forked from OSchip/llvm-project
1593 lines
55 KiB
C++
1593 lines
55 KiB
C++
//===- PPC64.cpp ----------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "Thunks.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
constexpr uint64_t ppc64TocOffset = 0x8000;
|
|
constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
|
|
|
|
// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
|
|
// instructions that can be used as part of the initial exec TLS sequence.
|
|
enum XFormOpcd {
|
|
LBZX = 87,
|
|
LHZX = 279,
|
|
LWZX = 23,
|
|
LDX = 21,
|
|
STBX = 215,
|
|
STHX = 407,
|
|
STWX = 151,
|
|
STDX = 149,
|
|
ADD = 266,
|
|
};
|
|
|
|
enum DFormOpcd {
|
|
LBZ = 34,
|
|
LBZU = 35,
|
|
LHZ = 40,
|
|
LHZU = 41,
|
|
LHAU = 43,
|
|
LWZ = 32,
|
|
LWZU = 33,
|
|
LFSU = 49,
|
|
LD = 58,
|
|
LFDU = 51,
|
|
STB = 38,
|
|
STBU = 39,
|
|
STH = 44,
|
|
STHU = 45,
|
|
STW = 36,
|
|
STWU = 37,
|
|
STFSU = 53,
|
|
STFDU = 55,
|
|
STD = 62,
|
|
ADDI = 14
|
|
};
|
|
|
|
constexpr uint32_t NOP = 0x60000000;
|
|
|
|
enum class PPCLegacyInsn : uint32_t {
|
|
NOINSN = 0,
|
|
// Loads.
|
|
LBZ = 0x88000000,
|
|
LHZ = 0xa0000000,
|
|
LWZ = 0x80000000,
|
|
LHA = 0xa8000000,
|
|
LWA = 0xe8000002,
|
|
LD = 0xe8000000,
|
|
LFS = 0xC0000000,
|
|
LXSSP = 0xe4000003,
|
|
LFD = 0xc8000000,
|
|
LXSD = 0xe4000002,
|
|
LXV = 0xf4000001,
|
|
LXVP = 0x18000000,
|
|
|
|
// Stores.
|
|
STB = 0x98000000,
|
|
STH = 0xb0000000,
|
|
STW = 0x90000000,
|
|
STD = 0xf8000000,
|
|
STFS = 0xd0000000,
|
|
STXSSP = 0xf4000003,
|
|
STFD = 0xd8000000,
|
|
STXSD = 0xf4000002,
|
|
STXV = 0xf4000005,
|
|
STXVP = 0x18000001
|
|
};
|
|
enum class PPCPrefixedInsn : uint64_t {
|
|
NOINSN = 0,
|
|
PREFIX_MLS = 0x0610000000000000,
|
|
PREFIX_8LS = 0x0410000000000000,
|
|
|
|
// Loads.
|
|
PLBZ = PREFIX_MLS,
|
|
PLHZ = PREFIX_MLS,
|
|
PLWZ = PREFIX_MLS,
|
|
PLHA = PREFIX_MLS,
|
|
PLWA = PREFIX_8LS | 0xa4000000,
|
|
PLD = PREFIX_8LS | 0xe4000000,
|
|
PLFS = PREFIX_MLS,
|
|
PLXSSP = PREFIX_8LS | 0xac000000,
|
|
PLFD = PREFIX_MLS,
|
|
PLXSD = PREFIX_8LS | 0xa8000000,
|
|
PLXV = PREFIX_8LS | 0xc8000000,
|
|
PLXVP = PREFIX_8LS | 0xe8000000,
|
|
|
|
// Stores.
|
|
PSTB = PREFIX_MLS,
|
|
PSTH = PREFIX_MLS,
|
|
PSTW = PREFIX_MLS,
|
|
PSTD = PREFIX_8LS | 0xf4000000,
|
|
PSTFS = PREFIX_MLS,
|
|
PSTXSSP = PREFIX_8LS | 0xbc000000,
|
|
PSTFD = PREFIX_MLS,
|
|
PSTXSD = PREFIX_8LS | 0xb8000000,
|
|
PSTXV = PREFIX_8LS | 0xd8000000,
|
|
PSTXVP = PREFIX_8LS | 0xf8000000
|
|
};
|
|
static bool checkPPCLegacyInsn(uint32_t encoding) {
|
|
PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
|
|
if (insn == PPCLegacyInsn::NOINSN)
|
|
return false;
|
|
#define PCREL_OPT(Legacy, PCRel, InsnMask) \
|
|
if (insn == PPCLegacyInsn::Legacy) \
|
|
return true;
|
|
#include "PPCInsns.def"
|
|
#undef PCREL_OPT
|
|
return false;
|
|
}
|
|
|
|
// Masks to apply to legacy instructions when converting them to prefixed,
|
|
// pc-relative versions. For the most part, the primary opcode is shared
|
|
// between the legacy instruction and the suffix of its prefixed version.
|
|
// However, there are some instances where that isn't the case (DS-Form and
|
|
// DQ-form instructions).
|
|
enum class LegacyToPrefixMask : uint64_t {
|
|
NOMASK = 0x0,
|
|
OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
|
|
ONLY_RST = 0x3e00000, // [RS]T (6-10).
|
|
ST_STX28_TO5 =
|
|
0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
|
|
};
|
|
|
|
uint64_t elf::getPPC64TocBase() {
|
|
// The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
|
|
// TOC starts where the first of these sections starts. We always create a
|
|
// .got when we see a relocation that uses it, so for us the start is always
|
|
// the .got.
|
|
uint64_t tocVA = in.got->getVA();
|
|
|
|
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
|
|
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
|
|
// code (crt1.o) assumes that you can get from the TOC base to the
|
|
// start of the .toc section with only a single (signed) 16-bit relocation.
|
|
return tocVA + ppc64TocOffset;
|
|
}
|
|
|
|
unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
|
|
// The offset is encoded into the 3 most significant bits of the st_other
|
|
// field, with some special values described in section 3.4.1 of the ABI:
|
|
// 0 --> Zero offset between the GEP and LEP, and the function does NOT use
|
|
// the TOC pointer (r2). r2 will hold the same value on returning from
|
|
// the function as it did on entering the function.
|
|
// 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
|
|
// caller-saved register for all callers.
|
|
// 2-6 --> The binary logarithm of the offset eg:
|
|
// 2 --> 2^2 = 4 bytes --> 1 instruction.
|
|
// 6 --> 2^6 = 64 bytes --> 16 instructions.
|
|
// 7 --> Reserved.
|
|
uint8_t gepToLep = (stOther >> 5) & 7;
|
|
if (gepToLep < 2)
|
|
return 0;
|
|
|
|
// The value encoded in the st_other bits is the
|
|
// log-base-2(offset).
|
|
if (gepToLep < 7)
|
|
return 1 << gepToLep;
|
|
|
|
error("reserved value of 7 in the 3 most-significant-bits of st_other");
|
|
return 0;
|
|
}
|
|
|
|
bool elf::isPPC64SmallCodeModelTocReloc(RelType type) {
|
|
// The only small code model relocations that access the .toc section.
|
|
return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
|
|
}
|
|
|
|
void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
|
|
insn = config->isLE ? insn << 32 | insn >> 32 : insn;
|
|
write64(loc, insn);
|
|
}
|
|
|
|
static bool addOptional(StringRef name, uint64_t value,
|
|
std::vector<Defined *> &defined) {
|
|
Symbol *sym = symtab->find(name);
|
|
if (!sym || sym->isDefined())
|
|
return false;
|
|
sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL,
|
|
STV_HIDDEN, STT_FUNC, value,
|
|
/*size=*/0, /*section=*/nullptr});
|
|
defined.push_back(cast<Defined>(sym));
|
|
return true;
|
|
}
|
|
|
|
// If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
|
|
// firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
|
|
// The labels are defined only if they exist in the symbol table.
