual definition.
if (MacroName.size() == Macro.size())
MacroBody = "1";
else {
// Note: GCC drops anything following an end-of-line character.
StringRef::size_type End = MacroBody.find_first_of("\n\r");
MacroBody = MacroBody.substr(0, End);
}
if (MacroNames && !Macros.count(MacroName))
MacroNames->push_back(MacroName);
Macros[MacroName] = std::make_pair(MacroBody, false);
}
}
/// \brief Check the preprocessor options deserialized from the control block
/// against the preprocessor options in an existing preprocessor.
///
/// \param Diags If non-null, produce diagnostics for any mismatches incurred.
static bool checkPreprocessorOptions(const PreprocessorOptions &PPOpts,
const PreprocessorOptions &ExistingPPOpts,
DiagnosticsEngine *Diags,
FileManager &FileMgr,
std::string &SuggestedPredefines,
const LangOptions &LangOpts) {
// Check macro definitions.
MacroDefinitionsMap ASTFileMacros;
collectMacroDefinitions(PPOpts, ASTFileMacros);
MacroDefinitionsMap ExistingMacros;
SmallVector<StringRef, 4> ExistingMacroNames;
collectMacroDefinitions(ExistingPPOpts, ExistingMacros, &ExistingMacroNames);
for (unsigned I = 0, N = ExistingMacroNames.size(); I != N; ++I) {
// Dig out the macro definition in the existing preprocessor options.
StringRef MacroName = ExistingMacroNames[I];
std::pair<StringRef, bool> Existing = ExistingMacros[MacroName];
// Check whether we know anything about this macro name or not.
llvm::StringMap<std::pair<StringRef, bool /*IsUndef*/> >::iterator Known
= ASTFileMacros.find(MacroName);
if (Known == ASTFileMacros.end()) {
// FIXME: Check whether this identifier was referenced anywhere in the
// AST file. If so, we should reject the AST file. Unfortunately, this
// information isn't in the control block. What shall we do about it?
if (Existing.second) {
SuggestedPredefines += "#undef ";
SuggestedPredefines += MacroName.str();
SuggestedPredefines += '\n';
} else {
SuggestedPredefines += "#define ";
SuggestedPredefines += MacroName.str();
SuggestedPredefines += ' ';
SuggestedPredefines += Existing.first.str();
SuggestedPredefines += '\n';
}
continue;
}
// If the macro was defined in one but undef'd in the other, we have a
// conflict.
if (Existing.second != Known->second.second) {
if (Diags) {
Diags->Report(diag::err_pch_macro_def_undef)
<< MacroName << Known->second.second;
}
return true;
}
// If the macro was #undef'd in both, or if the macro bodies are identical,
// it's fine.
if (Existing.second || Existing.first == Known->second.first)
continue;
// The macro bodies differ; complain.
if (Diags) {
Diags->Report(diag::err_pch_macro_def_conflict)
<< MacroName << Known->second.first << Existing.first;
}
return true;
}
// Check whether we're using predefines.
if (PPOpts.UsePredefines != ExistingPPOpts.UsePredefines) {
if (Diags) {
Diags->Report(diag::err_pch_undef) << ExistingPPOpts.UsePredefines;
}
return true;
}
// Detailed record is important since it is used for the module cache hash.
if (LangOpts.Modules &&
PPOpts.DetailedRecord != ExistingPPOpts.DetailedRecord) {
if (Diags) {
Diags->Report(diag::err_pch_pp_detailed_record) << PPOpts.DetailedRecord;
}
return true;
}
// Compute the #include and #include_macros lines we need.
for (unsigned I = 0, N = ExistingPPOpts.Includes.size(); I != N; ++I) {
StringRef File = ExistingPPOpts.Includes[I];
if (File == ExistingPPOpts.ImplicitPCHInclude)
continue;
if (std::find(PPOpts.Includes.begin(), PPOpts.Includes.end(), File)
!= PPOpts.Includes.end())
continue;
SuggestedPredefines += "#include \"";
SuggestedPredefines += File;
SuggestedPredefines += "\"\n";
}
for (unsigned I = 0, N = ExistingPPOpts.MacroIncludes.size(); I != N; ++I) {
StringRef File = ExistingPPOpts.MacroIncludes[I];
if (std::find(PPOpts.MacroIncludes.begin(), PPOpts.MacroIncludes.end(),
File)
!= PPOpts.MacroIncludes.end())
continue;
SuggestedPredefines += "#__include_macros \"";
SuggestedPredefines += File;
SuggestedPredefines += "\"\n##\n";
}
return false;
}
bool PCHValidator::ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
bool Complain,
std::string &SuggestedPredefines) {
const PreprocessorOptions &ExistingPPOpts = PP.getPreprocessorOpts();
return checkPreprocessorOptions(PPOpts, ExistingPPOpts,
Complain? &Reader.Diags : nullptr,
PP.getFileManager(),
SuggestedPredefines,
PP.getLangOpts());
}
void PCHValidator::ReadCounter(const ModuleFile &M, unsigned Value) {
PP.setCounterValue(Value);
}
//===----------------------------------------------------------------------===//
// AST reader implementation
//===----------------------------------------------------------------------===//
void ASTReader::setDeserializationListener(ASTDeserializationListener *Listener,
bool TakeOwnership) {
DeserializationListener = Listener;
OwnsDeserializationListener = TakeOwnership;
}
unsigned ASTSelectorLookupTrait::ComputeHash(Selector Sel) {
return serialization::ComputeHash(Sel);
}
std::pair<unsigned, unsigned>
ASTSelectorLookupTrait::ReadKeyDataLength(const unsigned char*& d) {
using namespace llvm::support;
unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
return std::make_pair(KeyLen, DataLen);
}
ASTSelectorLookupTrait::internal_key_type
ASTSelectorLookupTrait::ReadKey(const unsigned char* d, unsigned) {
using namespace llvm::support;
SelectorTable &SelTable = Reader.getContext().Selectors;
unsigned N = endian::readNext<uint16_t, little, unaligned>(d);
IdentifierInfo *FirstII = Reader.getLocalIdentifier(
F, endian::readNext<uint32_t, little, unaligned>(d));
if (N == 0)
return SelTable.getNullarySelector(FirstII);
else if (N == 1)
return SelTable.getUnarySelector(FirstII);
SmallVector<IdentifierInfo *, 16> Args;
Args.push_back(FirstII);
for (unsigned I = 1; I != N; ++I)
Args.push_back(Reader.getLocalIdentifier(
F, endian::readNext<uint32_t, little, unaligned>(d)));
return SelTable.getSelector(N, Args.data());
}
ASTSelectorLookupTrait::data_type
ASTSelectorLookupTrait::ReadData(Selector, const unsigned char* d,
unsigned DataLen) {
using namespace llvm::support;
data_type Result;
Result.ID = Reader.getGlobalSelectorID(
F, endian::readNext<uint32_t, little, unaligned>(d));
unsigned NumInstanceMethodsAndBits =
endian::readNext<uint16_t, little, unaligned>(d);
unsigned NumFactoryMethodsAndBits =
endian::readNext<uint16_t, little, unaligned>(d);
Result.InstanceBits = NumInstanceMethodsAndBits & 0x3;
Result.FactoryBits = NumFactoryMethodsAndBits & 0x3;
unsigned NumInstanceMethods = NumInstanceMethodsAndBits >> 2;
unsigned NumFactoryMethods = NumFactoryMethodsAndBits >> 2;
// Load instance methods
for (unsigned I = 0; I != NumInstanceMethods; ++I) {
if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs<ObjCMethodDecl>(
F, endian::readNext<uint32_t, little, unaligned>(d)))
Result.Instance.push_back(Method);
}
// Load factory methods
for (unsigned I = 0; I != NumFactoryMethods; ++I) {
if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs<ObjCMethodDecl>(
F, endian::readNext<uint32_t, little, unaligned>(d)))
Result.Factory.push_back(Method);
}
return Result;
}
unsigned ASTIdentifierLookupTraitBase::ComputeHash(const internal_key_type& a) {
return llvm::HashString(a);
}
std::pair<unsigned, unsigned>
ASTIdentifierLookupTraitBase::ReadKeyDataLength(const unsigned char*& d) {
using namespace llvm::support;
unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
return std::make_pair(KeyLen, DataLen);
}
ASTIdentifierLookupTraitBase::internal_key_type
ASTIdentifierLookupTraitBase::ReadKey(const unsigned char* d, unsigned n) {
assert(n >= 2 && d[n-1] == '\0');
return StringRef((const char*) d, n-1);
}
/// \brief Whether the given identifier is "interesting".
static bool isInterestingIdentifier(IdentifierInfo &II) {
return II.isPoisoned() ||
II.isExtensionToken() ||
II.getObjCOrBuiltinID() ||
II.hasRevertedTokenIDToIdentifier() ||
II.hadMacroDefinition() ||
II.getFETokenInfo<void>();
}
IdentifierInfo *ASTIdentifierLookupTrait::ReadData(const internal_key_type& k,
const unsigned char* d,
unsigned DataLen) {
using namespace llvm::support;
unsigned RawID = endian::readNext<uint32_t, little, unaligned>(d);
bool IsInteresting = RawID & 0x01;
// Wipe out the "is interesting" bit.
RawID = RawID >> 1;
IdentID ID = Reader.getGlobalIdentifierID(F, RawID);
if (!IsInteresting) {
// For uninteresting identifiers, just build the IdentifierInfo
// and associate it with the persistent ID.
IdentifierInfo *II = KnownII;
if (!II) {
II = &Reader.getIdentifierTable().getOwn(k);
KnownII = II;
}
Reader.SetIdentifierInfo(ID, II);
if (!II->isFromAST()) {
bool WasInteresting = isInterestingIdentifier(*II);
II->setIsFromAST();
if (WasInteresting)
II->setChangedSinceDeserialization();
}
Reader.markIdentifierUpToDate(II);
return II;
}
unsigned ObjCOrBuiltinID = endian::readNext<uint16_t, little, unaligned>(d);
unsigned Bits = endian::readNext<uint16_t, little, unaligned>(d);
bool CPlusPlusOperatorKeyword = Bits & 0x01;
Bits >>= 1;
bool HasRevertedTokenIDToIdentifier = Bits & 0x01;
Bits >>= 1;
bool Poisoned = Bits & 0x01;
Bits >>= 1;
bool ExtensionToken = Bits & 0x01;
Bits >>= 1;
bool hasSubmoduleMacros = Bits & 0x01;
Bits >>= 1;
bool hadMacroDefinition = Bits & 0x01;
Bits >>= 1;
assert(Bits == 0 && "Extra bits in the identifier?");
DataLen -= 8;
// Build the IdentifierInfo itself and link the identifier ID with
// the new IdentifierInfo.
IdentifierInfo *II = KnownII;
if (!II) {
II = &Reader.getIdentifierTable().getOwn(StringRef(k));
KnownII = II;
}
Reader.markIdentifierUpToDate(II);
if (!II->isFromAST()) {
bool WasInteresting = isInterestingIdentifier(*II);
II->setIsFromAST();
if (WasInteresting)
II->setChangedSinceDeserialization();
}
// Set or check the various bits in the IdentifierInfo structure.
// Token IDs are read-only.
if (HasRevertedTokenIDToIdentifier && II->getTokenID() != tok::identifier)
II->RevertTokenIDToIdentifier();
II->setObjCOrBuiltinID(ObjCOrBuiltinID);
assert(II->isExtensionToken() == ExtensionToken &&
"Incorrect extension token flag");
(void)ExtensionToken;
if (Poisoned)
II->setIsPoisoned(true);
assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword &&
"Incorrect C++ operator keyword flag");
(void)CPlusPlusOperatorKeyword;
// If this identifier is a macro, deserialize the macro
// definition.
if (hadMacroDefinition) {
uint32_t MacroDirectivesOffset =
endian::readNext<uint32_t, little, unaligned>(d);
DataLen -= 4;
SmallVector<uint32_t, 8> LocalMacroIDs;
if (hasSubmoduleMacros) {
while (true) {
uint32_t LocalMacroID =
endian::readNext<uint32_t, little, unaligned>(d);
DataLen -= 4;
if (LocalMacroID == 0xdeadbeef) break;
LocalMacroIDs.push_back(LocalMacroID);
}
}
if (F.Kind == MK_ImplicitModule || F.Kind == MK_ExplicitModule) {
// Macro definitions are stored from newest to oldest, so reverse them
// before registering them.
llvm::SmallVector<unsigned, 8> MacroSizes;
for (SmallVectorImpl<uint32_t>::iterator
I = LocalMacroIDs.begin(), E = LocalMacroIDs.end(); I != E; /**/) {
unsigned Size = 1;
static const uint32_t HasOverridesFlag = 0x80000000U;
if (I + 1 != E && (I[1] & HasOverridesFlag))
Size += 1 + (I[1] & ~HasOverridesFlag);
MacroSizes.push_back(Size);
I += Size;
}
SmallVectorImpl<uint32_t>::iterator I = LocalMacroIDs.end();
for (SmallVectorImpl<unsigned>::reverse_iterator SI = MacroSizes.rbegin(),
SE = MacroSizes.rend();
SI != SE; ++SI) {
I -= *SI;
uint32_t LocalMacroID = *I;
ArrayRef<uint32_t> Overrides;
if (*SI != 1)
Overrides = llvm::makeArrayRef(&I[2], *SI - 2);
Reader.addPendingMacroFromModule(II, &F, LocalMacroID, Overrides);
}
assert(I == LocalMacroIDs.begin());
} else {
Reader.addPendingMacroFromPCH(II, &F, MacroDirectivesOffset);
}
}
Reader.SetIdentifierInfo(ID, II);
// Read all of the declarations visible at global scope with this
// name.
if (DataLen > 0) {
SmallVector<uint32_t, 4> DeclIDs;
for (; DataLen > 0; DataLen -= 4)
DeclIDs.push_back(Reader.getGlobalDeclID(
F, endian::readNext<uint32_t, little, unaligned>(d)));
Reader.SetGloballyVisibleDecls(II, DeclIDs);
}
return II;
}
unsigned
ASTDeclContextNameLookupTrait::ComputeHash(const DeclNameKey &Key) const {
llvm::FoldingSetNodeID ID;
ID.AddInteger(Key.Kind);
switch (Key.Kind) {
case DeclarationName::Identifier:
case DeclarationName::CXXLiteralOperatorName:
ID.AddString(((IdentifierInfo*)Key.Data)->getName());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
ID.AddInteger(serialization::ComputeHash(Selector(Key.Data)));
break;
case DeclarationName::CXXOperatorName:
ID.AddInteger((OverloadedOperatorKind)Key.Data);
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
break;
}
return ID.ComputeHash();
}
ASTDeclContextNameLookupTrait::internal_key_type
ASTDeclContextNameLookupTrait::GetInternalKey(
const external_key_type& Name) const {
DeclNameKey Key;
Key.Kind = Name.getNameKind();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
Key.Data = (uint64_t)Name.getAsIdentifierInfo();
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Key.Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr();
break;
case DeclarationName::CXXOperatorName:
Key.Data = Name.getCXXOverloadedOperator();
break;
case DeclarationName::CXXLiteralOperatorName:
Key.Data = (uint64_t)Name.getCXXLiteralIdentifier();
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
Key.Data = 0;
break;
}
return Key;
}
std::pair<unsigned, unsigned>
ASTDeclContextNameLookupTrait::ReadKeyDataLength(const unsigned char*& d) {
using namespace llvm::support;
unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
return std::make_pair(KeyLen, DataLen);
}
ASTDeclContextNameLookupTrait::internal_key_type
ASTDeclContextNameLookupTrait::ReadKey(const unsigned char* d, unsigned) {
using namespace llvm::support;
DeclNameKey Key;
Key.Kind = (DeclarationName::NameKind)*d++;
switch (Key.Kind) {
case DeclarationName::Identifier:
Key.Data = (uint64_t)Reader.getLocalIdentifier(
F, endian::readNext<uint32_t, little, unaligned>(d));
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Key.Data =
(uint64_t)Reader.getLocalSelector(
F, endian::readNext<uint32_t, little, unaligned>(
d)).getAsOpaquePtr();
break;
case DeclarationName::CXXOperatorName:
Key.Data = *d++; // OverloadedOperatorKind
break;
case DeclarationName::CXXLiteralOperatorName:
Key.Data = (uint64_t)Reader.getLocalIdentifier(
F, endian::readNext<uint32_t, little, unaligned>(d));
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
Key.Data = 0;
break;
}
return Key;
}
ASTDeclContextNameLookupTrait::data_type
ASTDeclContextNameLookupTrait::ReadData(internal_key_type,
const unsigned char* d,
unsigned DataLen) {
using namespace llvm::support;
unsigned NumDecls = endian::readNext<uint16_t, little, unaligned>(d);
LE32DeclID *Start = reinterpret_cast<LE32DeclID *>(
const_cast<unsigned char *>(d));
return std::make_pair(Start, Start + NumDecls);
}
bool ASTReader::ReadDeclContextStorage(ModuleFile &M,
BitstreamCursor &Cursor,
const std::pair<uint64_t, uint64_t> &Offsets,
DeclContextInfo &Info) {
SavedStreamPosition SavedPosition(Cursor);
// First the lexical decls.
if (Offsets.first != 0) {
Cursor.JumpToBit(Offsets.first);
RecordData Record;
StringRef Blob;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record, &Blob);
if (RecCode != DECL_CONTEXT_LEXICAL) {
Error("Expected lexical block");
return true;
}
Info.LexicalDecls = reinterpret_cast<const KindDeclIDPair*>(Blob.data());
Info.NumLexicalDecls = Blob.size() / sizeof(KindDeclIDPair);
}
// Now the lookup table.
if (Offsets.second != 0) {
Cursor.JumpToBit(Offsets.second);
RecordData Record;
StringRef Blob;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record, &Blob);
if (RecCode != DECL_CONTEXT_VISIBLE) {
Error("Expected visible lookup table block");
return true;
}
Info.NameLookupTableData = ASTDeclContextNameLookupTable::Create(
(const unsigned char *)Blob.data() + Record[0],
(const unsigned char *)Blob.data() + sizeof(uint32_t),
(const unsigned char *)Blob.data(),
ASTDeclContextNameLookupTrait(*this, M));
}
return false;
}
void ASTReader::Error(StringRef Msg) {
Error(diag::err_fe_pch_malformed, Msg);
if (Context.getLangOpts().Modules && !Diags.isDiagnosticInFlight()) {
Diag(diag::note_module_cache_path)
<< PP.getHeaderSearchInfo().getModuleCachePath();
}
}
void ASTReader::Error(unsigned DiagID,
StringRef Arg1, StringRef Arg2) {
if (Diags.isDiagnosticInFlight())
Diags.SetDelayedDiagnostic(DiagID, Arg1, Arg2);
else
Diag(DiagID) << Arg1 << Arg2;
}
//===----------------------------------------------------------------------===//
// Source Manager Deserialization
//===----------------------------------------------------------------------===//
/// \brief Read the line table in the source manager block.
/// \returns true if there was an error.
bool ASTReader::ParseLineTable(ModuleFile &F,
SmallVectorImpl<uint64_t> &Record) {
unsigned Idx = 0;
LineTableInfo &LineTable = SourceMgr.getLineTable();
// Parse the file names
std::map<int, int> FileIDs;
for (int I = 0, N = Record[Idx++]; I != N; ++I) {
// Extract the file name
unsigned FilenameLen = Record[Idx++];
std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen);
Idx += FilenameLen;
MaybeAddSystemRootToFilename(F, Filename);
FileIDs[I] = LineTable.getLineTableFilenameID(Filename);
}
// Parse the line entries
std::vector<LineEntry> Entries;
while (Idx < Record.size()) {
int FID = Record[Idx++];
assert(FID >= 0 && "Serialized line entries for non-local file.");
// Remap FileID from 1-based old view.
FID += F.SLocEntryBaseID - 1;
// Extract the line entries
unsigned NumEntries = Record[Idx++];
assert(NumEntries && "Numentries is 00000");
Entries.clear();
Entries.reserve(NumEntries);
for (unsigned I = 0; I != NumEntries; ++I) {
unsigned FileOffset = Record[Idx++];
unsigned LineNo = Record[Idx++];
int FilenameID = FileIDs[Record[Idx++]];
SrcMgr::CharacteristicKind FileKind
= (SrcMgr::CharacteristicKind)Record[Idx++];
unsigned IncludeOffset = Record[Idx++];
Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID,
FileKind, IncludeOffset));
}
LineTable.AddEntry(FileID::get(FID), Entries);
}
return false;
}
/// \brief Read a source manager block
bool ASTReader::ReadSourceManagerBlock(ModuleFile &F) {
using namespace SrcMgr;
BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor;
// Set the source-location entry cursor to the current position in
// the stream. This cursor will be used to read the contents of the
// source manager block initially, and then lazily read
// source-location entries as needed.
SLocEntryCursor = F.Stream;
// The stream itself is going to skip over the source manager block.
if (F.Stream.SkipBlock()) {
Error("malformed block record in AST file");
return true;
}
// Enter the source manager block.
if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) {
Error("malformed source manager block record in AST file");
return true;
}
RecordData Record;
while (true) {
llvm::BitstreamEntry E = SLocEntryCursor.advanceSkippingSubblocks();
switch (E.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return true;
case llvm::BitstreamEntry::EndBlock:
return false;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
StringRef Blob;
switch (SLocEntryCursor.readRecord(E.ID, Record, &Blob)) {
default: // Default behavior: ignore.
break;
case SM_SLOC_FILE_ENTRY:
case SM_SLOC_BUFFER_ENTRY:
case SM_SLOC_EXPANSION_ENTRY:
// Once we hit one of the source location entries, we're done.
return false;
}
}
}
/// \brief If a header file is not found at the path that we expect it to be
/// and the PCH file was moved from its original location, try to resolve the
/// file by assuming that header+PCH were moved together and the header is in
/// the same place relative to the PCH.
static std::string
resolveFileRelativeToOriginalDir(const std::string &Filename,
const std::string &OriginalDir,
const std::string &CurrDir) {
assert(OriginalDir != CurrDir &&
"No point trying to resolve the file if the PCH dir didn't change");
using namespace llvm::sys;
SmallString<128> filePath(Filename);
fs::make_absolute(filePath);
assert(path::is_absolute(OriginalDir));
SmallString<128> currPCHPath(CurrDir);
path::const_iterator fileDirI = path::begin(path::parent_path(filePath)),
fileDirE = path::end(path::parent_path(filePath));
path::const_iterator origDirI = path::begin(OriginalDir),
origDirE = path::end(OriginalDir);
// Skip the common path components from filePath and OriginalDir.
while (fileDirI != fileDirE && origDirI != origDirE &&
*fileDirI == *origDirI) {
++fileDirI;
++origDirI;
}
for (; origDirI != origDirE; ++origDirI)
path::append(currPCHPath, "..");
path::append(currPCHPath, fileDirI, fileDirE);
path::append(currPCHPath, path::filename(Filename));
return currPCHPath.str();
}
bool ASTReader::ReadSLocEntry(int ID) {
if (ID == 0)
return false;
if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) {
Error("source location entry ID out-of-range for AST file");
return true;
}
ModuleFile *F = GlobalSLocEntryMap.find(-ID)->second;
F->SLocEntryCursor.JumpToBit(F->SLocEntryOffsets[ID - F->SLocEntryBaseID]);
BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor;
unsigned BaseOffset = F->SLocEntryBaseOffset;
++NumSLocEntriesRead;
llvm::BitstreamEntry Entry = SLocEntryCursor.advance();
if (Entry.Kind != llvm::BitstreamEntry::Record) {
Error("incorrectly-formatted source location entry in AST file");
return true;
}
RecordData Record;
StringRef Blob;
switch (SLocEntryCursor.readRecord(Entry.ID, Record, &Blob)) {
default:
Error("incorrectly-formatted source location entry in AST file");
return true;
case SM_SLOC_FILE_ENTRY: {
// We will detect whether a file changed and return 'Failure' for it, but
// we will also try to fail gracefully by setting up the SLocEntry.
unsigned InputID = Record[4];
InputFile IF = getInputFile(*F, InputID);
const FileEntry *File = IF.getFile();
bool OverriddenBuffer = IF.isOverridden();
// Note that we only check if a File was returned. If it was out-of-date
// we have complained but we will continue creating a FileID to recover
// gracefully.
if (!File)
return true;
SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]);
if (IncludeLoc.isInvalid() && F->Kind != MK_MainFile) {
// This is the module's main file.
IncludeLoc = getImportLocation(F);
}
SrcMgr::CharacteristicKind
FileCharacter = (SrcMgr::CharacteristicKind)Record[2];
FileID FID = SourceMgr.createFileID(File, IncludeLoc, FileCharacter,
ID, BaseOffset + Record[0]);
SrcMgr::FileInfo &FileInfo =
const_cast<SrcMgr::FileInfo&>(SourceMgr.getSLocEntry(FID).getFile());
FileInfo.NumCreatedFIDs = Record[5];
if (Record[3])
FileInfo.setHasLineDirectives();
const DeclID *FirstDecl = F->FileSortedDecls + Record[6];
unsigned NumFileDecls = Record[7];
if (NumFileDecls) {
assert(F->FileSortedDecls && "FILE_SORTED_DECLS not encountered yet ?");
FileDeclIDs[FID] = FileDeclsInfo(F, llvm::makeArrayRef(FirstDecl,
NumFileDecls));
}
const SrcMgr::ContentCache *ContentCache
= SourceMgr.getOrCreateContentCache(File,
/*isSystemFile=*/FileCharacter != SrcMgr::C_User);
if (OverriddenBuffer && !ContentCache->BufferOverridden &&
ContentCache->ContentsEntry == ContentCache->OrigEntry) {
unsigned Code = SLocEntryCursor.ReadCode();
Record.clear();
unsigned RecCode = SLocEntryCursor.readRecord(Code, Record, &Blob);
if (RecCode != SM_SLOC_BUFFER_BLOB) {
Error("AST record has invalid code");
return true;
}
std::unique_ptr<llvm::MemoryBuffer> Buffer
= llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), File->getName());
SourceMgr.overrideFileContents(File, std::move(Buffer));
}
break;
}
case SM_SLOC_BUFFER_ENTRY: {
const char *Name = Blob.data();
unsigned Offset = Record[0];
SrcMgr::CharacteristicKind
FileCharacter = (SrcMgr::CharacteristicKind)Record[2];
SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]);
if (IncludeLoc.isInvalid() &&
(F->Kind == MK_ImplicitModule || F->Kind == MK_ExplicitModule)) {
IncludeLoc = getImportLocation(F);
}
unsigned Code = SLocEntryCursor.ReadCode();
Record.clear();
unsigned RecCode
= SLocEntryCursor.readRecord(Code, Record, &Blob);
if (RecCode != SM_SLOC_BUFFER_BLOB) {
Error("AST record has invalid code");
return true;
}
std::unique_ptr<llvm::MemoryBuffer> Buffer =
llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), Name);
SourceMgr.createFileID(std::move(Buffer), FileCharacter, ID,
BaseOffset + Offset, IncludeLoc);
break;
}
case SM_SLOC_EXPANSION_ENTRY: {
SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]);
SourceMgr.createExpansionLoc(SpellingLoc,
ReadSourceLocation(*F, Record[2]),
ReadSourceLocation(*F, Record[3]),
Record[4],
ID,
BaseOffset + Record[0]);
break;
}
}
return false;
}
std::pair<SourceLocation, StringRef> ASTReader::getModuleImportLoc(int ID) {
if (ID == 0)
return std::make_pair(SourceLocation(), "");
if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) {
Error("source location entry ID out-of-range for AST file");
return std::make_pair(SourceLocation(), "");
}
// Find which module file this entry lands in.
ModuleFile *M = GlobalSLocEntryMap.find(-ID)->second;
if (M->Kind != MK_ImplicitModule && M->Kind != MK_ExplicitModule)
return std::make_pair(SourceLocation(), "");
// FIXME: Can we map this down to a particular submodule? That would be
// ideal.
return std::make_pair(M->ImportLoc, StringRef(M->ModuleName));
}
/// \brief Find the location where the module F is imported.
SourceLocation ASTReader::getImportLocation(ModuleFile *F) {
if (F->ImportLoc.isValid())
return F->ImportLoc;
// Otherwise we have a PCH. It's considered to be "imported" at the first
// location of its includer.
if (F->ImportedBy.empty() || !F->ImportedBy[0]) {
// Main file is the importer.
assert(!SourceMgr.getMainFileID().isInvalid() && "missing main file");
return SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
}
return F->ImportedBy[0]->FirstLoc;
}
/// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the
/// specified cursor. Read the abbreviations that are at the top of the block
/// and then leave the cursor pointing into the block.
bool ASTReader::ReadBlockAbbrevs(BitstreamCursor &Cursor, unsigned BlockID) {
if (Cursor.EnterSubBlock(BlockID)) {
Error("malformed block record in AST file");
return Failure;
}
while (true) {
uint64_t Offset = Cursor.GetCurrentBitNo();
unsigned Code = Cursor.ReadCode();
// We expect all abbrevs to be at the start of the block.
if (Code != llvm::bitc::DEFINE_ABBREV) {
Cursor.JumpToBit(Offset);
return false;
}
Cursor.ReadAbbrevRecord();
}
}
Token ASTReader::ReadToken(ModuleFile &F, const RecordDataImpl &Record,
unsigned &Idx) {
Token Tok;
Tok.startToken();
Tok.setLocation(ReadSourceLocation(F, Record, Idx));
Tok.setLength(Record[Idx++]);
if (IdentifierInfo *II = getLocalIdentifier(F, Record[Idx++]))
Tok.setIdentifierInfo(II);
Tok.setKind((tok::TokenKind)Record[Idx++]);
Tok.setFlag((Token::TokenFlags)Record[Idx++]);
return Tok;
}
MacroInfo *ASTReader::ReadMacroRecord(ModuleFile &F, uint64_t Offset) {
BitstreamCursor &Stream = F.MacroCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this macro.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
RecordData Record;
SmallVector<IdentifierInfo*, 16> MacroArgs;
MacroInfo *Macro = nullptr;
while (true) {
// Advance to the next record, but if we get to the end of the block, don't
// pop it (removing all the abbreviations from the cursor) since we want to
// be able to reseek within the block and read entries.
unsigned Flags = BitstreamCursor::AF_DontPopBlockAtEnd;
llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(Flags);
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return Macro;
case llvm::BitstreamEntry::EndBlock:
return Macro;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
PreprocessorRecordTypes RecType =
(PreprocessorRecordTypes)Stream.readRecord(Entry.ID, Record);
switch (RecType) {
case PP_MACRO_DIRECTIVE_HISTORY:
return Macro;
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE: {
// If we already have a macro, that means that we've hit the end
// of the definition of the macro we were looking for. We're
// done.
if (Macro)
return Macro;
unsigned NextIndex = 1; // Skip identifier ID.
SubmoduleID SubModID = getGlobalSubmoduleID(F, Record[NextIndex++]);
SourceLocation Loc = ReadSourceLocation(F, Record, NextIndex);
MacroInfo *MI = PP.AllocateDeserializedMacroInfo(Loc, SubModID);
MI->setDefinitionEndLoc(ReadSourceLocation(F, Record, NextIndex));
MI->setIsUsed(Record[NextIndex++]);
MI->setUsedForHeaderGuard(Record[NextIndex++]);
if (RecType == PP_MACRO_FUNCTION_LIKE) {
// Decode function-like macro info.
bool isC99VarArgs = Record[NextIndex++];
bool isGNUVarArgs = Record[NextIndex++];
bool hasCommaPasting = Record[NextIndex++];
MacroArgs.clear();
unsigned NumArgs = Record[NextIndex++];
for (unsigned i = 0; i != NumArgs; ++i)
MacroArgs.push_back(getLocalIdentifier(F, Record[NextIndex++]));
// Install function-like macro info.
MI->setIsFunctionLike();
if (isC99VarArgs) MI->setIsC99Varargs();
if (isGNUVarArgs) MI->setIsGNUVarargs();
if (hasCommaPasting) MI->setHasCommaPasting();
MI->setArgumentList(MacroArgs.data(), MacroArgs.size(),
PP.getPreprocessorAllocator());
}
// Remember that we saw this macro last so that we add the tokens that
// form its body to it.
