llvm-project/lld/ELF/Arch/Mips.cpp

683 lines
23 KiB
C++

//===- MIPS.cpp -----------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "OutputSections.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
template <class ELFT> class MIPS final : public TargetInfo {
public:
MIPS();
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const override;
int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const override;
bool isPicRel(RelType Type) const override;
RelType getDynRel(RelType Type) const override;
void writeGotPlt(uint8_t *Buf, const Symbol &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
bool needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
uint64_t BranchAddr, const Symbol &S) const override;
void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
bool usesOnlyLowPageBits(RelType Type) const override;
};
} // namespace
template <class ELFT> MIPS<ELFT>::MIPS() {
GotPltHeaderEntriesNum = 2;
DefaultMaxPageSize = 65536;
GotEntrySize = sizeof(typename ELFT::uint);
GotPltEntrySize = sizeof(typename ELFT::uint);
PltEntrySize = 16;
PltHeaderSize = 32;
CopyRel = R_MIPS_COPY;
PltRel = R_MIPS_JUMP_SLOT;
NeedsThunks = true;
TrapInstr = 0xefefefef;
if (ELFT::Is64Bits) {
RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
TlsGotRel = R_MIPS_TLS_TPREL64;
TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
TlsOffsetRel = R_MIPS_TLS_DTPREL64;
} else {
RelativeRel = R_MIPS_REL32;
TlsGotRel = R_MIPS_TLS_TPREL32;
TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
TlsOffsetRel = R_MIPS_TLS_DTPREL32;
}
}
template <class ELFT> uint32_t MIPS<ELFT>::calcEFlags() const {
return calcMipsEFlags<ELFT>();
}
template <class ELFT>
RelExpr MIPS<ELFT>::getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const {
// See comment in the calculateMipsRelChain.
if (ELFT::Is64Bits || Config->MipsN32Abi)
Type &= 0xff;
switch (Type) {
case R_MIPS_JALR:
case R_MICROMIPS_JALR:
return R_HINT;
case R_MIPS_GPREL16:
case R_MIPS_GPREL32:
case R_MICROMIPS_GPREL16:
case R_MICROMIPS_GPREL7_S2:
return R_MIPS_GOTREL;
case R_MIPS_26:
case R_MICROMIPS_26_S1:
return R_PLT;
case R_MICROMIPS_PC26_S1:
return R_PLT_PC;
case R_MIPS_HI16:
case R_MIPS_LO16:
case R_MIPS_HIGHER:
case R_MIPS_HIGHEST:
case R_MICROMIPS_HI16:
case R_MICROMIPS_LO16:
case R_MICROMIPS_HIGHER:
case R_MICROMIPS_HIGHEST:
// R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate
// offset between start of function and 'gp' value which by default
// equal to the start of .got section. In that case we consider these
// relocations as relative.