|
|
static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
|
|
int from, uint32_t firstInsn,
|
|
ArrayRef<uint32_t> tail) {
|
|
std::vector<Defined *> defined;
|
|
char name[16];
|
|
int first;
|
|
uint32_t *ptr = buf.data();
|
|
for (int r = from; r < 32; ++r) {
|
|
format("%s%d", prefix, r).snprint(name, sizeof(name));
|
|
if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
|
|
first = r - from;
|
|
write32(ptr++, firstInsn + 0x200008 * (r - from));
|
|
}
|
|
for (uint32_t insn : tail)
|
|
write32(ptr++, insn);
|
|
assert(ptr == &*buf.end());
|
|
|
|
if (defined.empty())
|
|
return;
|
|
// The full section content has the extent of [begin, end). We drop unused
|
|
// instructions and write [first,end).
|
|
auto *sec = make<InputSection>(
|
|
nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
|
|
makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
|
|
4 * (buf.size() - first)),
|
|
".text");
|
|
inputSections.push_back(sec);
|
|
for (Defined *sym : defined) {
|
|
sym->section = sec;
|
|
sym->value -= 4 * first;
|
|
}
|
|
}
|
|
|
|
// Implements some save and restore functions as described by ELF V2 ABI to be
|
|
// compatible with GCC. With GCC -Os, when the number of call-saved registers
|
|
// exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
|
|
// expects the linker to define them. See
|
|
// https://sourceware.org/pipermail/binutils/2002-February/017444.html and
|
|
// https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
|
|
// weird because libgcc.a would be the natural place. The linker generation
|
|
// approach has the advantage that the linker can generate multiple copies to
|
|
// avoid long branch thunks. However, we don't consider the advantage
|
|
// significant enough to complicate our trunk implementation, so we take the
|
|
// simple approach and synthesize .text sections providing the implementation.
|
|
void elf::addPPC64SaveRestore() {
|
|
static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
|
|
constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
|
|
|
|
// _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
|
|
// Tail: ld 0, 16(1); mtlr 0; blr
|
|
writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
|
|
{0xe8010010, mtlr_0, blr});
|
|
// _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
|
|
// Tail: blr
|
|
writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
|
|
// _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
|
|
// Tail: std 0, 16(1); blr
|
|
writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
|
|
// _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
|
|
// Tail: blr
|
|
writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
|
|
}
|
|
|
|
// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
|
|
template <typename ELFT>
|
|
static std::pair<Defined *, int64_t>
|
|
getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
|
|
if (tocSec->numRelocations == 0)
|
|
return {};
|
|
|
|
// .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
|
|
// r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
|
|
// relocation index in most cases.
|
|
//
|
|
// In rare cases a TOC entry may store a constant that doesn't need an
|
|
// R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
|
|
// points to a relocation with larger r_offset. Do a linear probe then.
|
|
// Constants are extremely uncommon in .toc and the extra number of array
|
|
// accesses can be seen as a small constant.
|
|
ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
|
|
uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
|
|
for (;;) {
|
|
if (relas[index].r_offset == offset) {
|
|
Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
|
|
return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
|
|
}
|
|
if (relas[index].r_offset < offset || index == 0)
|
|
break;
|
|
--index;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
// When accessing a symbol defined in another translation unit, compilers
|
|
// reserve a .toc entry, allocate a local label and generate toc-indirect
|
|
// instructions:
|
|
//
|
|
// addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
|
|
// ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
|
|
// ld/lwa 3, 0(3) # load the value from the address
|
|
//
|
|
// .section .toc,"aw",@progbits
|
|
// .LC0: .tc var[TC],var
|
|
//
|
|
// If var is defined, non-preemptable and addressable with a 32-bit signed
|
|
// offset from the toc base, the address of var can be computed by adding an
|
|
// offset to the toc base, saving a load.
|
|
//
|
|
// addis 3,2,var@toc@ha # this may be relaxed to a nop,
|
|
// addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
|
|
// ld/lwa 3, 0(3) # load the value from the address
|
|
//
|
|
// Returns true if the relaxation is performed.
|
|
bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
|
|
assert(config->tocOptimize);
|
|
if (rel.addend < 0)
|
|
return false;
|
|
|
|
// If the symbol is not the .toc section, this isn't a toc-indirection.
|
|
Defined *defSym = dyn_cast<Defined>(rel.sym);
|
|
if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
|
|
return false;
|
|
|
|
Defined *d;
|
|
int64_t addend;
|
|
auto *tocISB = cast<InputSectionBase>(defSym->section);
|
|
std::tie(d, addend) =
|
|
config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
|
|
: getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
|
|
|
|
// Only non-preemptable defined symbols can be relaxed.
|
|
if (!d || d->isPreemptible)
|
|
return false;
|
|
|
|
// R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
|
|
// ifunc and changed its type to STT_FUNC.
|
|
assert(!d->isGnuIFunc());
|
|
|
|
// Two instructions can materialize a 32-bit signed offset from the toc base.
|
|
uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
|
|
if (!isInt<32>(tocRelative))
|
|
return false;
|
|
|
|
// Add PPC64TocOffset that will be subtracted by PPC64::relocate().
|
|
target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
class PPC64 final : public TargetInfo {
|
|
public:
|
|
PPC64();
|
|
int getTlsGdRelaxSkip(RelType type) const override;
|
|
uint32_t calcEFlags() const override;
|
|
RelExpr getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const override;
|
|
RelType getDynRel(RelType type) const override;
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
void writeIplt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
void relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void writeGotHeader(uint8_t *buf) const override;
|
|
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
|
uint64_t branchAddr, const Symbol &s,
|
|
int64_t a) const override;
|
|
uint32_t getThunkSectionSpacing() const override;
|
|
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
|
|
RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
|
|
RelExpr adjustGotPcExpr(RelType type, int64_t addend,
|
|
const uint8_t *loc) const override;
|
|
void relaxGot(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
|
|
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
|
|
uint8_t stOther) const override;
|
|
};
|
|
} // namespace
|
|
|
|
// Relocation masks following the #lo(value), #hi(value), #ha(value),
|
|
// #higher(value), #highera(value), #highest(value), and #highesta(value)
|
|
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
|
|
// document.
|
|
static uint16_t lo(uint64_t v) { return v; }
|
|
static uint16_t hi(uint64_t v) { return v >> 16; }
|
|
static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
|
|
static uint16_t higher(uint64_t v) { return v >> 32; }
|
|
static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
|
|
static uint16_t highest(uint64_t v) { return v >> 48; }
|
|
static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
|
|
|
|
// Extracts the 'PO' field of an instruction encoding.
|
|
static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
|
|
|
|
static bool isDQFormInstruction(uint32_t encoding) {
|
|
switch (getPrimaryOpCode(encoding)) {
|
|
default:
|
|
return false;
|
|
case 6: // Power10 paired loads/stores (lxvp, stxvp).
|
|
case 56:
|
|
// The only instruction with a primary opcode of 56 is `lq`.
|
|
return true;
|
|
case 61:
|
|
// There are both DS and DQ instruction forms with this primary opcode.
|
|
// Namely `lxv` and `stxv` are the DQ-forms that use it.
|
|
// The DS 'XO' bits being set to 01 is restricted to DQ form.
