forked from OSchip/llvm-project
383 lines
14 KiB
C++
383 lines
14 KiB
C++
//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// Provides analysis for querying information about KnownBits during GISel
|
|
/// passes.
|
|
//
|
|
//===------------------
|
|
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
|
|
#define DEBUG_TYPE "gisel-known-bits"
|
|
|
|
using namespace llvm;
|
|
|
|
char llvm::GISelKnownBitsAnalysis::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(GISelKnownBitsAnalysis, DEBUG_TYPE,
|
|
"Analysis for ComputingKnownBits", false, true)
|
|
INITIALIZE_PASS_END(GISelKnownBitsAnalysis, DEBUG_TYPE,
|
|
"Analysis for ComputingKnownBits", false, true)
|
|
|
|
GISelKnownBits::GISelKnownBits(MachineFunction &MF)
|
|
: MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
|
|
DL(MF.getFunction().getParent()->getDataLayout()) {}
|
|
|
|
unsigned GISelKnownBits::inferAlignmentForFrameIdx(int FrameIdx, int Offset,
|
|
const MachineFunction &MF) {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
return MinAlign(Offset, MFI.getObjectAlignment(FrameIdx));
|
|
// TODO: How to handle cases with Base + Offset?
|
|
}
|
|
|
|
unsigned GISelKnownBits::inferPtrAlignment(const MachineInstr &MI) {
|
|
if (MI.getOpcode() == TargetOpcode::G_FRAME_INDEX) {
|
|
int FrameIdx = MI.getOperand(1).getIndex();
|
|
return inferAlignmentForFrameIdx(FrameIdx, 0, *MI.getMF());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void GISelKnownBits::computeKnownBitsForFrameIndex(Register R, KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
unsigned Depth) {
|
|
const MachineInstr &MI = *MRI.getVRegDef(R);
|
|
computeKnownBitsForAlignment(Known, inferPtrAlignment(MI));
|
|
}
|
|
|
|
void GISelKnownBits::computeKnownBitsForAlignment(KnownBits &Known,
|
|
unsigned Align) {
|
|
if (Align)
|
|
// The low bits are known zero if the pointer is aligned.
|
|
Known.Zero.setLowBits(Log2_32(Align));
|
|
}
|
|
|
|
KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
|
|
return getKnownBits(MI.getOperand(0).getReg());
|
|
}
|
|
|
|
KnownBits GISelKnownBits::getKnownBits(Register R) {
|
|
KnownBits Known;
|
|
LLT Ty = MRI.getType(R);
|
|
APInt DemandedElts =
|
|
Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1);
|
|
computeKnownBitsImpl(R, Known, DemandedElts);
|
|
return Known;
|
|
}
|
|
|
|
bool GISelKnownBits::signBitIsZero(Register R) {
|
|
LLT Ty = MRI.getType(R);
|
|
unsigned BitWidth = Ty.getScalarSizeInBits();
|
|
return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
|
|
}
|
|
|
|
APInt GISelKnownBits::getKnownZeroes(Register R) {
|
|
return getKnownBits(R).Zero;
|
|
}
|
|
|
|
APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }
|
|
|
|
void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
unsigned Depth) {
|
|
MachineInstr &MI = *MRI.getVRegDef(R);
|
|
unsigned Opcode = MI.getOpcode();
|
|
LLT DstTy = MRI.getType(R);
|
|
|
|
// Handle the case where this is called on a register that does not have a
|
|
// type constraint (i.e. it has a register class constraint instead). This is
|
|
// unlikely to occur except by looking through copies but it is possible for
|
|
// the initial register being queried to be in this state.
|
|
if (!DstTy.isValid()) {
|
|
Known = KnownBits();
|
|
return;
|
|
}
|
|
|
|
unsigned BitWidth = DstTy.getSizeInBits();
|
|
Known = KnownBits(BitWidth); // Don't know anything
|
|
|
|
if (DstTy.isVector())
|
|
return; // TODO: Handle vectors.
|
|
|
|
if (Depth == getMaxDepth())
|
|
return;
|
|
|
|
if (!DemandedElts)
|
|
return; // No demanded elts, better to assume we don't know anything.