if (&S == ElfSym::MipsGpDisp)
return R_MIPS_GOT_GP_PC;
if (&S == ElfSym::MipsLocalGp)
return R_MIPS_GOT_GP;
LLVM_FALLTHROUGH;
case R_MIPS_32:
case R_MIPS_64:
case R_MIPS_GOT_OFST:
case R_MIPS_SUB:
case R_MIPS_TLS_DTPREL_HI16:
case R_MIPS_TLS_DTPREL_LO16:
case R_MIPS_TLS_DTPREL32:
case R_MIPS_TLS_DTPREL64:
case R_MIPS_TLS_TPREL_HI16:
case R_MIPS_TLS_TPREL_LO16:
case R_MIPS_TLS_TPREL32:
case R_MIPS_TLS_TPREL64:
case R_MICROMIPS_GOT_OFST:
case R_MICROMIPS_SUB:
case R_MICROMIPS_TLS_DTPREL_HI16:
case R_MICROMIPS_TLS_DTPREL_LO16:
case R_MICROMIPS_TLS_TPREL_HI16:
case R_MICROMIPS_TLS_TPREL_LO16:
return R_ABS;
case R_MIPS_PC32:
case R_MIPS_PC16:
case R_MIPS_PC19_S2:
case R_MIPS_PC21_S2:
case R_MIPS_PC26_S2:
case R_MIPS_PCHI16:
case R_MIPS_PCLO16:
case R_MICROMIPS_PC7_S1:
case R_MICROMIPS_PC10_S1:
case R_MICROMIPS_PC16_S1:
case R_MICROMIPS_PC18_S3:
case R_MICROMIPS_PC19_S2:
case R_MICROMIPS_PC23_S2:
case R_MICROMIPS_PC21_S1:
return R_PC;
case R_MIPS_GOT16:
case R_MICROMIPS_GOT16:
if (S.isLocal())
return R_MIPS_GOT_LOCAL_PAGE;
LLVM_FALLTHROUGH;
case R_MIPS_CALL16:
case R_MIPS_GOT_DISP:
case R_MIPS_TLS_GOTTPREL:
case R_MICROMIPS_CALL16:
case R_MICROMIPS_GOT_DISP:
case R_MICROMIPS_TLS_GOTTPREL:
return R_MIPS_GOT_OFF;
case R_MIPS_CALL_HI16:
case R_MIPS_CALL_LO16:
case R_MIPS_GOT_HI16:
case R_MIPS_GOT_LO16:
case R_MICROMIPS_CALL_HI16:
case R_MICROMIPS_CALL_LO16:
case R_MICROMIPS_GOT_HI16:
case R_MICROMIPS_GOT_LO16:
return R_MIPS_GOT_OFF32;
case R_MIPS_GOT_PAGE:
case R_MICROMIPS_GOT_PAGE:
return R_MIPS_GOT_LOCAL_PAGE;
case R_MIPS_TLS_GD:
case R_MICROMIPS_TLS_GD:
return R_MIPS_TLSGD;
case R_MIPS_TLS_LDM:
case R_MICROMIPS_TLS_LDM:
return R_MIPS_TLSLD;
case R_MIPS_NONE:
return R_NONE;
default:
return R_INVALID;
}
}
template <class ELFT> bool MIPS<ELFT>::isPicRel(RelType Type) const {
return Type == R_MIPS_32 || Type == R_MIPS_64;
}
template <class ELFT> RelType MIPS<ELFT>::getDynRel(RelType Type) const {
return RelativeRel;
}
template <class ELFT>
void MIPS<ELFT>::writeGotPlt(uint8_t *Buf, const Symbol &) const {
uint64_t VA = InX::Plt->getVA();
if (isMicroMips())
VA |= 1;
write32<ELFT::TargetEndianness>(Buf, VA);
}
template <endianness E> static uint32_t readShuffle(const uint8_t *Loc) {
// The major opcode of a microMIPS instruction needs to appear
// in the first 16-bit word (lowest address) for efficient hardware
// decode so that it knows if the instruction is 16-bit or 32-bit
// as early as possible. To do so, little-endian binaries keep 16-bit
// words in a big-endian order. That is why we have to swap these
// words to get a correct value.
uint32_t V = read32<E>(Loc);
if (E == support::little)
return (V << 16) | (V >> 16);
return V;
}
template <endianness E>
static void writeValue(uint8_t *Loc, uint64_t V, uint8_t BitsSize,
uint8_t Shift) {
uint32_t Instr = read32<E>(Loc);
uint32_t Mask = 0xffffffff >> (32 - BitsSize);
uint32_t Data = (Instr & ~Mask) | ((V >> Shift) & Mask);
write32<E>(Loc, Data);
}
template <endianness E>
static void writeMicroRelocation32(uint8_t *Loc, uint64_t V, uint8_t BitsSize,
uint8_t Shift) {
// See comments in readShuffle for purpose of this code.