|
|
return (encoding & 3) == 0x1;
|
|
}
|
|
}
|
|
|
|
static bool isDSFormInstruction(PPCLegacyInsn insn) {
|
|
switch (insn) {
|
|
default:
|
|
return false;
|
|
case PPCLegacyInsn::LWA:
|
|
case PPCLegacyInsn::LD:
|
|
case PPCLegacyInsn::LXSD:
|
|
case PPCLegacyInsn::LXSSP:
|
|
case PPCLegacyInsn::STD:
|
|
case PPCLegacyInsn::STXSD:
|
|
case PPCLegacyInsn::STXSSP:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
|
|
uint32_t opc = encoding & 0xfc000000;
|
|
|
|
// If the primary opcode is shared between multiple instructions, we need to
|
|
// fix it up to match the actual instruction we are after.
|
|
if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
|
|
opc == 0xf8000000) &&
|
|
!isDQFormInstruction(encoding))
|
|
opc = encoding & 0xfc000003;
|
|
else if (opc == 0xf4000000)
|
|
opc = encoding & 0xfc000007;
|
|
else if (opc == 0x18000000)
|
|
opc = encoding & 0xfc00000f;
|
|
|
|
// If the value is not one of the enumerators in PPCLegacyInsn, we want to
|
|
// return PPCLegacyInsn::NOINSN.
|
|
if (!checkPPCLegacyInsn(opc))
|
|
return PPCLegacyInsn::NOINSN;
|
|
return static_cast<PPCLegacyInsn>(opc);
|
|
}
|
|
|
|
static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
|
|
switch (insn) {
|
|
#define PCREL_OPT(Legacy, PCRel, InsnMask) \
|
|
case PPCLegacyInsn::Legacy: \
|
|
return PPCPrefixedInsn::PCRel
|
|
#include "PPCInsns.def"
|
|
#undef PCREL_OPT
|
|
}
|
|
return PPCPrefixedInsn::NOINSN;
|
|
}
|
|
|
|
static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
|
|
switch (insn) {
|
|
#define PCREL_OPT(Legacy, PCRel, InsnMask) \
|
|
case PPCLegacyInsn::Legacy: \
|
|
return LegacyToPrefixMask::InsnMask
|
|
#include "PPCInsns.def"
|
|
#undef PCREL_OPT
|
|
}
|
|
return LegacyToPrefixMask::NOMASK;
|
|
}
|
|
static uint64_t getPCRelativeForm(uint32_t encoding) {
|
|
PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
|
|
PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
|
|
if (pcrelInsn == PPCPrefixedInsn::NOINSN)
|
|
return UINT64_C(-1);
|
|
LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
|
|
uint64_t pcrelEncoding =
|
|
(uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
|
|
|
|
// If the mask requires moving bit 28 to bit 5, do that now.
|
|
if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
|
|
pcrelEncoding |= (encoding & 0x8) << 23;
|
|
return pcrelEncoding;
|
|
}
|
|
|
|
static bool isInstructionUpdateForm(uint32_t encoding) {
|
|
switch (getPrimaryOpCode(encoding)) {
|
|
default:
|
|
return false;
|
|
case LBZU:
|
|
case LHAU:
|
|
case LHZU:
|
|
case LWZU:
|
|
case LFSU:
|
|
case LFDU:
|
|
case STBU:
|
|
case STHU:
|
|
case STWU:
|
|
case STFSU:
|
|
case STFDU:
|
|
return true;
|
|
// LWA has the same opcode as LD, and the DS bits is what differentiates
|
|
// between LD/LDU/LWA
|
|
case LD:
|
|
case STD:
|
|
return (encoding & 3) == 1;
|
|
}
|
|
}
|
|
|
|
// Compute the total displacement between the prefixed instruction that gets
|
|
// to the start of the data and the load/store instruction that has the offset
|
|
// into the data structure.
|
|
// For example:
|
|
// paddi 3, 0, 1000, 1
|
|
// lwz 3, 20(3)
|
|
// Should add up to 1020 for total displacement.
|
|
static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
|
|
int64_t disp34 = llvm::SignExtend64(
|
|
((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
|
|
int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
|
|
// For DS and DQ form instructions, we need to mask out the XO bits.
|
|
if (isDQFormInstruction(accessInsn))
|
|
disp16 &= ~0xf;
|
|
else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
|
|
disp16 &= ~0x3;
|
|
return disp34 + disp16;
|
|
}
|
|
|
|
// There are a number of places when we either want to read or write an
|
|
// instruction when handling a half16 relocation type. On big-endian the buffer
|
|
// pointer is pointing into the middle of the word we want to extract, and on
|
|
// little-endian it is pointing to the start of the word. These 2 helpers are to
|
|
// simplify reading and writing in that context.
|
|
static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
|
|
write32(config->isLE ? loc : loc - 2, insn);
|
|
}
|
|
|
|
static uint32_t readFromHalf16(const uint8_t *loc) {
|
|
return read32(config->isLE ? loc : loc - 2);
|
|
}
|
|
|
|
static uint64_t readPrefixedInstruction(const uint8_t *loc) {
|
|
uint64_t fullInstr = read64(loc);
|
|
return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
|
|
}
|
|
|
|
PPC64::PPC64() {
|
|
copyRel = R_PPC64_COPY;
|
|
gotRel = R_PPC64_GLOB_DAT;
|
|
noneRel = R_PPC64_NONE;
|
|
pltRel = R_PPC64_JMP_SLOT;
|
|
relativeRel = R_PPC64_RELATIVE;
|
|
iRelativeRel = R_PPC64_IRELATIVE;
|
|
symbolicRel = R_PPC64_ADDR64;
|
|
pltHeaderSize = 60;
|
|
pltEntrySize = 4;
|
|
ipltEntrySize = 16; // PPC64PltCallStub::size
|
|
gotBaseSymInGotPlt = false;
|
|
gotHeaderEntriesNum = 1;
|
|
gotPltHeaderEntriesNum = 2;
|
|
needsThunks = true;
|
|
|
|
tlsModuleIndexRel = R_PPC64_DTPMOD64;
|
|
tlsOffsetRel = R_PPC64_DTPREL64;
|
|
|
|
tlsGotRel = R_PPC64_TPREL64;
|
|
|
|
needsMoreStackNonSplit = false;
|
|
|
|
// We need 64K pages (at least under glibc/Linux, the loader won't
|
|
// set different permissions on a finer granularity than that).
|
|
defaultMaxPageSize = 65536;
|
|
|
|
// The PPC64 ELF ABI v1 spec, says:
|
|
//
|
|
// It is normally desirable to put segments with different characteristics
|
|
// in separate 256 Mbyte portions of the address space, to give the
|
|
// operating system full paging flexibility in the 64-bit address space.
|
|
//
|
|
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
|
|
// use 0x10000000 as the starting address.
|
|
defaultImageBase = 0x10000000;
|
|
|
|
write32(trapInstr.data(), 0x7fe00008);
|
|
}
|
|
|
|
int PPC64::getTlsGdRelaxSkip(RelType type) const {
|
|
// A __tls_get_addr call instruction is marked with 2 relocations:
|
|
//
|
|
// R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
|
|
// R_PPC64_REL24: __tls_get_addr
|
|
//
|
|
// After the relaxation we no longer call __tls_get_addr and should skip both
|
|
// relocations to not create a false dependence on __tls_get_addr being
|
|
// defined.
|
|
if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
|
|
return 2;
|
|
return 1;
|
|
}
|
|
|
|
static uint32_t getEFlags(InputFile *file) {
|
|
if (config->ekind == ELF64BEKind)
|
|
return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
|
|
return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
|
|
}
|
|
|
|
// This file implements v2 ABI. This function makes sure that all
|
|
// object files have v2 or an unspecified version as an ABI version.
