llvm-project/lldb/source/Plugins/UnwindAssembly/x86/x86AssemblyInspectionEngine...

1615 lines
50 KiB
C++

//===-- x86AssemblyInspectionEngine.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "x86AssemblyInspectionEngine.h"
#include <memory>
#include "llvm-c/Disassembler.h"
#include "lldb/Core/Address.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/UnwindAssembly.h"
using namespace lldb_private;
using namespace lldb;
x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
: m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
m_machine_sp_regnum(LLDB_INVALID_REGNUM),
m_machine_fp_regnum(LLDB_INVALID_REGNUM),
m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
m_reg_map(), m_arch(arch), m_cpu(k_cpu_unspecified), m_wordsize(-1),
m_register_map_initialized(false), m_disasm_context() {
m_disasm_context =
::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
/*TagType=*/1, nullptr, nullptr);
}
x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
::LLVMDisasmDispose(m_disasm_context);
}
void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (reg_ctx.get() == nullptr)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_machine_alt_fp_regnum = k_machine_ebx;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_machine_alt_fp_regnum = k_machine_rbx;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
if (ri)
it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
m_lldb_alt_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
void x86AssemblyInspectionEngine::Initialize(
std::vector<lldb_reg_info> &reg_info) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_machine_alt_fp_regnum = k_machine_ebx;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_machine_alt_fp_regnum = k_machine_rbx;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
for (size_t i = 0; i < reg_info.size(); ++i) {
if (::strcmp(reg_info[i].name, it->second.name) == 0) {
it->second.lldb_regnum = reg_info[i].lldb_regnum;
break;
}
}
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
m_lldb_alt_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
// This function expects an x86 native register number (i.e. the bits stripped
// out of the actual instruction), not an lldb register number.
//
// FIXME: This is ABI dependent, it shouldn't be hardcoded here.
bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
if (m_cpu == k_i386) {
switch (machine_regno) {
case k_machine_ebx:
case k_machine_ebp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_esi:
case k_machine_edi:
case k_machine_esp:
return true;
default:
return false;
}
}
if (m_cpu == k_x86_64) {
switch (machine_regno) {
case k_machine_rbx:
case k_machine_rsp:
case k_machine_rbp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_r12:
case k_machine_r13:
case k_machine_r14:
case k_machine_r15:
return true;
default:
return false;
}
}
return false;
}
// Macro to detect if this is a REX mode prefix byte.
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
// The high bit which should be added to the source register number (the "R"
// bit)
#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
// The high bit which should be added to the destination register number (the
// "B" bit)
#define REX_W_DSTREG(opcode) ((opcode)&0x1)
// pushq %rbp [0x55]
bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x55;
}
// pushq $0 ; the first instruction in start() [0x6a 0x00]
bool x86AssemblyInspectionEngine::push_0_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x6a && *(p + 1) == 0x0;
}
// pushq $0
// pushl $0
bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x68 || *p == 0x6a;
}
// pushl imm8(%esp)
//
// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq
// 0x20(%rsp)' in an x86_64 program)
//
// 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with
// three bits used to specify the opcode)
// mod == b01, opcode == b110, R/M == b100
// "+disp8"
// 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value
bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
if (*m_cur_insn == 0xff) {
// Get the 3 opcode bits from the ModR/M byte
uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
if (opcode == 6) {
// I'm only looking for 0xff /6 here - I
// don't really care what value is being pushed, just that we're pushing
// a 32/64 bit value on to the stack is enough.