uint16_t *Words = (uint16_t *)Loc;
if (E == support::little)
std::swap(Words[0], Words[1]);
writeValue<E>(Loc, V, BitsSize, Shift);
if (E == support::little)
std::swap(Words[0], Words[1]);
}
template <endianness E>
static void writeMicroRelocation16(uint8_t *Loc, uint64_t V, uint8_t BitsSize,
uint8_t Shift) {
uint16_t Instr = read16<E>(Loc);
uint16_t Mask = 0xffff >> (16 - BitsSize);
uint16_t Data = (Instr & ~Mask) | ((V >> Shift) & Mask);
write16<E>(Loc, Data);
}
template <class ELFT> void MIPS<ELFT>::writePltHeader(uint8_t *Buf) const {
const endianness E = ELFT::TargetEndianness;
if (isMicroMips()) {
uint64_t GotPlt = InX::GotPlt->getVA();
uint64_t Plt = InX::Plt->getVA();
// Overwrite trap instructions written by Writer::writeTrapInstr.
memset(Buf, 0, PltHeaderSize);
write16<E>(Buf, isMipsR6() ? 0x7860 : 0x7980); // addiupc v1, (GOTPLT) - .
write16<E>(Buf + 4, 0xff23); // lw $25, 0($3)
write16<E>(Buf + 8, 0x0535); // subu16 $2, $2, $3
write16<E>(Buf + 10, 0x2525); // srl16 $2, $2, 2
write16<E>(Buf + 12, 0x3302); // addiu $24, $2, -2
write16<E>(Buf + 14, 0xfffe);
write16<E>(Buf + 16, 0x0dff); // move $15, $31
if (isMipsR6()) {
write16<E>(Buf + 18, 0x0f83); // move $28, $3
write16<E>(Buf + 20, 0x472b); // jalrc $25
write16<E>(Buf + 22, 0x0c00); // nop
relocateOne(Buf, R_MICROMIPS_PC19_S2, GotPlt - Plt);
} else {
write16<E>(Buf + 18, 0x45f9); // jalrc $25
write16<E>(Buf + 20, 0x0f83); // move $28, $3
write16<E>(Buf + 22, 0x0c00); // nop
relocateOne(Buf, R_MICROMIPS_PC23_S2, GotPlt - Plt);
}
return;
}
if (Config->MipsN32Abi) {
write32<E>(Buf, 0x3c0e0000); // lui $14, %hi(&GOTPLT[0])
write32<E>(Buf + 4, 0x8dd90000); // lw $25, %lo(&GOTPLT[0])($14)
write32<E>(Buf + 8, 0x25ce0000); // addiu $14, $14, %lo(&GOTPLT[0])
write32<E>(Buf + 12, 0x030ec023); // subu $24, $24, $14
write32<E>(Buf + 16, 0x03e07825); // move $15, $31
write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2
} else if (ELFT::Is64Bits) {
write32<E>(Buf, 0x3c0e0000); // lui $14, %hi(&GOTPLT[0])
write32<E>(Buf + 4, 0xddd90000); // ld $25, %lo(&GOTPLT[0])($14)
write32<E>(Buf + 8, 0x25ce0000); // addiu $14, $14, %lo(&GOTPLT[0])
write32<E>(Buf + 12, 0x030ec023); // subu $24, $24, $14
write32<E>(Buf + 16, 0x03e07825); // move $15, $31
write32<E>(Buf + 20, 0x0018c0c2); // srl $24, $24, 3
} else {
write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0])
write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28)
write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0])
write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28
write32<E>(Buf + 16, 0x03e07825); // move $15, $31
write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2
}
write32<E>(Buf + 24, 0x0320f809); // jalr $25
write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2
uint64_t GotPlt = InX::GotPlt->getVA();
writeValue<E>(Buf, GotPlt + 0x8000, 16, 16);
writeValue<E>(Buf + 4, GotPlt, 16, 0);
writeValue<E>(Buf + 8, GotPlt, 16, 0);
}
template <class ELFT>
void MIPS<ELFT>::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const endianness E = ELFT::TargetEndianness;
if (isMicroMips()) {
// Overwrite trap instructions written by Writer::writeTrapInstr.