|
|
uint32_t PPC64::calcEFlags() const {
|
|
for (InputFile *f : objectFiles) {
|
|
uint32_t flag = getEFlags(f);
|
|
if (flag == 1)
|
|
error(toString(f) + ": ABI version 1 is not supported");
|
|
else if (flag > 2)
|
|
error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_PPC64_TOC16_HA:
|
|
// Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
|
|
relocate(loc, rel, val);
|
|
break;
|
|
case R_PPC64_TOC16_LO_DS: {
|
|
// Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
|
|
// "addi reg, 2, var@toc".
|
|
uint32_t insn = readFromHalf16(loc);
|
|
if (getPrimaryOpCode(insn) != LD)
|
|
error("expected a 'ld' for got-indirect to toc-relative relaxing");
|
|
writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
|
|
relocateNoSym(loc, R_PPC64_TOC16_LO, val);
|
|
break;
|
|
}
|
|
case R_PPC64_GOT_PCREL34: {
|
|
// Clear the first 8 bits of the prefix and the first 6 bits of the
|
|
// instruction (the primary opcode).
|
|
uint64_t insn = readPrefixedInstruction(loc);
|
|
if ((insn & 0xfc000000) != 0xe4000000)
|
|
error("expected a 'pld' for got-indirect to pc-relative relaxing");
|
|
insn &= ~0xff000000fc000000;
|
|
|
|
// Replace the cleared bits with the values for PADDI (0x600000038000000);
|
|
insn |= 0x600000038000000;
|
|
writePrefixedInstruction(loc, insn);
|
|
relocate(loc, rel, val);
|
|
break;
|
|
}
|
|
case R_PPC64_PCREL_OPT: {
|
|
// We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
|
|
// be relaxed. The eligibility for the relaxation needs to be determined
|
|
// on that relocation since this one does not relocate a symbol.
|
|
uint64_t insn = readPrefixedInstruction(loc);
|
|
uint32_t accessInsn = read32(loc + rel.addend);
|
|
uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
|
|
|
|
// This error is not necessary for correctness but is emitted for now
|
|
// to ensure we don't miss these opportunities in real code. It can be
|
|
// removed at a later date.
|
|
if (pcRelInsn == UINT64_C(-1)) {
|
|
errorOrWarn(
|
|
"unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
|
|
Twine::utohexstr(accessInsn));
|
|
break;
|
|
}
|
|
|
|
int64_t totalDisp = getTotalDisp(insn, accessInsn);
|
|
if (!isInt<34>(totalDisp))
|
|
break; // Displacement doesn't fit.
|
|
// Convert the PADDI to the prefixed version of accessInsn and convert
|
|
// accessInsn to a nop.
|
|
writePrefixedInstruction(loc, pcRelInsn |
|
|
((totalDisp & 0x3ffff0000) << 16) |
|
|
(totalDisp & 0xffff));
|
|
write32(loc + rel.addend, NOP); // nop accessInsn.
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("unexpected relocation type");
|
|
}
|
|
}
|
|
|
|
void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
// Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
|
|
// The general dynamic code sequence for a global `x` will look like:
|
|
// Instruction Relocation Symbol
|
|
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
|
|
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
|
|
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
|
|
// R_PPC64_REL24 __tls_get_addr
|
|
// nop None None
|
|
|
|
// Relaxing to local exec entails converting:
|
|
// addis r3, r2, x@got@tlsgd@ha into nop
|
|
// addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
|
|
// bl __tls_get_addr(x@tlsgd) into nop
|
|
// nop into addi r3, r3, x@tprel@l
|
|
|
|
switch (rel.type) {
|
|
case R_PPC64_GOT_TLSGD16_HA:
|
|
writeFromHalf16(loc, NOP);
|
|
break;
|
|
case R_PPC64_GOT_TLSGD16:
|
|
case R_PPC64_GOT_TLSGD16_LO:
|
|
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
|
|
relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
|
|
break;
|
|
case R_PPC64_GOT_TLSGD_PCREL34:
|
|
// Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
|
|
// paddi r3, r13, x@tprel, 0
|
|
writePrefixedInstruction(loc, 0x06000000386d0000);
|
|
relocateNoSym(loc, R_PPC64_TPREL34, val);
|
|
break;
|
|
case R_PPC64_TLSGD: {
|
|
// PC Relative Relaxation:
|
|
// Relax from bl __tls_get_addr@notoc(x@tlsgd) to
|
|
// nop
|
|
// TOC Relaxation:
|
|
// Relax from bl __tls_get_addr(x@tlsgd)
|
|
// nop
|
|
// to
|
|
// nop
|
|
// addi r3, r3, x@tprel@l
|
|
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
|
|
if (locAsInt % 4 == 0) {
|
|
write32(loc, NOP); // nop
|
|
write32(loc + 4, 0x38630000); // addi r3, r3
|
|
// Since we are relocating a half16 type relocation and Loc + 4 points to
|
|
// the start of an instruction we need to advance the buffer by an extra
|
|
// 2 bytes on BE.
|
|
relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
|
|
R_PPC64_TPREL16_LO, val);
|
|
} else if (locAsInt % 4 == 1) {
|
|
write32(loc - 1, NOP);
|
|
} else {
|
|
errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
|
|
}
|
|
}
|
|
|
|
void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
// Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
|
|
// The local dynamic code sequence for a global `x` will look like:
|
|
// Instruction Relocation Symbol
|
|
// addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
|
|
// addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
|
|
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
|
|
// R_PPC64_REL24 __tls_get_addr
|
|
// nop None None
|
|
|
|
// Relaxing to local exec entails converting:
|
|
// addis r3, r2, x@got@tlsld@ha into nop
|
|
// addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
|
|
// bl __tls_get_addr(x@tlsgd) into nop
|
|
// nop into addi r3, r3, 4096
|
|
|
|
switch (rel.type) {
|
|
case R_PPC64_GOT_TLSLD16_HA:
|
|
writeFromHalf16(loc, NOP);
|
|
break;
|
|
case R_PPC64_GOT_TLSLD16_LO:
|
|
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
|
|
break;
|
|
case R_PPC64_GOT_TLSLD_PCREL34:
|
|
// Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
|
|
// paddi r3, r13, 0x1000, 0
|
|
writePrefixedInstruction(loc, 0x06000000386d1000);
|
|
break;
|
|
case R_PPC64_TLSLD: {
|
|
// PC Relative Relaxation:
|
|
// Relax from bl __tls_get_addr@notoc(x@tlsld)
|
|
// to
|
|
// nop
|
|
// TOC Relaxation:
|
|
// Relax from bl __tls_get_addr(x@tlsld)
|
|
// nop
|
|
// to
|
|
// nop
|
|
// addi r3, r3, 4096
|
|
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
|
|
if (locAsInt % 4 == 0) {
|
|
write32(loc, NOP);
|
|
write32(loc + 4, 0x38631000); // addi r3, r3, 4096
|
|
} else if (locAsInt % 4 == 1) {
|
|
write32(loc - 1, NOP);
|
|
} else {
|
|
errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
|
|
}
|
|
break;
|
|
}
|
|
case R_PPC64_DTPREL16:
|
|
case R_PPC64_DTPREL16_HA:
|
|
case R_PPC64_DTPREL16_HI:
|
|
case R_PPC64_DTPREL16_DS:
|
|
case R_PPC64_DTPREL16_LO:
|
|
case R_PPC64_DTPREL16_LO_DS:
|
|
case R_PPC64_DTPREL34:
|
|
relocate(loc, rel, val);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
|
|
}
|
|
}
|
|
|
|
unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
|
|
switch (secondaryOp) {
|
|
case LBZX:
|
|
return LBZ;
|
|
case LHZX:
|
|
return LHZ;
|
|
case LWZX:
|
|
return LWZ;
|
|
case LDX:
|
|
return LD;
|
|
case STBX:
|
|
return STB;
|
|
case STHX:
|
|
return STH;
|
|
case STWX:
|
|
return STW;
|
|
case STDX:
|
|
return STD;
|
|
case ADD:
|
|
return ADDI;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
// The initial exec code sequence for a global `x` will look like:
|
|
// Instruction Relocation Symbol
|
|
// addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
|
|
// ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
|
|
// add r9, r9, x@tls R_PPC64_TLS x
|
|
|
|
// Relaxing to local exec entails converting:
|
|
// addis r9, r2, x@got@tprel@ha into nop
|
|
// ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
|
|
// add r9, r9, x@tls into addi r9, r9, x@tprel@l
|
|
|
|
// x@tls R_PPC64_TLS is a relocation which does not compute anything,
|
|
// it is replaced with r13 (thread pointer).
