llvm-project/llvm/lib/ProfileData/CoverageMapping.cpp

525 lines
18 KiB
C++

//=-- CoverageMapping.cpp - Code coverage mapping support ---------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/CoverageMapping.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ProfileData/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace coverage;
#define DEBUG_TYPE "coverage-mapping"
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
auto It = ExpressionIndices.find(E);
if (It != ExpressionIndices.end())
return Counter::getExpression(It->second);
unsigned I = Expressions.size();
Expressions.push_back(E);
ExpressionIndices[E] = I;
return Counter::getExpression(I);
}
void CounterExpressionBuilder::extractTerms(
Counter C, int Sign, SmallVectorImpl<std::pair<unsigned, int>> &Terms) {
switch (C.getKind()) {
case Counter::Zero:
break;
case Counter::CounterValueReference:
Terms.push_back(std::make_pair(C.getCounterID(), Sign));
break;
case Counter::Expression:
const auto &E = Expressions[C.getExpressionID()];
extractTerms(E.LHS, Sign, Terms);
extractTerms(E.RHS, E.Kind == CounterExpression::Subtract ? -Sign : Sign,
Terms);
break;
}
}
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
// Gather constant terms.
llvm::SmallVector<std::pair<unsigned, int>, 32> Terms;
extractTerms(ExpressionTree, +1, Terms);
// If there are no terms, this is just a zero. The algorithm below assumes at
// least one term.
if (Terms.size() == 0)
return Counter::getZero();
// Group the terms by counter ID.
std::sort(Terms.begin(), Terms.end(),
[](const std::pair<unsigned, int> &LHS,
const std::pair<unsigned, int> &RHS) {
return LHS.first < RHS.first;
});
// Combine terms by counter ID to eliminate counters that sum to zero.
auto Prev = Terms.begin();
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
if (I->first == Prev->first) {
Prev->second += I->second;
continue;
}
++Prev;
*Prev = *I;
}
Terms.erase(++Prev, Terms.end());
Counter C;
// Create additions. We do this before subtractions to avoid constructs like
// ((0 - X) + Y), as opposed to (Y - X).
for (auto Term : Terms) {
if (Term.second <= 0)
continue;
for (int I = 0; I < Term.second; ++I)
if (C.isZero())
C = Counter::getCounter(Term.first);
else
C = get(CounterExpression(CounterExpression::Add, C,
Counter::getCounter(Term.first)));
}
// Create subtractions.
for (auto Term : Terms) {
if (Term.second >= 0)
continue;
for (int I = 0; I < -Term.second; ++I)
C = get(CounterExpression(CounterExpression::Subtract, C,
Counter::getCounter(Term.first)));
}
return C;
}
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
}
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
return simplify(
get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
}
void CounterMappingContext::dump(const Counter &C,
llvm::raw_ostream &OS) const {
switch (C.getKind()) {
case Counter::Zero:
OS << '0';
return;
case Counter::CounterValueReference:
OS << '#' << C.getCounterID();
break;
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return;
const auto &E = Expressions[C.getExpressionID()];
OS << '(';
dump(E.LHS, OS);
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
dump(E.RHS, OS);
OS << ')';
break;
}
}
if (CounterValues.empty())
return;
ErrorOr<int64_t> Value = evaluate(C);
if (!Value)
return;
OS << '[' << *Value << ']';
}
ErrorOr<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
switch (C.getKind()) {
case Counter::Zero:
return 0;
case Counter::CounterValueReference:
if (C.getCounterID() >= CounterValues.size())
return make_error_code(errc::argument_out_of_domain);
return CounterValues[C.getCounterID()];
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return make_error_code(errc::argument_out_of_domain);
const auto &E = Expressions[C.getExpressionID()];
ErrorOr<int64_t> LHS = evaluate(E.LHS);
if (!LHS)
return LHS;
ErrorOr<int64_t> RHS = evaluate(E.RHS);
if (!RHS)
return RHS;
return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
}
}
llvm_unreachable("Unhandled CounterKind");
}
void FunctionRecordIterator::skipOtherFiles() {
while (Current != Records.end() && !Filename.empty() &&
Filename != Current->Filenames[0])
++Current;
if (Current == Records.end())
*this = FunctionRecordIterator();
}
ErrorOr<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(CoverageMappingReader &CoverageReader,
IndexedInstrProfReader &ProfileReader) {
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
std::vector<uint64_t> Counts;
for (const auto &Record : CoverageReader) {
CounterMappingContext Ctx(Record.Expressions);
Counts.clear();
if (std::error_code EC = ProfileReader.getFunctionCounts(