Macro = MI;
if (NextIndex + 1 == Record.size() && PP.getPreprocessingRecord() &&
Record[NextIndex]) {
// We have a macro definition. Register the association
PreprocessedEntityID
GlobalID = getGlobalPreprocessedEntityID(F, Record[NextIndex]);
PreprocessingRecord &PPRec = *PP.getPreprocessingRecord();
PreprocessingRecord::PPEntityID
PPID = PPRec.getPPEntityID(GlobalID-1, /*isLoaded=*/true);
MacroDefinition *PPDef =
cast_or_null<MacroDefinition>(PPRec.getPreprocessedEntity(PPID));
if (PPDef)
PPRec.RegisterMacroDefinition(Macro, PPDef);
}
++NumMacrosRead;
break;
}
case PP_TOKEN: {
// If we see a TOKEN before a PP_MACRO_*, then the file is
// erroneous, just pretend we didn't see this.
if (!Macro) break;
unsigned Idx = 0;
Token Tok = ReadToken(F, Record, Idx);
Macro->AddTokenToBody(Tok);
break;
}
}
}
}
PreprocessedEntityID
ASTReader::getGlobalPreprocessedEntityID(ModuleFile &M, unsigned LocalID) const {
ContinuousRangeMap<uint32_t, int, 2>::const_iterator
I = M.PreprocessedEntityRemap.find(LocalID - NUM_PREDEF_PP_ENTITY_IDS);
assert(I != M.PreprocessedEntityRemap.end()
&& "Invalid index into preprocessed entity index remap");
return LocalID + I->second;
}
unsigned HeaderFileInfoTrait::ComputeHash(internal_key_ref ikey) {
return llvm::hash_combine(ikey.Size, ikey.ModTime);
}
HeaderFileInfoTrait::internal_key_type
HeaderFileInfoTrait::GetInternalKey(const FileEntry *FE) {
internal_key_type ikey = { FE->getSize(), FE->getModificationTime(),
FE->getName() };
return ikey;
}
bool HeaderFileInfoTrait::EqualKey(internal_key_ref a, internal_key_ref b) {
if (a.Size != b.Size || a.ModTime != b.ModTime)
return false;
if (strcmp(a.Filename, b.Filename) == 0)
return true;
// Determine whether the actual files are equivalent.
FileManager &FileMgr = Reader.getFileManager();
const FileEntry *FEA = FileMgr.getFile(a.Filename);
const FileEntry *FEB = FileMgr.getFile(b.Filename);
return (FEA && FEA == FEB);
}
std::pair<unsigned, unsigned>
HeaderFileInfoTrait::ReadKeyDataLength(const unsigned char*& d) {
using namespace llvm::support;
unsigned KeyLen = (unsigned) endian::readNext<uint16_t, little, unaligned>(d);
unsigned DataLen = (unsigned) *d++;
return std::make_pair(KeyLen, DataLen);
}
HeaderFileInfoTrait::internal_key_type
HeaderFileInfoTrait::ReadKey(const unsigned char *d, unsigned) {
using namespace llvm::support;
internal_key_type ikey;
ikey.Size = off_t(endian::readNext<uint64_t, little, unaligned>(d));
ikey.ModTime = time_t(endian::readNext<uint64_t, little, unaligned>(d));
ikey.Filename = (const char *)d;
return ikey;
}
HeaderFileInfoTrait::data_type
HeaderFileInfoTrait::ReadData(internal_key_ref key, const unsigned char *d,
unsigned DataLen) {
const unsigned char *End = d + DataLen;
using namespace llvm::support;
HeaderFileInfo HFI;
unsigned Flags = *d++;
HFI.HeaderRole = static_cast<ModuleMap::ModuleHeaderRole>
((Flags >> 6) & 0x03);
HFI.isImport = (Flags >> 5) & 0x01;
HFI.isPragmaOnce = (Flags >> 4) & 0x01;
HFI.DirInfo = (Flags >> 2) & 0x03;
HFI.Resolved = (Flags >> 1) & 0x01;
HFI.IndexHeaderMapHeader = Flags & 0x01;
HFI.NumIncludes = endian::readNext<uint16_t, little, unaligned>(d);
HFI.ControllingMacroID = Reader.getGlobalIdentifierID(
M, endian::readNext<uint32_t, little, unaligned>(d));
if (unsigned FrameworkOffset =
endian::readNext<uint32_t, little, unaligned>(d)) {
// The framework offset is 1 greater than the actual offset,
// since 0 is used as an indicator for "no framework name".
StringRef FrameworkName(FrameworkStrings + FrameworkOffset - 1);
HFI.Framework = HS->getUniqueFrameworkName(FrameworkName);
}
if (d != End) {
uint32_t LocalSMID = endian::readNext<uint32_t, little, unaligned>(d);
if (LocalSMID) {
// This header is part of a module. Associate it with the module to enable
// implicit module import.
SubmoduleID GlobalSMID = Reader.getGlobalSubmoduleID(M, LocalSMID);
Module *Mod = Reader.getSubmodule(GlobalSMID);
HFI.isModuleHeader = true;
FileManager &FileMgr = Reader.getFileManager();
ModuleMap &ModMap =
Reader.getPreprocessor().getHeaderSearchInfo().getModuleMap();
ModMap.addHeader(Mod, FileMgr.getFile(key.Filename), HFI.getHeaderRole());
}
}
assert(End == d && "Wrong data length in HeaderFileInfo deserialization");
(void)End;
// This HeaderFileInfo was externally loaded.
HFI.External = true;
return HFI;
}
void
ASTReader::addPendingMacroFromModule(IdentifierInfo *II, ModuleFile *M,
GlobalMacroID GMacID,
ArrayRef<SubmoduleID> Overrides) {
assert(NumCurrentElementsDeserializing > 0 &&"Missing deserialization guard");
SubmoduleID *OverrideData = nullptr;
if (!Overrides.empty()) {
OverrideData = new (Context) SubmoduleID[Overrides.size() + 1];
OverrideData[0] = Overrides.size();
for (unsigned I = 0; I != Overrides.size(); ++I)
OverrideData[I + 1] = getGlobalSubmoduleID(*M, Overrides[I]);
}
PendingMacroIDs[II].push_back(PendingMacroInfo(M, GMacID, OverrideData));
}
void ASTReader::addPendingMacroFromPCH(IdentifierInfo *II,
ModuleFile *M,
uint64_t MacroDirectivesOffset) {
assert(NumCurrentElementsDeserializing > 0 &&"Missing deserialization guard");
PendingMacroIDs[II].push_back(PendingMacroInfo(M, MacroDirectivesOffset));
}
void ASTReader::ReadDefinedMacros() {
// Note that we are loading defined macros.
Deserializing Macros(this);
for (ModuleReverseIterator I = ModuleMgr.rbegin(),
E = ModuleMgr.rend(); I != E; ++I) {
BitstreamCursor &MacroCursor = (*I)->MacroCursor;
// If there was no preprocessor block, skip this file.
if (!MacroCursor.getBitStreamReader())
continue;
BitstreamCursor Cursor = MacroCursor;
Cursor.JumpToBit((*I)->MacroStartOffset);
RecordData Record;
while (true) {
llvm::BitstreamEntry E = Cursor.advanceSkippingSubblocks();
switch (E.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return;
case llvm::BitstreamEntry::EndBlock:
goto NextCursor;
case llvm::BitstreamEntry::Record:
Record.clear();
switch (Cursor.readRecord(E.ID, Record)) {
default: // Default behavior: ignore.
break;
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE:
getLocalIdentifier(**I, Record[0]);
break;
case PP_TOKEN:
// Ignore tokens.
break;
}
break;
}
}
NextCursor: ;
}
}
namespace {
/// \brief Visitor class used to look up identifirs in an AST file.
class IdentifierLookupVisitor {
StringRef Name;
unsigned PriorGeneration;
unsigned &NumIdentifierLookups;
unsigned &NumIdentifierLookupHits;
IdentifierInfo *Found;
public:
IdentifierLookupVisitor(StringRef Name, unsigned PriorGeneration,
unsigned &NumIdentifierLookups,
unsigned &NumIdentifierLookupHits)
: Name(Name), PriorGeneration(PriorGeneration),
NumIdentifierLookups(NumIdentifierLookups),
NumIdentifierLookupHits(NumIdentifierLookupHits),
Found()
{
}
static bool visit(ModuleFile &M, void *UserData) {
IdentifierLookupVisitor *This
= static_cast<IdentifierLookupVisitor *>(UserData);
// If we've already searched this module file, skip it now.
if (M.Generation <= This->PriorGeneration)
return true;
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)M.IdentifierLookupTable;
if (!IdTable)
return false;
ASTIdentifierLookupTrait Trait(IdTable->getInfoObj().getReader(),
M, This->Found);
++This->NumIdentifierLookups;
ASTIdentifierLookupTable::iterator Pos = IdTable->find(This->Name,&Trait);
if (Pos == IdTable->end())
return false;
// Dereferencing the iterator has the effect of building the
// IdentifierInfo node and populating it with the various
// declarations it needs.
++This->NumIdentifierLookupHits;
This->Found = *Pos;
return true;
}
// \brief Retrieve the identifier info found within the module
// files.
IdentifierInfo *getIdentifierInfo() const { return Found; }
};
}
void ASTReader::updateOutOfDateIdentifier(IdentifierInfo &II) {
// Note that we are loading an identifier.
Deserializing AnIdentifier(this);
unsigned PriorGeneration = 0;
if (getContext().getLangOpts().Modules)
PriorGeneration = IdentifierGeneration[&II];
// If there is a global index, look there first to determine which modules
// provably do not have any results for this identifier.
GlobalModuleIndex::HitSet Hits;
GlobalModuleIndex::HitSet *HitsPtr = nullptr;
if (!loadGlobalIndex()) {
if (GlobalIndex->lookupIdentifier(II.getName(), Hits)) {
HitsPtr = &Hits;
}
}
IdentifierLookupVisitor Visitor(II.getName(), PriorGeneration,
NumIdentifierLookups,
NumIdentifierLookupHits);
ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor, HitsPtr);
markIdentifierUpToDate(&II);
}
void ASTReader::markIdentifierUpToDate(IdentifierInfo *II) {
if (!II)
return;
II->setOutOfDate(false);
// Update the generation for this identifier.
if (getContext().getLangOpts().Modules)
IdentifierGeneration[II] = getGeneration();
}
struct ASTReader::ModuleMacroInfo {
SubmoduleID SubModID;
MacroInfo *MI;
SubmoduleID *Overrides;
// FIXME: Remove this.
ModuleFile *F;
bool isDefine() const { return MI; }
SubmoduleID getSubmoduleID() const { return SubModID; }
ArrayRef<SubmoduleID> getOverriddenSubmodules() const {
if (!Overrides)
return None;
return llvm::makeArrayRef(Overrides + 1, *Overrides);
}
MacroDirective *import(Preprocessor &PP, SourceLocation ImportLoc) const {
if (!MI)
return PP.AllocateUndefMacroDirective(ImportLoc, SubModID,
getOverriddenSubmodules());
return PP.AllocateDefMacroDirective(MI, ImportLoc, SubModID,
getOverriddenSubmodules());
}
};
ASTReader::ModuleMacroInfo *
ASTReader::getModuleMacro(const PendingMacroInfo &PMInfo) {
ModuleMacroInfo Info;
uint32_t ID = PMInfo.ModuleMacroData.MacID;
if (ID & 1) {
// Macro undefinition.
Info.SubModID = getGlobalSubmoduleID(*PMInfo.M, ID >> 1);
Info.MI = nullptr;
} else {
// Macro definition.
GlobalMacroID GMacID = getGlobalMacroID(*PMInfo.M, ID >> 1);
assert(GMacID);
// If this macro has already been loaded, don't do so again.
// FIXME: This is highly dubious. Multiple macro definitions can have the
// same MacroInfo (and hence the same GMacID) due to #pragma push_macro etc.
if (MacrosLoaded[GMacID - NUM_PREDEF_MACRO_IDS])
return nullptr;
Info.MI = getMacro(GMacID);
Info.SubModID = Info.MI->getOwningModuleID();
}
Info.Overrides = PMInfo.ModuleMacroData.Overrides;
Info.F = PMInfo.M;
return new (Context) ModuleMacroInfo(Info);
}
void ASTReader::resolvePendingMacro(IdentifierInfo *II,
const PendingMacroInfo &PMInfo) {
assert(II);
if (PMInfo.M->Kind != MK_ImplicitModule &&
PMInfo.M->Kind != MK_ExplicitModule) {
installPCHMacroDirectives(II, *PMInfo.M,
PMInfo.PCHMacroData.MacroDirectivesOffset);
return;
}
// Module Macro.
ModuleMacroInfo *MMI = getModuleMacro(PMInfo);
if (!MMI)
return;
Module *Owner = getSubmodule(MMI->getSubmoduleID());
if (Owner && Owner->NameVisibility == Module::Hidden) {
// Macros in the owning module are hidden. Just remember this macro to
// install if we make this module visible.
HiddenNamesMap[Owner].HiddenMacros.insert(std::make_pair(II, MMI));
} else {
installImportedMacro(II, MMI, Owner);
}
}
void ASTReader::installPCHMacroDirectives(IdentifierInfo *II,
ModuleFile &M, uint64_t Offset) {
assert(M.Kind != MK_ImplicitModule && M.Kind != MK_ExplicitModule);
BitstreamCursor &Cursor = M.MacroCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Offset);
llvm::BitstreamEntry Entry =
Cursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd);
if (Entry.Kind != llvm::BitstreamEntry::Record) {
Error("malformed block record in AST file");
return;
}
RecordData Record;
PreprocessorRecordTypes RecType =
(PreprocessorRecordTypes)Cursor.readRecord(Entry.ID, Record);
if (RecType != PP_MACRO_DIRECTIVE_HISTORY) {
Error("malformed block record in AST file");
return;
}
// Deserialize the macro directives history in reverse source-order.
MacroDirective *Latest = nullptr, *Earliest = nullptr;
unsigned Idx = 0, N = Record.size();
while (Idx < N) {
MacroDirective *MD = nullptr;
SourceLocation Loc = ReadSourceLocation(M, Record, Idx);
MacroDirective::Kind K = (MacroDirective::Kind)Record[Idx++];
switch (K) {
case MacroDirective::MD_Define: {
GlobalMacroID GMacID = getGlobalMacroID(M, Record[Idx++]);
MacroInfo *MI = getMacro(GMacID);
SubmoduleID ImportedFrom = Record[Idx++];
bool IsAmbiguous = Record[Idx++];
llvm::SmallVector<unsigned, 4> Overrides;
if (ImportedFrom) {
Overrides.insert(Overrides.end(),
&Record[Idx] + 1, &Record[Idx] + 1 + Record[Idx]);
Idx += Overrides.size() + 1;
}
DefMacroDirective *DefMD =
PP.AllocateDefMacroDirective(MI, Loc, ImportedFrom, Overrides);
DefMD->setAmbiguous(IsAmbiguous);
MD = DefMD;
break;
}
case MacroDirective::MD_Undefine: {
SubmoduleID ImportedFrom = Record[Idx++];
llvm::SmallVector<unsigned, 4> Overrides;
if (ImportedFrom) {
Overrides.insert(Overrides.end(),
&Record[Idx] + 1, &Record[Idx] + 1 + Record[Idx]);
Idx += Overrides.size() + 1;
}
MD = PP.AllocateUndefMacroDirective(Loc, ImportedFrom, Overrides);
break;
}
case MacroDirective::MD_Visibility:
bool isPublic = Record[Idx++];
MD = PP.AllocateVisibilityMacroDirective(Loc, isPublic);
break;
}
if (!Latest)
Latest = MD;
if (Earliest)
Earliest->setPrevious(MD);
Earliest = MD;
}
PP.setLoadedMacroDirective(II, Latest);
}
/// \brief For the given macro definitions, check if they are both in system
/// modules.
static bool areDefinedInSystemModules(MacroInfo *PrevMI, MacroInfo *NewMI,
Module *NewOwner, ASTReader &Reader) {
assert(PrevMI && NewMI);
Module *PrevOwner = nullptr;
if (SubmoduleID PrevModID = PrevMI->getOwningModuleID())
PrevOwner = Reader.getSubmodule(PrevModID);
SourceManager &SrcMgr = Reader.getSourceManager();
bool PrevInSystem
= PrevOwner? PrevOwner->IsSystem
: SrcMgr.isInSystemHeader(PrevMI->getDefinitionLoc());
bool NewInSystem
= NewOwner? NewOwner->IsSystem
: SrcMgr.isInSystemHeader(NewMI->getDefinitionLoc());
if (PrevOwner && PrevOwner == NewOwner)
return false;
return PrevInSystem && NewInSystem;
}
void ASTReader::removeOverriddenMacros(IdentifierInfo *II,
SourceLocation ImportLoc,
AmbiguousMacros &Ambig,
ArrayRef<SubmoduleID> Overrides) {
for (unsigned OI = 0, ON = Overrides.size(); OI != ON; ++OI) {
SubmoduleID OwnerID = Overrides[OI];
// If this macro is not yet visible, remove it from the hidden names list.
// It won't be there if we're in the middle of making the owner visible.
Module *Owner = getSubmodule(OwnerID);
auto HiddenIt = HiddenNamesMap.find(Owner);
if (HiddenIt != HiddenNamesMap.end()) {
HiddenNames &Hidden = HiddenIt->second;
HiddenMacrosMap::iterator HI = Hidden.HiddenMacros.find(II);
if (HI != Hidden.HiddenMacros.end()) {
// Register the macro now so we don't lose it when we re-export.
PP.appendMacroDirective(II, HI->second->import(PP, ImportLoc));
auto SubOverrides = HI->second->getOverriddenSubmodules();
Hidden.HiddenMacros.erase(HI);
removeOverriddenMacros(II, ImportLoc, Ambig, SubOverrides);
}
}
// If this macro is already in our list of conflicts, remove it from there.
Ambig.erase(
std::remove_if(Ambig.begin(), Ambig.end(), [&](DefMacroDirective *MD) {
return MD->getInfo()->getOwningModuleID() == OwnerID;
}),
Ambig.end());
}
}
ASTReader::AmbiguousMacros *
ASTReader::removeOverriddenMacros(IdentifierInfo *II,
SourceLocation ImportLoc,
ArrayRef<SubmoduleID> Overrides) {
MacroDirective *Prev = PP.getMacroDirective(II);
if (!Prev && Overrides.empty())
return nullptr;
DefMacroDirective *PrevDef = Prev ? Prev->getDefinition().getDirective()
: nullptr;
if (PrevDef && PrevDef->isAmbiguous()) {
// We had a prior ambiguity. Check whether we resolve it (or make it worse).
AmbiguousMacros &Ambig = AmbiguousMacroDefs[II];
Ambig.push_back(PrevDef);
removeOverriddenMacros(II, ImportLoc, Ambig, Overrides);
if (!Ambig.empty())
return &Ambig;
AmbiguousMacroDefs.erase(II);
} else {
// There's no ambiguity yet. Maybe we're introducing one.
AmbiguousMacros Ambig;
if (PrevDef)
Ambig.push_back(PrevDef);
removeOverriddenMacros(II, ImportLoc, Ambig, Overrides);
if (!Ambig.empty()) {
AmbiguousMacros &Result = AmbiguousMacroDefs[II];
std::swap(Result, Ambig);
return &Result;
}
}
// We ended up with no ambiguity.
return nullptr;
}
void ASTReader::installImportedMacro(IdentifierInfo *II, ModuleMacroInfo *MMI,
Module *Owner) {
assert(II && Owner);
SourceLocation ImportLoc = Owner->MacroVisibilityLoc;
if (ImportLoc.isInvalid()) {
// FIXME: If we made macros from this module visible but didn't provide a
// source location for the import, we don't have a location for the macro.
// Use the location at which the containing module file was first imported
// for now.
ImportLoc = MMI->F->DirectImportLoc;
assert(ImportLoc.isValid() && "no import location for a visible macro?");
}
AmbiguousMacros *Prev =
removeOverriddenMacros(II, ImportLoc, MMI->getOverriddenSubmodules());
// Create a synthetic macro definition corresponding to the import (or null
// if this was an undefinition of the macro).
MacroDirective *Imported = MMI->import(PP, ImportLoc);
DefMacroDirective *MD = dyn_cast<DefMacroDirective>(Imported);
// If there's no ambiguity, just install the macro.
if (!Prev) {
PP.appendMacroDirective(II, Imported);
return;
}
assert(!Prev->empty());
if (!MD) {
// We imported a #undef that didn't remove all prior definitions. The most
// recent prior definition remains, and we install it in the place of the
// imported directive, as if by a local #pragma pop_macro.
MacroInfo *NewMI = Prev->back()->getInfo();
Prev->pop_back();
MD = PP.AllocateDefMacroDirective(NewMI, ImportLoc);
// Install our #undef first so that we don't lose track of it. We'll replace
// this with whichever macro definition ends up winning.
PP.appendMacroDirective(II, Imported);
}
// We're introducing a macro definition that creates or adds to an ambiguity.
// We can resolve that ambiguity if this macro is token-for-token identical to
// all of the existing definitions.
MacroInfo *NewMI = MD->getInfo();
assert(NewMI && "macro definition with no MacroInfo?");
while (!Prev->empty()) {
MacroInfo *PrevMI = Prev->back()->getInfo();
assert(PrevMI && "macro definition with no MacroInfo?");
// Before marking the macros as ambiguous, check if this is a case where
// both macros are in system headers. If so, we trust that the system
// did not get it wrong. This also handles cases where Clang's own
// headers have a different spelling of certain system macros:
// #define LONG_MAX __LONG_MAX__ (clang's limits.h)
// #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
//
// FIXME: Remove the defined-in-system-headers check. clang's limits.h
// overrides the system limits.h's macros, so there's no conflict here.
if (NewMI != PrevMI &&
!PrevMI->isIdenticalTo(*NewMI, PP, /*Syntactically=*/true) &&
!areDefinedInSystemModules(PrevMI, NewMI, Owner, *this))
break;
// The previous definition is the same as this one (or both are defined in
// system modules so we can assume they're equivalent); we don't need to
// track it any more.
Prev->pop_back();
}
if (!Prev->empty())
MD->setAmbiguous(true);
PP.appendMacroDirective(II, MD);
}
ASTReader::InputFileInfo
ASTReader::readInputFileInfo(ModuleFile &F, unsigned ID) {
// Go find this input file.
BitstreamCursor &Cursor = F.InputFilesCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(F.InputFileOffsets[ID-1]);
unsigned Code = Cursor.ReadCode();
RecordData Record;
StringRef Blob;
unsigned Result = Cursor.readRecord(Code, Record, &Blob);
assert(static_cast<InputFileRecordTypes>(Result) == INPUT_FILE &&
"invalid record type for input file");
(void)Result;
std::string Filename;
off_t StoredSize;
time_t StoredTime;
bool Overridden;
assert(Record[0] == ID && "Bogus stored ID or offset");
StoredSize = static_cast<off_t>(Record[1]);
StoredTime = static_cast<time_t>(Record[2]);
Overridden = static_cast<bool>(Record[3]);
Filename = Blob;
MaybeAddSystemRootToFilename(F, Filename);
InputFileInfo R = { std::move(Filename), StoredSize, StoredTime, Overridden };
return R;
}
std::string ASTReader::getInputFileName(ModuleFile &F, unsigned int ID) {
return readInputFileInfo(F, ID).Filename;
}
InputFile ASTReader::getInputFile(ModuleFile &F, unsigned ID, bool Complain) {
// If this ID is bogus, just return an empty input file.
if (ID == 0 || ID > F.InputFilesLoaded.size())
return InputFile();
// If we've already loaded this input file, return it.
if (F.InputFilesLoaded[ID-1].getFile())
return F.InputFilesLoaded[ID-1];
if (F.InputFilesLoaded[ID-1].isNotFound())
return InputFile();
// Go find this input file.
BitstreamCursor &Cursor = F.InputFilesCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(F.InputFileOffsets[ID-1]);
InputFileInfo FI = readInputFileInfo(F, ID);
off_t StoredSize = FI.StoredSize;
time_t StoredTime = FI.StoredTime;
bool Overridden = FI.Overridden;
StringRef Filename = FI.Filename;
const FileEntry *File
= Overridden? FileMgr.getVirtualFile(Filename, StoredSize, StoredTime)
: FileMgr.getFile(Filename, /*OpenFile=*/false);
// If we didn't find the file, resolve it relative to the
// original directory from which this AST file was created.
if (File == nullptr && !F.OriginalDir.empty() && !CurrentDir.empty() &&
F.OriginalDir != CurrentDir) {
std::string Resolved = resolveFileRelativeToOriginalDir(Filename,
F.OriginalDir,
CurrentDir);
if (!Resolved.empty())
File = FileMgr.getFile(Resolved);
}
// For an overridden file, create a virtual file with the stored
// size/timestamp.
if (Overridden && File == nullptr) {
File = FileMgr.getVirtualFile(Filename, StoredSize, StoredTime);
}
if (File == nullptr) {
if (Complain) {
std::string ErrorStr = "could not find file '";
ErrorStr += Filename;
ErrorStr += "' referenced by AST file";
Error(ErrorStr.c_str());
}
// Record that we didn't find the file.
F.InputFilesLoaded[ID-1] = InputFile::getNotFound();
return InputFile();
}
// Check if there was a request to override the contents of the file
// that was part of the precompiled header. Overridding such a file
// can lead to problems when lexing using the source locations from the
// PCH.
SourceManager &SM = getSourceManager();
if (!Overridden && SM.isFileOverridden(File)) {
if (Complain)
Error(diag::err_fe_pch_file_overridden, Filename);
// After emitting the diagnostic, recover by disabling the override so
// that the original file will be used.
SM.disableFileContentsOverride(File);
// The FileEntry is a virtual file entry with the size of the contents
// that would override the original contents. Set it to the original's
// size/time.
FileMgr.modifyFileEntry(const_cast<FileEntry*>(File),
StoredSize, StoredTime);
}
bool IsOutOfDate = false;
// For an overridden file, there is nothing to validate.
if (!Overridden && //
(StoredSize != File->getSize() ||
#if defined(LLVM_ON_WIN32)
false
#else
// In our regression testing, the Windows file system seems to
// have inconsistent modification times that sometimes
// erroneously trigger this error-handling path.
//
// This also happens in networked file systems, so disable this
// check if validation is disabled or if we have an explicitly
// built PCM file.
//
// FIXME: Should we also do this for PCH files? They could also
// reasonably get shared across a network during a distributed build.
(StoredTime != File->getModificationTime() && !DisableValidation &&
F.Kind != MK_ExplicitModule)
#endif
)) {
if (Complain) {
// Build a list of the PCH imports that got us here (in reverse).
SmallVector<ModuleFile *, 4> ImportStack(1, &F);
while (ImportStack.back()->ImportedBy.size() > 0)
ImportStack.push_back(ImportStack.back()->ImportedBy[0]);
// The top-level PCH is stale.
StringRef TopLevelPCHName(ImportStack.back()->FileName);
Error(diag::err_fe_pch_file_modified, Filename, TopLevelPCHName);
// Print the import stack.
if (ImportStack.size() > 1 && !Diags.isDiagnosticInFlight()) {
Diag(diag::note_pch_required_by)
<< Filename << ImportStack[0]->FileName;
for (unsigned I = 1; I < ImportStack.size(); ++I)
Diag(diag::note_pch_required_by)
<< ImportStack[I-1]->FileName << ImportStack[I]->FileName;
}
if (!Diags.isDiagnosticInFlight())
Diag(diag::note_pch_rebuild_required) << TopLevelPCHName;
}
IsOutOfDate = true;
}
InputFile IF = InputFile(File, Overridden, IsOutOfDate);
// Note that we've loaded this input file.
F.InputFilesLoaded[ID-1] = IF;
return IF;
}
const FileEntry *ASTReader::getFileEntry(StringRef filenameStrRef) {
ModuleFile &M = ModuleMgr.getPrimaryModule();
std::string Filename = filenameStrRef;
MaybeAddSystemRootToFilename(M, Filename);
const FileEntry *File = FileMgr.getFile(Filename);
if (File == nullptr && !M.OriginalDir.empty() && !CurrentDir.empty() &&
M.OriginalDir != CurrentDir) {
std::string resolved = resolveFileRelativeToOriginalDir(Filename,
M.OriginalDir,
CurrentDir);
if (!resolved.empty())
File = FileMgr.getFile(resolved);
}
return File;
}
/// \brief If we are loading a relocatable PCH file, and the filename is
/// not an absolute path, add the system root to the beginning of the file
/// name.
void ASTReader::MaybeAddSystemRootToFilename(ModuleFile &M,
std::string &Filename) {
// If this is not a relocatable PCH file, there's nothing to do.
if (!M.RelocatablePCH)
return;
if (Filename.empty() || llvm::sys::path::is_absolute(Filename))
return;
if (isysroot.empty()) {
// If no system root was given, default to '/'
Filename.insert(Filename.begin(), '/');
return;
}
unsigned Length = isysroot.size();
if (isysroot[Length - 1] != '/')
Filename.insert(Filename.begin(), '/');
Filename.insert(Filename.begin(), isysroot.begin(), isysroot.end());
}
ASTReader::ASTReadResult
ASTReader::ReadControlBlock(ModuleFile &F,
SmallVectorImpl<ImportedModule> &Loaded,
const ModuleFile *ImportedBy,
unsigned ClientLoadCapabilities) {
BitstreamCursor &Stream = F.Stream;
if (Stream.EnterSubBlock(CONTROL_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
// Should we allow the configuration of the module file to differ from the
// configuration of the current translation unit in a compatible way?
//
// FIXME: Allow this for files explicitly specified with -include-pch too.
bool AllowCompatibleConfigurationMismatch = F.Kind == MK_ExplicitModule;
// Read all of the records and blocks in the control block.
RecordData Record;
unsigned NumInputs = 0;
unsigned NumUserInputs = 0;
while (1) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return Failure;
case llvm::BitstreamEntry::EndBlock: {
// Validate input files.
const HeaderSearchOptions &HSOpts =
PP.getHeaderSearchInfo().getHeaderSearchOpts();
// All user input files reside at the index range [0, NumUserInputs), and
// system input files reside at [NumUserInputs, NumInputs).
if (!DisableValidation &&
(ValidateSystemInputs || !HSOpts.ModulesValidateOncePerBuildSession ||
F.InputFilesValidationTimestamp <= HSOpts.BuildSessionTimestamp)) {
bool Complain = (ClientLoadCapabilities & ARR_OutOfDate) == 0;
// If we are reading a module, we will create a verification timestamp,
// so we verify all input files. Otherwise, verify only user input
// files.
unsigned N = NumUserInputs;
if (ValidateSystemInputs ||
(HSOpts.ModulesValidateOncePerBuildSession &&
F.Kind == MK_ImplicitModule))
N = NumInputs;
for (unsigned I = 0; I < N; ++I) {
InputFile IF = getInputFile(F, I+1, Complain);
if (!IF.getFile() || IF.isOutOfDate())
return OutOfDate;
}
}
if (Listener)
Listener->visitModuleFile(F.FileName);
if (Listener && Listener->needsInputFileVisitation()) {
unsigned N = Listener->needsSystemInputFileVisitation() ? NumInputs
: NumUserInputs;
for (unsigned I = 0; I < N; ++I) {
bool IsSystem = I >= NumUserInputs;
InputFileInfo FI = readInputFileInfo(F, I+1);
Listener->visitInputFile(FI.Filename, IsSystem, FI.Overridden);
}
}
return Success;
}
case llvm::BitstreamEntry::SubBlock:
switch (Entry.ID) {
case INPUT_FILES_BLOCK_ID:
F.InputFilesCursor = Stream;
if (Stream.SkipBlock() || // Skip with the main cursor
// Read the abbreviations
ReadBlockAbbrevs(F.InputFilesCursor, INPUT_FILES_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
continue;
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
continue;
}
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read and process a record.
Record.clear();
StringRef Blob;
switch ((ControlRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) {
case METADATA: {
if (Record[0] != VERSION_MAJOR && !DisableValidation) {
if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
Diag(Record[0] < VERSION_MAJOR? diag::err_pch_version_too_old
: diag::err_pch_version_too_new);
return VersionMismatch;
}
bool hasErrors = Record[5];
if (hasErrors && !DisableValidation && !AllowASTWithCompilerErrors) {
Diag(diag::err_pch_with_compiler_errors);
return HadErrors;
}
F.RelocatablePCH = Record[4];
const std::string &CurBranch = getClangFullRepositoryVersion();
StringRef ASTBranch = Blob;
if (StringRef(CurBranch) != ASTBranch && !DisableValidation) {
if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
Diag(diag::err_pch_different_branch) << ASTBranch << CurBranch;
return VersionMismatch;
}
break;
}
case SIGNATURE:
assert((!F.Signature || F.Signature == Record[0]) && "signature changed");
F.Signature = Record[0];
break;
case IMPORTS: {
// Load each of the imported PCH files.
unsigned Idx = 0, N = Record.size();
while (Idx < N) {
// Read information about the AST file.
ModuleKind ImportedKind = (ModuleKind)Record[Idx++];
// The import location will be the local one for now; we will adjust
// all import locations of module imports after the global source
// location info are setup.