return true;
}
}
return false;
}
// instructions only valid in 32-bit mode:
// 0x0e - push cs
// 0x16 - push ss
// 0x1e - push ds
// 0x06 - push es
bool x86AssemblyInspectionEngine::push_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
return true;
}
return false;
}
// pushq %rbx
// pushl %ebx
bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
regno_prefix_bit = (*p & 1) << 3;
p++;
}
if (*p >= 0x50 && *p <= 0x57) {
regno = (*p - 0x50) | regno_prefix_bit;
return true;
}
return false;
}
// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b
// 0xec] or [0x89 0xe5]
bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xec)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe5)
return true;
return false;
}
// movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3]
// movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3]
bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xdc)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe3)
return true;
return false;
}
// movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec]
// movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec]
bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xe5)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xec)
return true;
return false;
}
// movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc]
// movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc]
bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xe3)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xdc)
return true;
return false;
}
// subq $0x20, %rsp
bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xec) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xec) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// addq $0x20, %rsp
bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xc4) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xc4) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// lea esp, [esp - 0x28]
// lea esp, [esp + 0x28]
bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
// 8 bit displacement
if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int8_t) * (p + 3);
return true;
}
// 32 bit displacement
if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int32_t)extract_4(p + 3);
return true;
}
return false;
}
// lea -0x28(%ebp), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
++p;
// 8 bit displacement
if (*p == 0x65) {
amount = (int8_t)p[1];
return true;
}
// 32 bit displacement
if (*p == 0xa5) {
amount = (int32_t)extract_4(p + 1);
return true;
}
return false;
}
// lea -0x28(%ebx), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
++p;
// 8 bit displacement
if (*p == 0x63) {
amount = (int8_t)p[1];
return true;
}
// 32 bit displacement
if (*p == 0xa3) {
amount = (int32_t)extract_4(p + 1);
return true;
}
return false;
}
// and -0xfffffff0, %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::and_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*p != 0x81 && *p != 0x83)
return false;
return *++p == 0xe4;
}
// popq %rbx
// popl %ebx
bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
regno_prefix_bit = (*p & 1) << 3;
p++;
}
if (*p >= 0x58 && *p <= 0x5f) {
regno = (*p - 0x58) | regno_prefix_bit;
return true;
}
return false;
}
// popq %rbp [0x5d]
// popl %ebp [0x5d]
bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0x5d);
}
// instructions valid only in 32-bit mode:
// 0x1f - pop ds
// 0x07 - pop es
// 0x17 - pop ss
bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x1f || p == 0x07 || p == 0x17)
return true;
}
return false;
}
// leave [0xc9]
bool x86AssemblyInspectionEngine::leave_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xc9);
}
// call $0 [0xe8 0x0 0x0 0x0 0x0]
bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
(*(p + 3) == 0x0) && (*(p + 4) == 0x0);
}
// Look for an instruction sequence storing a nonvolatile register on to the
// stack frame.
// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
// The offset value returned in rbp_offset will be positive -- but it must be
// subtraced from the frame base register to get the actual location. The
// positive value returned for the offset is a convention used elsewhere for
// CFA offsets et al.
bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
int &regno, int &rbp_offset) {
uint8_t *p = m_cur_insn;
int src_reg_prefix_bit = 0;
int target_reg_prefix_bit = 0;
if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
if (target_reg_prefix_bit == 1) {
// rbp/ebp don't need a prefix bit - we know this isn't the reg we care
// about.
return false;
}
p++;
}
if (*p == 0x89) {
/* Mask off the 3-5 bits which indicate the destination register
if this is a ModR/M byte. */
int opcode_destreg_masked_out = *(p + 1) & (~0x38);
/* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
and three bits between them, e.g. 01nnn101
We're looking for a destination of ebp-disp8 or ebp-disp32. */
int immsize;
if (opcode_destreg_masked_out == 0x45)
immsize = 2;
else if (opcode_destreg_masked_out == 0x85)
immsize = 4;
else
return false;
int offset = 0;
if (immsize == 2)
offset = (int8_t) * (p + 2);
if (immsize == 4)
offset = (uint32_t)extract_4(p + 2);
if (offset > 0)
return false;
regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
rbp_offset = offset > 0 ? offset : -offset;
return true;
}
return false;
}
// Returns true if this is a jmp instruction where we can't
// know the destination address statically.
