llvm-project/llvm/test/CodeGen/AMDGPU/sgpr-control-flow.ll

236 lines
7.6 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -march=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefix=SI %s
;
; Most SALU instructions ignore control flow, so we need to make sure
; they don't overwrite values from other blocks.
; If the branch decision is made based on a value in an SGPR then all
; threads will execute the same code paths, so we don't need to worry
; about instructions in different blocks overwriting each other.
define amdgpu_kernel void @sgpr_if_else_salu_br(i32 addrspace(1)* %out, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_load_dwordx4 s[8:11], s[0:1], 0xb
; SI-NEXT: s_load_dword s0, s[0:1], 0xf
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s8, 0
; SI-NEXT: s_cbranch_scc0 BB0_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_add_i32 s0, s11, s0
; SI-NEXT: s_mov_b64 s[2:3], 0
; SI-NEXT: s_andn2_b64 vcc, exec, s[2:3]
; SI-NEXT: s_cbranch_vccz BB0_3
; SI-NEXT: s_branch BB0_4
; SI-NEXT: BB0_2:
; SI-NEXT: s_mov_b64 s[2:3], -1
; SI-NEXT: ; implicit-def: $sgpr0
; SI-NEXT: s_andn2_b64 vcc, exec, s[2:3]
; SI-NEXT: s_cbranch_vccnz BB0_4
; SI-NEXT: BB0_3: ; %if
; SI-NEXT: s_sub_i32 s0, s9, s10
; SI-NEXT: BB0_4: ; %endif
; SI-NEXT: s_add_i32 s0, s0, s8
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%0 = icmp eq i32 %a, 0
br i1 %0, label %if, label %else
if:
%1 = sub i32 %b, %c
br label %endif
else:
%2 = add i32 %d, %e
br label %endif
endif:
%3 = phi i32 [%1, %if], [%2, %else]
%4 = add i32 %3, %a
store i32 %4, i32 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_salu_br_opt(i32 addrspace(1)* %out, [8 x i32], i32 %a, [8 x i32], i32 %b, [8 x i32], i32 %c, [8 x i32], i32 %d, [8 x i32], i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br_opt:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dword s2, s[0:1], 0x13
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s2, 0
; SI-NEXT: s_cbranch_scc0 BB1_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_load_dword s3, s[0:1], 0x2e
; SI-NEXT: s_load_dword s6, s[0:1], 0x37
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s3, s3, s6
; SI-NEXT: s_mov_b64 s[6:7], 0
; SI-NEXT: s_andn2_b64 vcc, exec, s[6:7]
; SI-NEXT: s_cbranch_vccz BB1_3
; SI-NEXT: s_branch BB1_4
; SI-NEXT: BB1_2:
; SI-NEXT: s_mov_b64 s[6:7], -1
; SI-NEXT: ; implicit-def: $sgpr3
; SI-NEXT: s_andn2_b64 vcc, exec, s[6:7]
; SI-NEXT: s_cbranch_vccnz BB1_4
; SI-NEXT: BB1_3: ; %if
; SI-NEXT: s_load_dword s3, s[0:1], 0x1c
; SI-NEXT: s_load_dword s0, s[0:1], 0x25
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s3, s3, s0
; SI-NEXT: BB1_4: ; %endif
; SI-NEXT: s_add_i32 s0, s3, s2
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%cmp0 = icmp eq i32 %a, 0
br i1 %cmp0, label %if, label %else
if:
%add0 = add i32 %b, %c
br label %endif
else:
%add1 = add i32 %d, %e
br label %endif
endif:
%phi = phi i32 [%add0, %if], [%add1, %else]
%add2 = add i32 %phi, %a
store i32 %add2, i32 addrspace(1)* %out
ret void
}
; The two S_ADD instructions should write to different registers, since
; different threads will take different control flow paths.