|
|
|
|
// The add instruction in the initial exec sequence has multiple variations
|
|
// that need to be handled. If we are building an address it will use an add
|
|
// instruction, if we are accessing memory it will use any of the X-form
|
|
// indexed load or store instructions.
|
|
|
|
unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
|
|
switch (rel.type) {
|
|
case R_PPC64_GOT_TPREL16_HA:
|
|
write32(loc - offset, NOP);
|
|
break;
|
|
case R_PPC64_GOT_TPREL16_LO_DS:
|
|
case R_PPC64_GOT_TPREL16_DS: {
|
|
uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
|
|
write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13
|
|
relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
|
|
break;
|
|
}
|
|
case R_PPC64_GOT_TPREL_PCREL34: {
|
|
const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
|
|
// paddi RT(from pld), r13, symbol@tprel, 0
|
|
writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
|
|
relocateNoSym(loc, R_PPC64_TPREL34, val);
|
|
break;
|
|
}
|
|
case R_PPC64_TLS: {
|
|
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
|
|
if (locAsInt % 4 == 0) {
|
|
uint32_t primaryOp = getPrimaryOpCode(read32(loc));
|
|
if (primaryOp != 31)
|
|
error("unrecognized instruction for IE to LE R_PPC64_TLS");
|
|
uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
|
|
uint32_t dFormOp = getPPCDFormOp(secondaryOp);
|
|
if (dFormOp == 0)
|
|
error("unrecognized instruction for IE to LE R_PPC64_TLS");
|
|
write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
|
|
relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
|
|
} else if (locAsInt % 4 == 1) {
|
|
// If the offset is not 4 byte aligned then we have a PCRel type reloc.
|
|
// This version of the relocation is offset by one byte from the
|
|
// instruction it references.
|
|
uint32_t tlsInstr = read32(loc - 1);
|
|
uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
|
|
if (primaryOp != 31)
|
|
errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
|
|
uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
|
|
// The add is a special case and should be turned into a nop. The paddi
|
|
// that comes before it will already have computed the address of the
|
|
// symbol.
|
|
if (secondaryOp == 266) {
|
|
write32(loc - 1, NOP);
|
|
} else {
|
|
uint32_t dFormOp = getPPCDFormOp(secondaryOp);
|
|
if (dFormOp == 0)
|
|
errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
|
|
write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
|
|
}
|
|
} else {
|
|
errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
|
|
"offset from 4 byte aligned");
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("unknown relocation for IE to LE");
|
|
break;
|
|
}
|
|
}
|
|
|
|
RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const {
|
|
switch (type) {
|
|
case R_PPC64_NONE:
|
|
return R_NONE;
|
|
case R_PPC64_ADDR16:
|
|
case R_PPC64_ADDR16_DS:
|
|
case R_PPC64_ADDR16_HA:
|
|
case R_PPC64_ADDR16_HI:
|
|
case R_PPC64_ADDR16_HIGHER:
|
|
case R_PPC64_ADDR16_HIGHERA:
|
|
case R_PPC64_ADDR16_HIGHEST:
|
|
case R_PPC64_ADDR16_HIGHESTA:
|
|
case R_PPC64_ADDR16_LO:
|
|
case R_PPC64_ADDR16_LO_DS:
|
|
case R_PPC64_ADDR32:
|
|
case R_PPC64_ADDR64:
|
|
return R_ABS;
|
|
case R_PPC64_GOT16:
|
|
case R_PPC64_GOT16_DS:
|
|
case R_PPC64_GOT16_HA:
|
|
case R_PPC64_GOT16_HI:
|
|
case R_PPC64_GOT16_LO:
|
|
case R_PPC64_GOT16_LO_DS:
|
|
return R_GOT_OFF;
|
|
case R_PPC64_TOC16:
|
|
case R_PPC64_TOC16_DS:
|
|
case R_PPC64_TOC16_HI:
|
|
case R_PPC64_TOC16_LO:
|
|
return R_GOTREL;
|
|
case R_PPC64_GOT_PCREL34:
|
|
case R_PPC64_GOT_TPREL_PCREL34:
|
|
case R_PPC64_PCREL_OPT:
|
|
return R_GOT_PC;
|
|
case R_PPC64_TOC16_HA:
|
|
case R_PPC64_TOC16_LO_DS:
|
|
return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
|
|
case R_PPC64_TOC:
|
|
return R_PPC64_TOCBASE;
|
|
case R_PPC64_REL14:
|
|
case R_PPC64_REL24:
|
|
return R_PPC64_CALL_PLT;
|
|
case R_PPC64_REL24_NOTOC:
|
|
return R_PLT_PC;
|
|
case R_PPC64_REL16_LO:
|
|
case R_PPC64_REL16_HA:
|
|
case R_PPC64_REL16_HI:
|
|
case R_PPC64_REL32:
|
|
case R_PPC64_REL64:
|
|
case R_PPC64_PCREL34:
|
|
return R_PC;
|
|
case R_PPC64_GOT_TLSGD16:
|
|
case R_PPC64_GOT_TLSGD16_HA:
|
|
case R_PPC64_GOT_TLSGD16_HI:
|
|
case R_PPC64_GOT_TLSGD16_LO:
|
|
return R_TLSGD_GOT;
|
|
case R_PPC64_GOT_TLSGD_PCREL34:
|
|
return R_TLSGD_PC;
|
|
case R_PPC64_GOT_TLSLD16:
|
|
case R_PPC64_GOT_TLSLD16_HA:
|
|
case R_PPC64_GOT_TLSLD16_HI:
|
|
case R_PPC64_GOT_TLSLD16_LO:
|
|
return R_TLSLD_GOT;
|
|
case R_PPC64_GOT_TLSLD_PCREL34:
|
|
return R_TLSLD_PC;
|
|
case R_PPC64_GOT_TPREL16_HA:
|
|
case R_PPC64_GOT_TPREL16_LO_DS:
|
|
case R_PPC64_GOT_TPREL16_DS:
|
|
case R_PPC64_GOT_TPREL16_HI:
|
|
return R_GOT_OFF;
|
|
case R_PPC64_GOT_DTPREL16_HA:
|
|
case R_PPC64_GOT_DTPREL16_LO_DS:
|
|
case R_PPC64_GOT_DTPREL16_DS:
|
|
case R_PPC64_GOT_DTPREL16_HI:
|
|
return R_TLSLD_GOT_OFF;
|
|
case R_PPC64_TPREL16:
|
|
case R_PPC64_TPREL16_HA:
|
|
case R_PPC64_TPREL16_LO:
|
|
case R_PPC64_TPREL16_HI:
|
|
case R_PPC64_TPREL16_DS:
|
|
case R_PPC64_TPREL16_LO_DS:
|
|
case R_PPC64_TPREL16_HIGHER:
|
|
case R_PPC64_TPREL16_HIGHERA:
|
|
case R_PPC64_TPREL16_HIGHEST:
|
|
case R_PPC64_TPREL16_HIGHESTA:
|
|
case R_PPC64_TPREL34:
|
|
return R_TLS;
|
|
case R_PPC64_DTPREL16:
|
|
case R_PPC64_DTPREL16_DS:
|
|
case R_PPC64_DTPREL16_HA:
|
|
case R_PPC64_DTPREL16_HI:
|
|
case R_PPC64_DTPREL16_HIGHER:
|
|
case R_PPC64_DTPREL16_HIGHERA:
|
|
case R_PPC64_DTPREL16_HIGHEST:
|
|
case R_PPC64_DTPREL16_HIGHESTA:
|
|
case R_PPC64_DTPREL16_LO:
|
|
case R_PPC64_DTPREL16_LO_DS:
|
|
case R_PPC64_DTPREL64:
|
|
case R_PPC64_DTPREL34:
|
|
return R_DTPREL;
|
|
case R_PPC64_TLSGD:
|
|
return R_TLSDESC_CALL;
|
|
case R_PPC64_TLSLD:
|
|
return R_TLSLD_HINT;
|
|
case R_PPC64_TLS:
|
|
return R_TLSIE_HINT;
|
|
default:
|
|
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
|
|
") against symbol " + toString(s));
|
|
return R_NONE;
|
|
}
|
|
}
|
|
|
|
RelType PPC64::getDynRel(RelType type) const {
|
|
if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
|
|
return R_PPC64_ADDR64;
|
|
return R_PPC64_NONE;
|
|
}
|
|
|
|
void PPC64::writeGotHeader(uint8_t *buf) const {
|
|
write64(buf, getPPC64TocBase());
|
|
}
|
|
|
|
void PPC64::writePltHeader(uint8_t *buf) const {
|
|
// The generic resolver stub goes first.
