llvm-project/llvm/lib/Target/ARM/ARMInstrThumb.td

1036 lines
40 KiB
TableGen

//===- ARMInstrThumb.td - Thumb support for ARM ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Thumb instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Thumb specific DAG Nodes.
//
def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag,
SDNPVariadic]>;
def imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32);
}]>;
def imm_comp_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
}]>;
/// imm0_7 predicate - True if the 32-bit immediate is in the range [0,7].
def imm0_7 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 8;
}]>;
def imm0_7_neg : PatLeaf<(i32 imm), [{
return (uint32_t)-N->getZExtValue() < 8;
}], imm_neg_XFORM>;
def imm0_255 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 256;
}]>;
def imm0_255_comp : PatLeaf<(i32 imm), [{
return ~((uint32_t)N->getZExtValue()) < 256;
}]>;
def imm8_255 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() >= 8 && (uint32_t)N->getZExtValue() < 256;
}]>;
def imm8_255_neg : PatLeaf<(i32 imm), [{
unsigned Val = -N->getZExtValue();
return Val >= 8 && Val < 256;
}], imm_neg_XFORM>;
// Break imm's up into two pieces: an immediate + a left shift.
// This uses thumb_immshifted to match and thumb_immshifted_val and
// thumb_immshifted_shamt to get the val/shift pieces.
def thumb_immshifted : PatLeaf<(imm), [{
return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
}]>;
def thumb_immshifted_val : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def thumb_immshifted_shamt : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
// Scaled 4 immediate.
def t_imm_s4 : Operand<i32> {
let PrintMethod = "printThumbS4ImmOperand";
}
// Define Thumb specific addressing modes.
// t_addrmode_rr := reg + reg
//
def t_addrmode_rr : Operand<i32>,
ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
let PrintMethod = "printThumbAddrModeRROperand";
let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
// t_addrmode_s4 := reg + reg
// reg + imm5 * 4
//
def t_addrmode_s4 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS4", []> {
let PrintMethod = "printThumbAddrModeS4Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
}
// t_addrmode_s2 := reg + reg
// reg + imm5 * 2
//
def t_addrmode_s2 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS2", []> {
let PrintMethod = "printThumbAddrModeS2Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
}
// t_addrmode_s1 := reg + reg
// reg + imm5
//
def t_addrmode_s1 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS1", []> {
let PrintMethod = "printThumbAddrModeS1Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
}
// t_addrmode_sp := sp + imm8 * 4
//
def t_addrmode_sp : Operand<i32>,
ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
let PrintMethod = "printThumbAddrModeSPOperand";
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
// from removing one half of the matched pairs. That breaks PEI, which assumes
// these will always be in pairs, and asserts if it finds otherwise. Better way?
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def tADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
"${:comment} tADJCALLSTACKUP $amt1",
[(ARMcallseq_end imm:$amt1, imm:$amt2)]>, Requires<[IsThumb1Only]>;
def tADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt), NoItinerary,
"${:comment} tADJCALLSTACKDOWN $amt",
[(ARMcallseq_start imm:$amt)]>, Requires<[IsThumb1Only]>;
}
def tNOP : T1pI<(outs), (ins), NoItinerary, "nop", "",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101111> {
let Inst{9-8} = 0b11;
let Inst{7-0} = 0b00000000;
}
def tYIELD : T1pI<(outs), (ins), NoItinerary, "yield", "",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101111> {
let Inst{9-8} = 0b11;
let Inst{7-0} = 0b00010000;
}
def tWFE : T1pI<(outs), (ins), NoItinerary, "wfe", "",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101111> {
let Inst{9-8} = 0b11;
let Inst{7-0} = 0b00100000;
}
def tWFI : T1pI<(outs), (ins), NoItinerary, "wfi", "",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101111> {
let Inst{9-8} = 0b11;
let Inst{7-0} = 0b00110000;
}
def tSEV : T1pI<(outs), (ins), NoItinerary, "sev", "",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101111> {
let Inst{9-8} = 0b11;
let Inst{7-0} = 0b01000000;
}
def tSETENDBE : T1I<(outs), (ins), NoItinerary, "setend\tbe",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101101> {
let Inst{9-5} = 0b10010;
let Inst{3} = 1;
}
def tSETENDLE : T1I<(outs), (ins), NoItinerary, "setend\tle",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101101> {
let Inst{9-5} = 0b10010;
let Inst{3} = 0;
}
// The i32imm operand $val can be used by a debugger to store more information
// about the breakpoint.
def tBKPT : T1I<(outs), (ins i32imm:$val), NoItinerary, "bkpt\t$val",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101111> {
let Inst{9-8} = 0b10;
}
// Change Processor State is a system instruction -- for disassembly only.