define amdgpu_kernel void @sgpr_if_else_valu_br(i32 addrspace(1)* %out, float %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_valu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: v_cvt_f32_u32_e32 v0, v0
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_load_dwordx4 s[0:3], s[0:1], 0xc
; SI-NEXT: ; implicit-def: $sgpr6
; SI-NEXT: v_cmp_lg_f32_e32 vcc, 0, v0
; SI-NEXT: s_and_saveexec_b64 s[8:9], vcc
; SI-NEXT: s_xor_b64 s[8:9], exec, s[8:9]
; SI-NEXT: s_cbranch_execz BB2_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s6, s2, s3
; SI-NEXT: BB2_2: ; %Flow
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_or_saveexec_b64 s[2:3], s[8:9]
; SI-NEXT: v_mov_b32_e32 v0, s6
; SI-NEXT: s_xor_b64 exec, exec, s[2:3]
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_add_i32 s0, s0, s1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: ; %bb.4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[2:3]
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tid_f = uitofp i32 %tid to float
%tmp1 = fcmp ueq float %tid_f, 0.0
br i1 %tmp1, label %if, label %else
if:
%tmp2 = add i32 %b, %c
br label %endif
else:
%tmp3 = add i32 %d, %e
br label %endif
endif:
%tmp4 = phi i32 [%tmp2, %if], [%tmp3, %else]
store i32 %tmp4, i32 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_valu_cmp_phi_br(i32 addrspace(1)* %out, i32 addrspace(1)* %a, i32 addrspace(1)* %b) {
; SI-LABEL: sgpr_if_else_valu_cmp_phi_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[8:9], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s10, 0
; SI-NEXT: v_cmp_ne_u32_e32 vcc, 0, v0
; SI-NEXT: ; implicit-def: $sgpr0_sgpr1
; SI-NEXT: s_and_saveexec_b64 s[2:3], vcc
; SI-NEXT: s_xor_b64 s[2:3], exec, s[2:3]
; SI-NEXT: s_cbranch_execz BB3_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_mov_b32 s11, 0xf000
; SI-NEXT: v_lshlrev_b32_e32 v1, 2, v0
; SI-NEXT: v_mov_b32_e32 v2, 0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_load_dword v1, v[1:2], s[8:11], 0 addr64
; SI-NEXT: s_andn2_b64 s[0:1], s[0:1], exec
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v1
; SI-NEXT: s_and_b64 s[8:9], vcc, exec
; SI-NEXT: s_or_b64 s[0:1], s[0:1], s[8:9]
; SI-NEXT: BB3_2: ; %Flow
; SI-NEXT: s_or_saveexec_b64 s[2:3], s[2:3]
; SI-NEXT: s_xor_b64 exec, exec, s[2:3]
; SI-NEXT: s_cbranch_execz BB3_4
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_mov_b32 s11, 0xf000
; SI-NEXT: s_mov_b32 s10, 0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b64 s[8:9], s[6:7]
; SI-NEXT: v_lshlrev_b32_e32 v0, 2, v0
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: buffer_load_dword v0, v[0:1], s[8:11], 0 addr64
; SI-NEXT: s_andn2_b64 s[0:1], s[0:1], exec
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_eq_u32_e32 vcc, 0, v0
; SI-NEXT: s_and_b64 s[6:7], vcc, exec
; SI-NEXT: s_or_b64 s[0:1], s[0:1], s[6:7]
; SI-NEXT: BB3_4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[2:3]
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_cndmask_b32_e64 v0, 0, -1, s[0:1]
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tmp1 = icmp eq i32 %tid, 0
br i1 %tmp1, label %if, label %else
if:
%gep.if = getelementptr i32, i32 addrspace(1)* %a, i32 %tid
%a.val = load i32, i32 addrspace(1)* %gep.if
%cmp.if = icmp eq i32 %a.val, 0
br label %endif
else:
%gep.else = getelementptr i32, i32 addrspace(1)* %b, i32 %tid
%b.val = load i32, i32 addrspace(1)* %gep.else
%cmp.else = icmp slt i32 %b.val, 0
br label %endif
endif:
%tmp4 = phi i1 [%cmp.if, %if], [%cmp.else, %else]
%ext = sext i1 %tmp4 to i32
store i32 %ext, i32 addrspace(1)* %out
ret void
}
declare i32 @llvm.amdgcn.workitem.id.x() #0
attributes #0 = { readnone }