llvm-project/llvm/lib/CodeGen/SafeStackColoring.cpp

292 lines
9.0 KiB
C++

//===-- SafeStackColoring.cpp - SafeStack frame coloring -------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SafeStackColoring.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace llvm::safestack;
#define DEBUG_TYPE "safestackcoloring"
static cl::opt<bool> ClColoring("safe-stack-coloring",
cl::desc("enable safe stack coloring"),
cl::Hidden, cl::init(true));
const StackColoring::LiveRange &StackColoring::getLiveRange(AllocaInst *AI) {
const auto IT = AllocaNumbering.find(AI);
assert(IT != AllocaNumbering.end());
return LiveRanges[IT->second];
}
bool StackColoring::readMarker(Instruction *I, bool *IsStart) {
auto *II = dyn_cast<IntrinsicInst>(I);
if (!II || (II->getIntrinsicID() != Intrinsic::lifetime_start &&
II->getIntrinsicID() != Intrinsic::lifetime_end))
return false;
*IsStart = II->getIntrinsicID() == Intrinsic::lifetime_start;
return true;
}
void StackColoring::removeAllMarkers() {
for (auto *I : Markers) {
auto *Op = dyn_cast<Instruction>(I->getOperand(1));
I->eraseFromParent();
// Remove the operand bitcast, too, if it has no more uses left.
if (Op && Op->use_empty())
Op->eraseFromParent();
}
}
void StackColoring::collectMarkers() {
InterestingAllocas.resize(NumAllocas);
DenseMap<BasicBlock *, SmallDenseMap<Instruction *, Marker>> BBMarkerSet;
// Compute the set of start/end markers per basic block.
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo) {
AllocaInst *AI = Allocas[AllocaNo];
SmallVector<Instruction *, 8> WorkList;
WorkList.push_back(AI);
while (!WorkList.empty()) {
Instruction *I = WorkList.pop_back_val();
for (User *U : I->users()) {
if (auto *BI = dyn_cast<BitCastInst>(U)) {
WorkList.push_back(BI);
continue;
}
auto *UI = dyn_cast<Instruction>(U);
if (!UI)
continue;
bool IsStart;
if (!readMarker(UI, &IsStart))
continue;
if (IsStart)
InterestingAllocas.set(AllocaNo);
BBMarkerSet[UI->getParent()][UI] = {AllocaNo, IsStart};
Markers.push_back(UI);
}
}
}
// Compute instruction numbering. Only the following instructions are
// considered:
// * Basic block entries
// * Lifetime markers
// For each basic block, compute
// * the list of markers in the instruction order
// * the sets of allocas whose lifetime starts or ends in this BB
DEBUG(dbgs() << "Instructions:\n");
unsigned InstNo = 0;
for (BasicBlock *BB : depth_first(&F)) {
DEBUG(dbgs() << " " << InstNo << ": BB " << BB->getName() << "\n");
unsigned BBStart = InstNo++;
BlockLifetimeInfo &BlockInfo = BlockLiveness[BB];
BlockInfo.Begin.resize(NumAllocas);
BlockInfo.End.resize(NumAllocas);
BlockInfo.LiveIn.resize(NumAllocas);
BlockInfo.LiveOut.resize(NumAllocas);
auto &BlockMarkerSet = BBMarkerSet[BB];
if (BlockMarkerSet.empty()) {
unsigned BBEnd = InstNo;
BlockInstRange[BB] = std::make_pair(BBStart, BBEnd);
continue;
}
auto ProcessMarker = [&](Instruction *I, const Marker &M) {
DEBUG(dbgs() << " " << InstNo << ": "
<< (M.IsStart ? "start " : "end ") << M.AllocaNo << ", "
<< *I << "\n");
BBMarkers[BB].push_back({InstNo, M});
InstructionNumbering[I] = InstNo++;
if (M.IsStart) {
if (BlockInfo.End.test(M.AllocaNo))
BlockInfo.End.reset(M.AllocaNo);
BlockInfo.Begin.set(M.AllocaNo);
} else {
if (BlockInfo.Begin.test(M.AllocaNo))
BlockInfo.Begin.reset(M.AllocaNo);
BlockInfo.End.set(M.AllocaNo);
}
};
if (BlockMarkerSet.size() == 1) {
ProcessMarker(BlockMarkerSet.begin()->getFirst(),
BlockMarkerSet.begin()->getSecond());
} else {
// Scan the BB to determine the marker order.
for (Instruction &I : *BB) {
auto It = BlockMarkerSet.find(&I);
if (It == BlockMarkerSet.end())
continue;
ProcessMarker(&I, It->getSecond());
}
}
unsigned BBEnd = InstNo;
BlockInstRange[BB] = std::make_pair(BBStart, BBEnd);
}
NumInst = InstNo;
}
void StackColoring::calculateLocalLiveness() {
bool changed = true;
while (changed) {
changed = false;
for (BasicBlock *BB : depth_first(&F)) {
BlockLifetimeInfo &BlockInfo = BlockLiveness[BB];
// Compute LiveIn by unioning together the LiveOut sets of all preds.