|
|
write32(buf + 0, 0x7c0802a6); // mflr r0
|
|
write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
|
|
write32(buf + 8, 0x7d6802a6); // mflr r11
|
|
write32(buf + 12, 0x7c0803a6); // mtlr r0
|
|
write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
|
|
write32(buf + 20, 0x380cffcc); // subi r0,r12,52
|
|
write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
|
|
write32(buf + 28, 0xe98b002c); // ld r12,44(r11)
|
|
write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11
|
|
write32(buf + 36, 0xe98b0000); // ld r12,0(r11)
|
|
write32(buf + 40, 0xe96b0008); // ld r11,8(r11)
|
|
write32(buf + 44, 0x7d8903a6); // mtctr r12
|
|
write32(buf + 48, 0x4e800420); // bctr
|
|
|
|
// The 'bcl' instruction will set the link register to the address of the
|
|
// following instruction ('mflr r11'). Here we store the offset from that
|
|
// instruction to the first entry in the GotPlt section.
|
|
int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
|
|
write64(buf + 52, gotPltOffset);
|
|
}
|
|
|
|
void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t /*pltEntryAddr*/) const {
|
|
int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize;
|
|
// bl __glink_PLTresolve
|
|
write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
|
|
}
|
|
|
|
void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t /*pltEntryAddr*/) const {
|
|
writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
|
|
}
|
|
|
|
static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
|
|
// Relocations relative to the toc-base need to be adjusted by the Toc offset.
|
|
uint64_t tocBiasedVal = val - ppc64TocOffset;
|
|
// Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
|
|
uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
|
|
|
|
switch (type) {
|
|
// TOC biased relocation.
|
|
case R_PPC64_GOT16:
|
|
case R_PPC64_GOT_TLSGD16:
|
|
case R_PPC64_GOT_TLSLD16:
|
|
case R_PPC64_TOC16:
|
|
return {R_PPC64_ADDR16, tocBiasedVal};
|
|
case R_PPC64_GOT16_DS:
|
|
case R_PPC64_TOC16_DS:
|
|
case R_PPC64_GOT_TPREL16_DS:
|
|
case R_PPC64_GOT_DTPREL16_DS:
|
|
return {R_PPC64_ADDR16_DS, tocBiasedVal};
|
|
case R_PPC64_GOT16_HA:
|
|
case R_PPC64_GOT_TLSGD16_HA:
|
|
case R_PPC64_GOT_TLSLD16_HA:
|
|
case R_PPC64_GOT_TPREL16_HA:
|
|
case R_PPC64_GOT_DTPREL16_HA:
|
|
case R_PPC64_TOC16_HA:
|
|
return {R_PPC64_ADDR16_HA, tocBiasedVal};
|
|
case R_PPC64_GOT16_HI:
|
|
case R_PPC64_GOT_TLSGD16_HI:
|
|
case R_PPC64_GOT_TLSLD16_HI:
|
|
case R_PPC64_GOT_TPREL16_HI:
|
|
case R_PPC64_GOT_DTPREL16_HI:
|
|
case R_PPC64_TOC16_HI:
|
|
return {R_PPC64_ADDR16_HI, tocBiasedVal};
|
|
case R_PPC64_GOT16_LO:
|
|
case R_PPC64_GOT_TLSGD16_LO:
|
|
case R_PPC64_GOT_TLSLD16_LO:
|
|
case R_PPC64_TOC16_LO:
|
|
return {R_PPC64_ADDR16_LO, tocBiasedVal};
|
|
case R_PPC64_GOT16_LO_DS:
|
|
case R_PPC64_TOC16_LO_DS:
|
|
case R_PPC64_GOT_TPREL16_LO_DS:
|
|
case R_PPC64_GOT_DTPREL16_LO_DS:
|
|
return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
|
|
|
|
// Dynamic Thread pointer biased relocation types.
|
|
case R_PPC64_DTPREL16:
|
|
return {R_PPC64_ADDR16, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_DS:
|
|
return {R_PPC64_ADDR16_DS, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_HA:
|
|
return {R_PPC64_ADDR16_HA, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_HI:
|
|
return {R_PPC64_ADDR16_HI, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_HIGHER:
|
|
return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_HIGHERA:
|
|
return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_HIGHEST:
|
|
return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_HIGHESTA:
|
|
return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_LO:
|
|
return {R_PPC64_ADDR16_LO, dtpBiasedVal};
|
|
case R_PPC64_DTPREL16_LO_DS:
|
|
return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
|
|
case R_PPC64_DTPREL64:
|
|
return {R_PPC64_ADDR64, dtpBiasedVal};
|
|
|
|
default:
|
|
return {type, val};
|
|
}
|
|
}
|
|
|
|
static bool isTocOptType(RelType type) {
|
|
switch (type) {
|
|
case R_PPC64_GOT16_HA:
|
|
case R_PPC64_GOT16_LO_DS:
|
|
case R_PPC64_TOC16_HA:
|
|
case R_PPC64_TOC16_LO_DS:
|
|
case R_PPC64_TOC16_LO:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
|
|
RelType type = rel.type;
|
|
bool shouldTocOptimize = isTocOptType(type);
|
|
// For dynamic thread pointer relative, toc-relative, and got-indirect
|
|
// relocations, proceed in terms of the corresponding ADDR16 relocation type.
|
|
std::tie(type, val) = toAddr16Rel(type, val);
|
|
|
|
switch (type) {
|
|
case R_PPC64_ADDR14: {
|
|
checkAlignment(loc, val, 4, rel);
|
|
// Preserve the AA/LK bits in the branch instruction
|
|
uint8_t aalk = loc[3];
|
|
write16(loc + 2, (aalk & 3) | (val & 0xfffc));
|
|
break;
|
|
}
|
|
case R_PPC64_ADDR16:
|
|
checkIntUInt(loc, val, 16, rel);
|
|
write16(loc, val);
|
|
break;
|
|
case R_PPC64_ADDR32:
|
|
checkIntUInt(loc, val, 32, rel);
|
|
write32(loc, val);
|
|
break;
|
|
case R_PPC64_ADDR16_DS:
|
|
case R_PPC64_TPREL16_DS: {
|
|
checkInt(loc, val, 16, rel);
|
|
// DQ-form instructions use bits 28-31 as part of the instruction encoding
|
|
// DS-form instructions only use bits 30-31.
