forked from OSchip/llvm-project
385 lines
14 KiB
C++
385 lines
14 KiB
C++
//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
|
|
// the unittest for this requiring linking against LLVM.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/FlattenAlgo.h"
|
|
#include "polly/Support/ISLOStream.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#define DEBUG_TYPE "polly-flatten-algo"
|
|
|
|
using namespace polly;
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
|
|
/// i.e. there are two constants Min and Max, such that every value x of the
|
|
/// chosen dimensions is Min <= x <= Max.
|
|
bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
|
|
auto ParamDims = Set.dim(isl::dim::param);
|
|
Set = Set.project_out(isl::dim::param, 0, ParamDims);
|
|
Set = Set.project_out(isl::dim::set, 0, dim);
|
|
auto SetDims = Set.dim(isl::dim::set);
|
|
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
|
|
return bool(Set.is_bounded());
|
|
}
|
|
|
|
/// Whether a dimension of a set is (lower and upper) bounded by a constant or
|
|
/// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
|
|
/// p, such that every value x of the chosen dimensions is
|
|
/// Min_p <= x <= Max_p.
|
|
bool isDimBoundedByParameter(isl::set Set, unsigned dim) {
|
|
Set = Set.project_out(isl::dim::set, 0, dim);
|
|
auto SetDims = Set.dim(isl::dim::set);
|
|
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
|
|
return bool(Set.is_bounded());
|
|
}
|
|
|
|
/// Whether BMap's first out-dimension is not a constant.
|
|
bool isVariableDim(const isl::basic_map &BMap) {
|
|
auto FixedVal = BMap.plain_get_val_if_fixed(isl::dim::out, 0);
|
|
return !FixedVal || FixedVal.is_nan();
|
|
}
|
|
|
|
/// Whether Map's first out dimension is no constant nor piecewise constant.
|
|
bool isVariableDim(const isl::map &Map) {
|
|
return Map.foreach_basic_map([](isl::basic_map BMap) -> isl::stat {
|
|
if (isVariableDim(BMap))
|
|
return isl::stat::error;
|
|
return isl::stat::ok;
|
|
}) == isl::stat::ok;
|
|
}
|
|
|
|
/// Whether UMap's first out dimension is no (piecewise) constant.
|
|
bool isVariableDim(const isl::union_map &UMap) {
|
|
return UMap.foreach_map([](isl::map Map) -> isl::stat {
|
|
if (isVariableDim(Map))
|
|
return isl::stat::error;
|
|
return isl::stat::ok;
|
|
}) == isl::stat::ok;
|
|
}
|
|
|
|
/// If @p PwAff maps to a constant, return said constant. If @p Max/@p Min, it
|
|
/// can also be a piecewise constant and it would return the minimum/maximum
|
|
/// value. Otherwise, return NaN.
|
|
isl::val getConstant(isl::pw_aff PwAff, bool Max, bool Min) {
|
|
assert(!Max || !Min);
|
|
isl::val Result;
|
|
PwAff.foreach_piece([=, &Result](isl::set Set, isl::aff Aff) -> isl::stat {
|
|
if (Result && Result.is_nan())
|
|
return isl::stat::ok;
|
|
|
|
// TODO: If Min/Max, we can also determine a minimum/maximum value if
|
|
// Set is constant-bounded.
|
|
if (!Aff.is_cst()) {
|
|
Result = isl::val::nan(Aff.get_ctx());
|
|
return isl::stat::error;
|
|
}
|
|
|
|
auto ThisVal = Aff.get_constant_val();
|
|
if (!Result) {
|
|
Result = ThisVal;
|
|
return isl::stat::ok;
|
|
}
|
|
|
|
if (Result.eq(ThisVal))
|
|
return isl::stat::ok;
|
|
|
|
if (Max && ThisVal.gt(Result)) {
|
|
Result = ThisVal;
|
|
return isl::stat::ok;
|
|
}
|
|
|
|
if (Min && ThisVal.lt(Result)) {
|
|
Result = ThisVal;
|
|
return isl::stat::ok;
|
|
}
|
|
|
|
// Not compatible
|
|
Result = isl::val::nan(Aff.get_ctx());
|
|
return isl::stat::error;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
/// Compute @p UPwAff - @p Val.