//
// ff e0 jmpq *%rax
// ff e1 jmpq *%rcx
// ff 60 28 jmpq *0x28(%rax)
// ff 60 60 jmpq *0x60(%rax)
bool x86AssemblyInspectionEngine::jmp_to_reg_p() {
if (*m_cur_insn != 0xff)
return false;
// The second byte is a ModR/M /4 byte, strip off the registers
uint8_t second_byte_sans_reg = *(m_cur_insn + 1) & ~7;
// Don't handle 0x24 disp32, because the target address is
// knowable statically - pc_rel_branch_or_jump_p() will
// return the target address.
// [reg]
if (second_byte_sans_reg == 0x20)
return true;
// [reg]+disp8
if (second_byte_sans_reg == 0x60)
return true;
// [reg]+disp32
if (second_byte_sans_reg == 0xa0)
return true;
// reg
if (second_byte_sans_reg == 0xe0)
return true;
// disp32
// jumps to an address stored in memory, the value can't be cached
// in an unwind plan.
if (second_byte_sans_reg == 0x24)
return true;
// use SIB byte
// ff 24 fe jmpq *(%rsi,%rdi,8)
if (second_byte_sans_reg == 0x24)
return true;
return false;
}
// Detect branches to fixed pc-relative offsets.
// Returns the offset from the address of the next instruction
// that may be branch/jumped to.
//
// Cannot determine the offset of a JMP that jumps to the address in
// a register ("jmpq *%rax") or offset from a register value
// ("jmpq *0x28(%rax)"), this method will return false on those
// instructions.
//
// These instructions all end in either a relative 8/16/32 bit value
// depending on the instruction and the current execution mode of the
// inferior process. Once we know the size of the opcode instruction,
// we can use the total instruction length to determine the size of
// the relative offset without having to compute it correctly.
bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p (
const int instruction_length, int &offset)
{
int opcode_size = 0;
uint8_t b1 = m_cur_insn[0];
switch (b1) {
case 0x77: // JA/JNBE rel8
case 0x73: // JAE/JNB/JNC rel8
case 0x72: // JB/JC/JNAE rel8
case 0x76: // JBE/JNA rel8
case 0xe3: // JCXZ/JECXZ/JRCXZ rel8
case 0x74: // JE/JZ rel8
case 0x7f: // JG/JNLE rel8
case 0x7d: // JGE/JNL rel8
case 0x7c: // JL/JNGE rel8
case 0x7e: // JNG/JLE rel8
case 0x71: // JNO rel8
case 0x7b: // JNP/JPO rel8
case 0x79: // JNS rel8
case 0x75: // JNE/JNZ rel8
case 0x70: // JO rel8
case 0x7a: // JP/JPE rel8
case 0x78: // JS rel8
case 0xeb: // JMP rel8
case 0xe9: // JMP rel16/rel32
opcode_size = 1;
break;
default:
break;
}
if (b1 == 0x0f && opcode_size == 0) {
uint8_t b2 = m_cur_insn[1];
switch (b2) {
case 0x87: // JA/JNBE rel16/rel32
case 0x86: // JBE/JNA rel16/rel32
case 0x84: // JE/JZ rel16/rel32
case 0x8f: // JG/JNLE rel16/rel32
case 0x8d: // JNL/JGE rel16/rel32
case 0x8e: // JLE rel16/rel32
case 0x82: // JB/JC/JNAE rel16/rel32
case 0x83: // JAE/JNB/JNC rel16/rel32
case 0x85: // JNE/JNZ rel16/rel32
case 0x8c: // JL/JNGE rel16/rel32
case 0x81: // JNO rel16/rel32
case 0x8b: // JNP/JPO rel16/rel32
case 0x89: // JNS rel16/rel32
case 0x80: // JO rel16/rel32
case 0x8a: // JP rel16/rel32
case 0x88: // JS rel16/rel32
opcode_size = 2;
break;
default:
break;
}
}
if (opcode_size == 0)
return false;
offset = 0;
if (instruction_length - opcode_size == 1) {
int8_t rel8 = (int8_t) *(m_cur_insn + opcode_size);
offset = rel8;
} else if (instruction_length - opcode_size == 2) {
int16_t rel16 = extract_2_signed (m_cur_insn + opcode_size);
offset = rel16;
} else if (instruction_length - opcode_size == 4) {
int32_t rel32 = extract_4_signed (m_cur_insn + opcode_size);
offset = rel32;
} else {
return false;
}
return true;
}
// Returns true if this instruction is a intra-function branch or jump -
// a branch/jump within the bounds of this same function.