|
|
uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
|
|
checkAlignment(loc, lo(val), mask + 1, rel);
|
|
write16(loc, (read16(loc) & mask) | lo(val));
|
|
} break;
|
|
case R_PPC64_ADDR16_HA:
|
|
case R_PPC64_REL16_HA:
|
|
case R_PPC64_TPREL16_HA:
|
|
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
|
|
writeFromHalf16(loc, NOP);
|
|
else
|
|
write16(loc, ha(val));
|
|
break;
|
|
case R_PPC64_ADDR16_HI:
|
|
case R_PPC64_REL16_HI:
|
|
case R_PPC64_TPREL16_HI:
|
|
write16(loc, hi(val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHER:
|
|
case R_PPC64_TPREL16_HIGHER:
|
|
write16(loc, higher(val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHERA:
|
|
case R_PPC64_TPREL16_HIGHERA:
|
|
write16(loc, highera(val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHEST:
|
|
case R_PPC64_TPREL16_HIGHEST:
|
|
write16(loc, highest(val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHESTA:
|
|
case R_PPC64_TPREL16_HIGHESTA:
|
|
write16(loc, highesta(val));
|
|
break;
|
|
case R_PPC64_ADDR16_LO:
|
|
case R_PPC64_REL16_LO:
|
|
case R_PPC64_TPREL16_LO:
|
|
// When the high-adjusted part of a toc relocation evaluates to 0, it is
|
|
// changed into a nop. The lo part then needs to be updated to use the
|
|
// toc-pointer register r2, as the base register.
|
|
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
|
|
uint32_t insn = readFromHalf16(loc);
|
|
if (isInstructionUpdateForm(insn))
|
|
error(getErrorLocation(loc) +
|
|
"can't toc-optimize an update instruction: 0x" +
|
|
utohexstr(insn));
|
|
writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
|
|
} else {
|
|
write16(loc, lo(val));
|
|
}
|
|
break;
|
|
case R_PPC64_ADDR16_LO_DS:
|
|
case R_PPC64_TPREL16_LO_DS: {
|
|
// DQ-form instructions use bits 28-31 as part of the instruction encoding
|
|
// DS-form instructions only use bits 30-31.
|
|
uint32_t insn = readFromHalf16(loc);
|
|
uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
|
|
checkAlignment(loc, lo(val), mask + 1, rel);
|
|
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
|
|
// When the high-adjusted part of a toc relocation evaluates to 0, it is
|
|
// changed into a nop. The lo part then needs to be updated to use the toc
|
|
// pointer register r2, as the base register.
|
|
if (isInstructionUpdateForm(insn))
|
|
error(getErrorLocation(loc) +
|
|
"Can't toc-optimize an update instruction: 0x" +
|
|
Twine::utohexstr(insn));
|
|
insn &= 0xffe00000 | mask;
|
|
writeFromHalf16(loc, insn | 0x00020000 | lo(val));
|
|
} else {
|
|
write16(loc, (read16(loc) & mask) | lo(val));
|
|
}
|
|
} break;
|
|
case R_PPC64_TPREL16:
|
|
checkInt(loc, val, 16, rel);
|
|
write16(loc, val);
|
|
break;
|
|
case R_PPC64_REL32:
|
|
checkInt(loc, val, 32, rel);
|
|
write32(loc, val);
|
|
break;
|
|
case R_PPC64_ADDR64:
|
|
case R_PPC64_REL64:
|
|
case R_PPC64_TOC:
|
|
write64(loc, val);
|
|
break;
|
|
case R_PPC64_REL14: {
|
|
uint32_t mask = 0x0000FFFC;
|
|
checkInt(loc, val, 16, rel);
|
|
checkAlignment(loc, val, 4, rel);
|
|
write32(loc, (read32(loc) & ~mask) | (val & mask));
|
|
break;
|
|
}
|
|
case R_PPC64_REL24:
|
|
case R_PPC64_REL24_NOTOC: {
|
|
uint32_t mask = 0x03FFFFFC;
|
|
checkInt(loc, val, 26, rel);
|
|
checkAlignment(loc, val, 4, rel);
|
|
write32(loc, (read32(loc) & ~mask) | (val & mask));
|
|
break;
|
|
}
|
|
case R_PPC64_DTPREL64:
|
|
write64(loc, val - dynamicThreadPointerOffset);
|
|
break;
|
|
case R_PPC64_DTPREL34:
|
|
// The Dynamic Thread Vector actually points 0x8000 bytes past the start
|
|
// of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
|
|
// need to subtract that value then fallthrough to the general case.
|
|
val -= dynamicThreadPointerOffset;
|
|
LLVM_FALLTHROUGH;
|
|
case R_PPC64_PCREL34:
|
|
case R_PPC64_GOT_PCREL34:
|
|
case R_PPC64_GOT_TLSGD_PCREL34:
|
|
case R_PPC64_GOT_TLSLD_PCREL34:
|
|
case R_PPC64_GOT_TPREL_PCREL34:
|
|
case R_PPC64_TPREL34: {
|
|
const uint64_t si0Mask = 0x00000003ffff0000;
|
|
const uint64_t si1Mask = 0x000000000000ffff;
|
|
const uint64_t fullMask = 0x0003ffff0000ffff;
|
|
checkInt(loc, val, 34, rel);
|
|
|
|
uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
|
|
writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
|
|
(val & si1Mask));
|
|
break;
|
|
}
|
|
// If we encounter a PCREL_OPT relocation that we won't optimize.
|
|
case R_PPC64_PCREL_OPT:
|
|
break;
|
|
default:
|
|
llvm_unreachable("unknown relocation");
|
|
}
|
|
}
|
|
|
|
bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
|
uint64_t branchAddr, const Symbol &s, int64_t a) const {
|
|
if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
|
|
type != R_PPC64_REL24_NOTOC)
|
|
return false;
|
|
|
|
// If a function is in the Plt it needs to be called with a call-stub.
|
|
if (s.isInPlt())
|
|
return true;
|
|
|
|
// This check looks at the st_other bits of the callee with relocation
|
|
// R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
|
|
// clobbers the TOC and we need an R2 save stub.
|
|
if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
|
|
return true;
|
|
|
|
if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
|
|
return true;
|
|
|
|
// If a symbol is a weak undefined and we are compiling an executable
|
|
// it doesn't need a range-extending thunk since it can't be called.
|
|
if (s.isUndefWeak() && !config->shared)
|
|
return false;
|
|
|
|
// If the offset exceeds the range of the branch type then it will need
|
|
// a range-extending thunk.
|
|
// See the comment in getRelocTargetVA() about R_PPC64_CALL.
|
|
return !inBranchRange(type, branchAddr,
|
|
s.getVA(a) +
|
|
getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
|
|
}
|
|
|
|
uint32_t PPC64::getThunkSectionSpacing() const {
|
|
// See comment in Arch/ARM.cpp for a more detailed explanation of
|
|
// getThunkSectionSpacing(). For PPC64 we pick the constant here based on
|
|
// R_PPC64_REL24, which is used by unconditional branch instructions.