|
|
isl::union_pw_aff subtract(isl::union_pw_aff UPwAff, isl::val Val) {
|
|
if (Val.is_zero())
|
|
return UPwAff;
|
|
|
|
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
|
|
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
|
|
auto ValAff =
|
|
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
|
|
auto Subtracted = PwAff.sub(ValAff);
|
|
Result = Result.union_add(isl::union_pw_aff(Subtracted));
|
|
return isl::stat::ok;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
/// Compute @UPwAff * @p Val.
|
|
isl::union_pw_aff multiply(isl::union_pw_aff UPwAff, isl::val Val) {
|
|
if (Val.is_one())
|
|
return UPwAff;
|
|
|
|
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
|
|
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
|
|
auto ValAff =
|
|
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
|
|
auto Multiplied = PwAff.mul(ValAff);
|
|
Result = Result.union_add(Multiplied);
|
|
return isl::stat::ok;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
/// Remove @p n dimensions from @p UMap's range, starting at @p first.
|
|
///
|
|
/// It is assumed that all maps in the maps have at least the necessary number
|
|
/// of out dimensions.
|
|
isl::union_map scheduleProjectOut(const isl::union_map &UMap, unsigned first,
|
|
unsigned n) {
|
|
if (n == 0)
|
|
return UMap; /* isl_map_project_out would also reset the tuple, which should
|
|
have no effect on schedule ranges */
|
|
|
|
auto Result = isl::union_map::empty(UMap.get_space());
|
|
UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
|
|
auto Outprojected = Map.project_out(isl::dim::out, first, n);
|
|
Result = Result.add_map(Outprojected);
|
|
return isl::stat::ok;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
/// Return the number of dimensions in the input map's range.
|
|
///
|
|
/// Because this function takes an isl_union_map, the out dimensions could be
|
|
/// different. We return the maximum number in this case. However, a different
|
|
/// number of dimensions is not supported by the other code in this file.
|
|
size_t scheduleScatterDims(const isl::union_map &Schedule) {
|
|
unsigned Dims = 0;
|
|
Schedule.foreach_map([&Dims](isl::map Map) -> isl::stat {
|
|
Dims = std::max(Dims, Map.dim(isl::dim::out));
|
|
return isl::stat::ok;
|
|
});
|
|
return Dims;
|
|
}
|
|
|
|
/// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
|
|
isl::union_pw_aff scheduleExtractDimAff(isl::union_map UMap, unsigned pos) {
|
|
auto SingleUMap = isl::union_map::empty(UMap.get_space());
|
|
UMap.foreach_map([=, &SingleUMap](isl::map Map) -> isl::stat {
|
|
auto MapDims = Map.dim(isl::dim::out);
|
|
auto SingleMap = Map.project_out(isl::dim::out, 0, pos);
|
|
SingleMap = SingleMap.project_out(isl::dim::out, 1, MapDims - pos - 1);
|
|
SingleUMap = SingleUMap.add_map(SingleMap);
|
|
return isl::stat::ok;
|
|
});
|
|
|
|
auto UAff = isl::union_pw_multi_aff(SingleUMap);
|
|
auto FirstMAff = isl::multi_union_pw_aff(UAff);
|
|
return FirstMAff.get_union_pw_aff(0);
|
|
}
|
|
|
|
/// Flatten a sequence-like first dimension.
|
|
///
|
|
/// A sequence-like scatter dimension is constant, or at least only small
|
|
/// variation, typically the result of ordering a sequence of different
|
|
/// statements. An example would be:
|
|
/// { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
|
|
/// to schedule all instances of Stmt_A before any instance of Stmt_B.
|
|
///
|
|
/// To flatten, first begin with an offset of zero. Then determine the lowest
|
|
/// possible value of the dimension, call it "i" [In the example we start at 0].