// The singleton $opt operand contains the following information:
// opt{4-0} = mode ==> don't care
// opt{5} = changemode ==> 0 (false for 16-bit Thumb instr)
// opt{8-6} = AIF from Inst{2-0}
// opt{10-9} = 1:imod from Inst{4} with 0b10 as enable and 0b11 as disable
//
// The opt{4-0} and opt{5} sub-fields are to accommodate 32-bit Thumb and ARM
// CPS which has more options.
def tCPS : T1I<(outs), (ins cps_opt:$opt), NoItinerary, "cps$opt",
[/* For disassembly only; pattern left blank */]>,
T1Misc<0b0110011>;
// For both thumb1 and thumb2.
let isNotDuplicable = 1 in
def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr,
"\n$cp:\n\tadd\t$dst, pc",
[(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
T1Special<{0,0,?,?}> {
let Inst{6-3} = 0b1111; // A8.6.6 Rm = pc
}
// PC relative add.
def tADDrPCi : T1I<(outs tGPR:$dst), (ins t_imm_s4:$rhs), IIC_iALUi,
"add\t$dst, pc, $rhs", []>,
T1Encoding<{1,0,1,0,0,?}>; // A6.2 & A8.6.10
// ADD rd, sp, #imm8
// This is rematerializable, which is particularly useful for taking the
// address of locals.
let isReMaterializable = 1 in {
def tADDrSPi : T1I<(outs tGPR:$dst), (ins GPR:$sp, t_imm_s4:$rhs), IIC_iALUi,
"add\t$dst, $sp, $rhs", []>,
T1Encoding<{1,0,1,0,1,?}>; // A6.2 & A8.6.8
}
// ADD sp, sp, #imm7
def tADDspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, t_imm_s4:$rhs), IIC_iALUi,
"add\t$dst, $rhs", []>,
T1Misc<{0,0,0,0,0,?,?}>; // A6.2.5 & A8.6.8
// SUB sp, sp, #imm7
def tSUBspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, t_imm_s4:$rhs), IIC_iALUi,
"sub\t$dst, $rhs", []>,
T1Misc<{0,0,0,0,1,?,?}>; // A6.2.5 & A8.6.215
// ADD rm, sp
def tADDrSP : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
"add\t$dst, $rhs", []>,
T1Special<{0,0,?,?}> {
let Inst{6-3} = 0b1101; // A8.6.9 Encoding T1
}
// ADD sp, rm
def tADDspr : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
"add\t$dst, $rhs", []>,
T1Special<{0,0,?,?}> {
// A8.6.9 Encoding T2
let Inst{7} = 1;
let Inst{2-0} = 0b101;
}
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def tBX_RET : TI<(outs), (ins), IIC_Br, "bx\tlr", [(ARMretflag)]>,
T1Special<{1,1,0,?}> { // A6.2.3 & A8.6.25
let Inst{6-3} = 0b1110; // Rm = lr
}
// Alternative return instruction used by vararg functions.
def tBX_RET_vararg : TI<(outs), (ins tGPR:$target), IIC_Br, "bx\t$target",[]>,
T1Special<{1,1,0,?}>; // A6.2.3 & A8.6.25
}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def tBRIND : TI<(outs), (ins GPR:$dst), IIC_Br, "mov\tpc, $dst",
[(brind GPR:$dst)]>,
T1Special<{1,0,1,?}> {
// <Rd> = Inst{7:2-0} = pc
let Inst{2-0} = 0b111;
}
}
// FIXME: remove when we have a way to marking a MI with these properties.
let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
hasExtraDefRegAllocReq = 1 in
def tPOP_RET : T1I<(outs), (ins pred:$p, reglist:$dsts, variable_ops), IIC_Br,
"pop${p}\t$dsts", []>,
T1Misc<{1,1,0,?,?,?,?}>;
let isCall = 1,
Defs = [R0, R1, R2, R3, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in {
// Also used for Thumb2
def tBL : TIx2<0b11110, 0b11, 1,
(outs), (ins i32imm:$func, variable_ops), IIC_Br,
"bl\t${func:call}",
[(ARMtcall tglobaladdr:$func)]>,
Requires<[IsThumb, IsNotDarwin]>;
// ARMv5T and above, also used for Thumb2
def tBLXi : TIx2<0b11110, 0b11, 0,
(outs), (ins i32imm:$func, variable_ops), IIC_Br,
"blx\t${func:call}",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsThumb, HasV5T, IsNotDarwin]>;
// Also used for Thumb2
def tBLXr : TI<(outs), (ins GPR:$func, variable_ops), IIC_Br,
"blx\t$func",
[(ARMtcall GPR:$func)]>,
Requires<[IsThumb, HasV5T, IsNotDarwin]>,
T1Special<{1,1,1,?}>; // A6.2.3 & A8.6.24;
// ARMv4T
def tBX : TIx2<{?,?,?,?,?}, {?,?}, ?,
(outs), (ins tGPR:$func, variable_ops), IIC_Br,
"mov\tlr, pc\n\tbx\t$func",
[(ARMcall_nolink tGPR:$func)]>,
Requires<[IsThumb1Only, IsNotDarwin]>;
}
// On Darwin R9 is call-clobbered.