memset(Buf, 0, PltEntrySize);
if (isMipsR6()) {
write16<E>(Buf, 0x7840); // addiupc $2, (GOTPLT) - .
write16<E>(Buf + 4, 0xff22); // lw $25, 0($2)
write16<E>(Buf + 8, 0x0f02); // move $24, $2
write16<E>(Buf + 10, 0x4723); // jrc $25 / jr16 $25
relocateOne(Buf, R_MICROMIPS_PC19_S2, GotPltEntryAddr - PltEntryAddr);
} else {
write16<E>(Buf, 0x7900); // addiupc $2, (GOTPLT) - .
write16<E>(Buf + 4, 0xff22); // lw $25, 0($2)
write16<E>(Buf + 8, 0x4599); // jrc $25 / jr16 $25
write16<E>(Buf + 10, 0x0f02); // move $24, $2
relocateOne(Buf, R_MICROMIPS_PC23_S2, GotPltEntryAddr - PltEntryAddr);
}
return;
}
write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry)
write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15)
write32<E>(Buf + 8, isMipsR6() ? 0x03200009 : 0x03200008); // jr $25
write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
writeValue<E>(Buf, GotPltEntryAddr + 0x8000, 16, 16);
writeValue<E>(Buf + 4, GotPltEntryAddr, 16, 0);
writeValue<E>(Buf + 12, GotPltEntryAddr, 16, 0);
}
template <class ELFT>
bool MIPS<ELFT>::needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
uint64_t BranchAddr, const Symbol &S) const {
// Any MIPS PIC code function is invoked with its address in register $t9.
// So if we have a branch instruction from non-PIC code to the PIC one
// we cannot make the jump directly and need to create a small stubs
// to save the target function address.
// See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
if (Type != R_MIPS_26 && Type != R_MICROMIPS_26_S1 &&
Type != R_MICROMIPS_PC26_S1)
return false;
auto *F = dyn_cast_or_null<ELFFileBase<ELFT>>(File);
if (!F)
return false;
// If current file has PIC code, LA25 stub is not required.
if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
return false;
auto *D = dyn_cast<Defined>(&S);
// LA25 is required if target file has PIC code
// or target symbol is a PIC symbol.
return D && isMipsPIC<ELFT>(D);
}
template <class ELFT>
int64_t MIPS<ELFT>::getImplicitAddend(const uint8_t *Buf, RelType Type) const {
const endianness E = ELFT::TargetEndianness;
switch (Type) {
case R_MIPS_32:
case R_MIPS_GPREL32:
case R_MIPS_TLS_DTPREL32:
case R_MIPS_TLS_TPREL32:
return SignExtend64<32>(read32<E>(Buf));
case R_MIPS_26:
// FIXME (simon): If the relocation target symbol is not a PLT entry
// we should use another expression for calculation:
// ((A << 2) | (P & 0xf0000000)) >> 2
return SignExtend64<28>(read32<E>(Buf) << 2);
case R_MIPS_GOT16:
case R_MIPS_HI16:
case R_MIPS_PCHI16:
return SignExtend64<16>(read32<E>(Buf)) << 16;
case R_MIPS_GPREL16:
case R_MIPS_LO16:
case R_MIPS_PCLO16:
case R_MIPS_TLS_DTPREL_HI16:
case R_MIPS_TLS_DTPREL_LO16:
case R_MIPS_TLS_TPREL_HI16:
case R_MIPS_TLS_TPREL_LO16:
return SignExtend64<16>(read32<E>(Buf));
case R_MICROMIPS_GOT16:
case R_MICROMIPS_HI16:
return SignExtend64<16>(readShuffle<E>(Buf)) << 16;
case R_MICROMIPS_GPREL16:
case R_MICROMIPS_LO16:
case R_MICROMIPS_TLS_DTPREL_HI16:
case R_MICROMIPS_TLS_DTPREL_LO16:
case R_MICROMIPS_TLS_TPREL_HI16:
case R_MICROMIPS_TLS_TPREL_LO16:
return SignExtend64<16>(readShuffle<E>(Buf));
case R_MICROMIPS_GPREL7_S2:
return SignExtend64<9>(readShuffle<E>(Buf) << 2);
case R_MIPS_PC16:
return SignExtend64<18>(read32<E>(Buf) << 2);
case R_MIPS_PC19_S2:
return SignExtend64<21>(read32<E>(Buf) << 2);
case R_MIPS_PC21_S2:
return SignExtend64<23>(read32<E>(Buf) << 2);
case R_MIPS_PC26_S2:
return SignExtend64<28>(read32<E>(Buf) << 2);
case R_MIPS_PC32:
return SignExtend64<32>(read32<E>(Buf));
case R_MICROMIPS_26_S1:
return SignExtend64<27>(readShuffle<E>(Buf) << 1);
case R_MICROMIPS_PC7_S1:
return SignExtend64<8>(read16<E>(Buf) << 1);
case R_MICROMIPS_PC10_S1:
return SignExtend64<11>(read16<E>(Buf) << 1);
case R_MICROMIPS_PC16_S1:
return SignExtend64<17>(readShuffle<E>(Buf) << 1);
case R_MICROMIPS_PC18_S3:
return SignExtend64<21>(readShuffle<E>(Buf) << 3);
case R_MICROMIPS_PC19_S2:
return SignExtend64<21>(readShuffle<E>(Buf) << 2);
case R_MICROMIPS_PC21_S1:
return SignExtend64<22>(readShuffle<E>(Buf) << 1);
case R_MICROMIPS_PC23_S2:
return SignExtend64<25>(readShuffle<E>(Buf) << 2);
case R_MICROMIPS_PC26_S1:
return SignExtend64<27>(readShuffle<E>(Buf) << 1);
default:
return 0;
}
}
static std::pair<uint32_t, uint64_t>
calculateMipsRelChain(uint8_t *Loc, RelType Type, uint64_t Val) {
// MIPS N64 ABI packs multiple relocations into the single relocation
// record. In general, all up to three relocations can have arbitrary
// types. In fact, Clang and GCC uses only a few combinations. For now,
// we support two of them. That is allow to pass at least all LLVM
// test suite cases.
// <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
// <any relocation> / R_MIPS_64 / R_MIPS_NONE
// The first relocation is a 'real' relocation which is calculated
// using the corresponding symbol's value. The second and the third
// relocations used to modify result of the first one: extend it to
// 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
// at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
RelType Type2 = (Type >> 8) & 0xff;
RelType Type3 = (Type >> 16) & 0xff;
if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
return std::make_pair(Type, Val);
if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
return std::make_pair(Type2, Val);
if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
return std::make_pair(Type3, -Val);
if (Type2 == R_MICROMIPS_SUB &&
(Type3 == R_MICROMIPS_HI16 || Type3 == R_MICROMIPS_LO16))
return std::make_pair(Type3, -Val);
error(getErrorLocation(Loc) + "unsupported relocations combination " +
Twine(Type));
return std::make_pair(Type & 0xff, Val);
}
template <class ELFT>
void MIPS<ELFT>::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
const endianness E = ELFT::TargetEndianness;
if (ELFT::Is64Bits || Config->MipsN32Abi)
std::tie(Type, Val) = calculateMipsRelChain(Loc, Type, Val);
// Thread pointer and DRP offsets from the start of TLS data area.