|
|
/// Considering only schedules with that value, consider only instances with
|
|
/// that value and determine the extent of the next dimension. Let l_X(i) and
|
|
/// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
|
|
/// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
|
|
/// to Offset and remove all i-instances from the old schedule. Repeat with the
|
|
/// remaining lowest value i' until there are no instances in the old schedule
|
|
/// left.
|
|
/// The example schedule would be transformed to:
|
|
/// { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
|
|
isl::union_map tryFlattenSequence(isl::union_map Schedule) {
|
|
auto IslCtx = Schedule.get_ctx();
|
|
auto ScatterSet = isl::set(Schedule.range());
|
|
|
|
auto ParamSpace = Schedule.get_space().params();
|
|
auto Dims = ScatterSet.dim(isl::dim::set);
|
|
assert(Dims >= 2);
|
|
|
|
// Would cause an infinite loop.
|
|
if (!isDimBoundedByConstant(ScatterSet, 0)) {
|
|
DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto AllDomains = Schedule.domain();
|
|
auto AllDomainsToNull = isl::union_pw_multi_aff(AllDomains);
|
|
|
|
auto NewSchedule = isl::union_map::empty(ParamSpace);
|
|
auto Counter = isl::pw_aff(isl::local_space(ParamSpace.set_from_params()));
|
|
|
|
while (!ScatterSet.is_empty()) {
|
|
DEBUG(dbgs() << "Next counter:\n " << Counter << "\n");
|
|
DEBUG(dbgs() << "Remaining scatter set:\n " << ScatterSet << "\n");
|
|
auto ThisSet = ScatterSet.project_out(isl::dim::set, 1, Dims - 1);
|
|
auto ThisFirst = ThisSet.lexmin();
|
|
auto ScatterFirst = ThisFirst.add_dims(isl::dim::set, Dims - 1);
|
|
|
|
auto SubSchedule = Schedule.intersect_range(ScatterFirst);
|
|
SubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
|
|
SubSchedule = flattenSchedule(SubSchedule);
|
|
|
|
auto SubDims = scheduleScatterDims(SubSchedule);
|
|
auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
|
|
auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
|
|
auto RemainingSubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
|
|
|
|
auto FirstSubScatter = isl::set(FirstSubSchedule.range());
|
|
DEBUG(dbgs() << "Next step in sequence is:\n " << FirstSubScatter << "\n");
|
|
|
|
if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
|
|
DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto FirstSubScatterMap = isl::map::from_range(FirstSubScatter);
|
|
|
|
// isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
|
|
// 'none'. It doesn't match with any space including a 0-dimensional
|
|
// anonymous tuple.
|
|
// Interesting, one can create such a set using
|
|
// isl_set_universe(ParamSpace). Bug?
|
|
auto PartMin = FirstSubScatterMap.dim_min(0);
|
|
auto PartMax = FirstSubScatterMap.dim_max(0);
|
|
auto One = isl::pw_aff(isl::set::universe(ParamSpace.set_from_params()),
|
|
isl::val::one(IslCtx));
|
|
auto PartLen = PartMax.add(PartMin.neg()).add(One);
|
|
|
|
auto AllPartMin = isl::union_pw_aff(PartMin).pullback(AllDomainsToNull);
|
|
auto FirstScheduleAffNormalized = FirstScheduleAff.sub(AllPartMin);
|
|
auto AllCounter = isl::union_pw_aff(Counter).pullback(AllDomainsToNull);
|
|
auto FirstScheduleAffWithOffset =
|
|
FirstScheduleAffNormalized.add(AllCounter);
|
|
|
|
auto ScheduleWithOffset = isl::union_map(FirstScheduleAffWithOffset)
|
|
.flat_range_product(RemainingSubSchedule);
|
|
NewSchedule = NewSchedule.unite(ScheduleWithOffset);
|
|
|
|
ScatterSet = ScatterSet.subtract(ScatterFirst);
|
|
Counter = Counter.add(PartLen);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Sequence-flatten result is:\n " << NewSchedule << "\n");
|
|
return NewSchedule;
|
|
}
|
|
|
|
/// Flatten a loop-like first dimension.