SourceLocation ImportLoc =
SourceLocation::getFromRawEncoding(Record[Idx++]);
off_t StoredSize = (off_t)Record[Idx++];
time_t StoredModTime = (time_t)Record[Idx++];
ASTFileSignature StoredSignature = Record[Idx++];
unsigned Length = Record[Idx++];
SmallString<128> ImportedFile(Record.begin() + Idx,
Record.begin() + Idx + Length);
Idx += Length;
// Load the AST file.
switch(ReadASTCore(ImportedFile, ImportedKind, ImportLoc, &F, Loaded,
StoredSize, StoredModTime, StoredSignature,
ClientLoadCapabilities)) {
case Failure: return Failure;
// If we have to ignore the dependency, we'll have to ignore this too.
case Missing:
case OutOfDate: return OutOfDate;
case VersionMismatch: return VersionMismatch;
case ConfigurationMismatch: return ConfigurationMismatch;
case HadErrors: return HadErrors;
case Success: break;
}
}
break;
}
case LANGUAGE_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0;
// FIXME: The &F == *ModuleMgr.begin() check is wrong for modules.
if (Listener && &F == *ModuleMgr.begin() &&
ParseLanguageOptions(Record, Complain, *Listener,
AllowCompatibleConfigurationMismatch) &&
!DisableValidation && !AllowConfigurationMismatch)
return ConfigurationMismatch;
break;
}
case TARGET_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
if (Listener && &F == *ModuleMgr.begin() &&
ParseTargetOptions(Record, Complain, *Listener) &&
!DisableValidation && !AllowConfigurationMismatch)
return ConfigurationMismatch;
break;
}
case DIAGNOSTIC_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_OutOfDate)==0;
if (Listener && &F == *ModuleMgr.begin() &&
!AllowCompatibleConfigurationMismatch &&
ParseDiagnosticOptions(Record, Complain, *Listener) &&
!DisableValidation)
return OutOfDate;
break;
}
case FILE_SYSTEM_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
if (Listener && &F == *ModuleMgr.begin() &&
!AllowCompatibleConfigurationMismatch &&
ParseFileSystemOptions(Record, Complain, *Listener) &&
!DisableValidation && !AllowConfigurationMismatch)
return ConfigurationMismatch;
break;
}
case HEADER_SEARCH_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
if (Listener && &F == *ModuleMgr.begin() &&
!AllowCompatibleConfigurationMismatch &&
ParseHeaderSearchOptions(Record, Complain, *Listener) &&
!DisableValidation && !AllowConfigurationMismatch)
return ConfigurationMismatch;
break;
}
case PREPROCESSOR_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
if (Listener && &F == *ModuleMgr.begin() &&
!AllowCompatibleConfigurationMismatch &&
ParsePreprocessorOptions(Record, Complain, *Listener,
SuggestedPredefines) &&
!DisableValidation && !AllowConfigurationMismatch)
return ConfigurationMismatch;
break;
}
case ORIGINAL_FILE:
F.OriginalSourceFileID = FileID::get(Record[0]);
F.ActualOriginalSourceFileName = Blob;
F.OriginalSourceFileName = F.ActualOriginalSourceFileName;
MaybeAddSystemRootToFilename(F, F.OriginalSourceFileName);
break;
case ORIGINAL_FILE_ID:
F.OriginalSourceFileID = FileID::get(Record[0]);
break;
case ORIGINAL_PCH_DIR:
F.OriginalDir = Blob;
break;
case MODULE_NAME:
F.ModuleName = Blob;
if (Listener)
Listener->ReadModuleName(F.ModuleName);
break;
case MODULE_MAP_FILE:
if (ASTReadResult Result =
ReadModuleMapFileBlock(Record, F, ImportedBy, ClientLoadCapabilities))
return Result;
case INPUT_FILE_OFFSETS:
NumInputs = Record[0];
NumUserInputs = Record[1];
F.InputFileOffsets = (const uint32_t *)Blob.data();
F.InputFilesLoaded.resize(NumInputs);
break;
}
}
}
ASTReader::ASTReadResult
ASTReader::ReadASTBlock(ModuleFile &F, unsigned ClientLoadCapabilities) {
BitstreamCursor &Stream = F.Stream;
if (Stream.EnterSubBlock(AST_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
// Read all of the records and blocks for the AST file.
RecordData Record;
while (1) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
Error("error at end of module block in AST file");
return Failure;
case llvm::BitstreamEntry::EndBlock: {
// Outside of C++, we do not store a lookup map for the translation unit.
// Instead, mark it as needing a lookup map to be built if this module
// contains any declarations lexically within it (which it always does!).
// This usually has no cost, since we very rarely need the lookup map for
// the translation unit outside C++.
DeclContext *DC = Context.getTranslationUnitDecl();
if (DC->hasExternalLexicalStorage() &&
!getContext().getLangOpts().CPlusPlus)
DC->setMustBuildLookupTable();
return Success;
}
case llvm::BitstreamEntry::SubBlock:
switch (Entry.ID) {
case DECLTYPES_BLOCK_ID:
// We lazily load the decls block, but we want to set up the
// DeclsCursor cursor to point into it. Clone our current bitcode
// cursor to it, enter the block and read the abbrevs in that block.
// With the main cursor, we just skip over it.
F.DeclsCursor = Stream;
if (Stream.SkipBlock() || // Skip with the main cursor.
// Read the abbrevs.
ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
break;
case PREPROCESSOR_BLOCK_ID:
F.MacroCursor = Stream;
if (!PP.getExternalSource())
PP.setExternalSource(this);
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo();
break;
case PREPROCESSOR_DETAIL_BLOCK_ID:
F.PreprocessorDetailCursor = Stream;
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(F.PreprocessorDetailCursor,
PREPROCESSOR_DETAIL_BLOCK_ID)) {
Error("malformed preprocessor detail record in AST file");
return Failure;
}
F.PreprocessorDetailStartOffset
= F.PreprocessorDetailCursor.GetCurrentBitNo();
if (!PP.getPreprocessingRecord())
PP.createPreprocessingRecord();
if (!PP.getPreprocessingRecord()->getExternalSource())
PP.getPreprocessingRecord()->SetExternalSource(*this);
break;
case SOURCE_MANAGER_BLOCK_ID:
if (ReadSourceManagerBlock(F))
return Failure;
break;
case SUBMODULE_BLOCK_ID:
if (ASTReadResult Result = ReadSubmoduleBlock(F, ClientLoadCapabilities))
return Result;
break;
case COMMENTS_BLOCK_ID: {
BitstreamCursor C = Stream;
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(C, COMMENTS_BLOCK_ID)) {
Error("malformed comments block in AST file");
return Failure;
}
CommentsCursors.push_back(std::make_pair(C, &F));
break;
}
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
}
continue;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read and process a record.
Record.clear();
StringRef Blob;
switch ((ASTRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) {
default: // Default behavior: ignore.
break;
case TYPE_OFFSET: {
if (F.LocalNumTypes != 0) {
Error("duplicate TYPE_OFFSET record in AST file");
return Failure;
}
F.TypeOffsets = (const uint32_t *)Blob.data();
F.LocalNumTypes = Record[0];
unsigned LocalBaseTypeIndex = Record[1];
F.BaseTypeIndex = getTotalNumTypes();
if (F.LocalNumTypes > 0) {
// Introduce the global -> local mapping for types within this module.
GlobalTypeMap.insert(std::make_pair(getTotalNumTypes(), &F));
// Introduce the local -> global mapping for types within this module.
F.TypeRemap.insertOrReplace(
std::make_pair(LocalBaseTypeIndex,
F.BaseTypeIndex - LocalBaseTypeIndex));
TypesLoaded.resize(TypesLoaded.size() + F.LocalNumTypes);
}
break;
}
case DECL_OFFSET: {
if (F.LocalNumDecls != 0) {
Error("duplicate DECL_OFFSET record in AST file");
return Failure;
}
F.DeclOffsets = (const DeclOffset *)Blob.data();
F.LocalNumDecls = Record[0];
unsigned LocalBaseDeclID = Record[1];
F.BaseDeclID = getTotalNumDecls();
if (F.LocalNumDecls > 0) {
// Introduce the global -> local mapping for declarations within this
// module.
GlobalDeclMap.insert(
std::make_pair(getTotalNumDecls() + NUM_PREDEF_DECL_IDS, &F));
// Introduce the local -> global mapping for declarations within this
// module.
F.DeclRemap.insertOrReplace(
std::make_pair(LocalBaseDeclID, F.BaseDeclID - LocalBaseDeclID));
// Introduce the global -> local mapping for declarations within this
// module.
F.GlobalToLocalDeclIDs[&F] = LocalBaseDeclID;
DeclsLoaded.resize(DeclsLoaded.size() + F.LocalNumDecls);
}
break;
}
case TU_UPDATE_LEXICAL: {
DeclContext *TU = Context.getTranslationUnitDecl();
DeclContextInfo &Info = F.DeclContextInfos[TU];
Info.LexicalDecls = reinterpret_cast<const KindDeclIDPair *>(Blob.data());
Info.NumLexicalDecls
= static_cast<unsigned int>(Blob.size() / sizeof(KindDeclIDPair));
TU->setHasExternalLexicalStorage(true);
break;
}
case UPDATE_VISIBLE: {
unsigned Idx = 0;
serialization::DeclID ID = ReadDeclID(F, Record, Idx);
ASTDeclContextNameLookupTable *Table =
ASTDeclContextNameLookupTable::Create(
(const unsigned char *)Blob.data() + Record[Idx++],
(const unsigned char *)Blob.data() + sizeof(uint32_t),
(const unsigned char *)Blob.data(),
ASTDeclContextNameLookupTrait(*this, F));
if (Decl *D = GetExistingDecl(ID)) {
auto *DC = cast<DeclContext>(D);
DC->getPrimaryContext()->setHasExternalVisibleStorage(true);
auto *&LookupTable = F.DeclContextInfos[DC].NameLookupTableData;
delete LookupTable;
LookupTable = Table;
} else
PendingVisibleUpdates[ID].push_back(std::make_pair(Table, &F));
break;
}
case IDENTIFIER_TABLE:
F.IdentifierTableData = Blob.data();
if (Record[0]) {
F.IdentifierLookupTable = ASTIdentifierLookupTable::Create(
(const unsigned char *)F.IdentifierTableData + Record[0],
(const unsigned char *)F.IdentifierTableData + sizeof(uint32_t),
(const unsigned char *)F.IdentifierTableData,
ASTIdentifierLookupTrait(*this, F));
PP.getIdentifierTable().setExternalIdentifierLookup(this);
}
break;
case IDENTIFIER_OFFSET: {
if (F.LocalNumIdentifiers != 0) {
Error("duplicate IDENTIFIER_OFFSET record in AST file");
return Failure;
}
F.IdentifierOffsets = (const uint32_t *)Blob.data();
F.LocalNumIdentifiers = Record[0];
unsigned LocalBaseIdentifierID = Record[1];
F.BaseIdentifierID = getTotalNumIdentifiers();
if (F.LocalNumIdentifiers > 0) {
// Introduce the global -> local mapping for identifiers within this
// module.
GlobalIdentifierMap.insert(std::make_pair(getTotalNumIdentifiers() + 1,
&F));
// Introduce the local -> global mapping for identifiers within this
// module.
F.IdentifierRemap.insertOrReplace(
std::make_pair(LocalBaseIdentifierID,
F.BaseIdentifierID - LocalBaseIdentifierID));
IdentifiersLoaded.resize(IdentifiersLoaded.size()
+ F.LocalNumIdentifiers);
}
break;
}
case EAGERLY_DESERIALIZED_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
EagerlyDeserializedDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case SPECIAL_TYPES:
if (SpecialTypes.empty()) {
for (unsigned I = 0, N = Record.size(); I != N; ++I)
SpecialTypes.push_back(getGlobalTypeID(F, Record[I]));
break;
}
if (SpecialTypes.size() != Record.size()) {
Error("invalid special-types record");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; ++I) {
serialization::TypeID ID = getGlobalTypeID(F, Record[I]);
if (!SpecialTypes[I])
SpecialTypes[I] = ID;
// FIXME: If ID && SpecialTypes[I] != ID, do we need a separate
// merge step?
}
break;
case STATISTICS:
TotalNumStatements += Record[0];
TotalNumMacros += Record[1];
TotalLexicalDeclContexts += Record[2];
TotalVisibleDeclContexts += Record[3];
break;
case UNUSED_FILESCOPED_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
UnusedFileScopedDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case DELEGATING_CTORS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
DelegatingCtorDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case WEAK_UNDECLARED_IDENTIFIERS:
if (Record.size() % 4 != 0) {
Error("invalid weak identifiers record");
return Failure;
}
// FIXME: Ignore weak undeclared identifiers from non-original PCH
// files. This isn't the way to do it :)
WeakUndeclaredIdentifiers.clear();
// Translate the weak, undeclared identifiers into global IDs.
for (unsigned I = 0, N = Record.size(); I < N; /* in loop */) {
WeakUndeclaredIdentifiers.push_back(
getGlobalIdentifierID(F, Record[I++]));
WeakUndeclaredIdentifiers.push_back(
getGlobalIdentifierID(F, Record[I++]));
WeakUndeclaredIdentifiers.push_back(
ReadSourceLocation(F, Record, I).getRawEncoding());
WeakUndeclaredIdentifiers.push_back(Record[I++]);
}
break;
case LOCALLY_SCOPED_EXTERN_C_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
LocallyScopedExternCDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case SELECTOR_OFFSETS: {
F.SelectorOffsets = (const uint32_t *)Blob.data();
F.LocalNumSelectors = Record[0];
unsigned LocalBaseSelectorID = Record[1];
F.BaseSelectorID = getTotalNumSelectors();
if (F.LocalNumSelectors > 0) {
// Introduce the global -> local mapping for selectors within this
// module.
GlobalSelectorMap.insert(std::make_pair(getTotalNumSelectors()+1, &F));
// Introduce the local -> global mapping for selectors within this
// module.
F.SelectorRemap.insertOrReplace(
std::make_pair(LocalBaseSelectorID,
F.BaseSelectorID - LocalBaseSelectorID));
SelectorsLoaded.resize(SelectorsLoaded.size() + F.LocalNumSelectors);
}
break;
}
case METHOD_POOL:
F.SelectorLookupTableData = (const unsigned char *)Blob.data();
if (Record[0])
F.SelectorLookupTable
= ASTSelectorLookupTable::Create(
F.SelectorLookupTableData + Record[0],
F.SelectorLookupTableData,
ASTSelectorLookupTrait(*this, F));
TotalNumMethodPoolEntries += Record[1];
break;
case REFERENCED_SELECTOR_POOL:
if (!Record.empty()) {
for (unsigned Idx = 0, N = Record.size() - 1; Idx < N; /* in loop */) {
ReferencedSelectorsData.push_back(getGlobalSelectorID(F,
Record[Idx++]));
ReferencedSelectorsData.push_back(ReadSourceLocation(F, Record, Idx).
getRawEncoding());
}
}
break;
case PP_COUNTER_VALUE:
if (!Record.empty() && Listener)
Listener->ReadCounter(F, Record[0]);
break;
case FILE_SORTED_DECLS:
F.FileSortedDecls = (const DeclID *)Blob.data();
F.NumFileSortedDecls = Record[0];
break;
case SOURCE_LOCATION_OFFSETS: {
F.SLocEntryOffsets = (const uint32_t *)Blob.data();
F.LocalNumSLocEntries = Record[0];
unsigned SLocSpaceSize = Record[1];
std::tie(F.SLocEntryBaseID, F.SLocEntryBaseOffset) =
SourceMgr.AllocateLoadedSLocEntries(F.LocalNumSLocEntries,
SLocSpaceSize);
// Make our entry in the range map. BaseID is negative and growing, so
// we invert it. Because we invert it, though, we need the other end of
// the range.
unsigned RangeStart =
unsigned(-F.SLocEntryBaseID) - F.LocalNumSLocEntries + 1;
GlobalSLocEntryMap.insert(std::make_pair(RangeStart, &F));
F.FirstLoc = SourceLocation::getFromRawEncoding(F.SLocEntryBaseOffset);
// SLocEntryBaseOffset is lower than MaxLoadedOffset and decreasing.
assert((F.SLocEntryBaseOffset & (1U << 31U)) == 0);
GlobalSLocOffsetMap.insert(
std::make_pair(SourceManager::MaxLoadedOffset - F.SLocEntryBaseOffset
- SLocSpaceSize,&F));
// Initialize the remapping table.
// Invalid stays invalid.
F.SLocRemap.insertOrReplace(std::make_pair(0U, 0));
// This module. Base was 2 when being compiled.
F.SLocRemap.insertOrReplace(std::make_pair(2U,
static_cast<int>(F.SLocEntryBaseOffset - 2)));
TotalNumSLocEntries += F.LocalNumSLocEntries;
break;
}
case MODULE_OFFSET_MAP: {
// Additional remapping information.
const unsigned char *Data = (const unsigned char*)Blob.data();
const unsigned char *DataEnd = Data + Blob.size();
// If we see this entry before SOURCE_LOCATION_OFFSETS, add placeholders.
if (F.SLocRemap.find(0) == F.SLocRemap.end()) {
F.SLocRemap.insert(std::make_pair(0U, 0));
F.SLocRemap.insert(std::make_pair(2U, 1));
}
// Continuous range maps we may be updating in our module.
typedef ContinuousRangeMap<uint32_t, int, 2>::Builder
RemapBuilder;
RemapBuilder SLocRemap(F.SLocRemap);
RemapBuilder IdentifierRemap(F.IdentifierRemap);
RemapBuilder MacroRemap(F.MacroRemap);
RemapBuilder PreprocessedEntityRemap(F.PreprocessedEntityRemap);
RemapBuilder SubmoduleRemap(F.SubmoduleRemap);
RemapBuilder SelectorRemap(F.SelectorRemap);
RemapBuilder DeclRemap(F.DeclRemap);
RemapBuilder TypeRemap(F.TypeRemap);
while(Data < DataEnd) {
using namespace llvm::support;
uint16_t Len = endian::readNext<uint16_t, little, unaligned>(Data);
StringRef Name = StringRef((const char*)Data, Len);
Data += Len;
ModuleFile *OM = ModuleMgr.lookup(Name);
if (!OM) {
Error("SourceLocation remap refers to unknown module");
return Failure;
}
uint32_t SLocOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t IdentifierIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t MacroIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t PreprocessedEntityIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t SubmoduleIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t SelectorIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t DeclIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t TypeIndexOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t None = std::numeric_limits<uint32_t>::max();
auto mapOffset = [&](uint32_t Offset, uint32_t BaseOffset,
RemapBuilder &Remap) {
if (Offset != None)
Remap.insert(std::make_pair(Offset,
static_cast<int>(BaseOffset - Offset)));
};
mapOffset(SLocOffset, OM->SLocEntryBaseOffset, SLocRemap);
mapOffset(IdentifierIDOffset, OM->BaseIdentifierID, IdentifierRemap);
mapOffset(MacroIDOffset, OM->BaseMacroID, MacroRemap);
mapOffset(PreprocessedEntityIDOffset, OM->BasePreprocessedEntityID,
PreprocessedEntityRemap);
mapOffset(SubmoduleIDOffset, OM->BaseSubmoduleID, SubmoduleRemap);
mapOffset(SelectorIDOffset, OM->BaseSelectorID, SelectorRemap);
mapOffset(DeclIDOffset, OM->BaseDeclID, DeclRemap);
mapOffset(TypeIndexOffset, OM->BaseTypeIndex, TypeRemap);
// Global -> local mappings.
F.GlobalToLocalDeclIDs[OM] = DeclIDOffset;
}
break;
}
case SOURCE_MANAGER_LINE_TABLE:
if (ParseLineTable(F, Record))
return Failure;
break;
case SOURCE_LOCATION_PRELOADS: {
// Need to transform from the local view (1-based IDs) to the global view,
// which is based off F.SLocEntryBaseID.
if (!F.PreloadSLocEntries.empty()) {
Error("Multiple SOURCE_LOCATION_PRELOADS records in AST file");
return Failure;
}
F.PreloadSLocEntries.swap(Record);
break;
}
case EXT_VECTOR_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
ExtVectorDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case VTABLE_USES:
if (Record.size() % 3 != 0) {
Error("Invalid VTABLE_USES record");
return Failure;
}
// Later tables overwrite earlier ones.
// FIXME: Modules will have some trouble with this. This is clearly not
// the right way to do this.
VTableUses.clear();
for (unsigned Idx = 0, N = Record.size(); Idx != N; /* In loop */) {
VTableUses.push_back(getGlobalDeclID(F, Record[Idx++]));
VTableUses.push_back(
ReadSourceLocation(F, Record, Idx).getRawEncoding());
VTableUses.push_back(Record[Idx++]);
}
break;
case DYNAMIC_CLASSES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
DynamicClasses.push_back(getGlobalDeclID(F, Record[I]));
break;
case PENDING_IMPLICIT_INSTANTIATIONS:
if (PendingInstantiations.size() % 2 != 0) {
Error("Invalid existing PendingInstantiations");
return Failure;
}
if (Record.size() % 2 != 0) {
Error("Invalid PENDING_IMPLICIT_INSTANTIATIONS block");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) {
PendingInstantiations.push_back(getGlobalDeclID(F, Record[I++]));
PendingInstantiations.push_back(
ReadSourceLocation(F, Record, I).getRawEncoding());
}
break;
case SEMA_DECL_REFS:
if (Record.size() != 2) {
Error("Invalid SEMA_DECL_REFS block");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; ++I)
SemaDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
break;
case PPD_ENTITIES_OFFSETS: {
F.PreprocessedEntityOffsets = (const PPEntityOffset *)Blob.data();
assert(Blob.size() % sizeof(PPEntityOffset) == 0);
F.NumPreprocessedEntities = Blob.size() / sizeof(PPEntityOffset);
unsigned LocalBasePreprocessedEntityID = Record[0];
unsigned StartingID;
if (!PP.getPreprocessingRecord())
PP.createPreprocessingRecord();
if (!PP.getPreprocessingRecord()->getExternalSource())
PP.getPreprocessingRecord()->SetExternalSource(*this);
StartingID
= PP.getPreprocessingRecord()
->allocateLoadedEntities(F.NumPreprocessedEntities);
F.BasePreprocessedEntityID = StartingID;
if (F.NumPreprocessedEntities > 0) {
// Introduce the global -> local mapping for preprocessed entities in
// this module.
GlobalPreprocessedEntityMap.insert(std::make_pair(StartingID, &F));
// Introduce the local -> global mapping for preprocessed entities in
// this module.
F.PreprocessedEntityRemap.insertOrReplace(
std::make_pair(LocalBasePreprocessedEntityID,
F.BasePreprocessedEntityID - LocalBasePreprocessedEntityID));
}
break;
}
case DECL_UPDATE_OFFSETS: {
if (Record.size() % 2 != 0) {
Error("invalid DECL_UPDATE_OFFSETS block in AST file");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; I += 2) {
GlobalDeclID ID = getGlobalDeclID(F, Record[I]);
DeclUpdateOffsets[ID].push_back(std::make_pair(&F, Record[I + 1]));
// If we've already loaded the decl, perform the updates when we finish
// loading this block.
if (Decl *D = GetExistingDecl(ID))
PendingUpdateRecords.push_back(std::make_pair(ID, D));
}
break;
}
case DECL_REPLACEMENTS: {
if (Record.size() % 3 != 0) {
Error("invalid DECL_REPLACEMENTS block in AST file");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; I += 3)
ReplacedDecls[getGlobalDeclID(F, Record[I])]
= ReplacedDeclInfo(&F, Record[I+1], Record[I+2]);
break;
}
case OBJC_CATEGORIES_MAP: {
if (F.LocalNumObjCCategoriesInMap != 0) {
Error("duplicate OBJC_CATEGORIES_MAP record in AST file");
return Failure;
}
F.LocalNumObjCCategoriesInMap = Record[0];
F.ObjCCategoriesMap = (const ObjCCategoriesInfo *)Blob.data();
break;
}
case OBJC_CATEGORIES:
F.ObjCCategories.swap(Record);
break;
case CXX_BASE_SPECIFIER_OFFSETS: {
if (F.LocalNumCXXBaseSpecifiers != 0) {
Error("duplicate CXX_BASE_SPECIFIER_OFFSETS record in AST file");
return Failure;
}
F.LocalNumCXXBaseSpecifiers = Record[0];
F.CXXBaseSpecifiersOffsets = (const uint32_t *)Blob.data();
NumCXXBaseSpecifiersLoaded += F.LocalNumCXXBaseSpecifiers;
break;
}
case DIAG_PRAGMA_MAPPINGS:
if (F.PragmaDiagMappings.empty())
F.PragmaDiagMappings.swap(Record);
else
F.PragmaDiagMappings.insert(F.PragmaDiagMappings.end(),
Record.begin(), Record.end());
break;
case CUDA_SPECIAL_DECL_REFS:
// Later tables overwrite earlier ones.
// FIXME: Modules will have trouble with this.
CUDASpecialDeclRefs.clear();
for (unsigned I = 0, N = Record.size(); I != N; ++I)
CUDASpecialDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
break;
case HEADER_SEARCH_TABLE: {
F.HeaderFileInfoTableData = Blob.data();
F.LocalNumHeaderFileInfos = Record[1];
if (Record[0]) {
F.HeaderFileInfoTable
= HeaderFileInfoLookupTable::Create(
(const unsigned char *)F.HeaderFileInfoTableData + Record[0],
(const unsigned char *)F.HeaderFileInfoTableData,
HeaderFileInfoTrait(*this, F,
&PP.getHeaderSearchInfo(),
Blob.data() + Record[2]));
PP.getHeaderSearchInfo().SetExternalSource(this);
if (!PP.getHeaderSearchInfo().getExternalLookup())
PP.getHeaderSearchInfo().SetExternalLookup(this);
}
break;
}
case FP_PRAGMA_OPTIONS:
// Later tables overwrite earlier ones.
FPPragmaOptions.swap(Record);
break;
case OPENCL_EXTENSIONS:
// Later tables overwrite earlier ones.
OpenCLExtensions.swap(Record);
break;
case TENTATIVE_DEFINITIONS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
TentativeDefinitions.push_back(getGlobalDeclID(F, Record[I]));
break;
case KNOWN_NAMESPACES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
KnownNamespaces.push_back(getGlobalDeclID(F, Record[I]));
break;
case UNDEFINED_BUT_USED:
if (UndefinedButUsed.size() % 2 != 0) {
Error("Invalid existing UndefinedButUsed");
return Failure;
}
if (Record.size() % 2 != 0) {
Error("invalid undefined-but-used record");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) {
UndefinedButUsed.push_back(getGlobalDeclID(F, Record[I++]));
UndefinedButUsed.push_back(
ReadSourceLocation(F, Record, I).getRawEncoding());
}
break;
case IMPORTED_MODULES: {
if (F.Kind != MK_ImplicitModule && F.Kind != MK_ExplicitModule) {
// If we aren't loading a module (which has its own exports), make
// all of the imported modules visible.
// FIXME: Deal with macros-only imports.
for (unsigned I = 0, N = Record.size(); I != N; /**/) {
unsigned GlobalID = getGlobalSubmoduleID(F, Record[I++]);
SourceLocation Loc = ReadSourceLocation(F, Record, I);
if (GlobalID)
ImportedModules.push_back(ImportedSubmodule(GlobalID, Loc));
}
}
break;
}
case LOCAL_REDECLARATIONS: {
F.RedeclarationChains.swap(Record);
break;
}
case LOCAL_REDECLARATIONS_MAP: {
if (F.LocalNumRedeclarationsInMap != 0) {
Error("duplicate LOCAL_REDECLARATIONS_MAP record in AST file");
return Failure;
}
F.LocalNumRedeclarationsInMap = Record[0];
F.RedeclarationsMap = (const LocalRedeclarationsInfo *)Blob.data();
break;
}
case MERGED_DECLARATIONS: {
for (unsigned Idx = 0; Idx < Record.size(); /* increment in loop */) {
GlobalDeclID CanonID = getGlobalDeclID(F, Record[Idx++]);
SmallVectorImpl<GlobalDeclID> &Decls = StoredMergedDecls[CanonID];
for (unsigned N = Record[Idx++]; N > 0; --N)
Decls.push_back(getGlobalDeclID(F, Record[Idx++]));
}
break;
}
case MACRO_OFFSET: {
if (F.LocalNumMacros != 0) {
Error("duplicate MACRO_OFFSET record in AST file");
return Failure;
}
F.MacroOffsets = (const uint32_t *)Blob.data();
F.LocalNumMacros = Record[0];
unsigned LocalBaseMacroID = Record[1];
F.BaseMacroID = getTotalNumMacros();
if (F.LocalNumMacros > 0) {
// Introduce the global -> local mapping for macros within this module.
GlobalMacroMap.insert(std::make_pair(getTotalNumMacros() + 1, &F));
// Introduce the local -> global mapping for macros within this module.
F.MacroRemap.insertOrReplace(
std::make_pair(LocalBaseMacroID,
F.BaseMacroID - LocalBaseMacroID));
MacrosLoaded.resize(MacrosLoaded.size() + F.LocalNumMacros);
}
break;
}
case MACRO_TABLE: {
// FIXME: Not used yet.
break;
}
case LATE_PARSED_TEMPLATE: {
LateParsedTemplates.append(Record.begin(), Record.end());
break;
}
case OPTIMIZE_PRAGMA_OPTIONS:
if (Record.size() != 1) {
Error("invalid pragma optimize record");
return Failure;
}
OptimizeOffPragmaLocation = ReadSourceLocation(F, Record[0]);
break;
case UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
UnusedLocalTypedefNameCandidates.push_back(
getGlobalDeclID(F, Record[I]));
break;
}
}
}
ASTReader::ASTReadResult
ASTReader::ReadModuleMapFileBlock(RecordData &Record, ModuleFile &F,
const ModuleFile *ImportedBy,
unsigned ClientLoadCapabilities) {
unsigned Idx = 0;
F.ModuleMapPath = ReadString(Record, Idx);
if (F.Kind == MK_ExplicitModule) {
// For an explicitly-loaded module, we don't care whether the original
// module map file exists or matches.
return Success;
}
// Try to resolve ModuleName in the current header search context and
// verify that it is found in the same module map file as we saved. If the
// top-level AST file is a main file, skip this check because there is no
// usable header search context.
assert(!F.ModuleName.empty() &&
"MODULE_NAME should come before MODULE_MAP_FILE");
if (F.Kind == MK_ImplicitModule &&
(*ModuleMgr.begin())->Kind != MK_MainFile) {
// An implicitly-loaded module file should have its module listed in some
// module map file that we've already loaded.
Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName);
auto &Map = PP.getHeaderSearchInfo().getModuleMap();
const FileEntry *ModMap = M ? Map.getModuleMapFileForUniquing(M) : nullptr;
if (!ModMap) {
assert(ImportedBy && "top-level import should be verified");
if ((ClientLoadCapabilities & ARR_Missing) == 0)
Diag(diag::err_imported_module_not_found) << F.ModuleName << F.FileName
<< ImportedBy->FileName
<< F.ModuleMapPath;
return Missing;
}
assert(M->Name == F.ModuleName && "found module with different name");
// Check the primary module map file.
const FileEntry *StoredModMap = FileMgr.getFile(F.ModuleMapPath);
if (StoredModMap == nullptr || StoredModMap != ModMap) {
assert(ModMap && "found module is missing module map file");
assert(ImportedBy && "top-level import should be verified");
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_imported_module_modmap_changed)
<< F.ModuleName << ImportedBy->FileName
<< ModMap->getName() << F.ModuleMapPath;
return OutOfDate;
}
llvm::SmallPtrSet<const FileEntry *, 1> AdditionalStoredMaps;
for (unsigned I = 0, N = Record[Idx++]; I < N; ++I) {
// FIXME: we should use input files rather than storing names.
std::string Filename = ReadString(Record, Idx);
const FileEntry *F =
FileMgr.getFile(Filename, false, false);
if (F == nullptr) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Error("could not find file '" + Filename +"' referenced by AST file");
return OutOfDate;
}
AdditionalStoredMaps.insert(F);
}
// Check any additional module map files (e.g. module.private.modulemap)
// that are not in the pcm.
if (auto *AdditionalModuleMaps = Map.getAdditionalModuleMapFiles(M)) {
for (const FileEntry *ModMap : *AdditionalModuleMaps) {
// Remove files that match
// Note: SmallPtrSet::erase is really remove
if (!AdditionalStoredMaps.erase(ModMap)) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_module_different_modmap)
<< F.ModuleName << /*new*/0 << ModMap->getName();
return OutOfDate;
}
}
}
// Check any additional module map files that are in the pcm, but not
// found in header search. Cases that match are already removed.
for (const FileEntry *ModMap : AdditionalStoredMaps) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_module_different_modmap)
<< F.ModuleName << /*not new*/1 << ModMap->getName();
return OutOfDate;
}
}
if (Listener)
Listener->ReadModuleMapFile(F.ModuleMapPath);
return Success;
}
/// \brief Move the given method to the back of the global list of methods.
static void moveMethodToBackOfGlobalList(Sema &S, ObjCMethodDecl *Method) {
// Find the entry for this selector in the method pool.