// Cannot predict where a jump through a register value ("jmpq *%rax")
// will go, so it will return false on that instruction.
bool x86AssemblyInspectionEngine::local_branch_p (
const addr_t current_func_text_offset,
const AddressRange &func_range,
const int instruction_length,
addr_t &target_insn_offset) {
int offset;
if (pc_rel_branch_or_jump_p (instruction_length, offset) && offset != 0) {
addr_t next_pc_value = current_func_text_offset + instruction_length;
if (offset < 0 && addr_t(-offset) > current_func_text_offset) {
// Branch target is before the start of this function
return false;
}
if (offset + next_pc_value > func_range.GetByteSize()) {
// Branch targets outside this function's bounds
return false;
}
// This instruction branches to target_insn_offset (byte offset into the function)
target_insn_offset = next_pc_value + offset;
return true;
}
return false;
}
// Returns true if this instruction is a inter-function branch or jump - a
// branch/jump to another function.
// Cannot predict where a jump through a register value ("jmpq *%rax")
// will go, so it will return false on that instruction.
bool x86AssemblyInspectionEngine::non_local_branch_p (
const addr_t current_func_text_offset,
const AddressRange &func_range,
const int instruction_length) {
int offset;
addr_t target_insn_offset;
if (pc_rel_branch_or_jump_p (instruction_length, offset)) {
return !local_branch_p(current_func_text_offset,func_range,instruction_length,target_insn_offset);
}
return false;
}
// ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16]
bool x86AssemblyInspectionEngine::ret_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0xc3 || *p == 0xc2 || *p == 0xca || *p == 0xcb;
}
uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b) {
uint16_t v = 0;
for (int i = 1; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b) {
int16_t v = 0;
for (int i = 1; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
uint32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b) {
int32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
int &length,
uint32_t buffer_remaining_bytes) {
uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
llvm::SmallVector<uint8_t, 32> opcode_data;
opcode_data.resize(max_op_byte_size);
char out_string[512];
const size_t inst_size =
::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
out_string, sizeof(out_string));
length = inst_size;
return true;
}
bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
int machine_regno, uint32_t &lldb_regno) {
MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
if (it != m_reg_map.end()) {
lldb_regno = it->second.lldb_regnum;
return true;
}
return false;
}
bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan) {
unwind_plan.Clear();
if (data == nullptr || size == 0)
return false;
if (!m_register_map_initialized)
return false;
addr_t current_func_text_offset = 0;
int current_sp_bytes_offset_from_fa = 0;
bool is_aligned = false;
UnwindPlan::Row::RegisterLocation initial_regloc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
unwind_plan.SetPlanValidAddressRange(func_range);
unwind_plan.SetRegisterKind(eRegisterKindLLDB);
// At the start of the function, find the CFA by adding wordsize to the SP
// register
row->SetOffset(current_func_text_offset);
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
// caller's stack pointer value before the call insn is the CFA address
initial_regloc.SetIsCFAPlusOffset(0);
row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
// saved instruction pointer can be found at CFA - wordsize.
current_sp_bytes_offset_from_fa = m_wordsize;
initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
// Track which registers have been saved so far in the prologue. If we see
// another push of that register, it's not part of the prologue. The register
// numbers used here are the machine register #'s (i386_register_numbers,
// x86_64_register_numbers).