|
|
|
|
KnownBits Known2;
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
TL.computeKnownBitsForTargetInstr(R, Known, DemandedElts, MRI, Depth);
|
|
break;
|
|
case TargetOpcode::COPY: {
|
|
MachineOperand Dst = MI.getOperand(0);
|
|
MachineOperand Src = MI.getOperand(1);
|
|
// Look through trivial copies but don't look through trivial copies of the
|
|
// form `%1:(s32) = OP %0:gpr32` known-bits analysis is currently unable to
|
|
// determine the bit width of a register class.
|
|
//
|
|
// We can't use NoSubRegister by name as it's defined by each target but
|
|
// it's always defined to be 0 by tablegen.
|
|
if (Dst.getSubReg() == 0 /*NoSubRegister*/ && Src.getReg().isVirtual() &&
|
|
Src.getSubReg() == 0 /*NoSubRegister*/ &&
|
|
MRI.getType(Src.getReg()).isValid()) {
|
|
// Don't increment Depth for this one since we didn't do any work.
|
|
computeKnownBitsImpl(Src.getReg(), Known, DemandedElts, Depth);
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_CONSTANT: {
|
|
auto CstVal = getConstantVRegVal(R, MRI);
|
|
if (!CstVal)
|
|
break;
|
|
Known.One = *CstVal;
|
|
Known.Zero = ~Known.One;
|
|
break;
|
|
}
|
|
case TargetOpcode::G_FRAME_INDEX: {
|
|
computeKnownBitsForFrameIndex(R, Known, DemandedElts);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_SUB: {
|
|
// If low bits are known to be zero in both operands, then we know they are
|
|
// going to be 0 in the result. Both addition and complement operations
|
|
// preserve the low zero bits.
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
unsigned KnownZeroLow = Known2.countMinTrailingZeros();
|
|
if (KnownZeroLow == 0)
|
|
break;
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
|
|
Known.Zero.setLowBits(KnownZeroLow);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_XOR: {
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
|
|
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
|
APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
|
|
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
|
Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
|
|
Known.Zero = KnownZeroOut;
|
|
break;
|
|
}
|
|
case TargetOpcode::G_GEP: {
|
|
// G_GEP is like G_ADD. FIXME: Is this true for all targets?
|
|
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
|
|
if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
|
|
break;
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case TargetOpcode::G_ADD: {
|
|
// Output known-0 bits are known if clear or set in both the low clear bits
|
|
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
|
|
// low 3 bits clear.
|
|
// Output known-0 bits are also known if the top bits of each input are
|
|
// known to be clear. For example, if one input has the top 10 bits clear
|
|
// and the other has the top 8 bits clear, we know the top 7 bits of the
|
|
// output must be clear.
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
|
|
unsigned KnownZeroLow = Known2.countMinTrailingZeros();
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
|
|
KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
|
|
Known.Zero.setLowBits(KnownZeroLow);
|
|
if (KnownZeroHigh > 1)
|
|
Known.Zero.setHighBits(KnownZeroHigh - 1);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_AND: {
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
|
|
// Output known-1 bits are only known if set in both the LHS & RHS.
|
|
Known.One &= Known2.One;
|
|
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
|
Known.Zero |= Known2.Zero;
|
|
break;
|
|
}
|
|
case TargetOpcode::G_OR: {
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
|
|
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
|
Known.Zero &= Known2.Zero;
|
|
// Output known-1 are known to be set if set in either the LHS | RHS.
|
|
Known.One |= Known2.One;
|
|
break;
|
|
}
|
|
case TargetOpcode::G_MUL: {
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
// If low bits are zero in either operand, output low known-0 bits.
|
|
// Also compute a conservative estimate for high known-0 bits.
|
|
// More trickiness is possible, but this is sufficient for the
|
|
// interesting case of alignment computation.
|
|
unsigned TrailZ =
|
|
Known.countMinTrailingZeros() + Known2.countMinTrailingZeros();
|
|
unsigned LeadZ =
|
|
std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(),
|
|
BitWidth) -
|
|
BitWidth;
|
|
|
|
Known.resetAll();
|
|
Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
|
|
Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
|
|
break;
|
|
}
|
|
case TargetOpcode::G_SELECT: {
|
|
computeKnownBitsImpl(MI.getOperand(3).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
// If we don't know any bits, early out.
|
|
if (Known.isUnknown())
|
|
break;
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
|
|
Depth + 1);
|
|
// Only known if known in both the LHS and RHS.