Sema::GlobalMethodPool::iterator Known
= S.MethodPool.find(Method->getSelector());
if (Known == S.MethodPool.end())
return;
// Retrieve the appropriate method list.
ObjCMethodList &Start = Method->isInstanceMethod()? Known->second.first
: Known->second.second;
bool Found = false;
for (ObjCMethodList *List = &Start; List; List = List->getNext()) {
if (!Found) {
if (List->Method == Method) {
Found = true;
} else {
// Keep searching.
continue;
}
}
if (List->getNext())
List->Method = List->getNext()->Method;
else
List->Method = Method;
}
}
void ASTReader::makeNamesVisible(const HiddenNames &Names, Module *Owner,
bool FromFinalization) {
// FIXME: Only do this if Owner->NameVisibility == AllVisible.
for (Decl *D : Names.HiddenDecls) {
bool wasHidden = D->Hidden;
D->Hidden = false;
if (wasHidden && SemaObj) {
if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D)) {
moveMethodToBackOfGlobalList(*SemaObj, Method);
}
}
}
assert((FromFinalization || Owner->NameVisibility >= Module::MacrosVisible) &&
"nothing to make visible?");
for (const auto &Macro : Names.HiddenMacros) {
if (FromFinalization)
PP.appendMacroDirective(Macro.first,
Macro.second->import(PP, SourceLocation()));
else
installImportedMacro(Macro.first, Macro.second, Owner);
}
}
void ASTReader::makeModuleVisible(Module *Mod,
Module::NameVisibilityKind NameVisibility,
SourceLocation ImportLoc,
bool Complain) {
llvm::SmallPtrSet<Module *, 4> Visited;
SmallVector<Module *, 4> Stack;
Stack.push_back(Mod);
while (!Stack.empty()) {
Mod = Stack.pop_back_val();
if (NameVisibility <= Mod->NameVisibility) {
// This module already has this level of visibility (or greater), so
// there is nothing more to do.
continue;
}
if (!Mod->isAvailable()) {
// Modules that aren't available cannot be made visible.
continue;
}
// Update the module's name visibility.
if (NameVisibility >= Module::MacrosVisible &&
Mod->NameVisibility < Module::MacrosVisible)
Mod->MacroVisibilityLoc = ImportLoc;
Mod->NameVisibility = NameVisibility;
// If we've already deserialized any names from this module,
// mark them as visible.
HiddenNamesMapType::iterator Hidden = HiddenNamesMap.find(Mod);
if (Hidden != HiddenNamesMap.end()) {
auto HiddenNames = std::move(*Hidden);
HiddenNamesMap.erase(Hidden);
makeNamesVisible(HiddenNames.second, HiddenNames.first,
/*FromFinalization*/false);
assert(HiddenNamesMap.find(Mod) == HiddenNamesMap.end() &&
"making names visible added hidden names");
}
// Push any exported modules onto the stack to be marked as visible.
SmallVector<Module *, 16> Exports;
Mod->getExportedModules(Exports);
for (SmallVectorImpl<Module *>::iterator
I = Exports.begin(), E = Exports.end(); I != E; ++I) {
Module *Exported = *I;
if (Visited.insert(Exported))
Stack.push_back(Exported);
}
// Detect any conflicts.
if (Complain) {
assert(ImportLoc.isValid() && "Missing import location");
for (unsigned I = 0, N = Mod->Conflicts.size(); I != N; ++I) {
if (Mod->Conflicts[I].Other->NameVisibility >= NameVisibility) {
Diag(ImportLoc, diag::warn_module_conflict)
<< Mod->getFullModuleName()
<< Mod->Conflicts[I].Other->getFullModuleName()
<< Mod->Conflicts[I].Message;
// FIXME: Need note where the other module was imported.
}
}
}
}
}
bool ASTReader::loadGlobalIndex() {
if (GlobalIndex)
return false;
if (TriedLoadingGlobalIndex || !UseGlobalIndex ||
!Context.getLangOpts().Modules)
return true;
// Try to load the global index.
TriedLoadingGlobalIndex = true;
StringRef ModuleCachePath
= getPreprocessor().getHeaderSearchInfo().getModuleCachePath();
std::pair<GlobalModuleIndex *, GlobalModuleIndex::ErrorCode> Result
= GlobalModuleIndex::readIndex(ModuleCachePath);
if (!Result.first)
return true;
GlobalIndex.reset(Result.first);
ModuleMgr.setGlobalIndex(GlobalIndex.get());
return false;
}
bool ASTReader::isGlobalIndexUnavailable() const {
return Context.getLangOpts().Modules && UseGlobalIndex &&
!hasGlobalIndex() && TriedLoadingGlobalIndex;
}
static void updateModuleTimestamp(ModuleFile &MF) {
// Overwrite the timestamp file contents so that file's mtime changes.
std::string TimestampFilename = MF.getTimestampFilename();
std::error_code EC;
llvm::raw_fd_ostream OS(TimestampFilename, EC, llvm::sys::fs::F_Text);
if (EC)
return;
OS << "Timestamp file\n";
}
ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName,
ModuleKind Type,
SourceLocation ImportLoc,
unsigned ClientLoadCapabilities) {
llvm::SaveAndRestore<SourceLocation>
SetCurImportLocRAII(CurrentImportLoc, ImportLoc);
// Defer any pending actions until we get to the end of reading the AST file.
Deserializing AnASTFile(this);
// Bump the generation number.
unsigned PreviousGeneration = incrementGeneration(Context);
unsigned NumModules = ModuleMgr.size();
SmallVector<ImportedModule, 4> Loaded;
switch(ASTReadResult ReadResult = ReadASTCore(FileName, Type, ImportLoc,
/*ImportedBy=*/nullptr, Loaded,
0, 0, 0,
ClientLoadCapabilities)) {
case Failure:
case Missing:
case OutOfDate:
case VersionMismatch:
case ConfigurationMismatch:
case HadErrors: {
llvm::SmallPtrSet<ModuleFile *, 4> LoadedSet;
for (const ImportedModule &IM : Loaded)
LoadedSet.insert(IM.Mod);
ModuleMgr.removeModules(ModuleMgr.begin() + NumModules, ModuleMgr.end(),
LoadedSet,
Context.getLangOpts().Modules
? &PP.getHeaderSearchInfo().getModuleMap()
: nullptr);
// If we find that any modules are unusable, the global index is going
// to be out-of-date. Just remove it.
GlobalIndex.reset();
ModuleMgr.setGlobalIndex(nullptr);
return ReadResult;
}
case Success:
break;
}
// Here comes stuff that we only do once the entire chain is loaded.
// Load the AST blocks of all of the modules that we loaded.
for (SmallVectorImpl<ImportedModule>::iterator M = Loaded.begin(),
MEnd = Loaded.end();
M != MEnd; ++M) {
ModuleFile &F = *M->Mod;
// Read the AST block.
if (ASTReadResult Result = ReadASTBlock(F, ClientLoadCapabilities))
return Result;
// Once read, set the ModuleFile bit base offset and update the size in
// bits of all files we've seen.
F.GlobalBitOffset = TotalModulesSizeInBits;
TotalModulesSizeInBits += F.SizeInBits;
GlobalBitOffsetsMap.insert(std::make_pair(F.GlobalBitOffset, &F));
// Preload SLocEntries.
for (unsigned I = 0, N = F.PreloadSLocEntries.size(); I != N; ++I) {
int Index = int(F.PreloadSLocEntries[I] - 1) + F.SLocEntryBaseID;
// Load it through the SourceManager and don't call ReadSLocEntry()
// directly because the entry may have already been loaded in which case
// calling ReadSLocEntry() directly would trigger an assertion in
// SourceManager.
SourceMgr.getLoadedSLocEntryByID(Index);
}
}
// Setup the import locations and notify the module manager that we've
// committed to these module files.
for (SmallVectorImpl<ImportedModule>::iterator M = Loaded.begin(),
MEnd = Loaded.end();
M != MEnd; ++M) {
ModuleFile &F = *M->Mod;
ModuleMgr.moduleFileAccepted(&F);
// Set the import location.
F.DirectImportLoc = ImportLoc;
if (!M->ImportedBy)
F.ImportLoc = M->ImportLoc;
else
F.ImportLoc = ReadSourceLocation(*M->ImportedBy,
M->ImportLoc.getRawEncoding());
}
// Mark all of the identifiers in the identifier table as being out of date,
// so that various accessors know to check the loaded modules when the
// identifier is used.
for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(),
IdEnd = PP.getIdentifierTable().end();
Id != IdEnd; ++Id)
Id->second->setOutOfDate(true);
// Resolve any unresolved module exports.
for (unsigned I = 0, N = UnresolvedModuleRefs.size(); I != N; ++I) {
UnresolvedModuleRef &Unresolved = UnresolvedModuleRefs[I];
SubmoduleID GlobalID = getGlobalSubmoduleID(*Unresolved.File,Unresolved.ID);
Module *ResolvedMod = getSubmodule(GlobalID);
switch (Unresolved.Kind) {
case UnresolvedModuleRef::Conflict:
if (ResolvedMod) {
Module::Conflict Conflict;
Conflict.Other = ResolvedMod;
Conflict.Message = Unresolved.String.str();
Unresolved.Mod->Conflicts.push_back(Conflict);
}
continue;
case UnresolvedModuleRef::Import:
if (ResolvedMod)
Unresolved.Mod->Imports.push_back(ResolvedMod);
continue;
case UnresolvedModuleRef::Export:
if (ResolvedMod || Unresolved.IsWildcard)
Unresolved.Mod->Exports.push_back(
Module::ExportDecl(ResolvedMod, Unresolved.IsWildcard));
continue;
}
}
UnresolvedModuleRefs.clear();
// FIXME: How do we load the 'use'd modules? They may not be submodules.
// Might be unnecessary as use declarations are only used to build the
// module itself.
InitializeContext();
if (SemaObj)
UpdateSema();
if (DeserializationListener)
DeserializationListener->ReaderInitialized(this);
ModuleFile &PrimaryModule = ModuleMgr.getPrimaryModule();
if (!PrimaryModule.OriginalSourceFileID.isInvalid()) {
PrimaryModule.OriginalSourceFileID
= FileID::get(PrimaryModule.SLocEntryBaseID
+ PrimaryModule.OriginalSourceFileID.getOpaqueValue() - 1);
// If this AST file is a precompiled preamble, then set the
// preamble file ID of the source manager to the file source file
// from which the preamble was built.
if (Type == MK_Preamble) {
SourceMgr.setPreambleFileID(PrimaryModule.OriginalSourceFileID);
} else if (Type == MK_MainFile) {
SourceMgr.setMainFileID(PrimaryModule.OriginalSourceFileID);
}
}
// For any Objective-C class definitions we have already loaded, make sure
// that we load any additional categories.
for (unsigned I = 0, N = ObjCClassesLoaded.size(); I != N; ++I) {
loadObjCCategories(ObjCClassesLoaded[I]->getGlobalID(),
ObjCClassesLoaded[I],
PreviousGeneration);
}
if (PP.getHeaderSearchInfo()
.getHeaderSearchOpts()
.ModulesValidateOncePerBuildSession) {
// Now we are certain that the module and all modules it depends on are
// up to date. Create or update timestamp files for modules that are
// located in the module cache (not for PCH files that could be anywhere
// in the filesystem).
for (unsigned I = 0, N = Loaded.size(); I != N; ++I) {
ImportedModule &M = Loaded[I];
if (M.Mod->Kind == MK_ImplicitModule) {
updateModuleTimestamp(*M.Mod);
}
}
}
return Success;
}
static ASTFileSignature readASTFileSignature(llvm::BitstreamReader &StreamFile);
ASTReader::ASTReadResult
ASTReader::ReadASTCore(StringRef FileName,
ModuleKind Type,
SourceLocation ImportLoc,
ModuleFile *ImportedBy,
SmallVectorImpl<ImportedModule> &Loaded,
off_t ExpectedSize, time_t ExpectedModTime,
ASTFileSignature ExpectedSignature,
unsigned ClientLoadCapabilities) {
ModuleFile *M;
std::string ErrorStr;
ModuleManager::AddModuleResult AddResult
= ModuleMgr.addModule(FileName, Type, ImportLoc, ImportedBy,
getGeneration(), ExpectedSize, ExpectedModTime,
ExpectedSignature, readASTFileSignature,
M, ErrorStr);
switch (AddResult) {
case ModuleManager::AlreadyLoaded:
return Success;
case ModuleManager::NewlyLoaded:
// Load module file below.
break;
case ModuleManager::Missing:
// The module file was missing; if the client can handle that, return
// it.
if (ClientLoadCapabilities & ARR_Missing)
return Missing;
// Otherwise, return an error.
{
std::string Msg = "Unable to load module \"" + FileName.str() + "\": "
+ ErrorStr;
Error(Msg);
}
return Failure;
case ModuleManager::OutOfDate:
// We couldn't load the module file because it is out-of-date. If the
// client can handle out-of-date, return it.
if (ClientLoadCapabilities & ARR_OutOfDate)
return OutOfDate;
// Otherwise, return an error.
{
std::string Msg = "Unable to load module \"" + FileName.str() + "\": "
+ ErrorStr;
Error(Msg);
}
return Failure;
}
assert(M && "Missing module file");
// FIXME: This seems rather a hack. Should CurrentDir be part of the
// module?
if (FileName != "-") {
CurrentDir = llvm::sys::path::parent_path(FileName);
if (CurrentDir.empty()) CurrentDir = ".";
}
ModuleFile &F = *M;
BitstreamCursor &Stream = F.Stream;
Stream.init(F.StreamFile);
F.SizeInBits = F.Buffer->getBufferSize() * 8;
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Diag(diag::err_not_a_pch_file) << FileName;
return Failure;
}
// This is used for compatibility with older PCH formats.
bool HaveReadControlBlock = false;
while (1) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
case llvm::BitstreamEntry::EndBlock:
case llvm::BitstreamEntry::Record:
Error("invalid record at top-level of AST file");
return Failure;
case llvm::BitstreamEntry::SubBlock:
break;
}
// We only know the control subblock ID.
switch (Entry.ID) {
case llvm::bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock()) {
Error("malformed BlockInfoBlock in AST file");
return Failure;
}
break;
case CONTROL_BLOCK_ID:
HaveReadControlBlock = true;
switch (ReadControlBlock(F, Loaded, ImportedBy, ClientLoadCapabilities)) {
case Success:
break;
case Failure: return Failure;
case Missing: return Missing;
case OutOfDate: return OutOfDate;
case VersionMismatch: return VersionMismatch;
case ConfigurationMismatch: return ConfigurationMismatch;
case HadErrors: return HadErrors;
}
break;
case AST_BLOCK_ID:
if (!HaveReadControlBlock) {
if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
Diag(diag::err_pch_version_too_old);
return VersionMismatch;
}
// Record that we've loaded this module.
Loaded.push_back(ImportedModule(M, ImportedBy, ImportLoc));
return Success;
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
}
}
return Success;
}
void ASTReader::InitializeContext() {
// If there's a listener, notify them that we "read" the translation unit.
if (DeserializationListener)
DeserializationListener->DeclRead(PREDEF_DECL_TRANSLATION_UNIT_ID,
Context.getTranslationUnitDecl());
// FIXME: Find a better way to deal with collisions between these
// built-in types. Right now, we just ignore the problem.
// Load the special types.
if (SpecialTypes.size() >= NumSpecialTypeIDs) {
if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING]) {
if (!Context.CFConstantStringTypeDecl)
Context.setCFConstantStringType(GetType(String));
}
if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) {
QualType FileType = GetType(File);
if (FileType.isNull()) {
Error("FILE type is NULL");
return;
}
if (!Context.FILEDecl) {
if (const TypedefType *Typedef = FileType->getAs<TypedefType>())
Context.setFILEDecl(Typedef->getDecl());
else {
const TagType *Tag = FileType->getAs<TagType>();
if (!Tag) {
Error("Invalid FILE type in AST file");
return;
}
Context.setFILEDecl(Tag->getDecl());
}
}
}
if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_JMP_BUF]) {
QualType Jmp_bufType = GetType(Jmp_buf);
if (Jmp_bufType.isNull()) {
Error("jmp_buf type is NULL");
return;
}
if (!Context.jmp_bufDecl) {
if (const TypedefType *Typedef = Jmp_bufType->getAs<TypedefType>())
Context.setjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Jmp_bufType->getAs<TagType>();
if (!Tag) {
Error("Invalid jmp_buf type in AST file");
return;
}
Context.setjmp_bufDecl(Tag->getDecl());
}
}
}
if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_SIGJMP_BUF]) {
QualType Sigjmp_bufType = GetType(Sigjmp_buf);
if (Sigjmp_bufType.isNull()) {
Error("sigjmp_buf type is NULL");
return;
}
if (!Context.sigjmp_bufDecl) {
if (const TypedefType *Typedef = Sigjmp_bufType->getAs<TypedefType>())
Context.setsigjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Sigjmp_bufType->getAs<TagType>();
assert(Tag && "Invalid sigjmp_buf type in AST file");
Context.setsigjmp_bufDecl(Tag->getDecl());
}
}
}
if (unsigned ObjCIdRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION]) {
if (Context.ObjCIdRedefinitionType.isNull())
Context.ObjCIdRedefinitionType = GetType(ObjCIdRedef);
}
if (unsigned ObjCClassRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) {
if (Context.ObjCClassRedefinitionType.isNull())
Context.ObjCClassRedefinitionType = GetType(ObjCClassRedef);
}
if (unsigned ObjCSelRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) {
if (Context.ObjCSelRedefinitionType.isNull())
Context.ObjCSelRedefinitionType = GetType(ObjCSelRedef);
}
if (unsigned Ucontext_t = SpecialTypes[SPECIAL_TYPE_UCONTEXT_T]) {
QualType Ucontext_tType = GetType(Ucontext_t);
if (Ucontext_tType.isNull()) {
Error("ucontext_t type is NULL");
return;
}
if (!Context.ucontext_tDecl) {
if (const TypedefType *Typedef = Ucontext_tType->getAs<TypedefType>())
Context.setucontext_tDecl(Typedef->getDecl());
else {
const TagType *Tag = Ucontext_tType->getAs<TagType>();
assert(Tag && "Invalid ucontext_t type in AST file");
Context.setucontext_tDecl(Tag->getDecl());
}
}
}
}
ReadPragmaDiagnosticMappings(Context.getDiagnostics());
// If there were any CUDA special declarations, deserialize them.
if (!CUDASpecialDeclRefs.empty()) {
assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!");
Context.setcudaConfigureCallDecl(
cast<FunctionDecl>(GetDecl(CUDASpecialDeclRefs[0])));
}
// Re-export any modules that were imported by a non-module AST file.
// FIXME: This does not make macro-only imports visible again. It also doesn't
// make #includes mapped to module imports visible.
for (auto &Import : ImportedModules) {
if (Module *Imported = getSubmodule(Import.ID))
makeModuleVisible(Imported, Module::AllVisible,
/*ImportLoc=*/Import.ImportLoc,
/*Complain=*/false);
}
ImportedModules.clear();
}
void ASTReader::finalizeForWriting() {
while (!HiddenNamesMap.empty()) {
auto HiddenNames = std::move(*HiddenNamesMap.begin());
HiddenNamesMap.erase(HiddenNamesMap.begin());
makeNamesVisible(HiddenNames.second, HiddenNames.first,
/*FromFinalization*/true);
}
}
/// \brief Given a cursor at the start of an AST file, scan ahead and drop the
/// cursor into the start of the given block ID, returning false on success and
/// true on failure.
static bool SkipCursorToBlock(BitstreamCursor &Cursor, unsigned BlockID) {
while (1) {
llvm::BitstreamEntry Entry = Cursor.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
case llvm::BitstreamEntry::EndBlock:
return true;
case llvm::BitstreamEntry::Record:
// Ignore top-level records.
Cursor.skipRecord(Entry.ID);
break;
case llvm::BitstreamEntry::SubBlock:
if (Entry.ID == BlockID) {
if (Cursor.EnterSubBlock(BlockID))
return true;
// Found it!
return false;
}
if (Cursor.SkipBlock())
return true;
}
}
}
static ASTFileSignature readASTFileSignature(llvm::BitstreamReader &StreamFile){
BitstreamCursor Stream(StreamFile);
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
return 0;
}
// Scan for the CONTROL_BLOCK_ID block.
if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID))
return 0;
// Scan for SIGNATURE inside the control block.
ASTReader::RecordData Record;
while (1) {
llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
if (Entry.Kind == llvm::BitstreamEntry::EndBlock ||
Entry.Kind != llvm::BitstreamEntry::Record)
return 0;
Record.clear();
StringRef Blob;
if (SIGNATURE == Stream.readRecord(Entry.ID, Record, &Blob))
return Record[0];
}
}
/// \brief Retrieve the name of the original source file name
/// directly from the AST file, without actually loading the AST
/// file.
std::string ASTReader::getOriginalSourceFile(const std::string &ASTFileName,
FileManager &FileMgr,
DiagnosticsEngine &Diags) {
// Open the AST file.
auto Buffer = FileMgr.getBufferForFile(ASTFileName);
if (!Buffer) {
Diags.Report(diag::err_fe_unable_to_read_pch_file)
<< ASTFileName << Buffer.getError().message();
return std::string();
}
// Initialize the stream
llvm::BitstreamReader StreamFile;
BitstreamCursor Stream;
StreamFile.init((const unsigned char *)(*Buffer)->getBufferStart(),
(const unsigned char *)(*Buffer)->getBufferEnd());
Stream.init(StreamFile);
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName;
return std::string();
}
// Scan for the CONTROL_BLOCK_ID block.
if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
// Scan for ORIGINAL_FILE inside the control block.
RecordData Record;
while (1) {
llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
if (Entry.Kind == llvm::BitstreamEntry::EndBlock)
return std::string();
if (Entry.Kind != llvm::BitstreamEntry::Record) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
Record.clear();
StringRef Blob;
if (Stream.readRecord(Entry.ID, Record, &Blob) == ORIGINAL_FILE)
return Blob.str();
}
}
namespace {
class SimplePCHValidator : public ASTReaderListener {
const LangOptions &ExistingLangOpts;
const TargetOptions &ExistingTargetOpts;
const PreprocessorOptions &ExistingPPOpts;
FileManager &FileMgr;
public:
SimplePCHValidator(const LangOptions &ExistingLangOpts,
const TargetOptions &ExistingTargetOpts,
const PreprocessorOptions &ExistingPPOpts,
FileManager &FileMgr)
: ExistingLangOpts(ExistingLangOpts),
ExistingTargetOpts(ExistingTargetOpts),
ExistingPPOpts(ExistingPPOpts),
FileMgr(FileMgr)
{
}
bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain,
bool AllowCompatibleDifferences) override {
return checkLanguageOptions(ExistingLangOpts, LangOpts, nullptr,
AllowCompatibleDifferences);
}
bool ReadTargetOptions(const TargetOptions &TargetOpts,
bool Complain) override {
return checkTargetOptions(ExistingTargetOpts, TargetOpts, nullptr);
}
bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
bool Complain,
std::string &SuggestedPredefines) override {
return checkPreprocessorOptions(ExistingPPOpts, PPOpts, nullptr, FileMgr,
SuggestedPredefines, ExistingLangOpts);
}
};
}
bool ASTReader::readASTFileControlBlock(StringRef Filename,
FileManager &FileMgr,
ASTReaderListener &Listener) {
// Open the AST file.
auto Buffer = FileMgr.getBufferForFile(Filename);
if (!Buffer) {
return true;
}
// Initialize the stream
llvm::BitstreamReader StreamFile;
BitstreamCursor Stream;
StreamFile.init((const unsigned char *)(*Buffer)->getBufferStart(),
(const unsigned char *)(*Buffer)->getBufferEnd());
Stream.init(StreamFile);
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
return true;
}
// Scan for the CONTROL_BLOCK_ID block.
if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID))
return true;
bool NeedsInputFiles = Listener.needsInputFileVisitation();
bool NeedsSystemInputFiles = Listener.needsSystemInputFileVisitation();
bool NeedsImports = Listener.needsImportVisitation();
BitstreamCursor InputFilesCursor;
if (NeedsInputFiles) {
InputFilesCursor = Stream;
if (SkipCursorToBlock(InputFilesCursor, INPUT_FILES_BLOCK_ID))
return true;
// Read the abbreviations
while (true) {
uint64_t Offset = InputFilesCursor.GetCurrentBitNo();
unsigned Code = InputFilesCursor.ReadCode();
// We expect all abbrevs to be at the start of the block.
if (Code != llvm::bitc::DEFINE_ABBREV) {
InputFilesCursor.JumpToBit(Offset);
break;
}
InputFilesCursor.ReadAbbrevRecord();
}
}
// Scan for ORIGINAL_FILE inside the control block.
RecordData Record;
while (1) {
llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
if (Entry.Kind == llvm::BitstreamEntry::EndBlock)
return false;
if (Entry.Kind != llvm::BitstreamEntry::Record)
return true;
Record.clear();
StringRef Blob;
unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob);
switch ((ControlRecordTypes)RecCode) {
case METADATA: {
if (Record[0] != VERSION_MAJOR)
return true;
if (Listener.ReadFullVersionInformation(Blob))
return true;
break;
}
case MODULE_NAME:
Listener.ReadModuleName(Blob);
break;
case MODULE_MAP_FILE: {
unsigned Idx = 0;
Listener.ReadModuleMapFile(ReadString(Record, Idx));
break;
}
case LANGUAGE_OPTIONS:
if (ParseLanguageOptions(Record, false, Listener,
/*AllowCompatibleConfigurationMismatch*/false))
return true;
break;
case TARGET_OPTIONS:
if (ParseTargetOptions(Record, false, Listener))
return true;
break;
case DIAGNOSTIC_OPTIONS:
if (ParseDiagnosticOptions(Record, false, Listener))
return true;
break;
case FILE_SYSTEM_OPTIONS:
if (ParseFileSystemOptions(Record, false, Listener))
return true;
break;
case HEADER_SEARCH_OPTIONS:
if (ParseHeaderSearchOptions(Record, false, Listener))
return true;
break;
case PREPROCESSOR_OPTIONS: {
std::string IgnoredSuggestedPredefines;
if (ParsePreprocessorOptions(Record, false, Listener,
IgnoredSuggestedPredefines))
return true;
break;
}
case INPUT_FILE_OFFSETS: {
if (!NeedsInputFiles)
break;
unsigned NumInputFiles = Record[0];
unsigned NumUserFiles = Record[1];
const uint32_t *InputFileOffs = (const uint32_t *)Blob.data();
for (unsigned I = 0; I != NumInputFiles; ++I) {
// Go find this input file.
bool isSystemFile = I >= NumUserFiles;
if (isSystemFile && !NeedsSystemInputFiles)
break; // the rest are system input files
BitstreamCursor &Cursor = InputFilesCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(InputFileOffs[I]);
unsigned Code = Cursor.ReadCode();
RecordData Record;
StringRef Blob;
bool shouldContinue = false;
switch ((InputFileRecordTypes)Cursor.readRecord(Code, Record, &Blob)) {
case INPUT_FILE:
bool Overridden = static_cast<bool>(Record[3]);
shouldContinue = Listener.visitInputFile(Blob, isSystemFile, Overridden);
break;
}
if (!shouldContinue)
break;
}
break;
}
case IMPORTS: {
if (!NeedsImports)
break;
unsigned Idx = 0, N = Record.size();
while (Idx < N) {
// Read information about the AST file.
Idx += 5; // ImportLoc, Size, ModTime, Signature
unsigned Length = Record[Idx++];
SmallString<128> ImportedFile(Record.begin() + Idx,
Record.begin() + Idx + Length);
Idx += Length;
Listener.visitImport(ImportedFile);
}
break;
}
default:
// No other validation to perform.
break;
}
}
}
bool ASTReader::isAcceptableASTFile(StringRef Filename,
FileManager &FileMgr,
const LangOptions &LangOpts,
const TargetOptions &TargetOpts,
const PreprocessorOptions &PPOpts) {
SimplePCHValidator validator(LangOpts, TargetOpts, PPOpts, FileMgr);
return !readASTFileControlBlock(Filename, FileMgr, validator);
}
ASTReader::ASTReadResult
ASTReader::ReadSubmoduleBlock(ModuleFile &F, unsigned ClientLoadCapabilities) {
// Enter the submodule block.
if (F.Stream.EnterSubBlock(SUBMODULE_BLOCK_ID)) {
Error("malformed submodule block record in AST file");
return Failure;
}
ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
bool First = true;
Module *CurrentModule = nullptr;
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry = F.Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return Failure;
case llvm::BitstreamEntry::EndBlock:
return Success;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
StringRef Blob;
Record.clear();
auto Kind = F.Stream.readRecord(Entry.ID, Record, &Blob);
if ((Kind == SUBMODULE_METADATA) != First) {
Error("submodule metadata record should be at beginning of block");
return Failure;
}
First = false;
// Submodule information is only valid if we have a current module.
// FIXME: Should we error on these cases?
if (!CurrentModule && Kind != SUBMODULE_METADATA &&
Kind != SUBMODULE_DEFINITION)
continue;
switch (Kind) {
default: // Default behavior: ignore.
break;
case SUBMODULE_DEFINITION: {
if (Record.size() < 8) {
Error("malformed module definition");
return Failure;
}
StringRef Name = Blob;
unsigned Idx = 0;
SubmoduleID GlobalID = getGlobalSubmoduleID(F, Record[Idx++]);
SubmoduleID Parent = getGlobalSubmoduleID(F, Record[Idx++]);
bool IsFramework = Record[Idx++];
bool IsExplicit = Record[Idx++];
bool IsSystem = Record[Idx++];
bool IsExternC = Record[Idx++];
bool InferSubmodules = Record[Idx++];
bool InferExplicitSubmodules = Record[Idx++];
bool InferExportWildcard = Record[Idx++];
bool ConfigMacrosExhaustive = Record[Idx++];
Module *ParentModule = nullptr;
if (Parent)
ParentModule = getSubmodule(Parent);
// Retrieve this (sub)module from the module map, creating it if
// necessary.
CurrentModule = ModMap.findOrCreateModule(Name, ParentModule, IsFramework,
IsExplicit).first;
// FIXME: set the definition loc for CurrentModule, or call
// ModMap.setInferredModuleAllowedBy()
SubmoduleID GlobalIndex = GlobalID - NUM_PREDEF_SUBMODULE_IDS;
if (GlobalIndex >= SubmodulesLoaded.size() ||
SubmodulesLoaded[GlobalIndex]) {
Error("too many submodules");
return Failure;
}
if (!ParentModule) {
if (const FileEntry *CurFile = CurrentModule->getASTFile()) {
if (CurFile != F.File) {
if (!Diags.isDiagnosticInFlight()) {
Diag(diag::err_module_file_conflict)
<< CurrentModule->getTopLevelModuleName()
<< CurFile->getName()
<< F.File->getName();
}
return Failure;
}
}
CurrentModule->setASTFile(F.File);
}
CurrentModule->IsFromModuleFile = true;
CurrentModule->IsSystem = IsSystem || CurrentModule->IsSystem;
CurrentModule->IsExternC = IsExternC;
CurrentModule->InferSubmodules = InferSubmodules;
CurrentModule->InferExplicitSubmodules = InferExplicitSubmodules;
CurrentModule->InferExportWildcard = InferExportWildcard;
CurrentModule->ConfigMacrosExhaustive = ConfigMacrosExhaustive;
if (DeserializationListener)
DeserializationListener->ModuleRead(GlobalID, CurrentModule);
SubmodulesLoaded[GlobalIndex] = CurrentModule;
// Clear out data that will be replaced by what is the module file.
CurrentModule->LinkLibraries.clear();
CurrentModule->ConfigMacros.clear();
CurrentModule->UnresolvedConflicts.clear();
CurrentModule->Conflicts.clear();
break;
}
case SUBMODULE_UMBRELLA_HEADER: {
if (const FileEntry *Umbrella = PP.getFileManager().getFile(Blob)) {
if (!CurrentModule->getUmbrellaHeader())
ModMap.setUmbrellaHeader(CurrentModule, Umbrella);
else if (CurrentModule->getUmbrellaHeader() != Umbrella) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Error("mismatched umbrella headers in submodule");
return OutOfDate;
}
}
break;
}
case SUBMODULE_HEADER:
case SUBMODULE_EXCLUDED_HEADER:
case SUBMODULE_PRIVATE_HEADER:
// We lazily associate headers with their modules via the HeaderInfo table.