let isCall = 1,
Defs = [R0, R1, R2, R3, R9, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in {
// Also used for Thumb2
def tBLr9 : TIx2<0b11110, 0b11, 1,
(outs), (ins i32imm:$func, variable_ops), IIC_Br,
"bl\t${func:call}",
[(ARMtcall tglobaladdr:$func)]>,
Requires<[IsThumb, IsDarwin]>;
// ARMv5T and above, also used for Thumb2
def tBLXi_r9 : TIx2<0b11110, 0b11, 0,
(outs), (ins i32imm:$func, variable_ops), IIC_Br,
"blx\t${func:call}",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsThumb, HasV5T, IsDarwin]>;
// Also used for Thumb2
def tBLXr_r9 : TI<(outs), (ins GPR:$func, variable_ops), IIC_Br,
"blx\t$func",
[(ARMtcall GPR:$func)]>,
Requires<[IsThumb, HasV5T, IsDarwin]>,
T1Special<{1,1,1,?}>; // A6.2.3 & A8.6.24
// ARMv4T
def tBXr9 : TIx2<{?,?,?,?,?}, {?,?}, ?,
(outs), (ins tGPR:$func, variable_ops), IIC_Br,
"mov\tlr, pc\n\tbx\t$func",
[(ARMcall_nolink tGPR:$func)]>,
Requires<[IsThumb1Only, IsDarwin]>;
}
let isBranch = 1, isTerminator = 1 in {
let isBarrier = 1 in {
let isPredicable = 1 in
def tB : T1I<(outs), (ins brtarget:$target), IIC_Br,
"b\t$target", [(br bb:$target)]>,
T1Encoding<{1,1,1,0,0,?}>;
// Far jump
let Defs = [LR] in
def tBfar : TIx2<0b11110, 0b11, 1, (outs), (ins brtarget:$target), IIC_Br,
"bl\t$target\t${:comment} far jump",[]>;
def tBR_JTr : T1JTI<(outs),
(ins tGPR:$target, jtblock_operand:$jt, i32imm:$id),
IIC_Br, "mov\tpc, $target\n\t.align\t2$jt",
[(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>,
Encoding16 {
let Inst{15-7} = 0b010001101;
let Inst{2-0} = 0b111;
}
}
}
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
def tBcc : T1I<(outs), (ins brtarget:$target, pred:$cc), IIC_Br,
"b$cc\t$target",
[/*(ARMbrcond bb:$target, imm:$cc)*/]>,
T1Encoding<{1,1,0,1,?,?}>;
// Compare and branch on zero / non-zero
let isBranch = 1, isTerminator = 1 in {
def tCBZ : T1I<(outs), (ins tGPR:$cmp, brtarget:$target), IIC_Br,
"cbz\t$cmp, $target", []>,
T1Misc<{0,0,?,1,?,?,?}>;
def tCBNZ : T1I<(outs), (ins tGPR:$cmp, brtarget:$target), IIC_Br,
"cbnz\t$cmp, $target", []>,
T1Misc<{1,0,?,1,?,?,?}>;
}
// A8.6.218 Supervisor Call (Software Interrupt) -- for disassembly only
// A8.6.16 B: Encoding T1
// If Inst{11-8} == 0b1111 then SEE SVC
let isCall = 1 in {
def tSVC : T1pI<(outs), (ins i32imm:$svc), IIC_Br, "svc", "\t$svc", []>,
Encoding16 {
let Inst{15-12} = 0b1101;
let Inst{11-8} = 0b1111;
}
}
// A8.6.16 B: Encoding T1
// If Inst{11-8} == 0b1110 then UNDEFINED
// FIXME: Temporary emitted as raw bytes until this pseudo-op will be added to
// binutils
let isBarrier = 1, isTerminator = 1 in
def tTRAP : TI<(outs), (ins), IIC_Br,
".short 0xdefe ${:comment} trap", [(trap)]>, Encoding16 {
let Inst{15-12} = 0b1101;
let Inst{11-8} = 0b1110;
}
//===----------------------------------------------------------------------===//
// Load Store Instructions.