// https://www.linux-mips.org/wiki/NPTL
if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 ||
Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64 ||
Type == R_MICROMIPS_TLS_DTPREL_HI16 ||
Type == R_MICROMIPS_TLS_DTPREL_LO16) {
Val -= 0x8000;
} else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 ||
Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64 ||
Type == R_MICROMIPS_TLS_TPREL_HI16 ||
Type == R_MICROMIPS_TLS_TPREL_LO16) {
Val -= 0x7000;
}
switch (Type) {
case R_MIPS_32:
case R_MIPS_GPREL32:
case R_MIPS_TLS_DTPREL32:
case R_MIPS_TLS_TPREL32:
write32<E>(Loc, Val);
break;
case R_MIPS_64:
case R_MIPS_TLS_DTPREL64:
case R_MIPS_TLS_TPREL64:
write64<E>(Loc, Val);
break;
case R_MIPS_26:
writeValue<E>(Loc, Val, 26, 2);
break;
case R_MIPS_GOT16:
// The R_MIPS_GOT16 relocation's value in "relocatable" linking mode
// is updated addend (not a GOT index). In that case write high 16 bits
// to store a correct addend value.
if (Config->Relocatable) {
writeValue<E>(Loc, Val + 0x8000, 16, 16);
} else {
checkInt<16>(Loc, Val, Type);
writeValue<E>(Loc, Val, 16, 0);
}
break;
case R_MICROMIPS_GOT16:
if (Config->Relocatable) {
writeMicroRelocation32<E>(Loc, Val + 0x8000, 16, 16);
} else {
checkInt<16>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 16, 0);
}
break;
case R_MIPS_CALL16:
case R_MIPS_GOT_DISP:
case R_MIPS_GOT_PAGE:
case R_MIPS_GPREL16:
case R_MIPS_TLS_GD:
case R_MIPS_TLS_GOTTPREL:
case R_MIPS_TLS_LDM:
checkInt<16>(Loc, Val, Type);
LLVM_FALLTHROUGH;
case R_MIPS_CALL_LO16:
case R_MIPS_GOT_LO16:
case R_MIPS_GOT_OFST:
case R_MIPS_LO16:
case R_MIPS_PCLO16:
case R_MIPS_TLS_DTPREL_LO16:
case R_MIPS_TLS_TPREL_LO16:
writeValue<E>(Loc, Val, 16, 0);
break;
case R_MICROMIPS_GOT_DISP:
case R_MICROMIPS_GOT_PAGE:
case R_MICROMIPS_GPREL16:
case R_MICROMIPS_TLS_GD:
case R_MICROMIPS_TLS_LDM:
checkInt<16>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 16, 0);
break;
case R_MICROMIPS_CALL16:
case R_MICROMIPS_CALL_LO16:
case R_MICROMIPS_GOT_OFST:
case R_MICROMIPS_LO16:
case R_MICROMIPS_TLS_DTPREL_LO16:
case R_MICROMIPS_TLS_GOTTPREL:
case R_MICROMIPS_TLS_TPREL_LO16:
writeMicroRelocation32<E>(Loc, Val, 16, 0);
break;
case R_MICROMIPS_GPREL7_S2:
checkInt<7>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 7, 2);
break;
case R_MIPS_CALL_HI16:
case R_MIPS_GOT_HI16:
case R_MIPS_HI16:
case R_MIPS_PCHI16:
case R_MIPS_TLS_DTPREL_HI16:
case R_MIPS_TLS_TPREL_HI16:
writeValue<E>(Loc, Val + 0x8000, 16, 16);
break;
case R_MICROMIPS_CALL_HI16:
case R_MICROMIPS_GOT_HI16:
case R_MICROMIPS_HI16:
case R_MICROMIPS_TLS_DTPREL_HI16:
case R_MICROMIPS_TLS_TPREL_HI16:
writeMicroRelocation32<E>(Loc, Val + 0x8000, 16, 16);
break;
case R_MIPS_HIGHER:
writeValue<E>(Loc, Val + 0x80008000, 16, 32);
break;
case R_MIPS_HIGHEST:
writeValue<E>(Loc, Val + 0x800080008000, 16, 48);
break;
case R_MICROMIPS_HIGHER:
writeMicroRelocation32<E>(Loc, Val + 0x80008000, 16, 32);