// FIXME: Re-evaluate this section; maybe only store InputFile IDs instead
// of complete filenames or remove it entirely.
break;
case SUBMODULE_TEXTUAL_HEADER:
case SUBMODULE_PRIVATE_TEXTUAL_HEADER:
// FIXME: Textual headers are not marked in the HeaderInfo table. Load
// them here.
break;
case SUBMODULE_TOPHEADER: {
CurrentModule->addTopHeaderFilename(Blob);
break;
}
case SUBMODULE_UMBRELLA_DIR: {
if (const DirectoryEntry *Umbrella
= PP.getFileManager().getDirectory(Blob)) {
if (!CurrentModule->getUmbrellaDir())
ModMap.setUmbrellaDir(CurrentModule, Umbrella);
else if (CurrentModule->getUmbrellaDir() != Umbrella) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Error("mismatched umbrella directories in submodule");
return OutOfDate;
}
}
break;
}
case SUBMODULE_METADATA: {
F.BaseSubmoduleID = getTotalNumSubmodules();
F.LocalNumSubmodules = Record[0];
unsigned LocalBaseSubmoduleID = Record[1];
if (F.LocalNumSubmodules > 0) {
// Introduce the global -> local mapping for submodules within this
// module.
GlobalSubmoduleMap.insert(std::make_pair(getTotalNumSubmodules()+1,&F));
// Introduce the local -> global mapping for submodules within this
// module.
F.SubmoduleRemap.insertOrReplace(
std::make_pair(LocalBaseSubmoduleID,
F.BaseSubmoduleID - LocalBaseSubmoduleID));
SubmodulesLoaded.resize(SubmodulesLoaded.size() + F.LocalNumSubmodules);
}
break;
}
case SUBMODULE_IMPORTS: {
for (unsigned Idx = 0; Idx != Record.size(); ++Idx) {
UnresolvedModuleRef Unresolved;
Unresolved.File = &F;
Unresolved.Mod = CurrentModule;
Unresolved.ID = Record[Idx];
Unresolved.Kind = UnresolvedModuleRef::Import;
Unresolved.IsWildcard = false;
UnresolvedModuleRefs.push_back(Unresolved);
}
break;
}
case SUBMODULE_EXPORTS: {
for (unsigned Idx = 0; Idx + 1 < Record.size(); Idx += 2) {
UnresolvedModuleRef Unresolved;
Unresolved.File = &F;
Unresolved.Mod = CurrentModule;
Unresolved.ID = Record[Idx];
Unresolved.Kind = UnresolvedModuleRef::Export;
Unresolved.IsWildcard = Record[Idx + 1];
UnresolvedModuleRefs.push_back(Unresolved);
}
// Once we've loaded the set of exports, there's no reason to keep
// the parsed, unresolved exports around.
CurrentModule->UnresolvedExports.clear();
break;
}
case SUBMODULE_REQUIRES: {
CurrentModule->addRequirement(Blob, Record[0], Context.getLangOpts(),
Context.getTargetInfo());
break;
}
case SUBMODULE_LINK_LIBRARY:
CurrentModule->LinkLibraries.push_back(
Module::LinkLibrary(Blob, Record[0]));
break;
case SUBMODULE_CONFIG_MACRO:
CurrentModule->ConfigMacros.push_back(Blob.str());
break;
case SUBMODULE_CONFLICT: {
UnresolvedModuleRef Unresolved;
Unresolved.File = &F;
Unresolved.Mod = CurrentModule;
Unresolved.ID = Record[0];
Unresolved.Kind = UnresolvedModuleRef::Conflict;
Unresolved.IsWildcard = false;
Unresolved.String = Blob;
UnresolvedModuleRefs.push_back(Unresolved);
break;
}
}
}
}
/// \brief Parse the record that corresponds to a LangOptions data
/// structure.
///
/// This routine parses the language options from the AST file and then gives
/// them to the AST listener if one is set.
///
/// \returns true if the listener deems the file unacceptable, false otherwise.
bool ASTReader::ParseLanguageOptions(const RecordData &Record,
bool Complain,
ASTReaderListener &Listener,
bool AllowCompatibleDifferences) {
LangOptions LangOpts;
unsigned Idx = 0;
#define LANGOPT(Name, Bits, Default, Description) \
LangOpts.Name = Record[Idx++];
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
LangOpts.set##Name(static_cast<LangOptions::Type>(Record[Idx++]));
#include "clang/Basic/LangOptions.def"
#define SANITIZER(NAME, ID) \
LangOpts.Sanitize.set(SanitizerKind::ID, Record[Idx++]);
#include "clang/Basic/Sanitizers.def"
ObjCRuntime::Kind runtimeKind = (ObjCRuntime::Kind) Record[Idx++];
VersionTuple runtimeVersion = ReadVersionTuple(Record, Idx);
LangOpts.ObjCRuntime = ObjCRuntime(runtimeKind, runtimeVersion);
unsigned Length = Record[Idx++];
LangOpts.CurrentModule.assign(Record.begin() + Idx,
Record.begin() + Idx + Length);
Idx += Length;
// Comment options.
for (unsigned N = Record[Idx++]; N; --N) {
LangOpts.CommentOpts.BlockCommandNames.push_back(
ReadString(Record, Idx));
}
LangOpts.CommentOpts.ParseAllComments = Record[Idx++];
return Listener.ReadLanguageOptions(LangOpts, Complain,
AllowCompatibleDifferences);
}
bool ASTReader::ParseTargetOptions(const RecordData &Record,
bool Complain,
ASTReaderListener &Listener) {
unsigned Idx = 0;
TargetOptions TargetOpts;
TargetOpts.Triple = ReadString(Record, Idx);
TargetOpts.CPU = ReadString(Record, Idx);
TargetOpts.ABI = ReadString(Record, Idx);
for (unsigned N = Record[Idx++]; N; --N) {
TargetOpts.FeaturesAsWritten.push_back(ReadString(Record, Idx));
}
for (unsigned N = Record[Idx++]; N; --N) {
TargetOpts.Features.push_back(ReadString(Record, Idx));
}
return Listener.ReadTargetOptions(TargetOpts, Complain);
}
bool ASTReader::ParseDiagnosticOptions(const RecordData &Record, bool Complain,
ASTReaderListener &Listener) {
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts(new DiagnosticOptions);
unsigned Idx = 0;
#define DIAGOPT(Name, Bits, Default) DiagOpts->Name = Record[Idx++];
#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
DiagOpts->set##Name(static_cast<Type>(Record[Idx++]));
#include "clang/Basic/DiagnosticOptions.def"
for (unsigned N = Record[Idx++]; N; --N)
DiagOpts->Warnings.push_back(ReadString(Record, Idx));
for (unsigned N = Record[Idx++]; N; --N)
DiagOpts->Remarks.push_back(ReadString(Record, Idx));
return Listener.ReadDiagnosticOptions(DiagOpts, Complain);
}
bool ASTReader::ParseFileSystemOptions(const RecordData &Record, bool Complain,
ASTReaderListener &Listener) {
FileSystemOptions FSOpts;
unsigned Idx = 0;
FSOpts.WorkingDir = ReadString(Record, Idx);
return Listener.ReadFileSystemOptions(FSOpts, Complain);
}
bool ASTReader::ParseHeaderSearchOptions(const RecordData &Record,
bool Complain,
ASTReaderListener &Listener) {
HeaderSearchOptions HSOpts;
unsigned Idx = 0;
HSOpts.Sysroot = ReadString(Record, Idx);
// Include entries.
for (unsigned N = Record[Idx++]; N; --N) {
std::string Path = ReadString(Record, Idx);
frontend::IncludeDirGroup Group
= static_cast<frontend::IncludeDirGroup>(Record[Idx++]);
bool IsFramework = Record[Idx++];
bool IgnoreSysRoot = Record[Idx++];
HSOpts.UserEntries.push_back(
HeaderSearchOptions::Entry(Path, Group, IsFramework, IgnoreSysRoot));
}
// System header prefixes.
for (unsigned N = Record[Idx++]; N; --N) {
std::string Prefix = ReadString(Record, Idx);
bool IsSystemHeader = Record[Idx++];
HSOpts.SystemHeaderPrefixes.push_back(
HeaderSearchOptions::SystemHeaderPrefix(Prefix, IsSystemHeader));
}
HSOpts.ResourceDir = ReadString(Record, Idx);
HSOpts.ModuleCachePath = ReadString(Record, Idx);
HSOpts.ModuleUserBuildPath = ReadString(Record, Idx);
HSOpts.DisableModuleHash = Record[Idx++];
HSOpts.UseBuiltinIncludes = Record[Idx++];
HSOpts.UseStandardSystemIncludes = Record[Idx++];
HSOpts.UseStandardCXXIncludes = Record[Idx++];
HSOpts.UseLibcxx = Record[Idx++];
return Listener.ReadHeaderSearchOptions(HSOpts, Complain);
}
bool ASTReader::ParsePreprocessorOptions(const RecordData &Record,
bool Complain,
ASTReaderListener &Listener,
std::string &SuggestedPredefines) {
PreprocessorOptions PPOpts;
unsigned Idx = 0;
// Macro definitions/undefs
for (unsigned N = Record[Idx++]; N; --N) {
std::string Macro = ReadString(Record, Idx);
bool IsUndef = Record[Idx++];
PPOpts.Macros.push_back(std::make_pair(Macro, IsUndef));
}
// Includes
for (unsigned N = Record[Idx++]; N; --N) {
PPOpts.Includes.push_back(ReadString(Record, Idx));
}
// Macro Includes
for (unsigned N = Record[Idx++]; N; --N) {
PPOpts.MacroIncludes.push_back(ReadString(Record, Idx));
}
PPOpts.UsePredefines = Record[Idx++];
PPOpts.DetailedRecord = Record[Idx++];
PPOpts.ImplicitPCHInclude = ReadString(Record, Idx);
PPOpts.ImplicitPTHInclude = ReadString(Record, Idx);
PPOpts.ObjCXXARCStandardLibrary =
static_cast<ObjCXXARCStandardLibraryKind>(Record[Idx++]);
SuggestedPredefines.clear();
return Listener.ReadPreprocessorOptions(PPOpts, Complain,
SuggestedPredefines);
}
std::pair<ModuleFile *, unsigned>
ASTReader::getModulePreprocessedEntity(unsigned GlobalIndex) {
GlobalPreprocessedEntityMapType::iterator
I = GlobalPreprocessedEntityMap.find(GlobalIndex);
assert(I != GlobalPreprocessedEntityMap.end() &&
"Corrupted global preprocessed entity map");
ModuleFile *M = I->second;
unsigned LocalIndex = GlobalIndex - M->BasePreprocessedEntityID;
return std::make_pair(M, LocalIndex);
}
std::pair<PreprocessingRecord::iterator, PreprocessingRecord::iterator>
ASTReader::getModulePreprocessedEntities(ModuleFile &Mod) const {
if (PreprocessingRecord *PPRec = PP.getPreprocessingRecord())
return PPRec->getIteratorsForLoadedRange(Mod.BasePreprocessedEntityID,
Mod.NumPreprocessedEntities);
return std::make_pair(PreprocessingRecord::iterator(),
PreprocessingRecord::iterator());
}
std::pair<ASTReader::ModuleDeclIterator, ASTReader::ModuleDeclIterator>
ASTReader::getModuleFileLevelDecls(ModuleFile &Mod) {
return std::make_pair(ModuleDeclIterator(this, &Mod, Mod.FileSortedDecls),
ModuleDeclIterator(this, &Mod,
Mod.FileSortedDecls + Mod.NumFileSortedDecls));
}
PreprocessedEntity *ASTReader::ReadPreprocessedEntity(unsigned Index) {
PreprocessedEntityID PPID = Index+1;
std::pair<ModuleFile *, unsigned> PPInfo = getModulePreprocessedEntity(Index);
ModuleFile &M = *PPInfo.first;
unsigned LocalIndex = PPInfo.second;
const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex];
if (!PP.getPreprocessingRecord()) {
Error("no preprocessing record");
return nullptr;
}
SavedStreamPosition SavedPosition(M.PreprocessorDetailCursor);
M.PreprocessorDetailCursor.JumpToBit(PPOffs.BitOffset);
llvm::BitstreamEntry Entry =
M.PreprocessorDetailCursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd);
if (Entry.Kind != llvm::BitstreamEntry::Record)
return nullptr;
// Read the record.
SourceRange Range(ReadSourceLocation(M, PPOffs.Begin),
ReadSourceLocation(M, PPOffs.End));
PreprocessingRecord &PPRec = *PP.getPreprocessingRecord();
StringRef Blob;
RecordData Record;
PreprocessorDetailRecordTypes RecType =
(PreprocessorDetailRecordTypes)M.PreprocessorDetailCursor.readRecord(
Entry.ID, Record, &Blob);
switch (RecType) {
case PPD_MACRO_EXPANSION: {
bool isBuiltin = Record[0];
IdentifierInfo *Name = nullptr;
MacroDefinition *Def = nullptr;
if (isBuiltin)
Name = getLocalIdentifier(M, Record[1]);
else {
PreprocessedEntityID
GlobalID = getGlobalPreprocessedEntityID(M, Record[1]);
Def =cast<MacroDefinition>(PPRec.getLoadedPreprocessedEntity(GlobalID-1));
}
MacroExpansion *ME;
if (isBuiltin)
ME = new (PPRec) MacroExpansion(Name, Range);
else
ME = new (PPRec) MacroExpansion(Def, Range);
return ME;
}
case PPD_MACRO_DEFINITION: {
// Decode the identifier info and then check again; if the macro is
// still defined and associated with the identifier,
IdentifierInfo *II = getLocalIdentifier(M, Record[0]);
MacroDefinition *MD
= new (PPRec) MacroDefinition(II, Range);
if (DeserializationListener)
DeserializationListener->MacroDefinitionRead(PPID, MD);
return MD;
}
case PPD_INCLUSION_DIRECTIVE: {
const char *FullFileNameStart = Blob.data() + Record[0];
StringRef FullFileName(FullFileNameStart, Blob.size() - Record[0]);
const FileEntry *File = nullptr;
if (!FullFileName.empty())
File = PP.getFileManager().getFile(FullFileName);
// FIXME: Stable encoding
InclusionDirective::InclusionKind Kind
= static_cast<InclusionDirective::InclusionKind>(Record[2]);
InclusionDirective *ID
= new (PPRec) InclusionDirective(PPRec, Kind,
StringRef(Blob.data(), Record[0]),
Record[1], Record[3],
File,
Range);
return ID;
}
}
llvm_unreachable("Invalid PreprocessorDetailRecordTypes");
}
/// \brief \arg SLocMapI points at a chunk of a module that contains no
/// preprocessed entities or the entities it contains are not the ones we are
/// looking for. Find the next module that contains entities and return the ID
/// of the first entry.
PreprocessedEntityID ASTReader::findNextPreprocessedEntity(
GlobalSLocOffsetMapType::const_iterator SLocMapI) const {
++SLocMapI;
for (GlobalSLocOffsetMapType::const_iterator
EndI = GlobalSLocOffsetMap.end(); SLocMapI != EndI; ++SLocMapI) {
ModuleFile &M = *SLocMapI->second;
if (M.NumPreprocessedEntities)
return M.BasePreprocessedEntityID;
}
return getTotalNumPreprocessedEntities();
}
namespace {
template <unsigned PPEntityOffset::*PPLoc>
struct PPEntityComp {
const ASTReader &Reader;
ModuleFile &M;
PPEntityComp(const ASTReader &Reader, ModuleFile &M) : Reader(Reader), M(M) { }
bool operator()(const PPEntityOffset &L, const PPEntityOffset &R) const {
SourceLocation LHS = getLoc(L);
SourceLocation RHS = getLoc(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(const PPEntityOffset &L, SourceLocation RHS) const {
SourceLocation LHS = getLoc(L);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(SourceLocation LHS, const PPEntityOffset &R) const {
SourceLocation RHS = getLoc(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
SourceLocation getLoc(const PPEntityOffset &PPE) const {
return Reader.ReadSourceLocation(M, PPE.*PPLoc);
}
};
}
PreprocessedEntityID ASTReader::findPreprocessedEntity(SourceLocation Loc,
bool EndsAfter) const {
if (SourceMgr.isLocalSourceLocation(Loc))
return getTotalNumPreprocessedEntities();
GlobalSLocOffsetMapType::const_iterator SLocMapI = GlobalSLocOffsetMap.find(
SourceManager::MaxLoadedOffset - Loc.getOffset() - 1);
assert(SLocMapI != GlobalSLocOffsetMap.end() &&
"Corrupted global sloc offset map");
if (SLocMapI->second->NumPreprocessedEntities == 0)
return findNextPreprocessedEntity(SLocMapI);
ModuleFile &M = *SLocMapI->second;
typedef const PPEntityOffset *pp_iterator;
pp_iterator pp_begin = M.PreprocessedEntityOffsets;
pp_iterator pp_end = pp_begin + M.NumPreprocessedEntities;
size_t Count = M.NumPreprocessedEntities;
size_t Half;
pp_iterator First = pp_begin;
pp_iterator PPI;
if (EndsAfter) {
PPI = std::upper_bound(pp_begin, pp_end, Loc,
PPEntityComp<&PPEntityOffset::Begin>(*this, M));
} else {
// Do a binary search manually instead of using std::lower_bound because
// The end locations of entities may be unordered (when a macro expansion
// is inside another macro argument), but for this case it is not important
// whether we get the first macro expansion or its containing macro.
while (Count > 0) {
Half = Count / 2;
PPI = First;
std::advance(PPI, Half);
if (SourceMgr.isBeforeInTranslationUnit(ReadSourceLocation(M, PPI->End),
Loc)) {
First = PPI;
++First;
Count = Count - Half - 1;
} else
Count = Half;
}
}
if (PPI == pp_end)
return findNextPreprocessedEntity(SLocMapI);
return M.BasePreprocessedEntityID + (PPI - pp_begin);
}
/// \brief Returns a pair of [Begin, End) indices of preallocated
/// preprocessed entities that \arg Range encompasses.
std::pair<unsigned, unsigned>
ASTReader::findPreprocessedEntitiesInRange(SourceRange Range) {
if (Range.isInvalid())
return std::make_pair(0,0);
assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin()));
PreprocessedEntityID BeginID =
findPreprocessedEntity(Range.getBegin(), false);
PreprocessedEntityID EndID = findPreprocessedEntity(Range.getEnd(), true);
return std::make_pair(BeginID, EndID);
}
/// \brief Optionally returns true or false if the preallocated preprocessed
/// entity with index \arg Index came from file \arg FID.
Optional<bool> ASTReader::isPreprocessedEntityInFileID(unsigned Index,
FileID FID) {
if (FID.isInvalid())
return false;
std::pair<ModuleFile *, unsigned> PPInfo = getModulePreprocessedEntity(Index);
ModuleFile &M = *PPInfo.first;
unsigned LocalIndex = PPInfo.second;
const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex];
SourceLocation Loc = ReadSourceLocation(M, PPOffs.Begin);
if (Loc.isInvalid())
return false;
if (SourceMgr.isInFileID(SourceMgr.getFileLoc(Loc), FID))
return true;
else
return false;
}
namespace {
/// \brief Visitor used to search for information about a header file.
class HeaderFileInfoVisitor {
const FileEntry *FE;
Optional<HeaderFileInfo> HFI;
public:
explicit HeaderFileInfoVisitor(const FileEntry *FE)
: FE(FE) { }
static bool visit(ModuleFile &M, void *UserData) {
HeaderFileInfoVisitor *This
= static_cast<HeaderFileInfoVisitor *>(UserData);
HeaderFileInfoLookupTable *Table
= static_cast<HeaderFileInfoLookupTable *>(M.HeaderFileInfoTable);
if (!Table)
return false;
// Look in the on-disk hash table for an entry for this file name.
HeaderFileInfoLookupTable::iterator Pos = Table->find(This->FE);
if (Pos == Table->end())
return false;
This->HFI = *Pos;
return true;
}
Optional<HeaderFileInfo> getHeaderFileInfo() const { return HFI; }
};
}
HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) {
HeaderFileInfoVisitor Visitor(FE);
ModuleMgr.visit(&HeaderFileInfoVisitor::visit, &Visitor);
if (Optional<HeaderFileInfo> HFI = Visitor.getHeaderFileInfo())
return *HFI;
return HeaderFileInfo();
}
void ASTReader::ReadPragmaDiagnosticMappings(DiagnosticsEngine &Diag) {
// FIXME: Make it work properly with modules.
SmallVector<DiagnosticsEngine::DiagState *, 32> DiagStates;
for (ModuleIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) {
ModuleFile &F = *(*I);
unsigned Idx = 0;
DiagStates.clear();
assert(!Diag.DiagStates.empty());
DiagStates.push_back(&Diag.DiagStates.front()); // the command-line one.
while (Idx < F.PragmaDiagMappings.size()) {
SourceLocation Loc = ReadSourceLocation(F, F.PragmaDiagMappings[Idx++]);
unsigned DiagStateID = F.PragmaDiagMappings[Idx++];
if (DiagStateID != 0) {
Diag.DiagStatePoints.push_back(
DiagnosticsEngine::DiagStatePoint(DiagStates[DiagStateID-1],
FullSourceLoc(Loc, SourceMgr)));
continue;
}
assert(DiagStateID == 0);
// A new DiagState was created here.
Diag.DiagStates.push_back(*Diag.GetCurDiagState());
DiagnosticsEngine::DiagState *NewState = &Diag.DiagStates.back();
DiagStates.push_back(NewState);
Diag.DiagStatePoints.push_back(
DiagnosticsEngine::DiagStatePoint(NewState,
FullSourceLoc(Loc, SourceMgr)));
while (1) {
assert(Idx < F.PragmaDiagMappings.size() &&
"Invalid data, didn't find '-1' marking end of diag/map pairs");
if (Idx >= F.PragmaDiagMappings.size()) {
break; // Something is messed up but at least avoid infinite loop in
// release build.
}
unsigned DiagID = F.PragmaDiagMappings[Idx++];
if (DiagID == (unsigned)-1) {
break; // no more diag/map pairs for this location.
}
diag::Severity Map = (diag::Severity)F.PragmaDiagMappings[Idx++];
DiagnosticMapping Mapping = Diag.makeUserMapping(Map, Loc);
Diag.GetCurDiagState()->setMapping(DiagID, Mapping);
}
}
}
}
/// \brief Get the correct cursor and offset for loading a type.
ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) {
GlobalTypeMapType::iterator I = GlobalTypeMap.find(Index);
assert(I != GlobalTypeMap.end() && "Corrupted global type map");
ModuleFile *M = I->second;
return RecordLocation(M, M->TypeOffsets[Index - M->BaseTypeIndex]);
}
/// \brief Read and return the type with the given index..
///
/// The index is the type ID, shifted and minus the number of predefs. This
/// routine actually reads the record corresponding to the type at the given
/// location. It is a helper routine for GetType, which deals with reading type
/// IDs.
QualType ASTReader::readTypeRecord(unsigned Index) {
RecordLocation Loc = TypeCursorForIndex(Index);
BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this type.
SavedStreamPosition SavedPosition(DeclsCursor);
ReadingKindTracker ReadingKind(Read_Type, *this);
// Note that we are loading a type record.
Deserializing AType(this);
unsigned Idx = 0;
DeclsCursor.JumpToBit(Loc.Offset);
RecordData Record;
unsigned Code = DeclsCursor.ReadCode();
switch ((TypeCode)DeclsCursor.readRecord(Code, Record)) {
case TYPE_EXT_QUAL: {
if (Record.size() != 2) {
Error("Incorrect encoding of extended qualifier type");
return QualType();
}
QualType Base = readType(*Loc.F, Record, Idx);
Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[Idx++]);
return Context.getQualifiedType(Base, Quals);
}
case TYPE_COMPLEX: {
if (Record.size() != 1) {
Error("Incorrect encoding of complex type");
return QualType();
}
QualType ElemType = readType(*Loc.F, Record, Idx);
return Context.getComplexType(ElemType);
}
case TYPE_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getPointerType(PointeeType);
}
case TYPE_DECAYED: {
if (Record.size() != 1) {
Error("Incorrect encoding of decayed type");
return QualType();
}
QualType OriginalType = readType(*Loc.F, Record, Idx);
QualType DT = Context.getAdjustedParameterType(OriginalType);
if (!isa<DecayedType>(DT))
Error("Decayed type does not decay");
return DT;
}
case TYPE_ADJUSTED: {
if (Record.size() != 2) {
Error("Incorrect encoding of adjusted type");
return QualType();
}
QualType OriginalTy = readType(*Loc.F, Record, Idx);
QualType AdjustedTy = readType(*Loc.F, Record, Idx);
return Context.getAdjustedType(OriginalTy, AdjustedTy);
}
case TYPE_BLOCK_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of block pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getBlockPointerType(PointeeType);
}
case TYPE_LVALUE_REFERENCE: {
if (Record.size() != 2) {
Error("Incorrect encoding of lvalue reference type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getLValueReferenceType(PointeeType, Record[1]);
}
case TYPE_RVALUE_REFERENCE: {
if (Record.size() != 1) {
Error("Incorrect encoding of rvalue reference type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getRValueReferenceType(PointeeType);
}
case TYPE_MEMBER_POINTER: {
if (Record.size() != 2) {
Error("Incorrect encoding of member pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
QualType ClassType = readType(*Loc.F, Record, Idx);
if (PointeeType.isNull() || ClassType.isNull())
return QualType();
return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr());
}
case TYPE_CONSTANT_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
unsigned Idx = 3;
llvm::APInt Size = ReadAPInt(Record, Idx);
return Context.getConstantArrayType(ElementType, Size,
ASM, IndexTypeQuals);
}
case TYPE_INCOMPLETE_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals);
}
case TYPE_VARIABLE_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]);
SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]);
return Context.getVariableArrayType(ElementType, ReadExpr(*Loc.F),
ASM, IndexTypeQuals,
SourceRange(LBLoc, RBLoc));
}
case TYPE_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of vector type in AST file");
return QualType();
}
QualType ElementType = readType(*Loc.F, Record, Idx);
unsigned NumElements = Record[1];
unsigned VecKind = Record[2];
return Context.getVectorType(ElementType, NumElements,
(VectorType::VectorKind)VecKind);
}
case TYPE_EXT_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of extended vector type in AST file");
return QualType();
}
QualType ElementType = readType(*Loc.F, Record, Idx);
unsigned NumElements = Record[1];
return Context.getExtVectorType(ElementType, NumElements);
}
case TYPE_FUNCTION_NO_PROTO: {
if (Record.size() != 6) {
Error("incorrect encoding of no-proto function type");
return QualType();
}
QualType ResultType = readType(*Loc.F, Record, Idx);
FunctionType::ExtInfo Info(Record[1], Record[2], Record[3],
(CallingConv)Record[4], Record[5]);
return Context.getFunctionNoProtoType(ResultType, Info);
}
case TYPE_FUNCTION_PROTO: {
QualType ResultType = readType(*Loc.F, Record, Idx);
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1],
/*hasregparm*/ Record[2],
/*regparm*/ Record[3],
static_cast<CallingConv>(Record[4]),
/*produces*/ Record[5]);
unsigned Idx = 6;
EPI.Variadic = Record[Idx++];
EPI.HasTrailingReturn = Record[Idx++];
EPI.TypeQuals = Record[Idx++];
EPI.RefQualifier = static_cast<RefQualifierKind>(Record[Idx++]);
SmallVector<QualType, 8> ExceptionStorage;
readExceptionSpec(*Loc.F, ExceptionStorage, EPI.ExceptionSpec, Record, Idx);
unsigned NumParams = Record[Idx++];
SmallVector<QualType, 16> ParamTypes;
for (unsigned I = 0; I != NumParams; ++I)
ParamTypes.push_back(readType(*Loc.F, Record, Idx));
return Context.getFunctionType(ResultType, ParamTypes, EPI);
}
case TYPE_UNRESOLVED_USING: {
unsigned Idx = 0;
return Context.getTypeDeclType(
ReadDeclAs<UnresolvedUsingTypenameDecl>(*Loc.F, Record, Idx));
}
case TYPE_TYPEDEF: {
if (Record.size() != 2) {
Error("incorrect encoding of typedef type");
return QualType();
}
unsigned Idx = 0;
TypedefNameDecl *Decl = ReadDeclAs<TypedefNameDecl>(*Loc.F, Record, Idx);
QualType Canonical = readType(*Loc.F, Record, Idx);
if (!Canonical.isNull())
Canonical = Context.getCanonicalType(Canonical);
return Context.getTypedefType(Decl, Canonical);
}
case TYPE_TYPEOF_EXPR:
return Context.getTypeOfExprType(ReadExpr(*Loc.F));
case TYPE_TYPEOF: {
if (Record.size() != 1) {
Error("incorrect encoding of typeof(type) in AST file");
return QualType();
}
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
return Context.getTypeOfType(UnderlyingType);
}
case TYPE_DECLTYPE: {
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
return Context.getDecltypeType(ReadExpr(*Loc.F), UnderlyingType);
}
case TYPE_UNARY_TRANSFORM: {
QualType BaseType = readType(*Loc.F, Record, Idx);
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
UnaryTransformType::UTTKind UKind = (UnaryTransformType::UTTKind)Record[2];
return Context.getUnaryTransformType(BaseType, UnderlyingType, UKind);
}
case TYPE_AUTO: {
QualType Deduced = readType(*Loc.F, Record, Idx);
bool IsDecltypeAuto = Record[Idx++];
bool IsDependent = Deduced.isNull() ? Record[Idx++] : false;
return Context.getAutoType(Deduced, IsDecltypeAuto, IsDependent);
}
case TYPE_RECORD: {
if (Record.size() != 2) {
Error("incorrect encoding of record type");
return QualType();
}
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
RecordDecl *RD = ReadDeclAs<RecordDecl>(*Loc.F, Record, Idx);
RD = cast_or_null<RecordDecl>(RD->getCanonicalDecl());
QualType T = Context.getRecordType(RD);
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ENUM: {
if (Record.size() != 2) {
Error("incorrect encoding of enum type");
return QualType();
}
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
QualType T
= Context.getEnumType(ReadDeclAs<EnumDecl>(*Loc.F, Record, Idx));
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ATTRIBUTED: {
if (Record.size() != 3) {
Error("incorrect encoding of attributed type");
return QualType();
}
QualType modifiedType = readType(*Loc.F, Record, Idx);
QualType equivalentType = readType(*Loc.F, Record, Idx);
AttributedType::Kind kind = static_cast<AttributedType::Kind>(Record[2]);
return Context.getAttributedType(kind, modifiedType, equivalentType);
}
case TYPE_PAREN: {
if (Record.size() != 1) {
Error("incorrect encoding of paren type");
return QualType();
}
QualType InnerType = readType(*Loc.F, Record, Idx);
return Context.getParenType(InnerType);
}
case TYPE_PACK_EXPANSION: {
if (Record.size() != 2) {
Error("incorrect encoding of pack expansion type");
return QualType();
}
QualType Pattern = readType(*Loc.F, Record, Idx);
if (Pattern.isNull())
return QualType();
Optional<unsigned> NumExpansions;
if (Record[1])
NumExpansions = Record[1] - 1;
return Context.getPackExpansionType(Pattern, NumExpansions);
}
case TYPE_ELABORATED: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
QualType NamedType = readType(*Loc.F, Record, Idx);
return Context.getElaboratedType(Keyword, NNS, NamedType);
}
case TYPE_OBJC_INTERFACE: {
unsigned Idx = 0;
ObjCInterfaceDecl *ItfD
= ReadDeclAs<ObjCInterfaceDecl>(*Loc.F, Record, Idx);
return Context.getObjCInterfaceType(ItfD->getCanonicalDecl());
}
case TYPE_OBJC_OBJECT: {
unsigned Idx = 0;
QualType Base = readType(*Loc.F, Record, Idx);
unsigned NumProtos = Record[Idx++];
SmallVector<ObjCProtocolDecl*, 4> Protos;
for (unsigned I = 0; I != NumProtos; ++I)
Protos.push_back(ReadDeclAs<ObjCProtocolDecl>(*Loc.F, Record, Idx));
return Context.getObjCObjectType(Base, Protos.data(), NumProtos);
}
case TYPE_OBJC_OBJECT_POINTER: {
unsigned Idx = 0;
QualType Pointee = readType(*Loc.F, Record, Idx);
return Context.getObjCObjectPointerType(Pointee);
}
case TYPE_SUBST_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
QualType Parm = readType(*Loc.F, Record, Idx);
QualType Replacement = readType(*Loc.F, Record, Idx);
return Context.getSubstTemplateTypeParmType(
cast<TemplateTypeParmType>(Parm),
Context.getCanonicalType(Replacement));
}
case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: {
unsigned Idx = 0;
QualType Parm = readType(*Loc.F, Record, Idx);
TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx);
return Context.getSubstTemplateTypeParmPackType(
cast<TemplateTypeParmType>(Parm),
ArgPack);
}
case TYPE_INJECTED_CLASS_NAME: {
CXXRecordDecl *D = ReadDeclAs<CXXRecordDecl>(*Loc.F, Record, Idx);
QualType TST = readType(*Loc.F, Record, Idx); // probably derivable
// FIXME: ASTContext::getInjectedClassNameType is not currently suitable
// for AST reading, too much interdependencies.