std::vector<bool> saved_registers(32, false);
// Once the prologue has completed we'll save a copy of the unwind
// instructions If there is an epilogue in the middle of the function, after
// that epilogue we'll reinstate the unwind setup -- we assume that some code
// path jumps over the mid-function epilogue
UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
int prologue_completed_sp_bytes_offset_from_cfa; // The sp value before the
// epilogue started executed
bool prologue_completed_is_aligned;
std::vector<bool> prologue_completed_saved_registers;
while (current_func_text_offset < size) {
int stack_offset, insn_len;
int machine_regno; // register numbers masked directly out of instructions
uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
// numbering scheme
bool in_epilogue = false; // we're in the middle of an epilogue sequence
bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
m_cur_insn = data + current_func_text_offset;
if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
|| insn_len == 0
|| insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction
break;
}
auto &cfa_value = row->GetCFAValue();
auto &afa_value = row->GetAFAValue();
auto fa_value_ptr = is_aligned ? &afa_value : &cfa_value;
if (mov_rsp_rbp_pattern_p()) {
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_fp_regnum, fa_value_ptr->GetOffset());
row_updated = true;
}
}
else if (mov_rsp_rbx_pattern_p()) {
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_alt_fp_regnum, fa_value_ptr->GetOffset());
row_updated = true;
}
}
else if (and_rsp_pattern_p()) {
current_sp_bytes_offset_from_fa = 0;
afa_value.SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
fa_value_ptr = &afa_value;
is_aligned = true;
row_updated = true;
}
else if (mov_rbp_rsp_pattern_p()) {
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
}
else if (mov_rbx_rsp_pattern_p()) {
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum)
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
}
// This is the start() function (or a pthread equivalent), it starts with a
// pushl $0x0 which puts the saved pc value of 0 on the stack. In this
// case we want to pretend we didn't see a stack movement at all --
// normally the saved pc value is already on the stack by the time the
// function starts executing.
else if (push_0_pattern_p()) {
}
else if (push_reg_p(machine_regno)) {
current_sp_bytes_offset_from_fa += m_wordsize;
// the PUSH instruction has moved the stack pointer - if the FA is set
// in terms of the stack pointer, we need to add a new row of
// instructions.
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
// record where non-volatile (callee-saved, spilled) registers are saved
// on the stack
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
!saved_registers[machine_regno]) {
UnwindPlan::Row::RegisterLocation regloc;
if (is_aligned)
regloc.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa);
else
regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
row->SetRegisterInfo(lldb_regno, regloc);
saved_registers[machine_regno] = true;
row_updated = true;
}
}
else if (pop_reg_p(machine_regno)) {
current_sp_bytes_offset_from_fa -= m_wordsize;
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno]) {
saved_registers[machine_regno] = false;
row->RemoveRegisterInfo(lldb_regno);
if (lldb_regno == fa_value_ptr->GetRegisterNumber()) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
}
in_epilogue = true;
row_updated = true;
}
// the POP instruction has moved the stack pointer - if the FA is set in
// terms of the stack pointer, we need to add a new row of instructions.
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (pop_misc_reg_p()) {
current_sp_bytes_offset_from_fa -= m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
// The LEAVE instruction moves the value from rbp into rsp and pops a value
// off the stack into rbp (restoring the caller's rbp value). It is the
// opposite of ENTER, or 'push rbp, mov rsp rbp'.
else if (leave_pattern_p()) {
if (saved_registers[m_machine_fp_regnum]) {
saved_registers[m_machine_fp_regnum] = false;
row->RemoveRegisterInfo(m_lldb_fp_regnum);
row_updated = true;
}
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
{
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
}
current_sp_bytes_offset_from_fa -= m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
in_epilogue = true;
}
else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
!saved_registers[machine_regno]) {
saved_registers[machine_regno] = true;
UnwindPlan::Row::RegisterLocation regloc;
// stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we
// want to express this as the offset from the FA. If the frame base is
// rbp (like the above instruction), the FA offset for rbp is probably
// 16. So we want to say that the value is stored at the FA address -
// 96.