break;
case R_MICROMIPS_HIGHEST:
writeMicroRelocation32<E>(Loc, Val + 0x800080008000, 16, 48);
break;
case R_MIPS_JALR:
case R_MICROMIPS_JALR:
// Ignore this optimization relocation for now
break;
case R_MIPS_PC16:
checkAlignment<4>(Loc, Val, Type);
checkInt<18>(Loc, Val, Type);
writeValue<E>(Loc, Val, 16, 2);
break;
case R_MIPS_PC19_S2:
checkAlignment<4>(Loc, Val, Type);
checkInt<21>(Loc, Val, Type);
writeValue<E>(Loc, Val, 19, 2);
break;
case R_MIPS_PC21_S2:
checkAlignment<4>(Loc, Val, Type);
checkInt<23>(Loc, Val, Type);
writeValue<E>(Loc, Val, 21, 2);
break;
case R_MIPS_PC26_S2:
checkAlignment<4>(Loc, Val, Type);
checkInt<28>(Loc, Val, Type);
writeValue<E>(Loc, Val, 26, 2);
break;
case R_MIPS_PC32:
writeValue<E>(Loc, Val, 32, 0);
break;
case R_MICROMIPS_26_S1:
case R_MICROMIPS_PC26_S1:
checkInt<27>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 26, 1);
break;
case R_MICROMIPS_PC7_S1:
checkInt<8>(Loc, Val, Type);
writeMicroRelocation16<E>(Loc, Val, 7, 1);
break;
case R_MICROMIPS_PC10_S1:
checkInt<11>(Loc, Val, Type);
writeMicroRelocation16<E>(Loc, Val, 10, 1);
break;
case R_MICROMIPS_PC16_S1:
checkInt<17>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 16, 1);
break;
case R_MICROMIPS_PC18_S3:
checkInt<21>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 18, 3);
break;
case R_MICROMIPS_PC19_S2:
checkInt<21>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 19, 2);
break;
case R_MICROMIPS_PC21_S1:
checkInt<22>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 21, 1);
break;
case R_MICROMIPS_PC23_S2:
checkInt<25>(Loc, Val, Type);
writeMicroRelocation32<E>(Loc, Val, 23, 2);
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
template <class ELFT> bool MIPS<ELFT>::usesOnlyLowPageBits(RelType Type) const {
return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST ||
Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_GOT_OFST;
}
// Return true if the symbol is a PIC function.
template <class ELFT> bool elf::isMipsPIC(const Defined *Sym) {
typedef typename ELFT::Ehdr Elf_Ehdr;
if (!Sym->Section || !Sym->isFunc())
return false;
auto *Sec = cast<InputSectionBase>(Sym->Section);
const Elf_Ehdr *Hdr = Sec->template getFile<ELFT>()->getObj().getHeader();
return (Sym->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC ||
(Hdr->e_flags & EF_MIPS_PIC);
}
template <class ELFT> TargetInfo *elf::getMipsTargetInfo() {
static MIPS<ELFT> Target;
return &Target;
}
template TargetInfo *elf::getMipsTargetInfo<ELF32LE>();
template TargetInfo *elf::getMipsTargetInfo<ELF32BE>();
template TargetInfo *elf::getMipsTargetInfo<ELF64LE>();
template TargetInfo *elf::getMipsTargetInfo<ELF64BE>();
template bool elf::isMipsPIC<ELF32LE>(const Defined *);
template bool elf::isMipsPIC<ELF32BE>(const Defined *);
template bool elf::isMipsPIC<ELF64LE>(const Defined *);
template bool elf::isMipsPIC<ELF64BE>(const Defined *);