Go to file
Wang, Pengfei 17b8f96d65 [FPEnv] Divide macro INSTRUCTION into INSTRUCTION and DAG_INSTRUCTION,
and macro FUNCTION likewise. NFCI.

Some functions like fmuladd don't really have a node, we should divide
the declaration form those have node to avoid introducing fake nodes.

Differential Revision: https://reviews.llvm.org/D72871
2020-01-27 10:38:05 +08:00
clang [Concepts] Fix incorrect TemplateArgs for introduction of local parameters 2020-01-27 00:59:37 +02:00
clang-tools-extra [clangd] Make Notification a little safer. 2020-01-25 15:31:55 +01:00
compiler-rt [lsan] Factor pthread-specific assumptions out of thread tracking code 2020-01-24 16:55:11 -08:00
debuginfo-tests Add test for GDB pretty printers. 2020-01-11 09:17:15 +01:00
libc [libc] Move the implementation of mmap and munmap into a linux specific area. 2020-01-24 15:42:28 -08:00
libclc libclc: Drop the old python based build system 2019-11-08 09:59:40 -05:00
libcxx Add test for spaceship operator to __config 2020-01-24 13:27:22 -05:00
libcxxabi [libcxxabi] NFC: Fix trivial typos in comments 2020-01-22 11:36:31 +08:00
libunwind [libunwind] Fix building standalone after c48974ffd7 2020-01-26 22:12:40 +02:00
lld [ELF][PPC32] Support range extension thunks with addends 2020-01-25 22:32:42 -08:00
lldb [lldb/Test] Disable hardware check on arm/aarch64 2020-01-24 20:54:18 -08:00
llgo IR: Support parsing numeric block ids, and emit them in textual output. 2019-03-22 18:27:13 +00:00
llvm [FPEnv] Divide macro INSTRUCTION into INSTRUCTION and DAG_INSTRUCTION, 2020-01-27 10:38:05 +08:00
mlir [mlir] Expose getNearestSymbolTable as SymbolTable class method 2020-01-26 17:35:26 -05:00
openmp [openmp] Disable archer if LIBOMP_OMPT_SUPPORT is off 2020-01-23 19:26:18 +01:00
parallel-libs Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
polly [Alignment][NFC] Deprecate Align::None() 2020-01-24 12:53:58 +01:00
pstl Bump the trunk major version to 11 2020-01-15 13:38:01 +01:00
.arcconfig Include phabricator.uri in .arcconfig 2020-01-23 11:50:18 -08:00
.clang-format Add .clang-tidy and .clang-format files to the toplevel of the 2019-01-29 16:43:16 +00:00
.clang-tidy Disable tidy checks with too many hits 2019-02-01 11:20:13 +00:00
.git-blame-ignore-revs Add LLDB reformatting to .git-blame-ignore-revs 2019-09-04 09:31:55 +00:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
CONTRIBUTING.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00
README.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00

README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.