|
|
Known.One &= Known2.One;
|
|
Known.Zero &= Known2.Zero;
|
|
break;
|
|
}
|
|
case TargetOpcode::G_FCMP:
|
|
case TargetOpcode::G_ICMP: {
|
|
if (TL.getBooleanContents(DstTy.isVector(),
|
|
Opcode == TargetOpcode::G_FCMP) ==
|
|
TargetLowering::ZeroOrOneBooleanContent &&
|
|
BitWidth > 1)
|
|
Known.Zero.setBitsFrom(1);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_SEXT: {
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
// If the sign bit is known to be zero or one, then sext will extend
|
|
// it to the top bits, else it will just zext.
|
|
Known = Known.sext(BitWidth);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_ANYEXT: {
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_LOAD: {
|
|
if (MI.hasOneMemOperand()) {
|
|
const MachineMemOperand *MMO = *MI.memoperands_begin();
|
|
if (const MDNode *Ranges = MMO->getRanges()) {
|
|
computeKnownBitsFromRangeMetadata(*Ranges, Known);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_ZEXTLOAD: {
|
|
// Everything above the retrieved bits is zero
|
|
if (MI.hasOneMemOperand())
|
|
Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
|
|
break;
|
|
}
|
|
case TargetOpcode::G_ASHR:
|
|
case TargetOpcode::G_LSHR:
|
|
case TargetOpcode::G_SHL: {
|
|
KnownBits RHSKnown;
|
|
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
|
|
Depth + 1);
|
|
if (!RHSKnown.isConstant()) {
|
|
LLVM_DEBUG(
|
|
MachineInstr *RHSMI = MRI.getVRegDef(MI.getOperand(2).getReg());
|
|
dbgs() << '[' << Depth << "] Shift not known constant: " << *RHSMI);
|
|
break;
|
|
}
|
|
uint64_t Shift = RHSKnown.getConstant().getZExtValue();
|
|
LLVM_DEBUG(dbgs() << '[' << Depth << "] Shift is " << Shift << '\n');
|
|
|
|
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
|
|
Depth + 1);
|
|
|
|
switch (Opcode) {
|
|
case TargetOpcode::G_ASHR:
|
|
Known.Zero = Known.Zero.ashr(Shift);
|
|
Known.One = Known.One.ashr(Shift);
|
|
break;
|
|
case TargetOpcode::G_LSHR:
|
|
Known.Zero = Known.Zero.lshr(Shift);
|
|
Known.One = Known.One.lshr(Shift);
|
|
Known.Zero.setBitsFrom(Known.Zero.getBitWidth() - Shift);
|
|
break;
|
|
case TargetOpcode::G_SHL:
|
|
Known.Zero = Known.Zero.shl(Shift);
|
|
Known.One = Known.One.shl(Shift);
|
|
Known.Zero.setBits(0, Shift);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_INTTOPTR:
|
|
case TargetOpcode::G_PTRTOINT:
|
|
// Fall through and handle them the same as zext/trunc.
|
|
LLVM_FALLTHROUGH;
|
|
case TargetOpcode::G_ZEXT:
|
|
case TargetOpcode::G_TRUNC: {
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
LLT SrcTy = MRI.getType(SrcReg);
|
|
unsigned SrcBitWidth = SrcTy.isPointer()
|
|
? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
|
|
: SrcTy.getSizeInBits();
|
|
assert(SrcBitWidth && "SrcBitWidth can't be zero");
|
|
Known = Known.zextOrTrunc(SrcBitWidth, true);
|
|
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
|
|
Known = Known.zextOrTrunc(BitWidth, true);
|
|
if (BitWidth > SrcBitWidth)
|
|
Known.Zero.setBitsFrom(SrcBitWidth);
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
LLVM_DEBUG(dbgs() << "[" << Depth << "] Compute known bits: " << MI << "["
|
|
<< Depth << "] Computed for: " << MI << "[" << Depth
|
|
<< "] Known: 0x"
|
|
<< (Known.Zero | Known.One).toString(16, false) << "\n"
|
|
<< "[" << Depth << "] Zero: 0x"
|
|
<< Known.Zero.toString(16, false) << "\n"
|
|
<< "[" << Depth << "] One: 0x"
|
|
<< Known.One.toString(16, false) << "\n");
|
|
}
|
|
|
|
void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
|
|
return false;
|
|
}
|