Record.FunctionName, Record.FunctionHash, Counts)) {
if (EC == instrprof_error::hash_mismatch) {
Coverage->MismatchedFunctionCount++;
continue;
} else if (EC != instrprof_error::unknown_function)
return EC;
Counts.assign(Record.MappingRegions.size(), 0);
}
Ctx.setCounts(Counts);
assert(!Record.MappingRegions.empty() && "Function has no regions");
StringRef OrigFuncName = Record.FunctionName;
if (Record.Filenames.empty())
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
else
OrigFuncName =
getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
FunctionRecord Function(OrigFuncName, Record.Filenames);
for (const auto &Region : Record.MappingRegions) {
ErrorOr<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
if (!ExecutionCount)
break;
Function.pushRegion(Region, *ExecutionCount);
}
if (Function.CountedRegions.size() != Record.MappingRegions.size()) {
Coverage->MismatchedFunctionCount++;
continue;
}
Coverage->Functions.push_back(std::move(Function));
}
return std::move(Coverage);
}
ErrorOr<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(StringRef ObjectFilename, StringRef ProfileFilename,
StringRef Arch) {
auto CounterMappingBuff = MemoryBuffer::getFileOrSTDIN(ObjectFilename);
if (std::error_code EC = CounterMappingBuff.getError())
return EC;
auto CoverageReaderOrErr =
BinaryCoverageReader::create(CounterMappingBuff.get(), Arch);
if (std::error_code EC = CoverageReaderOrErr.getError())
return EC;
auto CoverageReader = std::move(CoverageReaderOrErr.get());
auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
if (auto EC = ProfileReaderOrErr.getError())
return EC;
auto ProfileReader = std::move(ProfileReaderOrErr.get());
return load(*CoverageReader, *ProfileReader);
}
namespace {
/// \brief Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
typedef DenseMap<std::pair<unsigned, unsigned>,
std::vector<const FunctionRecord *>> MapT;
MapT InstantiatedFunctions;
public:
void insert(const FunctionRecord &Function, unsigned FileID) {
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
while (I != E && I->FileID != FileID)
++I;
assert(I != E && "function does not cover the given file");
auto &Functions = InstantiatedFunctions[I->startLoc()];
Functions.push_back(&Function);
}
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
MapT::iterator end() { return InstantiatedFunctions.end(); }
};
class SegmentBuilder {
std::vector<CoverageSegment> Segments;
SmallVector<const CountedRegion *, 8> ActiveRegions;
/// Start a segment with no count specified.
void startSegment(unsigned Line, unsigned Col) {
DEBUG(dbgs() << "Top level segment at " << Line << ":" << Col << "\n");
Segments.emplace_back(Line, Col, /*IsRegionEntry=*/false);
}
/// Start a segment with the given Region's count.
void startSegment(unsigned Line, unsigned Col, bool IsRegionEntry,
const CountedRegion &Region) {
if (Segments.empty())
Segments.emplace_back(Line, Col, IsRegionEntry);
CoverageSegment S = Segments.back();
// Avoid creating empty regions.
if (S.Line != Line || S.Col != Col) {
Segments.emplace_back(Line, Col, IsRegionEntry);
S = Segments.back();
}
DEBUG(dbgs() << "Segment at " << Line << ":" << Col);
// Set this region's count.
if (Region.Kind != coverage::CounterMappingRegion::SkippedRegion) {
DEBUG(dbgs() << " with count " << Region.ExecutionCount);
Segments.back().setCount(Region.ExecutionCount);
}
DEBUG(dbgs() << "\n");
}
/// Start a segment for the given region.
void startSegment(const CountedRegion &Region) {
startSegment(Region.LineStart, Region.ColumnStart, true, Region);
}
/// Pop the top region off of the active stack, starting a new segment with
/// the containing Region's count.
void popRegion() {
const CountedRegion *Active = ActiveRegions.back();
unsigned Line = Active->LineEnd, Col = Active->ColumnEnd;
ActiveRegions.pop_back();
if (ActiveRegions.empty())
startSegment(Line, Col);
else
startSegment(Line, Col, false, *ActiveRegions.back());
}
public:
/// Build a list of CoverageSegments from a sorted list of Regions.
std::vector<CoverageSegment> buildSegments(ArrayRef<CountedRegion> Regions) {
const CountedRegion *PrevRegion = nullptr;
for (const auto &Region : Regions) {
// Pop any regions that end before this one starts.
while (!ActiveRegions.empty() &&
ActiveRegions.back()->endLoc() <= Region.startLoc())
popRegion();
if (PrevRegion && PrevRegion->startLoc() == Region.startLoc() &&
PrevRegion->endLoc() == Region.endLoc()) {
if (Region.Kind == coverage::CounterMappingRegion::CodeRegion)
Segments.back().addCount(Region.ExecutionCount);
} else {
// Add this region to the stack.