|
|
///
|
|
/// A loop-like dimension is one that depends on a variable (usually a loop's
|
|
/// induction variable). Let the input schedule look like this:
|
|
/// { Stmt[i] -> [i, X, ...] }
|
|
///
|
|
/// To flatten, we determine the largest extent of X which may not depend on the
|
|
/// actual value of i. Let l_X() the smallest possible value of X and u_X() its
|
|
/// largest value. Then, construct a new schedule
|
|
/// { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
|
|
isl::union_map tryFlattenLoop(isl::union_map Schedule) {
|
|
assert(scheduleScatterDims(Schedule) >= 2);
|
|
|
|
auto Remaining = scheduleProjectOut(Schedule, 0, 1);
|
|
auto SubSchedule = flattenSchedule(Remaining);
|
|
auto SubDims = scheduleScatterDims(SubSchedule);
|
|
|
|
auto SubExtent = isl::set(SubSchedule.range());
|
|
auto SubExtentDims = SubExtent.dim(isl::dim::param);
|
|
SubExtent = SubExtent.project_out(isl::dim::param, 0, SubExtentDims);
|
|
SubExtent = SubExtent.project_out(isl::dim::set, 1, SubDims - 1);
|
|
|
|
if (!isDimBoundedByConstant(SubExtent, 0)) {
|
|
DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto Min = SubExtent.dim_min(0);
|
|
DEBUG(dbgs() << "Min bound:\n " << Min << "\n");
|
|
auto MinVal = getConstant(Min, false, true);
|
|
auto Max = SubExtent.dim_max(0);
|
|
DEBUG(dbgs() << "Max bound:\n " << Max << "\n");
|
|
auto MaxVal = getConstant(Max, true, false);
|
|
|
|
if (!MinVal || !MaxVal || MinVal.is_nan() || MaxVal.is_nan()) {
|
|
DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
|
|
auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
|
|
|
|
auto LenVal = MaxVal.sub(MinVal).add_ui(1);
|
|
auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);
|
|
|
|
// TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
|
|
// subtract it)
|
|
auto FirstAff = scheduleExtractDimAff(Schedule, 0);
|
|
auto Offset = multiply(FirstAff, LenVal);
|
|
auto Index = FirstSubScheduleNormalized.add(Offset);
|
|
auto IndexMap = isl::union_map(Index);
|
|
|
|
auto Result = IndexMap.flat_range_product(RemainingSubSchedule);
|
|
DEBUG(dbgs() << "Loop-flatten result is:\n " << Result << "\n");
|
|
return Result;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
isl::union_map polly::flattenSchedule(isl::union_map Schedule) {
|
|
auto Dims = scheduleScatterDims(Schedule);
|
|
DEBUG(dbgs() << "Recursive schedule to process:\n " << Schedule << "\n");
|
|
|
|
// Base case; no dimensions left
|
|
if (Dims == 0) {
|
|
// TODO: Add one dimension?
|
|
return Schedule;
|
|
}
|
|
|
|
// Base case; already one-dimensional
|
|
if (Dims == 1)
|
|
return Schedule;
|
|
|
|
// Fixed dimension; no need to preserve variabledness.
|
|
if (!isVariableDim(Schedule)) {
|
|
DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
|
|
auto NewScheduleSequence = tryFlattenSequence(Schedule);
|
|
if (NewScheduleSequence)
|
|
return NewScheduleSequence;
|
|
}
|
|
|
|
// Constant stride
|
|
DEBUG(dbgs() << "Try loop flattening\n");
|
|
auto NewScheduleLoop = tryFlattenLoop(Schedule);
|
|
if (NewScheduleLoop)
|
|
return NewScheduleLoop;
|
|
|
|
// Try again without loop condition (may blow up the number of pieces!!)
|
|
DEBUG(dbgs() << "Try sequence flattening again\n");
|
|
auto NewScheduleSequence = tryFlattenSequence(Schedule);
|
|
if (NewScheduleSequence)
|
|
return NewScheduleSequence;
|
|
|
|
// Cannot flatten
|
|
return Schedule;
|
|
}
|