const Type *T = nullptr;
for (auto *DI = D; DI; DI = DI->getPreviousDecl()) {
if (const Type *Existing = DI->getTypeForDecl()) {
T = Existing;
break;
}
}
if (!T) {
T = new (Context, TypeAlignment) InjectedClassNameType(D, TST);
for (auto *DI = D; DI; DI = DI->getPreviousDecl())
DI->setTypeForDecl(T);
}
return QualType(T, 0);
}
case TYPE_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
unsigned Depth = Record[Idx++];
unsigned Index = Record[Idx++];
bool Pack = Record[Idx++];
TemplateTypeParmDecl *D
= ReadDeclAs<TemplateTypeParmDecl>(*Loc.F, Record, Idx);
return Context.getTemplateTypeParmType(Depth, Index, Pack, D);
}
case TYPE_DEPENDENT_NAME: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx);
QualType Canon = readType(*Loc.F, Record, Idx);
if (!Canon.isNull())
Canon = Context.getCanonicalType(Canon);
return Context.getDependentNameType(Keyword, NNS, Name, Canon);
}
case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx);
unsigned NumArgs = Record[Idx++];
SmallVector<TemplateArgument, 8> Args;
Args.reserve(NumArgs);
while (NumArgs--)
Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx));
return Context.getDependentTemplateSpecializationType(Keyword, NNS, Name,
Args.size(), Args.data());
}
case TYPE_DEPENDENT_SIZED_ARRAY: {
unsigned Idx = 0;
// ArrayType
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM
= (ArrayType::ArraySizeModifier)Record[Idx++];
unsigned IndexTypeQuals = Record[Idx++];
// DependentSizedArrayType
Expr *NumElts = ReadExpr(*Loc.F);
SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx);
return Context.getDependentSizedArrayType(ElementType, NumElts, ASM,
IndexTypeQuals, Brackets);
}
case TYPE_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx);
SmallVector<TemplateArgument, 8> Args;
ReadTemplateArgumentList(Args, *Loc.F, Record, Idx);
QualType Underlying = readType(*Loc.F, Record, Idx);
QualType T;
if (Underlying.isNull())
T = Context.getCanonicalTemplateSpecializationType(Name, Args.data(),
Args.size());
else
T = Context.getTemplateSpecializationType(Name, Args.data(),
Args.size(), Underlying);
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ATOMIC: {
if (Record.size() != 1) {
Error("Incorrect encoding of atomic type");
return QualType();
}
QualType ValueType = readType(*Loc.F, Record, Idx);
return Context.getAtomicType(ValueType);
}
}
llvm_unreachable("Invalid TypeCode!");
}
void ASTReader::readExceptionSpec(ModuleFile &ModuleFile,
SmallVectorImpl<QualType> &Exceptions,
FunctionProtoType::ExceptionSpecInfo &ESI,
const RecordData &Record, unsigned &Idx) {
ExceptionSpecificationType EST =
static_cast<ExceptionSpecificationType>(Record[Idx++]);
ESI.Type = EST;
if (EST == EST_Dynamic) {
for (unsigned I = 0, N = Record[Idx++]; I != N; ++I)
Exceptions.push_back(readType(ModuleFile, Record, Idx));
ESI.Exceptions = Exceptions;
} else if (EST == EST_ComputedNoexcept) {
ESI.NoexceptExpr = ReadExpr(ModuleFile);
} else if (EST == EST_Uninstantiated) {
ESI.SourceDecl = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
ESI.SourceTemplate = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
} else if (EST == EST_Unevaluated) {
ESI.SourceDecl = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
}
}
class clang::TypeLocReader : public TypeLocVisitor<TypeLocReader> {
ASTReader &Reader;
ModuleFile &F;
const ASTReader::RecordData &Record;
unsigned &Idx;
SourceLocation ReadSourceLocation(const ASTReader::RecordData &R,
unsigned &I) {
return Reader.ReadSourceLocation(F, R, I);
}
template<typename T>
T *ReadDeclAs(const ASTReader::RecordData &Record, unsigned &Idx) {
return Reader.ReadDeclAs<T>(F, Record, Idx);
}
public:
TypeLocReader(ASTReader &Reader, ModuleFile &F,
const ASTReader::RecordData &Record, unsigned &Idx)
: Reader(Reader), F(F), Record(Record), Idx(Idx)
{ }
// We want compile-time assurance that we've enumerated all of
// these, so unfortunately we have to declare them first, then
// define them out-of-line.
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
#include "clang/AST/TypeLocNodes.def"
void VisitFunctionTypeLoc(FunctionTypeLoc);
void VisitArrayTypeLoc(ArrayTypeLoc);
};
void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
TL.setBuiltinLoc(ReadSourceLocation(Record, Idx));
if (TL.needsExtraLocalData()) {
TL.setWrittenTypeSpec(static_cast<DeclSpec::TST>(Record[Idx++]));
TL.setWrittenSignSpec(static_cast<DeclSpec::TSS>(Record[Idx++]));
TL.setWrittenWidthSpec(static_cast<DeclSpec::TSW>(Record[Idx++]));
TL.setModeAttr(Record[Idx++]);
}
}
void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
TL.setCaretLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
TL.setAmpLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
TL.setAmpAmpLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation(Record, Idx));
TL.setClassTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
}
void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) {
TL.setLBracketLoc(ReadSourceLocation(Record, Idx));
TL.setRBracketLoc(ReadSourceLocation(Record, Idx));
if (Record[Idx++])
TL.setSizeExpr(Reader.ReadExpr(F));
else
TL.setSizeExpr(nullptr);
}
void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentSizedArrayTypeLoc(
DependentSizedArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentSizedExtVectorTypeLoc(
DependentSizedExtVectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
TL.setLocalRangeBegin(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
TL.setLocalRangeEnd(ReadSourceLocation(Record, Idx));
for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) {
TL.setParam(i, ReadDeclAs<ParmVarDecl>(Record, Idx));
}
}
void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
TL.setTypeofLoc(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
TL.setTypeofLoc(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
}
void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
TL.setKWLoc(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
}
void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
TL.setAttrNameLoc(ReadSourceLocation(Record, Idx));
if (TL.hasAttrOperand()) {
SourceRange range;
range.setBegin(ReadSourceLocation(Record, Idx));
range.setEnd(ReadSourceLocation(Record, Idx));
TL.setAttrOperandParensRange(range);
}
if (TL.hasAttrExprOperand()) {
if (Record[Idx++])
TL.setAttrExprOperand(Reader.ReadExpr(F));
else
TL.setAttrExprOperand(nullptr);
} else if (TL.hasAttrEnumOperand())
TL.setAttrEnumOperandLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc(
SubstTemplateTypeParmTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc(
SubstTemplateTypeParmPackTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx));
TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
TL.setArgLocInfo(i,
Reader.GetTemplateArgumentLocInfo(F,
TL.getTypePtr()->getArg(i).getKind(),
Record, Idx));
}
void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) {
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
}
void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx));
TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
TL.setArgLocInfo(I,
Reader.GetTemplateArgumentLocInfo(F,
TL.getTypePtr()->getArg(I).getKind(),
Record, Idx));
}
void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
TL.setEllipsisLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
TL.setHasBaseTypeAsWritten(Record[Idx++]);
TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
TL.setProtocolLoc(i, ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
TL.setKWLoc(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
}
TypeSourceInfo *ASTReader::GetTypeSourceInfo(ModuleFile &F,
const RecordData &Record,
unsigned &Idx) {
QualType InfoTy = readType(F, Record, Idx);
if (InfoTy.isNull())
return nullptr;
TypeSourceInfo *TInfo = getContext().CreateTypeSourceInfo(InfoTy);
TypeLocReader TLR(*this, F, Record, Idx);
for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc())
TLR.Visit(TL);
return TInfo;
}
QualType ASTReader::GetType(TypeID ID) {
unsigned FastQuals = ID & Qualifiers::FastMask;
unsigned Index = ID >> Qualifiers::FastWidth;
if (Index < NUM_PREDEF_TYPE_IDS) {
QualType T;
switch ((PredefinedTypeIDs)Index) {
case PREDEF_TYPE_NULL_ID: return QualType();
case PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break;
case PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break;
case PREDEF_TYPE_CHAR_U_ID:
case PREDEF_TYPE_CHAR_S_ID:
// FIXME: Check that the signedness of CharTy is correct!
T = Context.CharTy;
break;
case PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break;
case PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break;
case PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break;
case PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break;
case PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break;
case PREDEF_TYPE_UINT128_ID: T = Context.UnsignedInt128Ty; break;
case PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break;
case PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break;
case PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break;
case PREDEF_TYPE_INT_ID: T = Context.IntTy; break;
case PREDEF_TYPE_LONG_ID: T = Context.LongTy; break;
case PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break;
case PREDEF_TYPE_INT128_ID: T = Context.Int128Ty; break;
case PREDEF_TYPE_HALF_ID: T = Context.HalfTy; break;
case PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break;
case PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break;
case PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break;
case PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break;
case PREDEF_TYPE_BOUND_MEMBER: T = Context.BoundMemberTy; break;
case PREDEF_TYPE_PSEUDO_OBJECT: T = Context.PseudoObjectTy; break;
case PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break;
case PREDEF_TYPE_UNKNOWN_ANY: T = Context.UnknownAnyTy; break;
case PREDEF_TYPE_NULLPTR_ID: T = Context.NullPtrTy; break;
case PREDEF_TYPE_CHAR16_ID: T = Context.Char16Ty; break;
case PREDEF_TYPE_CHAR32_ID: T = Context.Char32Ty; break;
case PREDEF_TYPE_OBJC_ID: T = Context.ObjCBuiltinIdTy; break;
case PREDEF_TYPE_OBJC_CLASS: T = Context.ObjCBuiltinClassTy; break;
case PREDEF_TYPE_OBJC_SEL: T = Context.ObjCBuiltinSelTy; break;
case PREDEF_TYPE_IMAGE1D_ID: T = Context.OCLImage1dTy; break;
case PREDEF_TYPE_IMAGE1D_ARR_ID: T = Context.OCLImage1dArrayTy; break;
case PREDEF_TYPE_IMAGE1D_BUFF_ID: T = Context.OCLImage1dBufferTy; break;
case PREDEF_TYPE_IMAGE2D_ID: T = Context.OCLImage2dTy; break;
case PREDEF_TYPE_IMAGE2D_ARR_ID: T = Context.OCLImage2dArrayTy; break;
case PREDEF_TYPE_IMAGE3D_ID: T = Context.OCLImage3dTy; break;
case PREDEF_TYPE_SAMPLER_ID: T = Context.OCLSamplerTy; break;
case PREDEF_TYPE_EVENT_ID: T = Context.OCLEventTy; break;
case PREDEF_TYPE_AUTO_DEDUCT: T = Context.getAutoDeductType(); break;
case PREDEF_TYPE_AUTO_RREF_DEDUCT:
T = Context.getAutoRRefDeductType();
break;
case PREDEF_TYPE_ARC_UNBRIDGED_CAST:
T = Context.ARCUnbridgedCastTy;
break;
case PREDEF_TYPE_VA_LIST_TAG:
T = Context.getVaListTagType();
break;
case PREDEF_TYPE_BUILTIN_FN:
T = Context.BuiltinFnTy;
break;
}
assert(!T.isNull() && "Unknown predefined type");
return T.withFastQualifiers(FastQuals);
}
Index -= NUM_PREDEF_TYPE_IDS;
assert(Index < TypesLoaded.size() && "Type index out-of-range");
if (TypesLoaded[Index].isNull()) {
TypesLoaded[Index] = readTypeRecord(Index);
if (TypesLoaded[Index].isNull())
return QualType();
TypesLoaded[Index]->setFromAST();
if (DeserializationListener)
DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID),
TypesLoaded[Index]);
}
return TypesLoaded[Index].withFastQualifiers(FastQuals);
}
QualType ASTReader::getLocalType(ModuleFile &F, unsigned LocalID) {
return GetType(getGlobalTypeID(F, LocalID));
}
serialization::TypeID
ASTReader::getGlobalTypeID(ModuleFile &F, unsigned LocalID) const {
unsigned FastQuals = LocalID & Qualifiers::FastMask;
unsigned LocalIndex = LocalID >> Qualifiers::FastWidth;
if (LocalIndex < NUM_PREDEF_TYPE_IDS)
return LocalID;
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= F.TypeRemap.find(LocalIndex - NUM_PREDEF_TYPE_IDS);
assert(I != F.TypeRemap.end() && "Invalid index into type index remap");
unsigned GlobalIndex = LocalIndex + I->second;
return (GlobalIndex << Qualifiers::FastWidth) | FastQuals;
}
TemplateArgumentLocInfo
ASTReader::GetTemplateArgumentLocInfo(ModuleFile &F,
TemplateArgument::ArgKind Kind,
const RecordData &Record,
unsigned &Index) {
switch (Kind) {
case TemplateArgument::Expression:
return ReadExpr(F);
case TemplateArgument::Type:
return GetTypeSourceInfo(F, Record, Index);
case TemplateArgument::Template: {
NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
Index);
SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
SourceLocation());
}
case TemplateArgument::TemplateExpansion: {
NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
Index);
SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index);
return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
EllipsisLoc);
}
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::NullPtr:
case TemplateArgument::Pack:
// FIXME: Is this right?
return TemplateArgumentLocInfo();
}
llvm_unreachable("unexpected template argument loc");
}
TemplateArgumentLoc
ASTReader::ReadTemplateArgumentLoc(ModuleFile &F,
const RecordData &Record, unsigned &Index) {
TemplateArgument Arg = ReadTemplateArgument(F, Record, Index);
if (Arg.getKind() == TemplateArgument::Expression) {
if (Record[Index++]) // bool InfoHasSameExpr.
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr()));
}
return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(),
Record, Index));
}
const ASTTemplateArgumentListInfo*
ASTReader::ReadASTTemplateArgumentListInfo(ModuleFile &F,
const RecordData &Record,
unsigned &Index) {
SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Index);
SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Index);
unsigned NumArgsAsWritten = Record[Index++];
TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc);
for (unsigned i = 0; i != NumArgsAsWritten; ++i)
TemplArgsInfo.addArgument(ReadTemplateArgumentLoc(F, Record, Index));
return ASTTemplateArgumentListInfo::Create(getContext(), TemplArgsInfo);
}
Decl *ASTReader::GetExternalDecl(uint32_t ID) {
return GetDecl(ID);
}
void ASTReader::CompleteRedeclChain(const Decl *D) {
if (NumCurrentElementsDeserializing) {
// We arrange to not care about the complete redeclaration chain while we're
// deserializing. Just remember that the AST has marked this one as complete
// but that it's not actually complete yet, so we know we still need to
// complete it later.
PendingIncompleteDeclChains.push_back(const_cast<Decl*>(D));
return;
}
const DeclContext *DC = D->getDeclContext()->getRedeclContext();
// If this is a named declaration, complete it by looking it up
// within its context.
//
// FIXME: Merging a function definition should merge
// all mergeable entities within it.
if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC) ||
isa<CXXRecordDecl>(DC) || isa<EnumDecl>(DC)) {
if (DeclarationName Name = cast<NamedDecl>(D)->getDeclName()) {
auto *II = Name.getAsIdentifierInfo();
if (isa<TranslationUnitDecl>(DC) && II) {
// Outside of C++, we don't have a lookup table for the TU, so update
// the identifier instead. In C++, either way should work fine.
if (II->isOutOfDate())
updateOutOfDateIdentifier(*II);
} else
DC->lookup(Name);
} else if (needsAnonymousDeclarationNumber(cast<NamedDecl>(D))) {
// FIXME: It'd be nice to do something a bit more targeted here.
D->getDeclContext()->decls_begin();
}
}
}
uint64_t ASTReader::readCXXBaseSpecifiers(ModuleFile &M,
const RecordData &Record,
unsigned &Idx) {
if (Idx >= Record.size() || Record[Idx] > M.LocalNumCXXBaseSpecifiers) {
Error("malformed AST file: missing C++ base specifier");
return 0;
}
unsigned LocalID = Record[Idx++];
return getGlobalBitOffset(M, M.CXXBaseSpecifiersOffsets[LocalID - 1]);
}
CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) {
RecordLocation Loc = getLocalBitOffset(Offset);
BitstreamCursor &Cursor = Loc.F->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Loc.Offset);
ReadingKindTracker ReadingKind(Read_Decl, *this);
RecordData Record;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record);
if (RecCode != DECL_CXX_BASE_SPECIFIERS) {
Error("malformed AST file: missing C++ base specifiers");
return nullptr;
}
unsigned Idx = 0;
unsigned NumBases = Record[Idx++];
void *Mem = Context.Allocate(sizeof(CXXBaseSpecifier) * NumBases);
CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases];
for (unsigned I = 0; I != NumBases; ++I)
Bases[I] = ReadCXXBaseSpecifier(*Loc.F, Record, Idx);
return Bases;
}
serialization::DeclID
ASTReader::getGlobalDeclID(ModuleFile &F, LocalDeclID LocalID) const {
if (LocalID < NUM_PREDEF_DECL_IDS)
return LocalID;
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= F.DeclRemap.find(LocalID - NUM_PREDEF_DECL_IDS);
assert(I != F.DeclRemap.end() && "Invalid index into decl index remap");
return LocalID + I->second;
}
bool ASTReader::isDeclIDFromModule(serialization::GlobalDeclID ID,
ModuleFile &M) const {
GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(ID);
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
return &M == I->second;
}
ModuleFile *ASTReader::getOwningModuleFile(const Decl *D) {
if (!D->isFromASTFile())
return nullptr;
GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(D->getGlobalID());
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
return I->second;
}
SourceLocation ASTReader::getSourceLocationForDeclID(GlobalDeclID ID) {
if (ID < NUM_PREDEF_DECL_IDS)
return SourceLocation();
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
if (Index > DeclsLoaded.size()) {
Error("declaration ID out-of-range for AST file");
return SourceLocation();
}
if (Decl *D = DeclsLoaded[Index])
return D->getLocation();
unsigned RawLocation = 0;
RecordLocation Rec = DeclCursorForID(ID, RawLocation);
return ReadSourceLocation(*Rec.F, RawLocation);
}
Decl *ASTReader::GetExistingDecl(DeclID ID) {
if (ID < NUM_PREDEF_DECL_IDS) {
switch ((PredefinedDeclIDs)ID) {
case PREDEF_DECL_NULL_ID:
return nullptr;
case PREDEF_DECL_TRANSLATION_UNIT_ID:
return Context.getTranslationUnitDecl();
case PREDEF_DECL_OBJC_ID_ID:
return Context.getObjCIdDecl();
case PREDEF_DECL_OBJC_SEL_ID:
return Context.getObjCSelDecl();
case PREDEF_DECL_OBJC_CLASS_ID:
return Context.getObjCClassDecl();
case PREDEF_DECL_OBJC_PROTOCOL_ID:
return Context.getObjCProtocolDecl();
case PREDEF_DECL_INT_128_ID:
return Context.getInt128Decl();
case PREDEF_DECL_UNSIGNED_INT_128_ID:
return Context.getUInt128Decl();
case PREDEF_DECL_OBJC_INSTANCETYPE_ID:
return Context.getObjCInstanceTypeDecl();
case PREDEF_DECL_BUILTIN_VA_LIST_ID:
return Context.getBuiltinVaListDecl();
}
}
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
if (Index >= DeclsLoaded.size()) {
assert(0 && "declaration ID out-of-range for AST file");
Error("declaration ID out-of-range for AST file");
return nullptr;
}
return DeclsLoaded[Index];
}
Decl *ASTReader::GetDecl(DeclID ID) {
if (ID < NUM_PREDEF_DECL_IDS)
return GetExistingDecl(ID);
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
if (Index >= DeclsLoaded.size()) {
assert(0 && "declaration ID out-of-range for AST file");
Error("declaration ID out-of-range for AST file");
return nullptr;
}
if (!DeclsLoaded[Index]) {
ReadDeclRecord(ID);
if (DeserializationListener)
DeserializationListener->DeclRead(ID, DeclsLoaded[Index]);
}
return DeclsLoaded[Index];
}
DeclID ASTReader::mapGlobalIDToModuleFileGlobalID(ModuleFile &M,
DeclID GlobalID) {
if (GlobalID < NUM_PREDEF_DECL_IDS)
return GlobalID;
GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(GlobalID);
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
ModuleFile *Owner = I->second;
llvm::DenseMap<ModuleFile *, serialization::DeclID>::iterator Pos
= M.GlobalToLocalDeclIDs.find(Owner);
if (Pos == M.GlobalToLocalDeclIDs.end())
return 0;
return GlobalID - Owner->BaseDeclID + Pos->second;
}
serialization::DeclID ASTReader::ReadDeclID(ModuleFile &F,
const RecordData &Record,
unsigned &Idx) {
if (Idx >= Record.size()) {
Error("Corrupted AST file");
return 0;
}
return getGlobalDeclID(F, Record[Idx++]);
}
/// \brief Resolve the offset of a statement into a statement.
///
/// This operation will read a new statement from the external
/// source each time it is called, and is meant to be used via a
/// LazyOffsetPtr (which is used by Decls for the body of functions, etc).
Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) {
// Switch case IDs are per Decl.
ClearSwitchCaseIDs();
// Offset here is a global offset across the entire chain.
RecordLocation Loc = getLocalBitOffset(Offset);
Loc.F->DeclsCursor.JumpToBit(Loc.Offset);
return ReadStmtFromStream(*Loc.F);
}
namespace {
class FindExternalLexicalDeclsVisitor {
ASTReader &Reader;
const DeclContext *DC;
bool (*isKindWeWant)(Decl::Kind);
SmallVectorImpl<Decl*> &Decls;
bool PredefsVisited[NUM_PREDEF_DECL_IDS];
public:
FindExternalLexicalDeclsVisitor(ASTReader &Reader, const DeclContext *DC,
bool (*isKindWeWant)(Decl::Kind),
SmallVectorImpl<Decl*> &Decls)
: Reader(Reader), DC(DC), isKindWeWant(isKindWeWant), Decls(Decls)
{
for (unsigned I = 0; I != NUM_PREDEF_DECL_IDS; ++I)
PredefsVisited[I] = false;
}
static bool visit(ModuleFile &M, bool Preorder, void *UserData) {
if (Preorder)
return false;
FindExternalLexicalDeclsVisitor *This
= static_cast<FindExternalLexicalDeclsVisitor *>(UserData);
ModuleFile::DeclContextInfosMap::iterator Info
= M.DeclContextInfos.find(This->DC);
if (Info == M.DeclContextInfos.end() || !Info->second.LexicalDecls)
return false;
// Load all of the declaration IDs
for (const KindDeclIDPair *ID = Info->second.LexicalDecls,
*IDE = ID + Info->second.NumLexicalDecls;
ID != IDE; ++ID) {
if (This->isKindWeWant && !This->isKindWeWant((Decl::Kind)ID->first))
continue;
// Don't add predefined declarations to the lexical context more
// than once.
if (ID->second < NUM_PREDEF_DECL_IDS) {
if (This->PredefsVisited[ID->second])
continue;
This->PredefsVisited[ID->second] = true;
}
if (Decl *D = This->Reader.GetLocalDecl(M, ID->second)) {
if (!This->DC->isDeclInLexicalTraversal(D))
This->Decls.push_back(D);
}
}
return false;
}
};
}
ExternalLoadResult ASTReader::FindExternalLexicalDecls(const DeclContext *DC,
bool (*isKindWeWant)(Decl::Kind),
SmallVectorImpl<Decl*> &Decls) {
// There might be lexical decls in multiple modules, for the TU at
// least. Walk all of the modules in the order they were loaded.
FindExternalLexicalDeclsVisitor Visitor(*this, DC, isKindWeWant, Decls);
ModuleMgr.visitDepthFirst(&FindExternalLexicalDeclsVisitor::visit, &Visitor);
++NumLexicalDeclContextsRead;
return ELR_Success;
}
namespace {
class DeclIDComp {
ASTReader &Reader;
ModuleFile &Mod;
public:
DeclIDComp(ASTReader &Reader, ModuleFile &M) : Reader(Reader), Mod(M) {}
bool operator()(LocalDeclID L, LocalDeclID R) const {
SourceLocation LHS = getLocation(L);
SourceLocation RHS = getLocation(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(SourceLocation LHS, LocalDeclID R) const {
SourceLocation RHS = getLocation(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(LocalDeclID L, SourceLocation RHS) const {
SourceLocation LHS = getLocation(L);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
SourceLocation getLocation(LocalDeclID ID) const {
return Reader.getSourceManager().getFileLoc(
Reader.getSourceLocationForDeclID(Reader.getGlobalDeclID(Mod, ID)));
}
};
}
void ASTReader::FindFileRegionDecls(FileID File,
unsigned Offset, unsigned Length,
SmallVectorImpl<Decl *> &Decls) {
SourceManager &SM = getSourceManager();
llvm::DenseMap<FileID, FileDeclsInfo>::iterator I = FileDeclIDs.find(File);
if (I == FileDeclIDs.end())
return;
FileDeclsInfo &DInfo = I->second;
if (DInfo.Decls.empty())
return;
SourceLocation
BeginLoc = SM.getLocForStartOfFile(File).getLocWithOffset(Offset);
SourceLocation EndLoc = BeginLoc.getLocWithOffset(Length);
DeclIDComp DIDComp(*this, *DInfo.Mod);
ArrayRef<serialization::LocalDeclID>::iterator
BeginIt = std::lower_bound(DInfo.Decls.begin(), DInfo.Decls.end(),
BeginLoc, DIDComp);
if (BeginIt != DInfo.Decls.begin())
--BeginIt;
// If we are pointing at a top-level decl inside an objc container, we need
// to backtrack until we find it otherwise we will fail to report that the
// region overlaps with an objc container.
while (BeginIt != DInfo.Decls.begin() &&
GetDecl(getGlobalDeclID(*DInfo.Mod, *BeginIt))
->isTopLevelDeclInObjCContainer())
--BeginIt;
ArrayRef<serialization::LocalDeclID>::iterator
EndIt = std::upper_bound(DInfo.Decls.begin(), DInfo.Decls.end(),
EndLoc, DIDComp);
if (EndIt != DInfo.Decls.end())
++EndIt;
for (ArrayRef<serialization::LocalDeclID>::iterator
DIt = BeginIt; DIt != EndIt; ++DIt)
Decls.push_back(GetDecl(getGlobalDeclID(*DInfo.Mod, *DIt)));
}
namespace {
/// \brief ModuleFile visitor used to perform name lookup into a
/// declaration context.
class DeclContextNameLookupVisitor {
ASTReader &Reader;
ArrayRef<const DeclContext *> Contexts;
DeclarationName Name;
SmallVectorImpl<NamedDecl *> &Decls;
public:
DeclContextNameLookupVisitor(ASTReader &Reader,
ArrayRef<const DeclContext *> Contexts,
DeclarationName Name,
SmallVectorImpl<NamedDecl *> &Decls)
: Reader(Reader), Contexts(Contexts), Name(Name), Decls(Decls) { }
static bool visit(ModuleFile &M, void *UserData) {
DeclContextNameLookupVisitor *This
= static_cast<DeclContextNameLookupVisitor *>(UserData);
// Check whether we have any visible declaration information for
// this context in this module.
ModuleFile::DeclContextInfosMap::iterator Info;
bool FoundInfo = false;
for (auto *DC : This->Contexts) {
Info = M.DeclContextInfos.find(DC);
if (Info != M.DeclContextInfos.end() &&
Info->second.NameLookupTableData) {
FoundInfo = true;
break;
}
}
if (!FoundInfo)
return false;
// Look for this name within this module.
ASTDeclContextNameLookupTable *LookupTable =
Info->second.NameLookupTableData;
ASTDeclContextNameLookupTable::iterator Pos
= LookupTable->find(This->Name);
if (Pos == LookupTable->end())
return false;
bool FoundAnything = false;
ASTDeclContextNameLookupTrait::data_type Data = *Pos;
for (; Data.first != Data.second; ++Data.first) {
NamedDecl *ND = This->Reader.GetLocalDeclAs<NamedDecl>(M, *Data.first);
if (!ND)
continue;
if (ND->getDeclName() != This->Name) {
// A name might be null because the decl's redeclarable part is
// currently read before reading its name. The lookup is triggered by
// building that decl (likely indirectly), and so it is later in the
// sense of "already existing" and can be ignored here.
// FIXME: This should not happen; deserializing declarations should
// not perform lookups since that can lead to deserialization cycles.
continue;
}
// Record this declaration.
FoundAnything = true;
This->Decls.push_back(ND);
}
return FoundAnything;
}
};
}
/// \brief Retrieve the "definitive" module file for the definition of the
/// given declaration context, if there is one.
///
/// The "definitive" module file is the only place where we need to look to
/// find information about the declarations within the given declaration
/// context. For example, C++ and Objective-C classes, C structs/unions, and
/// Objective-C protocols, categories, and extensions are all defined in a
/// single place in the source code, so they have definitive module files
/// associated with them. C++ namespaces, on the other hand, can have
/// definitions in multiple different module files.
///
/// Note: this needs to be kept in sync with ASTWriter::AddedVisibleDecl's
/// NDEBUG checking.
static ModuleFile *getDefinitiveModuleFileFor(const DeclContext *DC,
ASTReader &Reader) {
if (const DeclContext *DefDC = getDefinitiveDeclContext(DC))
return Reader.getOwningModuleFile(cast<Decl>(DefDC));
return nullptr;
}
bool
ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC,
DeclarationName Name) {
assert(DC->hasExternalVisibleStorage() &&
"DeclContext has no visible decls in storage");
if (!Name)
return false;
Deserializing LookupResults(this);
SmallVector<NamedDecl *, 64> Decls;
// Compute the declaration contexts we need to look into. Multiple such
// declaration contexts occur when two declaration contexts from disjoint
// modules get merged, e.g., when two namespaces with the same name are
// independently defined in separate modules.
SmallVector<const DeclContext *, 2> Contexts;
Contexts.push_back(DC);
if (DC->isNamespace()) {
auto Merged = MergedDecls.find(const_cast<Decl *>(cast<Decl>(DC)));
if (Merged != MergedDecls.end()) {
for (unsigned I = 0, N = Merged->second.size(); I != N; ++I)
Contexts.push_back(cast<DeclContext>(GetDecl(Merged->second[I])));
}
}
auto LookUpInContexts = [&](ArrayRef<const DeclContext*> Contexts) {
DeclContextNameLookupVisitor Visitor(*this, Contexts, Name, Decls);
// If we can definitively determine which module file to look into,
// only look there. Otherwise, look in all module files.
ModuleFile *Definitive;
if (Contexts.size() == 1 &&
(Definitive = getDefinitiveModuleFileFor(Contexts[0], *this))) {
DeclContextNameLookupVisitor::visit(*Definitive, &Visitor);
} else {
ModuleMgr.visit(&DeclContextNameLookupVisitor::visit, &Visitor);
}
};
LookUpInContexts(Contexts);
// If this might be an implicit special member function, then also search
// all merged definitions of the surrounding class. We need to search them
// individually, because finding an entity in one of them doesn't imply that
// we can't find a different entity in another one.
if (isa<CXXRecordDecl>(DC)) {
auto Kind = Name.getNameKind();
if (Kind == DeclarationName::CXXConstructorName ||
Kind == DeclarationName::CXXDestructorName ||
(Kind == DeclarationName::CXXOperatorName &&
Name.getCXXOverloadedOperator() == OO_Equal)) {
auto Merged = MergedLookups.find(DC);
if (Merged != MergedLookups.end())
for (auto *MergedDC : Merged->second)
LookUpInContexts(MergedDC);
}
}
++NumVisibleDeclContextsRead;
SetExternalVisibleDeclsForName(DC, Name, Decls);
return !Decls.empty();
}
namespace {
/// \brief ModuleFile visitor used to retrieve all visible names in a
/// declaration context.
class DeclContextAllNamesVisitor {
ASTReader &Reader;
SmallVectorImpl<const DeclContext *> &Contexts;
DeclsMap &Decls;
bool VisitAll;
public:
DeclContextAllNamesVisitor(ASTReader &Reader,
SmallVectorImpl<const DeclContext *> &Contexts,
DeclsMap &Decls, bool VisitAll)
: Reader(Reader), Contexts(Contexts), Decls(Decls), VisitAll(VisitAll) { }
static bool visit(ModuleFile &M, void *UserData) {
DeclContextAllNamesVisitor *This
= static_cast<DeclContextAllNamesVisitor *>(UserData);
// Check whether we have any visible declaration information for
// this context in this module.