if (is_aligned)
regloc.SetAtAFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
else
regloc.SetAtCFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
row->SetRegisterInfo(lldb_regno, regloc);
row_updated = true;
}
else if (sub_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa += stack_offset;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (add_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa -= stack_offset;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
in_epilogue = true;
}
else if (push_extended_pattern_p() || push_imm_pattern_p() ||
push_misc_reg_p()) {
current_sp_bytes_offset_from_fa += m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (lea_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa -= stack_offset;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
if (stack_offset > 0)
in_epilogue = true;
}
else if (lea_rbp_rsp_pattern_p(stack_offset)) {
if (is_aligned &&
cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) {
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) {
current_sp_bytes_offset_from_fa =
fa_value_ptr->GetOffset() - stack_offset;
}
}
else if (lea_rbx_rsp_pattern_p(stack_offset)) {
if (is_aligned &&
cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) {
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) {
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset;
}
}
else if (prologue_completed_row.get() &&
(ret_pattern_p() ||
non_local_branch_p (current_func_text_offset, func_range, insn_len) ||
jmp_to_reg_p())) {
// Check if the current instruction is the end of an epilogue sequence,
// and if so, re-instate the prologue-completed unwind state.
// The current instruction is a branch/jump outside this function,
// a ret, or a jump through a register value which we cannot
// determine the effcts of. Verify that the stack frame state
// has been unwound to the same as it was at function entry to avoid
// mis-identifying a JMP instruction as an epilogue.
UnwindPlan::Row::RegisterLocation sp, pc;
if (row->GetRegisterInfo(m_lldb_sp_regnum, sp) &&
row->GetRegisterInfo(m_lldb_ip_regnum, pc)) {
// Any ret instruction variant is definitely indicative of an
// epilogue; for other insn patterns verify that we're back to
// the original unwind state.
if (ret_pattern_p() ||
(sp.IsCFAPlusOffset() && sp.GetOffset() == 0 &&
pc.IsAtCFAPlusOffset() && pc.GetOffset() == -m_wordsize)) {
// Reinstate the saved prologue setup for any instructions that come
// after the epilogue
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *prologue_completed_row.get();
row.reset(newrow);
current_sp_bytes_offset_from_fa =
prologue_completed_sp_bytes_offset_from_cfa;
is_aligned = prologue_completed_is_aligned;
saved_registers.clear();
saved_registers.resize(prologue_completed_saved_registers.size(), false);
for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
saved_registers[i] = prologue_completed_saved_registers[i];
}
in_epilogue = true;
row_updated = true;
}
}
}
// call next instruction
// call 0
// => pop %ebx
// This is used in i386 programs to get the PIC base address for finding
// global data
else if (call_next_insn_pattern_p()) {
current_sp_bytes_offset_from_fa += m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
if (row_updated) {
if (current_func_text_offset + insn_len < size) {
row->SetOffset(current_func_text_offset + insn_len);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
}
}
if (!in_epilogue && row_updated) {
// If we're not in an epilogue sequence, save the updated Row
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
prologue_completed_row.reset(newrow);
prologue_completed_saved_registers.clear();
prologue_completed_saved_registers.resize(saved_registers.size(), false);
for (size_t i = 0; i < saved_registers.size(); ++i) {
prologue_completed_saved_registers[i] = saved_registers[i];
}
}
// We may change the sp value without adding a new Row necessarily -- keep
// track of it either way.
if (!in_epilogue) {
prologue_completed_sp_bytes_offset_from_cfa =
current_sp_bytes_offset_from_fa;
prologue_completed_is_aligned = is_aligned;
}
m_cur_insn = m_cur_insn + insn_len;
current_func_text_offset += insn_len;
}
unwind_plan.SetSourceName("assembly insn profiling");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
return true;
}
bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
Address addr_start = func_range.GetBaseAddress();
if (!addr_start.IsValid())
return false;
// We either need a live RegisterContext, or we need the UnwindPlan to
// already be in the lldb register numbering scheme.
if (reg_ctx.get() == nullptr &&
unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
return false;
// Is original unwind_plan valid?