BitVector LocalLiveIn;
for (auto *PredBB : predecessors(BB)) {
LivenessMap::const_iterator I = BlockLiveness.find(PredBB);
assert(I != BlockLiveness.end() && "Predecessor not found");
LocalLiveIn |= I->second.LiveOut;
}
// Compute LiveOut by subtracting out lifetimes that end in this
// block, then adding in lifetimes that begin in this block. If
// we have both BEGIN and END markers in the same basic block
// then we know that the BEGIN marker comes after the END,
// because we already handle the case where the BEGIN comes
// before the END when collecting the markers (and building the
// BEGIN/END vectors).
BitVector LocalLiveOut = LocalLiveIn;
LocalLiveOut.reset(BlockInfo.End);
LocalLiveOut |= BlockInfo.Begin;
// Update block LiveIn set, noting whether it has changed.
if (LocalLiveIn.test(BlockInfo.LiveIn)) {
changed = true;
BlockInfo.LiveIn |= LocalLiveIn;
}
// Update block LiveOut set, noting whether it has changed.
if (LocalLiveOut.test(BlockInfo.LiveOut)) {
changed = true;
BlockInfo.LiveOut |= LocalLiveOut;
}
}
} // while changed.
}
void StackColoring::calculateLiveIntervals() {
for (auto IT : BlockLiveness) {
BasicBlock *BB = IT.getFirst();
BlockLifetimeInfo &BlockInfo = IT.getSecond();
unsigned BBStart, BBEnd;
std::tie(BBStart, BBEnd) = BlockInstRange[BB];
BitVector Started, Ended;
Started.resize(NumAllocas);
Ended.resize(NumAllocas);
SmallVector<unsigned, 8> Start;
Start.resize(NumAllocas);
// LiveIn ranges start at the first instruction.
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo) {
if (BlockInfo.LiveIn.test(AllocaNo)) {
Started.set(AllocaNo);
Start[AllocaNo] = BBStart;
}
}
for (auto &It : BBMarkers[BB]) {
unsigned InstNo = It.first;
bool IsStart = It.second.IsStart;
unsigned AllocaNo = It.second.AllocaNo;
if (IsStart) {
assert(!Started.test(AllocaNo));
Started.set(AllocaNo);
Ended.reset(AllocaNo);
Start[AllocaNo] = InstNo;
} else {
assert(!Ended.test(AllocaNo));
if (Started.test(AllocaNo)) {
LiveRanges[AllocaNo].AddRange(Start[AllocaNo], InstNo);
Started.reset(AllocaNo);
}
Ended.set(AllocaNo);
}
}
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
if (Started.test(AllocaNo))
LiveRanges[AllocaNo].AddRange(Start[AllocaNo], BBEnd);
}
}
LLVM_DUMP_METHOD void StackColoring::dumpAllocas() {
dbgs() << "Allocas:\n";
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
dbgs() << " " << AllocaNo << ": " << *Allocas[AllocaNo] << "\n";
}
LLVM_DUMP_METHOD void StackColoring::dumpBlockLiveness() {
dbgs() << "Block liveness:\n";
for (auto IT : BlockLiveness) {
BasicBlock *BB = IT.getFirst();
BlockLifetimeInfo &BlockInfo = BlockLiveness[BB];
auto BlockRange = BlockInstRange[BB];
dbgs() << " BB [" << BlockRange.first << ", " << BlockRange.second
<< "): begin " << BlockInfo.Begin << ", end " << BlockInfo.End
<< ", livein " << BlockInfo.LiveIn << ", liveout "
<< BlockInfo.LiveOut << "\n";
}
}
LLVM_DUMP_METHOD void StackColoring::dumpLiveRanges() {
dbgs() << "Alloca liveness:\n";
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo) {
LiveRange &Range = LiveRanges[AllocaNo];
dbgs() << " " << AllocaNo << ": " << Range << "\n";
}
}
void StackColoring::run() {
DEBUG(dumpAllocas());
for (unsigned I = 0; I < NumAllocas; ++I)
AllocaNumbering[Allocas[I]] = I;
LiveRanges.resize(NumAllocas);
collectMarkers();
if (!ClColoring) {
for (auto &R : LiveRanges) {
R.SetMaximum(1);
R.AddRange(0, 1);
}
return;
}
for (auto &R : LiveRanges)
R.SetMaximum(NumInst);
for (unsigned I = 0; I < NumAllocas; ++I)
if (!InterestingAllocas.test(I))
LiveRanges[I] = getFullLiveRange();
calculateLocalLiveness();
DEBUG(dumpBlockLiveness());
calculateLiveIntervals();
DEBUG(dumpLiveRanges());
}