ModuleFile::DeclContextInfosMap::iterator Info;
bool FoundInfo = false;
for (unsigned I = 0, N = This->Contexts.size(); I != N; ++I) {
Info = M.DeclContextInfos.find(This->Contexts[I]);
if (Info != M.DeclContextInfos.end() &&
Info->second.NameLookupTableData) {
FoundInfo = true;
break;
}
}
if (!FoundInfo)
return false;
ASTDeclContextNameLookupTable *LookupTable =
Info->second.NameLookupTableData;
bool FoundAnything = false;
for (ASTDeclContextNameLookupTable::data_iterator
I = LookupTable->data_begin(), E = LookupTable->data_end();
I != E;
++I) {
ASTDeclContextNameLookupTrait::data_type Data = *I;
for (; Data.first != Data.second; ++Data.first) {
NamedDecl *ND = This->Reader.GetLocalDeclAs<NamedDecl>(M,
*Data.first);
if (!ND)
continue;
// Record this declaration.
FoundAnything = true;
This->Decls[ND->getDeclName()].push_back(ND);
}
}
return FoundAnything && !This->VisitAll;
}
};
}
void ASTReader::completeVisibleDeclsMap(const DeclContext *DC) {
if (!DC->hasExternalVisibleStorage())
return;
DeclsMap Decls;
// Compute the declaration contexts we need to look into. Multiple such
// declaration contexts occur when two declaration contexts from disjoint
// modules get merged, e.g., when two namespaces with the same name are
// independently defined in separate modules.
SmallVector<const DeclContext *, 2> Contexts;
Contexts.push_back(DC);
if (DC->isNamespace()) {
MergedDeclsMap::iterator Merged
= MergedDecls.find(const_cast<Decl *>(cast<Decl>(DC)));
if (Merged != MergedDecls.end()) {
for (unsigned I = 0, N = Merged->second.size(); I != N; ++I)
Contexts.push_back(cast<DeclContext>(GetDecl(Merged->second[I])));
}
}
DeclContextAllNamesVisitor Visitor(*this, Contexts, Decls,
/*VisitAll=*/DC->isFileContext());
ModuleMgr.visit(&DeclContextAllNamesVisitor::visit, &Visitor);
++NumVisibleDeclContextsRead;
for (DeclsMap::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) {
SetExternalVisibleDeclsForName(DC, I->first, I->second);
}
const_cast<DeclContext *>(DC)->setHasExternalVisibleStorage(false);
}
/// \brief Under non-PCH compilation the consumer receives the objc methods
/// before receiving the implementation, and codegen depends on this.
/// We simulate this by deserializing and passing to consumer the methods of the
/// implementation before passing the deserialized implementation decl.
static void PassObjCImplDeclToConsumer(ObjCImplDecl *ImplD,
ASTConsumer *Consumer) {
assert(ImplD && Consumer);
for (auto *I : ImplD->methods())
Consumer->HandleInterestingDecl(DeclGroupRef(I));
Consumer->HandleInterestingDecl(DeclGroupRef(ImplD));
}
void ASTReader::PassInterestingDeclsToConsumer() {
assert(Consumer);
if (PassingDeclsToConsumer)
return;
// Guard variable to avoid recursively redoing the process of passing
// decls to consumer.
SaveAndRestore<bool> GuardPassingDeclsToConsumer(PassingDeclsToConsumer,
true);
while (!InterestingDecls.empty()) {
Decl *D = InterestingDecls.front();
InterestingDecls.pop_front();
PassInterestingDeclToConsumer(D);
}
}
void ASTReader::PassInterestingDeclToConsumer(Decl *D) {
if (ObjCImplDecl *ImplD = dyn_cast<ObjCImplDecl>(D))
PassObjCImplDeclToConsumer(ImplD, Consumer);
else
Consumer->HandleInterestingDecl(DeclGroupRef(D));
}
void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) {
this->Consumer = Consumer;
if (!Consumer)
return;
for (unsigned I = 0, N = EagerlyDeserializedDecls.size(); I != N; ++I) {
// Force deserialization of this decl, which will cause it to be queued for
// passing to the consumer.
GetDecl(EagerlyDeserializedDecls[I]);
}
EagerlyDeserializedDecls.clear();
PassInterestingDeclsToConsumer();
}
void ASTReader::PrintStats() {
std::fprintf(stderr, "*** AST File Statistics:\n");
unsigned NumTypesLoaded
= TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(),
QualType());
unsigned NumDeclsLoaded
= DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(),
(Decl *)nullptr);
unsigned NumIdentifiersLoaded
= IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(),
IdentifiersLoaded.end(),
(IdentifierInfo *)nullptr);
unsigned NumMacrosLoaded
= MacrosLoaded.size() - std::count(MacrosLoaded.begin(),
MacrosLoaded.end(),
(MacroInfo *)nullptr);
unsigned NumSelectorsLoaded
= SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(),
SelectorsLoaded.end(),
Selector());
if (unsigned TotalNumSLocEntries = getTotalNumSLocs())
std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n",
NumSLocEntriesRead, TotalNumSLocEntries,
((float)NumSLocEntriesRead/TotalNumSLocEntries * 100));
if (!TypesLoaded.empty())
std::fprintf(stderr, " %u/%u types read (%f%%)\n",
NumTypesLoaded, (unsigned)TypesLoaded.size(),
((float)NumTypesLoaded/TypesLoaded.size() * 100));
if (!DeclsLoaded.empty())
std::fprintf(stderr, " %u/%u declarations read (%f%%)\n",
NumDeclsLoaded, (unsigned)DeclsLoaded.size(),
((float)NumDeclsLoaded/DeclsLoaded.size() * 100));
if (!IdentifiersLoaded.empty())
std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n",
NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(),
((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100));
if (!MacrosLoaded.empty())
std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
NumMacrosLoaded, (unsigned)MacrosLoaded.size(),
((float)NumMacrosLoaded/MacrosLoaded.size() * 100));
if (!SelectorsLoaded.empty())
std::fprintf(stderr, " %u/%u selectors read (%f%%)\n",
NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(),
((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100));
if (TotalNumStatements)
std::fprintf(stderr, " %u/%u statements read (%f%%)\n",
NumStatementsRead, TotalNumStatements,
((float)NumStatementsRead/TotalNumStatements * 100));
if (TotalNumMacros)
std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
NumMacrosRead, TotalNumMacros,
((float)NumMacrosRead/TotalNumMacros * 100));
if (TotalLexicalDeclContexts)
std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n",
NumLexicalDeclContextsRead, TotalLexicalDeclContexts,
((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts
* 100));
if (TotalVisibleDeclContexts)
std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n",
NumVisibleDeclContextsRead, TotalVisibleDeclContexts,
((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts
* 100));
if (TotalNumMethodPoolEntries) {
std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n",
NumMethodPoolEntriesRead, TotalNumMethodPoolEntries,
((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries
* 100));
}
if (NumMethodPoolLookups) {
std::fprintf(stderr, " %u/%u method pool lookups succeeded (%f%%)\n",
NumMethodPoolHits, NumMethodPoolLookups,
((float)NumMethodPoolHits/NumMethodPoolLookups * 100.0));
}
if (NumMethodPoolTableLookups) {
std::fprintf(stderr, " %u/%u method pool table lookups succeeded (%f%%)\n",
NumMethodPoolTableHits, NumMethodPoolTableLookups,
((float)NumMethodPoolTableHits/NumMethodPoolTableLookups
* 100.0));
}
if (NumIdentifierLookupHits) {
std::fprintf(stderr,
" %u / %u identifier table lookups succeeded (%f%%)\n",
NumIdentifierLookupHits, NumIdentifierLookups,
(double)NumIdentifierLookupHits*100.0/NumIdentifierLookups);
}
if (GlobalIndex) {
std::fprintf(stderr, "\n");
GlobalIndex->printStats();
}
std::fprintf(stderr, "\n");
dump();
std::fprintf(stderr, "\n");
}
template<typename Key, typename ModuleFile, unsigned InitialCapacity>
static void
dumpModuleIDMap(StringRef Name,
const ContinuousRangeMap<Key, ModuleFile *,
InitialCapacity> &Map) {
if (Map.begin() == Map.end())
return;
typedef ContinuousRangeMap<Key, ModuleFile *, InitialCapacity> MapType;
llvm::errs() << Name << ":\n";
for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end();
I != IEnd; ++I) {
llvm::errs() << " " << I->first << " -> " << I->second->FileName
<< "\n";
}
}
void ASTReader::dump() {
llvm::errs() << "*** PCH/ModuleFile Remappings:\n";
dumpModuleIDMap("Global bit offset map", GlobalBitOffsetsMap);
dumpModuleIDMap("Global source location entry map", GlobalSLocEntryMap);
dumpModuleIDMap("Global type map", GlobalTypeMap);
dumpModuleIDMap("Global declaration map", GlobalDeclMap);
dumpModuleIDMap("Global identifier map", GlobalIdentifierMap);
dumpModuleIDMap("Global macro map", GlobalMacroMap);
dumpModuleIDMap("Global submodule map", GlobalSubmoduleMap);
dumpModuleIDMap("Global selector map", GlobalSelectorMap);
dumpModuleIDMap("Global preprocessed entity map",
GlobalPreprocessedEntityMap);
llvm::errs() << "\n*** PCH/Modules Loaded:";
for (ModuleManager::ModuleConstIterator M = ModuleMgr.begin(),
MEnd = ModuleMgr.end();
M != MEnd; ++M)
(*M)->dump();
}
/// Return the amount of memory used by memory buffers, breaking down
/// by heap-backed versus mmap'ed memory.
void ASTReader::getMemoryBufferSizes(MemoryBufferSizes &sizes) const {
for (ModuleConstIterator I = ModuleMgr.begin(),
E = ModuleMgr.end(); I != E; ++I) {
if (llvm::MemoryBuffer *buf = (*I)->Buffer.get()) {
size_t bytes = buf->getBufferSize();
switch (buf->getBufferKind()) {
case llvm::MemoryBuffer::MemoryBuffer_Malloc:
sizes.malloc_bytes += bytes;
break;
case llvm::MemoryBuffer::MemoryBuffer_MMap:
sizes.mmap_bytes += bytes;
break;
}
}
}
}
void ASTReader::InitializeSema(Sema &S) {
SemaObj = &S;
S.addExternalSource(this);
// Makes sure any declarations that were deserialized "too early"
// still get added to the identifier's declaration chains.
for (uint64_t ID : PreloadedDeclIDs) {
NamedDecl *D = cast<NamedDecl>(GetDecl(ID));
pushExternalDeclIntoScope(D, D->getDeclName());
}
PreloadedDeclIDs.clear();
// FIXME: What happens if these are changed by a module import?
if (!FPPragmaOptions.empty()) {
assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS");
SemaObj->FPFeatures.fp_contract = FPPragmaOptions[0];
}
// FIXME: What happens if these are changed by a module import?
if (!OpenCLExtensions.empty()) {
unsigned I = 0;
#define OPENCLEXT(nm) SemaObj->OpenCLFeatures.nm = OpenCLExtensions[I++];
#include "clang/Basic/OpenCLExtensions.def"
assert(OpenCLExtensions.size() == I && "Wrong number of OPENCL_EXTENSIONS");
}
UpdateSema();
}
void ASTReader::UpdateSema() {
assert(SemaObj && "no Sema to update");
// Load the offsets of the declarations that Sema references.
// They will be lazily deserialized when needed.
if (!SemaDeclRefs.empty()) {
assert(SemaDeclRefs.size() % 2 == 0);
for (unsigned I = 0; I != SemaDeclRefs.size(); I += 2) {
if (!SemaObj->StdNamespace)
SemaObj->StdNamespace = SemaDeclRefs[I];
if (!SemaObj->StdBadAlloc)
SemaObj->StdBadAlloc = SemaDeclRefs[I+1];
}
SemaDeclRefs.clear();
}
// Update the state of 'pragma clang optimize'. Use the same API as if we had
// encountered the pragma in the source.
if(OptimizeOffPragmaLocation.isValid())
SemaObj->ActOnPragmaOptimize(/* IsOn = */ false, OptimizeOffPragmaLocation);
}
IdentifierInfo* ASTReader::get(const char *NameStart, const char *NameEnd) {
// Note that we are loading an identifier.
Deserializing AnIdentifier(this);
StringRef Name(NameStart, NameEnd - NameStart);
// If there is a global index, look there first to determine which modules
// provably do not have any results for this identifier.
GlobalModuleIndex::HitSet Hits;
GlobalModuleIndex::HitSet *HitsPtr = nullptr;
if (!loadGlobalIndex()) {
if (GlobalIndex->lookupIdentifier(Name, Hits)) {
HitsPtr = &Hits;
}
}
IdentifierLookupVisitor Visitor(Name, /*PriorGeneration=*/0,
NumIdentifierLookups,
NumIdentifierLookupHits);
ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor, HitsPtr);
IdentifierInfo *II = Visitor.getIdentifierInfo();
markIdentifierUpToDate(II);
return II;
}
namespace clang {
/// \brief An identifier-lookup iterator that enumerates all of the
/// identifiers stored within a set of AST files.
class ASTIdentifierIterator : public IdentifierIterator {
/// \brief The AST reader whose identifiers are being enumerated.
const ASTReader &Reader;
/// \brief The current index into the chain of AST files stored in
/// the AST reader.
unsigned Index;
/// \brief The current position within the identifier lookup table
/// of the current AST file.
ASTIdentifierLookupTable::key_iterator Current;
/// \brief The end position within the identifier lookup table of
/// the current AST file.
ASTIdentifierLookupTable::key_iterator End;
public:
explicit ASTIdentifierIterator(const ASTReader &Reader);
StringRef Next() override;
};
}
ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader)
: Reader(Reader), Index(Reader.ModuleMgr.size() - 1) {
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index].IdentifierLookupTable;
Current = IdTable->key_begin();
End = IdTable->key_end();
}
StringRef ASTIdentifierIterator::Next() {
while (Current == End) {
// If we have exhausted all of our AST files, we're done.
if (Index == 0)
return StringRef();
--Index;
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index].
IdentifierLookupTable;
Current = IdTable->key_begin();
End = IdTable->key_end();
}
// We have any identifiers remaining in the current AST file; return
// the next one.
StringRef Result = *Current;
++Current;
return Result;
}
IdentifierIterator *ASTReader::getIdentifiers() {
if (!loadGlobalIndex())
return GlobalIndex->createIdentifierIterator();
return new ASTIdentifierIterator(*this);
}
namespace clang { namespace serialization {
class ReadMethodPoolVisitor {
ASTReader &Reader;
Selector Sel;
unsigned PriorGeneration;
unsigned InstanceBits;
unsigned FactoryBits;
SmallVector<ObjCMethodDecl *, 4> InstanceMethods;
SmallVector<ObjCMethodDecl *, 4> FactoryMethods;
public:
ReadMethodPoolVisitor(ASTReader &Reader, Selector Sel,
unsigned PriorGeneration)
: Reader(Reader), Sel(Sel), PriorGeneration(PriorGeneration),
InstanceBits(0), FactoryBits(0) { }
static bool visit(ModuleFile &M, void *UserData) {
ReadMethodPoolVisitor *This
= static_cast<ReadMethodPoolVisitor *>(UserData);
if (!M.SelectorLookupTable)
return false;
// If we've already searched this module file, skip it now.
if (M.Generation <= This->PriorGeneration)
return true;
++This->Reader.NumMethodPoolTableLookups;
ASTSelectorLookupTable *PoolTable
= (ASTSelectorLookupTable*)M.SelectorLookupTable;
ASTSelectorLookupTable::iterator Pos = PoolTable->find(This->Sel);
if (Pos == PoolTable->end())
return false;
++This->Reader.NumMethodPoolTableHits;
++This->Reader.NumSelectorsRead;
// FIXME: Not quite happy with the statistics here. We probably should
// disable this tracking when called via LoadSelector.
// Also, should entries without methods count as misses?
++This->Reader.NumMethodPoolEntriesRead;
ASTSelectorLookupTrait::data_type Data = *Pos;
if (This->Reader.DeserializationListener)
This->Reader.DeserializationListener->SelectorRead(Data.ID,
This->Sel);
This->InstanceMethods.append(Data.Instance.begin(), Data.Instance.end());
This->FactoryMethods.append(Data.Factory.begin(), Data.Factory.end());
This->InstanceBits = Data.InstanceBits;
This->FactoryBits = Data.FactoryBits;
return true;
}
/// \brief Retrieve the instance methods found by this visitor.
ArrayRef<ObjCMethodDecl *> getInstanceMethods() const {
return InstanceMethods;
}
/// \brief Retrieve the instance methods found by this visitor.
ArrayRef<ObjCMethodDecl *> getFactoryMethods() const {
return FactoryMethods;
}
unsigned getInstanceBits() const { return InstanceBits; }
unsigned getFactoryBits() const { return FactoryBits; }
};
} } // end namespace clang::serialization
/// \brief Add the given set of methods to the method list.
static void addMethodsToPool(Sema &S, ArrayRef<ObjCMethodDecl *> Methods,
ObjCMethodList &List) {
for (unsigned I = 0, N = Methods.size(); I != N; ++I) {
S.addMethodToGlobalList(&List, Methods[I]);
}
}
void ASTReader::ReadMethodPool(Selector Sel) {
// Get the selector generation and update it to the current generation.
unsigned &Generation = SelectorGeneration[Sel];
unsigned PriorGeneration = Generation;
Generation = getGeneration();
// Search for methods defined with this selector.
++NumMethodPoolLookups;
ReadMethodPoolVisitor Visitor(*this, Sel, PriorGeneration);
ModuleMgr.visit(&ReadMethodPoolVisitor::visit, &Visitor);
if (Visitor.getInstanceMethods().empty() &&
Visitor.getFactoryMethods().empty())
return;
++NumMethodPoolHits;
if (!getSema())
return;
Sema &S = *getSema();
Sema::GlobalMethodPool::iterator Pos
= S.MethodPool.insert(std::make_pair(Sel, Sema::GlobalMethods())).first;
addMethodsToPool(S, Visitor.getInstanceMethods(), Pos->second.first);
addMethodsToPool(S, Visitor.getFactoryMethods(), Pos->second.second);
Pos->second.first.setBits(Visitor.getInstanceBits());
Pos->second.second.setBits(Visitor.getFactoryBits());
}
void ASTReader::ReadKnownNamespaces(
SmallVectorImpl<NamespaceDecl *> &Namespaces) {
Namespaces.clear();
for (unsigned I = 0, N = KnownNamespaces.size(); I != N; ++I) {
if (NamespaceDecl *Namespace
= dyn_cast_or_null<NamespaceDecl>(GetDecl(KnownNamespaces[I])))
Namespaces.push_back(Namespace);
}
}
void ASTReader::ReadUndefinedButUsed(
llvm::DenseMap<NamedDecl*, SourceLocation> &Undefined) {
for (unsigned Idx = 0, N = UndefinedButUsed.size(); Idx != N;) {
NamedDecl *D = cast<NamedDecl>(GetDecl(UndefinedButUsed[Idx++]));
SourceLocation Loc =
SourceLocation::getFromRawEncoding(UndefinedButUsed[Idx++]);
Undefined.insert(std::make_pair(D, Loc));
}
}
void ASTReader::ReadTentativeDefinitions(
SmallVectorImpl<VarDecl *> &TentativeDefs) {
for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) {
VarDecl *Var = dyn_cast_or_null<VarDecl>(GetDecl(TentativeDefinitions[I]));
if (Var)
TentativeDefs.push_back(Var);
}
TentativeDefinitions.clear();
}
void ASTReader::ReadUnusedFileScopedDecls(
SmallVectorImpl<const DeclaratorDecl *> &Decls) {
for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) {
DeclaratorDecl *D
= dyn_cast_or_null<DeclaratorDecl>(GetDecl(UnusedFileScopedDecls[I]));
if (D)
Decls.push_back(D);
}
UnusedFileScopedDecls.clear();
}
void ASTReader::ReadDelegatingConstructors(
SmallVectorImpl<CXXConstructorDecl *> &Decls) {
for (unsigned I = 0, N = DelegatingCtorDecls.size(); I != N; ++I) {
CXXConstructorDecl *D
= dyn_cast_or_null<CXXConstructorDecl>(GetDecl(DelegatingCtorDecls[I]));
if (D)
Decls.push_back(D);
}
DelegatingCtorDecls.clear();
}
void ASTReader::ReadExtVectorDecls(SmallVectorImpl<TypedefNameDecl *> &Decls) {
for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I) {
TypedefNameDecl *D
= dyn_cast_or_null<TypedefNameDecl>(GetDecl(ExtVectorDecls[I]));
if (D)
Decls.push_back(D);
}
ExtVectorDecls.clear();
}
void ASTReader::ReadDynamicClasses(SmallVectorImpl<CXXRecordDecl *> &Decls) {
for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
CXXRecordDecl *D
= dyn_cast_or_null<CXXRecordDecl>(GetDecl(DynamicClasses[I]));
if (D)
Decls.push_back(D);
}
DynamicClasses.clear();
}
void ASTReader::ReadUnusedLocalTypedefNameCandidates(
llvm::SmallSetVector<const TypedefNameDecl *, 4> &Decls) {
for (unsigned I = 0, N = UnusedLocalTypedefNameCandidates.size(); I != N;
++I) {
TypedefNameDecl *D = dyn_cast_or_null<TypedefNameDecl>(
GetDecl(UnusedLocalTypedefNameCandidates[I]));
if (D)
Decls.insert(D);
}
UnusedLocalTypedefNameCandidates.clear();
}
void
ASTReader::ReadLocallyScopedExternCDecls(SmallVectorImpl<NamedDecl *> &Decls) {
for (unsigned I = 0, N = LocallyScopedExternCDecls.size(); I != N; ++I) {
NamedDecl *D
= dyn_cast_or_null<NamedDecl>(GetDecl(LocallyScopedExternCDecls[I]));
if (D)
Decls.push_back(D);
}
LocallyScopedExternCDecls.clear();
}
void ASTReader::ReadReferencedSelectors(
SmallVectorImpl<std::pair<Selector, SourceLocation> > &Sels) {
if (ReferencedSelectorsData.empty())
return;
// If there are @selector references added them to its pool. This is for
// implementation of -Wselector.
unsigned int DataSize = ReferencedSelectorsData.size()-1;
unsigned I = 0;
while (I < DataSize) {
Selector Sel = DecodeSelector(ReferencedSelectorsData[I++]);
SourceLocation SelLoc
= SourceLocation::getFromRawEncoding(ReferencedSelectorsData[I++]);
Sels.push_back(std::make_pair(Sel, SelLoc));
}
ReferencedSelectorsData.clear();
}
void ASTReader::ReadWeakUndeclaredIdentifiers(
SmallVectorImpl<std::pair<IdentifierInfo *, WeakInfo> > &WeakIDs) {
if (WeakUndeclaredIdentifiers.empty())
return;
for (unsigned I = 0, N = WeakUndeclaredIdentifiers.size(); I < N; /*none*/) {
IdentifierInfo *WeakId
= DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]);
IdentifierInfo *AliasId
= DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]);
SourceLocation Loc
= SourceLocation::getFromRawEncoding(WeakUndeclaredIdentifiers[I++]);
bool Used = WeakUndeclaredIdentifiers[I++];
WeakInfo WI(AliasId, Loc);
WI.setUsed(Used);
WeakIDs.push_back(std::make_pair(WeakId, WI));
}
WeakUndeclaredIdentifiers.clear();
}
void ASTReader::ReadUsedVTables(SmallVectorImpl<ExternalVTableUse> &VTables) {
for (unsigned Idx = 0, N = VTableUses.size(); Idx < N; /* In loop */) {
ExternalVTableUse VT;
VT.Record = dyn_cast_or_null<CXXRecordDecl>(GetDecl(VTableUses[Idx++]));
VT.Location = SourceLocation::getFromRawEncoding(VTableUses[Idx++]);
VT.DefinitionRequired = VTableUses[Idx++];
VTables.push_back(VT);
}
VTableUses.clear();
}
void ASTReader::ReadPendingInstantiations(
SmallVectorImpl<std::pair<ValueDecl *, SourceLocation> > &Pending) {
for (unsigned Idx = 0, N = PendingInstantiations.size(); Idx < N;) {
ValueDecl *D = cast<ValueDecl>(GetDecl(PendingInstantiations[Idx++]));
SourceLocation Loc
= SourceLocation::getFromRawEncoding(PendingInstantiations[Idx++]);
Pending.push_back(std::make_pair(D, Loc));
}
PendingInstantiations.clear();
}
void ASTReader::ReadLateParsedTemplates(
llvm::DenseMap<const FunctionDecl *, LateParsedTemplate *> &LPTMap) {
for (unsigned Idx = 0, N = LateParsedTemplates.size(); Idx < N;
/* In loop */) {
FunctionDecl *FD = cast<FunctionDecl>(GetDecl(LateParsedTemplates[Idx++]));
LateParsedTemplate *LT = new LateParsedTemplate;
LT->D = GetDecl(LateParsedTemplates[Idx++]);
ModuleFile *F = getOwningModuleFile(LT->D);
assert(F && "No module");
unsigned TokN = LateParsedTemplates[Idx++];
LT->Toks.reserve(TokN);
for (unsigned T = 0; T < TokN; ++T)
LT->Toks.push_back(ReadToken(*F, LateParsedTemplates, Idx));
LPTMap[FD] = LT;
}
LateParsedTemplates.clear();
}
void ASTReader::LoadSelector(Selector Sel) {
// It would be complicated to avoid reading the methods anyway. So don't.
ReadMethodPool(Sel);
}
void ASTReader::SetIdentifierInfo(IdentifierID ID, IdentifierInfo *II) {
assert(ID && "Non-zero identifier ID required");
assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range");
IdentifiersLoaded[ID - 1] = II;
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID, II);
}
/// \brief Set the globally-visible declarations associated with the given
/// identifier.
///
/// If the AST reader is currently in a state where the given declaration IDs
/// cannot safely be resolved, they are queued until it is safe to resolve
/// them.
///
/// \param II an IdentifierInfo that refers to one or more globally-visible
/// declarations.
///
/// \param DeclIDs the set of declaration IDs with the name @p II that are
/// visible at global scope.
///
/// \param Decls if non-null, this vector will be populated with the set of
/// deserialized declarations. These declarations will not be pushed into
/// scope.
void
ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II,
const SmallVectorImpl<uint32_t> &DeclIDs,
SmallVectorImpl<Decl *> *Decls) {
if (NumCurrentElementsDeserializing && !Decls) {
PendingIdentifierInfos[II].append(DeclIDs.begin(), DeclIDs.end());
return;
}
for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) {
if (!SemaObj) {
// Queue this declaration so that it will be added to the
// translation unit scope and identifier's declaration chain
// once a Sema object is known.
PreloadedDeclIDs.push_back(DeclIDs[I]);
continue;
}
NamedDecl *D = cast<NamedDecl>(GetDecl(DeclIDs[I]));
// If we're simply supposed to record the declarations, do so now.
if (Decls) {
Decls->push_back(D);
continue;
}
// Introduce this declaration into the translation-unit scope
// and add it to the declaration chain for this identifier, so
// that (unqualified) name lookup will find it.
pushExternalDeclIntoScope(D, II);
}
}
IdentifierInfo *ASTReader::DecodeIdentifierInfo(IdentifierID ID) {
if (ID == 0)
return nullptr;
if (IdentifiersLoaded.empty()) {
Error("no identifier table in AST file");
return nullptr;
}
ID -= 1;
if (!IdentifiersLoaded[ID]) {
GlobalIdentifierMapType::iterator I = GlobalIdentifierMap.find(ID + 1);
assert(I != GlobalIdentifierMap.end() && "Corrupted global identifier map");
ModuleFile *M = I->second;
unsigned Index = ID - M->BaseIdentifierID;
const char *Str = M->IdentifierTableData + M->IdentifierOffsets[Index];
// All of the strings in the AST file are preceded by a 16-bit length.
// Extract that 16-bit length to avoid having to execute strlen().
// NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as
// unsigned integers. This is important to avoid integer overflow when
// we cast them to 'unsigned'.
const unsigned char *StrLenPtr = (const unsigned char*) Str - 2;
unsigned StrLen = (((unsigned) StrLenPtr[0])
| (((unsigned) StrLenPtr[1]) << 8)) - 1;
IdentifiersLoaded[ID]
= &PP.getIdentifierTable().get(StringRef(Str, StrLen));
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID + 1, IdentifiersLoaded[ID]);
}
return IdentifiersLoaded[ID];
}
IdentifierInfo *ASTReader::getLocalIdentifier(ModuleFile &M, unsigned LocalID) {
return DecodeIdentifierInfo(getGlobalIdentifierID(M, LocalID));
}
IdentifierID ASTReader::getGlobalIdentifierID(ModuleFile &M, unsigned LocalID) {
if (LocalID < NUM_PREDEF_IDENT_IDS)
return LocalID;
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.IdentifierRemap.find(LocalID - NUM_PREDEF_IDENT_IDS);
assert(I != M.IdentifierRemap.end()
&& "Invalid index into identifier index remap");
return LocalID + I->second;
}
MacroInfo *ASTReader::getMacro(MacroID ID) {
if (ID == 0)
return nullptr;
if (MacrosLoaded.empty()) {
Error("no macro table in AST file");
return nullptr;
}
ID -= NUM_PREDEF_MACRO_IDS;
if (!MacrosLoaded[ID]) {
GlobalMacroMapType::iterator I
= GlobalMacroMap.find(ID + NUM_PREDEF_MACRO_IDS);
assert(I != GlobalMacroMap.end() && "Corrupted global macro map");
ModuleFile *M = I->second;
unsigned Index = ID - M->BaseMacroID;
MacrosLoaded[ID] = ReadMacroRecord(*M, M->MacroOffsets[Index]);
if (DeserializationListener)
DeserializationListener->MacroRead(ID + NUM_PREDEF_MACRO_IDS,
MacrosLoaded[ID]);
}
return MacrosLoaded[ID];
}
MacroID ASTReader::getGlobalMacroID(ModuleFile &M, unsigned LocalID) {
if (LocalID < NUM_PREDEF_MACRO_IDS)
return LocalID;
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.MacroRemap.find(LocalID - NUM_PREDEF_MACRO_IDS);
assert(I != M.MacroRemap.end() && "Invalid index into macro index remap");
return LocalID + I->second;
}
serialization::SubmoduleID
ASTReader::getGlobalSubmoduleID(ModuleFile &M, unsigned LocalID) {
if (LocalID < NUM_PREDEF_SUBMODULE_IDS)
return LocalID;
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.SubmoduleRemap.find(LocalID - NUM_PREDEF_SUBMODULE_IDS);
assert(I != M.SubmoduleRemap.end()
&& "Invalid index into submodule index remap");
return LocalID + I->second;
}
Module *ASTReader::getSubmodule(SubmoduleID GlobalID) {
if (GlobalID < NUM_PREDEF_SUBMODULE_IDS) {
assert(GlobalID == 0 && "Unhandled global submodule ID");
return nullptr;
}
if (GlobalID > SubmodulesLoaded.size()) {
Error("submodule ID out of range in AST file");
return nullptr;
}
return SubmodulesLoaded[GlobalID - NUM_PREDEF_SUBMODULE_IDS];
}
Module *ASTReader::getModule(unsigned ID) {
return getSubmodule(ID);
}
Selector ASTReader::getLocalSelector(ModuleFile &M, unsigned LocalID) {
return DecodeSelector(getGlobalSelectorID(M, LocalID));
}
Selector ASTReader::DecodeSelector(serialization::SelectorID ID) {
if (ID == 0)
return Selector();
if (ID > SelectorsLoaded.size()) {
Error("selector ID out of range in AST file");
return Selector();
}
if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == nullptr) {
// Load this selector from the selector table.