ActiveRegions.push_back(&Region);
startSegment(Region);
}
PrevRegion = &Region;
}
// Pop any regions that are left in the stack.
while (!ActiveRegions.empty())
popRegion();
return Segments;
}
};
}
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
std::vector<StringRef> Filenames;
for (const auto &Function : getCoveredFunctions())
Filenames.insert(Filenames.end(), Function.Filenames.begin(),
Function.Filenames.end());
std::sort(Filenames.begin(), Filenames.end());
auto Last = std::unique(Filenames.begin(), Filenames.end());
Filenames.erase(Last, Filenames.end());
return Filenames;
}
static SmallBitVector gatherFileIDs(StringRef SourceFile,
const FunctionRecord &Function) {
SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
FilenameEquivalence[I] = true;
return FilenameEquivalence;
}
static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
const FunctionRecord &Function) {
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
SmallBitVector FilenameEquivalence = gatherFileIDs(SourceFile, Function);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion &&
FilenameEquivalence[CR.FileID])
IsNotExpandedFile[CR.ExpandedFileID] = false;
IsNotExpandedFile &= FilenameEquivalence;
int I = IsNotExpandedFile.find_first();
if (I == -1)
return None;
return I;
}
static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
IsNotExpandedFile[CR.ExpandedFileID] = false;
int I = IsNotExpandedFile.find_first();
if (I == -1)
return None;
return I;
}
/// Sort a nested sequence of regions from a single file.
template <class It> static void sortNestedRegions(It First, It Last) {
std::sort(First, Last,
[](const CountedRegion &LHS, const CountedRegion &RHS) {
if (LHS.startLoc() == RHS.startLoc())
// When LHS completely contains RHS, we sort LHS first.
return RHS.endLoc() < LHS.endLoc();
return LHS.startLoc() < RHS.startLoc();
});
}
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) {
CoverageData FileCoverage(Filename);
std::vector<coverage::CountedRegion> Regions;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
auto FileIDs = gatherFileIDs(Filename, Function);
for (const auto &CR : Function.CountedRegions)
if (FileIDs.test(CR.FileID)) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FileCoverage.Expansions.emplace_back(CR, Function);
}
}
sortNestedRegions(Regions.begin(), Regions.end());
DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
FileCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return FileCoverage;
}
std::vector<const FunctionRecord *>
CoverageMapping::getInstantiations(StringRef Filename) {
FunctionInstantiationSetCollector InstantiationSetCollector;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
InstantiationSetCollector.insert(Function, *MainFileID);
}
std::vector<const FunctionRecord *> Result;
for (const auto &InstantiationSet : InstantiationSetCollector) {
if (InstantiationSet.second.size() < 2)
continue;
Result.insert(Result.end(), InstantiationSet.second.begin(),
InstantiationSet.second.end());
}
return Result;
}
CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) {
auto MainFileID = findMainViewFileID(Function);
if (!MainFileID)
return CoverageData();
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
std::vector<coverage::CountedRegion> Regions;
for (const auto &CR : Function.CountedRegions)
if (CR.FileID == *MainFileID) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FunctionCoverage.Expansions.emplace_back(CR, Function);
}
sortNestedRegions(Regions.begin(), Regions.end());
DEBUG(dbgs() << "Emitting segments for function: " << Function.Name << "\n");
FunctionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return FunctionCoverage;
}
CoverageData
CoverageMapping::getCoverageForExpansion(const ExpansionRecord &Expansion) {
CoverageData ExpansionCoverage(
Expansion.Function.Filenames[Expansion.FileID]);
std::vector<coverage::CountedRegion> Regions;
for (const auto &CR : Expansion.Function.CountedRegions)
if (CR.FileID == Expansion.FileID) {
Regions.push_back(CR);
if (isExpansion(CR, Expansion.FileID))
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
}
sortNestedRegions(Regions.begin(), Regions.end());
DEBUG(dbgs() << "Emitting segments for expansion of file " << Expansion.FileID
<< "\n");
ExpansionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return ExpansionCoverage;
}
namespace {
class CoverageMappingErrorCategoryType : public std::error_category {
const char *name() const LLVM_NOEXCEPT override { return "llvm.coveragemap"; }
std::string message(int IE) const override {
auto E = static_cast<coveragemap_error>(IE);
switch (E) {
case coveragemap_error::success:
return "Success";
case coveragemap_error::eof:
return "End of File";
case coveragemap_error::no_data_found:
return "No coverage data found";
case coveragemap_error::unsupported_version:
return "Unsupported coverage format version";
case coveragemap_error::truncated:
return "Truncated coverage data";
case coveragemap_error::malformed:
return "Malformed coverage data";
}
llvm_unreachable("A value of coveragemap_error has no message.");
}
};
}
static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
const std::error_category &llvm::coverage::coveragemap_category() {
return *ErrorCategory;
}