// unwind_plan should have at least one row which is ABI-default (CFA
// register is sp), and another row in mid-function.
if (unwind_plan.GetRowCount() < 2)
return false;
UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
if (first_row->GetOffset() != 0)
return false;
uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
first_row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg != m_lldb_sp_regnum ||
first_row->GetCFAValue().GetOffset() != m_wordsize)
return false;
UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
size_t offset = 0;
int row_id = 1;
bool unwind_plan_updated = false;
UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
// After a mid-function epilogue we will need to re-insert the original
// unwind rules so unwinds work for the remainder of the function. These
// aren't common with clang/gcc on x86 but it is possible.
bool reinstate_unwind_state = false;
while (offset < size) {
m_cur_insn = data + offset;
int insn_len;
if (!instruction_length(m_cur_insn, insn_len, size - offset) ||
insn_len == 0 || insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction.
break;
}
// Advance offsets.
offset += insn_len;
// offset is pointing beyond the bounds of the function; stop looping.
if (offset >= size)
continue;
if (reinstate_unwind_state) {
UnwindPlan::RowSP new_row(new UnwindPlan::Row());
*new_row = *original_last_row;
new_row->SetOffset(offset);
unwind_plan.AppendRow(new_row);
row = std::make_shared<UnwindPlan::Row>();
*row = *new_row;
reinstate_unwind_state = false;
unwind_plan_updated = true;
continue;
}
// If we already have one row for this instruction, we can continue.
while (row_id < unwind_plan.GetRowCount() &&
unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
row_id++;
}
UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
if (original_row->GetOffset() == offset) {
*row = *original_row;
continue;
}
if (row_id == 0) {
// If we are here, compiler didn't generate CFI for prologue. This won't
// happen to GCC or clang. In this case, bail out directly.
return false;
}
// Inspect the instruction to check if we need a new row for it.
cfa_reg = row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg == m_lldb_sp_regnum) {
// CFA register is sp.
// call next instruction
// call 0
// => pop %ebx
if (call_next_insn_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push/pop register
int regno;
if (push_reg_p(regno)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_reg_p(regno)) {
// Technically, this might be a nonvolatile register recover in
// epilogue. We should reset RegisterInfo for the register. But in
// practice, previous rule for the register is still valid... So we
// ignore this case.
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push imm
if (push_imm_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push extended
if (push_extended_pattern_p() || push_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// add/sub %rsp/%esp
int amount;
if (add_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (sub_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// lea %rsp, [%rsp + $offset]
if (lea_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (ret_pattern_p()) {
reinstate_unwind_state = true;
continue;
}
} else if (cfa_reg == m_lldb_fp_regnum) {
// CFA register is fp.
// The only case we care about is epilogue:
// [0x5d] pop %rbp/%ebp
// => [0xc3] ret
if (pop_rbp_pattern_p() || leave_pattern_p()) {
m_cur_insn++;
if (ret_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().SetIsRegisterPlusOffset(
first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
reinstate_unwind_state = true;
continue;
}
}
} else {
// CFA register is not sp or fp.
// This must be hand-written assembly.
// Just trust eh_frame and assume we have finished.
break;
}
}
unwind_plan.SetPlanValidAddressRange(func_range);
if (unwind_plan_updated) {
std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
unwind_plan_source += " plus augmentation from assembly parsing";
unwind_plan.SetSourceName(unwind_plan_source.c_str());
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
}
return true;
}
bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
uint8_t *data, size_t size, size_t &offset) {
offset = 0;
if (!m_register_map_initialized)
return false;
while (offset < size) {
int regno;
int insn_len;
int scratch;
m_cur_insn = data + offset;
if (!instruction_length(m_cur_insn, insn_len, size - offset)
|| insn_len > kMaxInstructionByteSize
|| insn_len == 0) {
// An error parsing the instruction, i.e. probably data/garbage - stop
// scanning
break;
}
if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
mov_reg_to_local_stack_frame_p(regno, scratch) ||
(lea_rsp_pattern_p(scratch) && offset == 0)) {
offset += insn_len;
continue;
}
//
// Unknown non-prologue instruction - stop scanning
break;
}
return true;
}