|
|
// 0x2000000 = (1 << 24-1) * 4
|
|
return 0x2000000;
|
|
}
|
|
|
|
bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
|
|
int64_t offset = dst - src;
|
|
if (type == R_PPC64_REL14)
|
|
return isInt<16>(offset);
|
|
if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
|
|
return isInt<26>(offset);
|
|
llvm_unreachable("unsupported relocation type used in branch");
|
|
}
|
|
|
|
RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
|
|
if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
|
|
return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
|
|
if (expr == R_RELAX_TLS_LD_TO_LE)
|
|
return R_RELAX_TLS_LD_TO_LE_ABS;
|
|
return expr;
|
|
}
|
|
|
|
RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
|
|
const uint8_t *loc) const {
|
|
if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
|
|
config->pcRelOptimize) {
|
|
// It only makes sense to optimize pld since paddi means that the address
|
|
// of the object in the GOT is required rather than the object itself.
|
|
if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
|
|
return R_PPC64_RELAX_GOT_PC;
|
|
}
|
|
return R_GOT_PC;
|
|
}
|
|
|
|
// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
|
|
// The general dynamic code sequence for a global `x` uses 4 instructions.
|
|
// Instruction Relocation Symbol
|
|
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
|
|
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
|
|
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
|
|
// R_PPC64_REL24 __tls_get_addr
|
|
// nop None None
|
|
//
|
|
// Relaxing to initial-exec entails:
|
|
// 1) Convert the addis/addi pair that builds the address of the tls_index
|
|
// struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
|
|
// 2) Convert the call to __tls_get_addr to a nop.
|
|
// 3) Convert the nop following the call to an add of the loaded offset to the
|
|
// thread pointer.
|
|
// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
|
|
// used as the relaxation hint for both steps 2 and 3.
|
|
void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_PPC64_GOT_TLSGD16_HA:
|
|
// This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
|
|
// addis rT, r2, sym@got@tprel@ha.
|
|
relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
|
|
return;
|
|
case R_PPC64_GOT_TLSGD16:
|
|
case R_PPC64_GOT_TLSGD16_LO: {
|
|
// Relax from addi r3, rA, sym@got@tlsgd@l to
|
|
// ld r3, sym@got@tprel@l(rA)
|
|
uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
|
|
writeFromHalf16(loc, 0xe8600000 | ra);
|
|
relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
|
|
return;
|
|
}
|
|
case R_PPC64_GOT_TLSGD_PCREL34: {
|
|
// Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
|
|
// pld r3, sym@got@tprel@pcrel
|
|
writePrefixedInstruction(loc, 0x04100000e4600000);
|
|
relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
|
|
return;
|
|
}
|
|
case R_PPC64_TLSGD: {
|
|
// PC Relative Relaxation:
|
|
// Relax from bl __tls_get_addr@notoc(x@tlsgd) to
|
|
// nop
|
|
// TOC Relaxation:
|
|
// Relax from bl __tls_get_addr(x@tlsgd)
|
|
// nop
|
|
// to
|
|
// nop
|
|
// add r3, r3, r13
|
|
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
|
|
if (locAsInt % 4 == 0) {
|
|
write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop
|
|
write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
|
|
} else if (locAsInt % 4 == 1) {
|
|
// bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
|
|
write32(loc - 1, 0x7c636a14);
|
|
} else {
|
|
errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
|
|
}
|
|
}
|
|
|
|
// The prologue for a split-stack function is expected to look roughly
|
|
// like this:
|
|
// .Lglobal_entry_point:
|
|
// # TOC pointer initialization.
|
|
// ...
|
|
// .Llocal_entry_point:
|
|
// # load the __private_ss member of the threads tcbhead.
|
|
// ld r0,-0x7000-64(r13)
|
|
// # subtract the functions stack size from the stack pointer.
|
|
// addis r12, r1, ha(-stack-frame size)
|
|
// addi r12, r12, l(-stack-frame size)
|
|
// # compare needed to actual and branch to allocate_more_stack if more
|
|
// # space is needed, otherwise fallthrough to 'normal' function body.
|
|
// cmpld cr7,r12,r0
|
|
// blt- cr7, .Lallocate_more_stack
|
|
//
|
|
// -) The allocate_more_stack block might be placed after the split-stack
|
|
// prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
|
|
// instead.
|
|
// -) If either the addis or addi is not needed due to the stack size being
|
|
// smaller then 32K or a multiple of 64K they will be replaced with a nop,
|
|
// but there will always be 2 instructions the linker can overwrite for the
|
|
// adjusted stack size.
|
|
//
|
|
// The linkers job here is to increase the stack size used in the addis/addi
|
|
// pair by split-stack-size-adjust.
|
|
// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
|
|
// addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
|
|
bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
|
|
uint8_t stOther) const {
|
|
// If the caller has a global entry point adjust the buffer past it. The start
|
|
// of the split-stack prologue will be at the local entry point.
|
|
loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
|
|
|
|
// At the very least we expect to see a load of some split-stack data from the
|
|
// tcb, and 2 instructions that calculate the ending stack address this
|
|
// function will require. If there is not enough room for at least 3
|
|
// instructions it can't be a split-stack prologue.
|
|
if (loc + 12 >= end)
|
|
return false;
|
|
|
|
// First instruction must be `ld r0, -0x7000-64(r13)`
|
|
if (read32(loc) != 0xe80d8fc0)
|
|
return false;
|
|
|
|
int16_t hiImm = 0;
|
|
int16_t loImm = 0;
|
|
// First instruction can be either an addis if the frame size is larger then
|
|
// 32K, or an addi if the size is less then 32K.
|
|
int32_t firstInstr = read32(loc + 4);
|
|
if (getPrimaryOpCode(firstInstr) == 15) {
|
|
hiImm = firstInstr & 0xFFFF;
|
|
} else if (getPrimaryOpCode(firstInstr) == 14) {
|
|
loImm = firstInstr & 0xFFFF;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Second instruction is either an addi or a nop. If the first instruction was
|
|
// an addi then LoImm is set and the second instruction must be a nop.
|
|
uint32_t secondInstr = read32(loc + 8);
|
|
if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
|
|
loImm = secondInstr & 0xFFFF;
|
|
} else if (secondInstr != NOP) {
|
|
return false;
|
|
}
|
|
|
|
// The register operands of the first instruction should be the stack-pointer
|
|
// (r1) as the input (RA) and r12 as the output (RT). If the second
|
|
// instruction is not a nop, then it should use r12 as both input and output.
|
|
auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
|
|
uint8_t expectedRA) {
|
|
return ((instr & 0x3E00000) >> 21 == expectedRT) &&
|
|
((instr & 0x1F0000) >> 16 == expectedRA);
|
|
};
|
|
if (!checkRegOperands(firstInstr, 12, 1))
|
|
return false;
|
|
if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
|
|
return false;
|
|
|
|
int32_t stackFrameSize = (hiImm * 65536) + loImm;
|
|
// Check that the adjusted size doesn't overflow what we can represent with 2
|
|
// instructions.
|
|
if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
|
|
error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
|
|
return false;
|
|
}
|
|
|
|
int32_t adjustedStackFrameSize =
|
|
stackFrameSize - config->splitStackAdjustSize;
|
|
|
|
loImm = adjustedStackFrameSize & 0xFFFF;
|
|
hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
|
|
if (hiImm) {
|
|
write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
|
|
// If the low immediate is zero the second instruction will be a nop.
|
|
secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
|
|
write32(loc + 8, secondInstr);
|
|
} else {
|
|
// addi r12, r1, imm
|
|
write32(loc + 4, (0x39810000) | (uint16_t)loImm);
|
|
write32(loc + 8, NOP);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
TargetInfo *elf::getPPC64TargetInfo() {
|
|
static PPC64 target;
|
|
return ⌖
|
|
}
|