GlobalSelectorMapType::iterator I = GlobalSelectorMap.find(ID);
assert(I != GlobalSelectorMap.end() && "Corrupted global selector map");
ModuleFile &M = *I->second;
ASTSelectorLookupTrait Trait(*this, M);
unsigned Idx = ID - M.BaseSelectorID - NUM_PREDEF_SELECTOR_IDS;
SelectorsLoaded[ID - 1] =
Trait.ReadKey(M.SelectorLookupTableData + M.SelectorOffsets[Idx], 0);
if (DeserializationListener)
DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]);
}
return SelectorsLoaded[ID - 1];
}
Selector ASTReader::GetExternalSelector(serialization::SelectorID ID) {
return DecodeSelector(ID);
}
uint32_t ASTReader::GetNumExternalSelectors() {
// ID 0 (the null selector) is considered an external selector.
return getTotalNumSelectors() + 1;
}
serialization::SelectorID
ASTReader::getGlobalSelectorID(ModuleFile &M, unsigned LocalID) const {
if (LocalID < NUM_PREDEF_SELECTOR_IDS)
return LocalID;
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.SelectorRemap.find(LocalID - NUM_PREDEF_SELECTOR_IDS);
assert(I != M.SelectorRemap.end()
&& "Invalid index into selector index remap");
return LocalID + I->second;
}
DeclarationName
ASTReader::ReadDeclarationName(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++];
switch (Kind) {
case DeclarationName::Identifier:
return DeclarationName(GetIdentifierInfo(F, Record, Idx));
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return DeclarationName(ReadSelector(F, Record, Idx));
case DeclarationName::CXXConstructorName:
return Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXDestructorName:
return Context.DeclarationNames.getCXXDestructorName(
Context.getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXConversionFunctionName:
return Context.DeclarationNames.getCXXConversionFunctionName(
Context.getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXOperatorName:
return Context.DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Record[Idx++]);
case DeclarationName::CXXLiteralOperatorName:
return Context.DeclarationNames.getCXXLiteralOperatorName(
GetIdentifierInfo(F, Record, Idx));
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
llvm_unreachable("Invalid NameKind!");
}
void ASTReader::ReadDeclarationNameLoc(ModuleFile &F,
DeclarationNameLoc &DNLoc,
DeclarationName Name,
const RecordData &Record, unsigned &Idx) {
switch (Name.getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
DNLoc.NamedType.TInfo = GetTypeSourceInfo(F, Record, Idx);
break;
case DeclarationName::CXXOperatorName:
DNLoc.CXXOperatorName.BeginOpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
DNLoc.CXXOperatorName.EndOpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
break;
case DeclarationName::CXXLiteralOperatorName:
DNLoc.CXXLiteralOperatorName.OpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXUsingDirective:
break;
}
}
void ASTReader::ReadDeclarationNameInfo(ModuleFile &F,
DeclarationNameInfo &NameInfo,
const RecordData &Record, unsigned &Idx) {
NameInfo.setName(ReadDeclarationName(F, Record, Idx));
NameInfo.setLoc(ReadSourceLocation(F, Record, Idx));
DeclarationNameLoc DNLoc;
ReadDeclarationNameLoc(F, DNLoc, NameInfo.getName(), Record, Idx);
NameInfo.setInfo(DNLoc);
}
void ASTReader::ReadQualifierInfo(ModuleFile &F, QualifierInfo &Info,
const RecordData &Record, unsigned &Idx) {
Info.QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx);
unsigned NumTPLists = Record[Idx++];
Info.NumTemplParamLists = NumTPLists;
if (NumTPLists) {
Info.TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
for (unsigned i=0; i != NumTPLists; ++i)
Info.TemplParamLists[i] = ReadTemplateParameterList(F, Record, Idx);
}
}
TemplateName
ASTReader::ReadTemplateName(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++];
switch (Kind) {
case TemplateName::Template:
return TemplateName(ReadDeclAs<TemplateDecl>(F, Record, Idx));
case TemplateName::OverloadedTemplate: {
unsigned size = Record[Idx++];
UnresolvedSet<8> Decls;
while (size--)
Decls.addDecl(ReadDeclAs<NamedDecl>(F, Record, Idx));
return Context.getOverloadedTemplateName(Decls.begin(), Decls.end());
}
case TemplateName::QualifiedTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
bool hasTemplKeyword = Record[Idx++];
TemplateDecl *Template = ReadDeclAs<TemplateDecl>(F, Record, Idx);
return Context.getQualifiedTemplateName(NNS, hasTemplKeyword, Template);
}
case TemplateName::DependentTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
if (Record[Idx++]) // isIdentifier
return Context.getDependentTemplateName(NNS,
GetIdentifierInfo(F, Record,
Idx));
return Context.getDependentTemplateName(NNS,
(OverloadedOperatorKind)Record[Idx++]);
}
case TemplateName::SubstTemplateTemplateParm: {
TemplateTemplateParmDecl *param
= ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
if (!param) return TemplateName();
TemplateName replacement = ReadTemplateName(F, Record, Idx);
return Context.getSubstTemplateTemplateParm(param, replacement);
}
case TemplateName::SubstTemplateTemplateParmPack: {
TemplateTemplateParmDecl *Param
= ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
if (!Param)
return TemplateName();
TemplateArgument ArgPack = ReadTemplateArgument(F, Record, Idx);
if (ArgPack.getKind() != TemplateArgument::Pack)
return TemplateName();
return Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
}
}
llvm_unreachable("Unhandled template name kind!");
}
TemplateArgument
ASTReader::ReadTemplateArgument(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
TemplateArgument::ArgKind Kind = (TemplateArgument::ArgKind)Record[Idx++];
switch (Kind) {
case TemplateArgument::Null:
return TemplateArgument();
case TemplateArgument::Type:
return TemplateArgument(readType(F, Record, Idx));
case TemplateArgument::Declaration: {
ValueDecl *D = ReadDeclAs<ValueDecl>(F, Record, Idx);
return TemplateArgument(D, readType(F, Record, Idx));
}
case TemplateArgument::NullPtr:
return TemplateArgument(readType(F, Record, Idx), /*isNullPtr*/true);
case TemplateArgument::Integral: {
llvm::APSInt Value = ReadAPSInt(Record, Idx);
QualType T = readType(F, Record, Idx);
return TemplateArgument(Context, Value, T);
}
case TemplateArgument::Template:
return TemplateArgument(ReadTemplateName(F, Record, Idx));
case TemplateArgument::TemplateExpansion: {
TemplateName Name = ReadTemplateName(F, Record, Idx);
Optional<unsigned> NumTemplateExpansions;
if (unsigned NumExpansions = Record[Idx++])
NumTemplateExpansions = NumExpansions - 1;
return TemplateArgument(Name, NumTemplateExpansions);
}
case TemplateArgument::Expression:
return TemplateArgument(ReadExpr(F));
case TemplateArgument::Pack: {
unsigned NumArgs = Record[Idx++];
TemplateArgument *Args = new (Context) TemplateArgument[NumArgs];
for (unsigned I = 0; I != NumArgs; ++I)
Args[I] = ReadTemplateArgument(F, Record, Idx);
return TemplateArgument(Args, NumArgs);
}
}
llvm_unreachable("Unhandled template argument kind!");
}
TemplateParameterList *
ASTReader::ReadTemplateParameterList(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
SourceLocation TemplateLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Idx);
unsigned NumParams = Record[Idx++];
SmallVector<NamedDecl *, 16> Params;
Params.reserve(NumParams);
while (NumParams--)
Params.push_back(ReadDeclAs<NamedDecl>(F, Record, Idx));
TemplateParameterList* TemplateParams =
TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
Params.data(), Params.size(), RAngleLoc);
return TemplateParams;
}
void
ASTReader::
ReadTemplateArgumentList(SmallVectorImpl<TemplateArgument> &TemplArgs,
ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
unsigned NumTemplateArgs = Record[Idx++];
TemplArgs.reserve(NumTemplateArgs);
while (NumTemplateArgs--)
TemplArgs.push_back(ReadTemplateArgument(F, Record, Idx));
}
/// \brief Read a UnresolvedSet structure.
void ASTReader::ReadUnresolvedSet(ModuleFile &F, LazyASTUnresolvedSet &Set,
const RecordData &Record, unsigned &Idx) {
unsigned NumDecls = Record[Idx++];
Set.reserve(Context, NumDecls);
while (NumDecls--) {
DeclID ID = ReadDeclID(F, Record, Idx);
AccessSpecifier AS = (AccessSpecifier)Record[Idx++];
Set.addLazyDecl(Context, ID, AS);
}
}
CXXBaseSpecifier
ASTReader::ReadCXXBaseSpecifier(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
bool isVirtual = static_cast<bool>(Record[Idx++]);
bool isBaseOfClass = static_cast<bool>(Record[Idx++]);
AccessSpecifier AS = static_cast<AccessSpecifier>(Record[Idx++]);
bool inheritConstructors = static_cast<bool>(Record[Idx++]);
TypeSourceInfo *TInfo = GetTypeSourceInfo(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Idx);
CXXBaseSpecifier Result(Range, isVirtual, isBaseOfClass, AS, TInfo,
EllipsisLoc);
Result.setInheritConstructors(inheritConstructors);
return Result;
}
std::pair<CXXCtorInitializer **, unsigned>
ASTReader::ReadCXXCtorInitializers(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
CXXCtorInitializer **CtorInitializers = nullptr;
unsigned NumInitializers = Record[Idx++];
if (NumInitializers) {
CtorInitializers
= new (Context) CXXCtorInitializer*[NumInitializers];
for (unsigned i=0; i != NumInitializers; ++i) {
TypeSourceInfo *TInfo = nullptr;
bool IsBaseVirtual = false;
FieldDecl *Member = nullptr;
IndirectFieldDecl *IndirectMember = nullptr;
CtorInitializerType Type = (CtorInitializerType)Record[Idx++];
switch (Type) {
case CTOR_INITIALIZER_BASE:
TInfo = GetTypeSourceInfo(F, Record, Idx);
IsBaseVirtual = Record[Idx++];
break;
case CTOR_INITIALIZER_DELEGATING:
TInfo = GetTypeSourceInfo(F, Record, Idx);
break;
case CTOR_INITIALIZER_MEMBER:
Member = ReadDeclAs<FieldDecl>(F, Record, Idx);
break;
case CTOR_INITIALIZER_INDIRECT_MEMBER:
IndirectMember = ReadDeclAs<IndirectFieldDecl>(F, Record, Idx);
break;
}
SourceLocation MemberOrEllipsisLoc = ReadSourceLocation(F, Record, Idx);
Expr *Init = ReadExpr(F);
SourceLocation LParenLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation RParenLoc = ReadSourceLocation(F, Record, Idx);
bool IsWritten = Record[Idx++];
unsigned SourceOrderOrNumArrayIndices;
SmallVector<VarDecl *, 8> Indices;
if (IsWritten) {
SourceOrderOrNumArrayIndices = Record[Idx++];
} else {
SourceOrderOrNumArrayIndices = Record[Idx++];
Indices.reserve(SourceOrderOrNumArrayIndices);
for (unsigned i=0; i != SourceOrderOrNumArrayIndices; ++i)
Indices.push_back(ReadDeclAs<VarDecl>(F, Record, Idx));
}
CXXCtorInitializer *BOMInit;
if (Type == CTOR_INITIALIZER_BASE) {
BOMInit = new (Context) CXXCtorInitializer(Context, TInfo, IsBaseVirtual,
LParenLoc, Init, RParenLoc,
MemberOrEllipsisLoc);
} else if (Type == CTOR_INITIALIZER_DELEGATING) {
BOMInit = new (Context) CXXCtorInitializer(Context, TInfo, LParenLoc,
Init, RParenLoc);
} else if (IsWritten) {
if (Member)
BOMInit = new (Context) CXXCtorInitializer(Context, Member, MemberOrEllipsisLoc,
LParenLoc, Init, RParenLoc);
else
BOMInit = new (Context) CXXCtorInitializer(Context, IndirectMember,
MemberOrEllipsisLoc, LParenLoc,
Init, RParenLoc);
} else {
if (IndirectMember) {
assert(Indices.empty() && "Indirect field improperly initialized");
BOMInit = new (Context) CXXCtorInitializer(Context, IndirectMember,
MemberOrEllipsisLoc, LParenLoc,
Init, RParenLoc);
} else {
BOMInit = CXXCtorInitializer::Create(Context, Member, MemberOrEllipsisLoc,
LParenLoc, Init, RParenLoc,
Indices.data(), Indices.size());
}
}
if (IsWritten)
BOMInit->setSourceOrder(SourceOrderOrNumArrayIndices);
CtorInitializers[i] = BOMInit;
}
}
return std::make_pair(CtorInitializers, NumInitializers);
}
NestedNameSpecifier *
ASTReader::ReadNestedNameSpecifier(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
unsigned N = Record[Idx++];
NestedNameSpecifier *NNS = nullptr, *Prev = nullptr;
for (unsigned I = 0; I != N; ++I) {
NestedNameSpecifier::SpecifierKind Kind
= (NestedNameSpecifier::SpecifierKind)Record[Idx++];
switch (Kind) {
case NestedNameSpecifier::Identifier: {
IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx);
NNS = NestedNameSpecifier::Create(Context, Prev, II);
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::Create(Context, Prev, NS);
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::Create(Context, Prev, Alias);
break;
}
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
const Type *T = readType(F, Record, Idx).getTypePtrOrNull();
if (!T)
return nullptr;
bool Template = Record[Idx++];
NNS = NestedNameSpecifier::Create(Context, Prev, Template, T);
break;
}
case NestedNameSpecifier::Global: {
NNS = NestedNameSpecifier::GlobalSpecifier(Context);
// No associated value, and there can't be a prefix.
break;
}
case NestedNameSpecifier::Super: {
CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::SuperSpecifier(Context, RD);
break;
}
}
Prev = NNS;
}
return NNS;
}
NestedNameSpecifierLoc
ASTReader::ReadNestedNameSpecifierLoc(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
unsigned N = Record[Idx++];
NestedNameSpecifierLocBuilder Builder;
for (unsigned I = 0; I != N; ++I) {
NestedNameSpecifier::SpecifierKind Kind
= (NestedNameSpecifier::SpecifierKind)Record[Idx++];
switch (Kind) {
case NestedNameSpecifier::Identifier: {
IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(Context, II, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(Context, NS, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(Context, Alias, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
bool Template = Record[Idx++];
TypeSourceInfo *T = GetTypeSourceInfo(F, Record, Idx);
if (!T)
return NestedNameSpecifierLoc();
SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
// FIXME: 'template' keyword location not saved anywhere, so we fake it.
Builder.Extend(Context,
Template? T->getTypeLoc().getBeginLoc() : SourceLocation(),
T->getTypeLoc(), ColonColonLoc);
break;
}
case NestedNameSpecifier::Global: {
SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
Builder.MakeGlobal(Context, ColonColonLoc);
break;
}
case NestedNameSpecifier::Super: {
CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.MakeSuper(Context, RD, Range.getBegin(), Range.getEnd());
break;
}
}
}
return Builder.getWithLocInContext(Context);
}
SourceRange
ASTReader::ReadSourceRange(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
SourceLocation beg = ReadSourceLocation(F, Record, Idx);
SourceLocation end = ReadSourceLocation(F, Record, Idx);
return SourceRange(beg, end);
}
/// \brief Read an integral value
llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) {
unsigned BitWidth = Record[Idx++];
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
llvm::APInt Result(BitWidth, NumWords, &Record[Idx]);
Idx += NumWords;
return Result;
}
/// \brief Read a signed integral value
llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) {
bool isUnsigned = Record[Idx++];
return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned);
}
/// \brief Read a floating-point value
llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record,
const llvm::fltSemantics &Sem,
unsigned &Idx) {
return llvm::APFloat(Sem, ReadAPInt(Record, Idx));
}
// \brief Read a string
std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) {
unsigned Len = Record[Idx++];
std::string Result(Record.data() + Idx, Record.data() + Idx + Len);
Idx += Len;
return Result;
}
VersionTuple ASTReader::ReadVersionTuple(const RecordData &Record,
unsigned &Idx) {
unsigned Major = Record[Idx++];
unsigned Minor = Record[Idx++];
unsigned Subminor = Record[Idx++];
if (Minor == 0)
return VersionTuple(Major);
if (Subminor == 0)
return VersionTuple(Major, Minor - 1);
return VersionTuple(Major, Minor - 1, Subminor - 1);
}
CXXTemporary *ASTReader::ReadCXXTemporary(ModuleFile &F,
const RecordData &Record,
unsigned &Idx) {
CXXDestructorDecl *Decl = ReadDeclAs<CXXDestructorDecl>(F, Record, Idx);
return CXXTemporary::Create(Context, Decl);
}
DiagnosticBuilder ASTReader::Diag(unsigned DiagID) {
return Diag(CurrentImportLoc, DiagID);
}
DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(Loc, DiagID);
}
/// \brief Retrieve the identifier table associated with the
/// preprocessor.
IdentifierTable &ASTReader::getIdentifierTable() {
return PP.getIdentifierTable();
}
/// \brief Record that the given ID maps to the given switch-case
/// statement.
void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) {
assert((*CurrSwitchCaseStmts)[ID] == nullptr &&
"Already have a SwitchCase with this ID");
(*CurrSwitchCaseStmts)[ID] = SC;
}
/// \brief Retrieve the switch-case statement with the given ID.
SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) {
assert((*CurrSwitchCaseStmts)[ID] != nullptr && "No SwitchCase with this ID");
return (*CurrSwitchCaseStmts)[ID];
}
void ASTReader::ClearSwitchCaseIDs() {
CurrSwitchCaseStmts->clear();
}
void ASTReader::ReadComments() {
std::vector<RawComment *> Comments;
for (SmallVectorImpl<std::pair<BitstreamCursor,
serialization::ModuleFile *> >::iterator
I = CommentsCursors.begin(),
E = CommentsCursors.end();
I != E; ++I) {
Comments.clear();
BitstreamCursor &Cursor = I->first;
serialization::ModuleFile &F = *I->second;
SavedStreamPosition SavedPosition(Cursor);
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry =
Cursor.advanceSkippingSubblocks(BitstreamCursor::AF_DontPopBlockAtEnd);
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return;
case llvm::BitstreamEntry::EndBlock:
goto NextCursor;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch ((CommentRecordTypes)Cursor.readRecord(Entry.ID, Record)) {
case COMMENTS_RAW_COMMENT: {
unsigned Idx = 0;
SourceRange SR = ReadSourceRange(F, Record, Idx);
RawComment::CommentKind Kind =
(RawComment::CommentKind) Record[Idx++];
bool IsTrailingComment = Record[Idx++];
bool IsAlmostTrailingComment = Record[Idx++];
Comments.push_back(new (Context) RawComment(
SR, Kind, IsTrailingComment, IsAlmostTrailingComment,
Context.getLangOpts().CommentOpts.ParseAllComments));
break;
}
}
}
NextCursor:
Context.Comments.addDeserializedComments(Comments);
}
}
std::string ASTReader::getOwningModuleNameForDiagnostic(const Decl *D) {
// If we know the owning module, use it.
if (Module *M = D->getOwningModule())
return M->getFullModuleName();
// Otherwise, use the name of the top-level module the decl is within.
if (ModuleFile *M = getOwningModuleFile(D))
return M->ModuleName;
// Not from a module.
return "";
}
void ASTReader::finishPendingActions() {
while (!PendingIdentifierInfos.empty() ||
!PendingIncompleteDeclChains.empty() || !PendingDeclChains.empty() ||
!PendingMacroIDs.empty() || !PendingDeclContextInfos.empty() ||
!PendingUpdateRecords.empty()) {
// If any identifiers with corresponding top-level declarations have
// been loaded, load those declarations now.
typedef llvm::DenseMap<IdentifierInfo *, SmallVector<Decl *, 2> >
TopLevelDeclsMap;
TopLevelDeclsMap TopLevelDecls;
while (!PendingIdentifierInfos.empty()) {
IdentifierInfo *II = PendingIdentifierInfos.back().first;
SmallVector<uint32_t, 4> DeclIDs =
std::move(PendingIdentifierInfos.back().second);
PendingIdentifierInfos.pop_back();
SetGloballyVisibleDecls(II, DeclIDs, &TopLevelDecls[II]);
}
// For each decl chain that we wanted to complete while deserializing, mark
// it as "still needs to be completed".
for (unsigned I = 0; I != PendingIncompleteDeclChains.size(); ++I) {
markIncompleteDeclChain(PendingIncompleteDeclChains[I]);
}
PendingIncompleteDeclChains.clear();
// Load pending declaration chains.
for (unsigned I = 0; I != PendingDeclChains.size(); ++I) {
loadPendingDeclChain(PendingDeclChains[I]);
PendingDeclChainsKnown.erase(PendingDeclChains[I]);
}
PendingDeclChains.clear();
// Make the most recent of the top-level declarations visible.
for (TopLevelDeclsMap::iterator TLD = TopLevelDecls.begin(),
TLDEnd = TopLevelDecls.end(); TLD != TLDEnd; ++TLD) {
IdentifierInfo *II = TLD->first;
for (unsigned I = 0, N = TLD->second.size(); I != N; ++I) {
pushExternalDeclIntoScope(cast<NamedDecl>(TLD->second[I]), II);
}
}
// Load any pending macro definitions.
for (unsigned I = 0; I != PendingMacroIDs.size(); ++I) {
IdentifierInfo *II = PendingMacroIDs.begin()[I].first;
SmallVector<PendingMacroInfo, 2> GlobalIDs;
GlobalIDs.swap(PendingMacroIDs.begin()[I].second);
// Initialize the macro history from chained-PCHs ahead of module imports.
for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs;
++IDIdx) {
const PendingMacroInfo &Info = GlobalIDs[IDIdx];
if (Info.M->Kind != MK_ImplicitModule &&
Info.M->Kind != MK_ExplicitModule)
resolvePendingMacro(II, Info);
}
// Handle module imports.
for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs;
++IDIdx) {
const PendingMacroInfo &Info = GlobalIDs[IDIdx];
if (Info.M->Kind == MK_ImplicitModule ||
Info.M->Kind == MK_ExplicitModule)
resolvePendingMacro(II, Info);
}
}
PendingMacroIDs.clear();
// Wire up the DeclContexts for Decls that we delayed setting until
// recursive loading is completed.
while (!PendingDeclContextInfos.empty()) {
PendingDeclContextInfo Info = PendingDeclContextInfos.front();
PendingDeclContextInfos.pop_front();
DeclContext *SemaDC = cast<DeclContext>(GetDecl(Info.SemaDC));
DeclContext *LexicalDC = cast<DeclContext>(GetDecl(Info.LexicalDC));
Info.D->setDeclContextsImpl(SemaDC, LexicalDC, getContext());
}
// Perform any pending declaration updates.
while (!PendingUpdateRecords.empty()) {
auto Update = PendingUpdateRecords.pop_back_val();
ReadingKindTracker ReadingKind(Read_Decl, *this);
loadDeclUpdateRecords(Update.first, Update.second);
}
}
// If we deserialized any C++ or Objective-C class definitions, any
// Objective-C protocol definitions, or any redeclarable templates, make sure
// that all redeclarations point to the definitions. Note that this can only
// happen now, after the redeclaration chains have been fully wired.
for (Decl *D : PendingDefinitions) {
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
if (const TagType *TagT = dyn_cast<TagType>(TD->getTypeForDecl())) {
// Make sure that the TagType points at the definition.
const_cast<TagType*>(TagT)->decl = TD;
}
if (auto RD = dyn_cast<CXXRecordDecl>(D)) {
for (auto R : RD->redecls()) {
assert((R == D) == R->isThisDeclarationADefinition() &&
"declaration thinks it's the definition but it isn't");
cast<CXXRecordDecl>(R)->DefinitionData = RD->DefinitionData;
}
}
continue;
}
if (auto ID = dyn_cast<ObjCInterfaceDecl>(D)) {
// Make sure that the ObjCInterfaceType points at the definition.
const_cast<ObjCInterfaceType *>(cast<ObjCInterfaceType>(ID->TypeForDecl))
->Decl = ID;
for (auto R : ID->redecls())
R->Data = ID->Data;
continue;
}
if (auto PD = dyn_cast<ObjCProtocolDecl>(D)) {
for (auto R : PD->redecls())
R->Data = PD->Data;
continue;
}
auto RTD = cast<RedeclarableTemplateDecl>(D)->getCanonicalDecl();
for (auto R : RTD->redecls())
R->Common = RTD->Common;
}
PendingDefinitions.clear();
// Load the bodies of any functions or methods we've encountered. We do
// this now (delayed) so that we can be sure that the declaration chains
// have been fully wired up.
for (PendingBodiesMap::iterator PB = PendingBodies.begin(),
PBEnd = PendingBodies.end();
PB != PBEnd; ++PB) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PB->first)) {
// FIXME: Check for =delete/=default?
// FIXME: Complain about ODR violations here?
if (!getContext().getLangOpts().Modules || !FD->hasBody())
FD->setLazyBody(PB->second);
continue;
}
ObjCMethodDecl *MD = cast<ObjCMethodDecl>(PB->first);
if (!getContext().getLangOpts().Modules || !MD->hasBody())
MD->setLazyBody(PB->second);
}
PendingBodies.clear();
}
void ASTReader::diagnoseOdrViolations() {
if (PendingOdrMergeFailures.empty() && PendingOdrMergeChecks.empty())
return;
// Trigger the import of the full definition of each class that had any
// odr-merging problems, so we can produce better diagnostics for them.
// These updates may in turn find and diagnose some ODR failures, so take
// ownership of the set first.
auto OdrMergeFailures = std::move(PendingOdrMergeFailures);
PendingOdrMergeFailures.clear();
for (auto &Merge : OdrMergeFailures) {
Merge.first->buildLookup();
Merge.first->decls_begin();
Merge.first->bases_begin();
Merge.first->vbases_begin();
for (auto *RD : Merge.second) {
RD->decls_begin();
RD->bases_begin();
RD->vbases_begin();
}
}
// For each declaration from a merged context, check that the canonical
// definition of that context also contains a declaration of the same
// entity.
//
// Caution: this loop does things that might invalidate iterators into
// PendingOdrMergeChecks. Don't turn this into a range-based for loop!
while (!PendingOdrMergeChecks.empty()) {
NamedDecl *D = PendingOdrMergeChecks.pop_back_val();
// FIXME: Skip over implicit declarations for now. This matters for things
// like implicitly-declared special member functions. This isn't entirely
// correct; we can end up with multiple unmerged declarations of the same
// implicit entity.
if (D->isImplicit())
continue;
DeclContext *CanonDef = D->getDeclContext();
bool Found = false;
const Decl *DCanon = D->getCanonicalDecl();
for (auto RI : D->redecls()) {
if (RI->getLexicalDeclContext() == CanonDef) {
Found = true;
break;
}
}
if (Found)
continue;
llvm::SmallVector<const NamedDecl*, 4> Candidates;
DeclContext::lookup_result R = CanonDef->lookup(D->getDeclName());
for (DeclContext::lookup_iterator I = R.begin(), E = R.end();
!Found && I != E; ++I) {
for (auto RI : (*I)->redecls()) {
if (RI->getLexicalDeclContext() == CanonDef) {
// This declaration is present in the canonical definition. If it's
// in the same redecl chain, it's the one we're looking for.
if (RI->getCanonicalDecl() == DCanon)
Found = true;
else
Candidates.push_back(cast<NamedDecl>(RI));
break;
}
}
}
if (!Found) {
// The AST doesn't like TagDecls becoming invalid after they've been
// completed. We only really need to mark FieldDecls as invalid here.
if (!isa<TagDecl>(D))
D->setInvalidDecl();
std::string CanonDefModule =
getOwningModuleNameForDiagnostic(cast<Decl>(CanonDef));
Diag(D->getLocation(), diag::err_module_odr_violation_missing_decl)
<< D << getOwningModuleNameForDiagnostic(D)
<< CanonDef << CanonDefModule.empty() << CanonDefModule;
if (Candidates.empty())
Diag(cast<Decl>(CanonDef)->getLocation(),
diag::note_module_odr_violation_no_possible_decls) << D;
else {
for (unsigned I = 0, N = Candidates.size(); I != N; ++I)
Diag(Candidates[I]->getLocation(),
diag::note_module_odr_violation_possible_decl)
<< Candidates[I];
}
DiagnosedOdrMergeFailures.insert(CanonDef);
}
}
// Issue any pending ODR-failure diagnostics.
for (auto &Merge : OdrMergeFailures) {
// If we've already pointed out a specific problem with this class, don't
// bother issuing a general "something's different" diagnostic.
if (!DiagnosedOdrMergeFailures.insert(Merge.first))
continue;
bool Diagnosed = false;
for (auto *RD : Merge.second) {
// Multiple different declarations got merged together; tell the user
// where they came from.
if (Merge.first != RD) {
// FIXME: Walk the definition, figure out what's different,
// and diagnose that.
if (!Diagnosed) {
std::string Module = getOwningModuleNameForDiagnostic(Merge.first);
Diag(Merge.first->getLocation(),
diag::err_module_odr_violation_different_definitions)
<< Merge.first << Module.empty() << Module;
Diagnosed = true;
}
Diag(RD->getLocation(),
diag::note_module_odr_violation_different_definitions)
<< getOwningModuleNameForDiagnostic(RD);
}
}
if (!Diagnosed) {
// All definitions are updates to the same declaration. This happens if a
// module instantiates the declaration of a class template specialization
// and two or more other modules instantiate its definition.
//
// FIXME: Indicate which modules had instantiations of this definition.
// FIXME: How can this even happen?
Diag(Merge.first->getLocation(),
diag::err_module_odr_violation_different_instantiations)
<< Merge.first;
}
}
}
void ASTReader::FinishedDeserializing() {
assert(NumCurrentElementsDeserializing &&
"FinishedDeserializing not paired with StartedDeserializing");
if (NumCurrentElementsDeserializing == 1) {
// We decrease NumCurrentElementsDeserializing only after pending actions
// are finished, to avoid recursively re-calling finishPendingActions().
finishPendingActions();
}
--NumCurrentElementsDeserializing;
if (NumCurrentElementsDeserializing == 0) {
diagnoseOdrViolations();
// We are not in recursive loading, so it's safe to pass the "interesting"
// decls to the consumer.
if (Consumer)
PassInterestingDeclsToConsumer();
}
}
void ASTReader::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
D = D->getMostRecentDecl();
if (SemaObj->IdResolver.tryAddTopLevelDecl(D, Name) && SemaObj->TUScope) {
SemaObj->TUScope->AddDecl(D);
} else if (SemaObj->TUScope) {
// Adding the decl to IdResolver may have failed because it was already in
// (even though it was not added in scope). If it is already in, make sure
// it gets in the scope as well.
if (std::find(SemaObj->IdResolver.begin(Name),
SemaObj->IdResolver.end(), D) != SemaObj->IdResolver.end())
SemaObj->TUScope->AddDecl(D);
}
}
ASTReader::ASTReader(Preprocessor &PP, ASTContext &Context, StringRef isysroot,
bool DisableValidation, bool AllowASTWithCompilerErrors,
bool AllowConfigurationMismatch, bool ValidateSystemInputs,
bool UseGlobalIndex)
: Listener(new PCHValidator(PP, *this)), DeserializationListener(nullptr),
OwnsDeserializationListener(false), SourceMgr(PP.getSourceManager()),
FileMgr(PP.getFileManager()), Diags(PP.getDiagnostics()),
SemaObj(nullptr), PP(PP), Context(Context), Consumer(nullptr),
ModuleMgr(PP.getFileManager()), isysroot(isysroot),
DisableValidation(DisableValidation),
AllowASTWithCompilerErrors(AllowASTWithCompilerErrors),
AllowConfigurationMismatch(AllowConfigurationMismatch),
ValidateSystemInputs(ValidateSystemInputs),
UseGlobalIndex(UseGlobalIndex), TriedLoadingGlobalIndex(false),
CurrSwitchCaseStmts(&SwitchCaseStmts),
NumSLocEntriesRead(0), TotalNumSLocEntries(0), NumStatementsRead(0),
TotalNumStatements(0), NumMacrosRead(0), TotalNumMacros(0),
NumIdentifierLookups(0), NumIdentifierLookupHits(0), NumSelectorsRead(0),
NumMethodPoolEntriesRead(0), NumMethodPoolLookups(0),
NumMethodPoolHits(0), NumMethodPoolTableLookups(0),
NumMethodPoolTableHits(0), TotalNumMethodPoolEntries(0),
NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0),
NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0),
TotalModulesSizeInBits(0), NumCurrentElementsDeserializing(0),
PassingDeclsToConsumer(false), NumCXXBaseSpecifiersLoaded(0),
ReadingKind(Read_None) {
SourceMgr.setExternalSLocEntrySource(this);
}
ASTReader::~ASTReader() {
if (OwnsDeserializationListener)
delete DeserializationListener;
for (DeclContextVisibleUpdatesPending::iterator
I = PendingVisibleUpdates.begin(),
E = PendingVisibleUpdates.end();
I != E; ++I) {
for (DeclContextVisibleUpdates::iterator J = I->second.begin(),
F = I->second.end();
J != F; ++J)
delete J->first;
}
}