//
let canFoldAsLoad = 1, isReMaterializable = 1 in
def tLDR : T1pI4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr), IIC_iLoadr,
"ldr", "\t$dst, $addr",
[(set tGPR:$dst, (load t_addrmode_s4:$addr))]>,
T1LdSt<0b100>;
def tLDRi: T1pI4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr), IIC_iLoadr,
"ldr", "\t$dst, $addr",
[]>,
T1LdSt4Imm<{1,?,?}>;
def tLDRB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr), IIC_iLoadr,
"ldrb", "\t$dst, $addr",
[(set tGPR:$dst, (zextloadi8 t_addrmode_s1:$addr))]>,
T1LdSt<0b110>;
def tLDRBi: T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr), IIC_iLoadr,
"ldrb", "\t$dst, $addr",
[]>,
T1LdSt1Imm<{1,?,?}>;
def tLDRH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr), IIC_iLoadr,
"ldrh", "\t$dst, $addr",
[(set tGPR:$dst, (zextloadi16 t_addrmode_s2:$addr))]>,
T1LdSt<0b101>;
def tLDRHi: T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr), IIC_iLoadr,
"ldrh", "\t$dst, $addr",
[]>,
T1LdSt2Imm<{1,?,?}>;
let AddedComplexity = 10 in
def tLDRSB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_rr:$addr), IIC_iLoadr,
"ldrsb", "\t$dst, $addr",
[(set tGPR:$dst, (sextloadi8 t_addrmode_rr:$addr))]>,
T1LdSt<0b011>;
let AddedComplexity = 10 in
def tLDRSH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_rr:$addr), IIC_iLoadr,
"ldrsh", "\t$dst, $addr",
[(set tGPR:$dst, (sextloadi16 t_addrmode_rr:$addr))]>,
T1LdSt<0b111>;
let canFoldAsLoad = 1 in
def tLDRspi : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr), IIC_iLoadi,
"ldr", "\t$dst, $addr",
[(set tGPR:$dst, (load t_addrmode_sp:$addr))]>,
T1LdStSP<{1,?,?}>;
// Special instruction for restore. It cannot clobber condition register
// when it's expanded by eliminateCallFramePseudoInstr().
let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1 in
def tRestore : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr), IIC_iLoadi,
"ldr", "\t$dst, $addr", []>,
T1LdStSP<{1,?,?}>;
// Load tconstpool
// FIXME: Use ldr.n to work around a Darwin assembler bug.
let canFoldAsLoad = 1, isReMaterializable = 1 in
def tLDRpci : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr), IIC_iLoadi,
"ldr", ".n\t$dst, $addr",
[(set tGPR:$dst, (load (ARMWrapper tconstpool:$addr)))]>,
T1Encoding<{0,1,0,0,1,?}>; // A6.2 & A8.6.59
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1,
isReMaterializable = 1 in
def tLDRcp : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr), IIC_iLoadi,
"ldr", "\t$dst, $addr", []>,
T1LdStSP<{1,?,?}>;
def tSTR : T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr), IIC_iStorer,
"str", "\t$src, $addr",
[(store tGPR:$src, t_addrmode_s4:$addr)]>,
T1LdSt<0b000>;
def tSTRi: T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr), IIC_iStorer,
"str", "\t$src, $addr",
[]>,
T1LdSt4Imm<{0,?,?}>;
def tSTRB : T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr), IIC_iStorer,
"strb", "\t$src, $addr",
[(truncstorei8 tGPR:$src, t_addrmode_s1:$addr)]>,
T1LdSt<0b010>;
def tSTRBi: T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr), IIC_iStorer,
"strb", "\t$src, $addr",
[]>,
T1LdSt1Imm<{0,?,?}>;
def tSTRH : T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr), IIC_iStorer,
"strh", "\t$src, $addr",
[(truncstorei16 tGPR:$src, t_addrmode_s2:$addr)]>,
T1LdSt<0b001>;
def tSTRHi: T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr), IIC_iStorer,
"strh", "\t$src, $addr",
[]>,
T1LdSt2Imm<{0,?,?}>;
def tSTRspi : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStorei,
"str", "\t$src, $addr",
[(store tGPR:$src, t_addrmode_sp:$addr)]>,
T1LdStSP<{0,?,?}>;
let mayStore = 1, neverHasSideEffects = 1 in {
// Special instruction for spill. It cannot clobber condition register
// when it's expanded by eliminateCallFramePseudoInstr().
def tSpill : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStorei,
"str", "\t$src, $addr", []>,
T1LdStSP<{0,?,?}>;
}
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
// These require base address to be written back or one of the loaded regs.
let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
def tLDM : T1I<(outs),
(ins addrmode4:$addr, pred:$p, reglist:$dsts, variable_ops),
IIC_iLoadm,
"ldm${addr:submode}${p}\t$addr, $dsts", []>,
T1Encoding<{1,1,0,0,1,?}>; // A6.2 & A8.6.53
def tLDM_UPD : T1It<(outs tGPR:$wb),
(ins addrmode4:$addr, pred:$p, reglist:$dsts, variable_ops),
IIC_iLoadm,
"ldm${addr:submode}${p}\t$addr!, $dsts",
"$addr.addr = $wb", []>,
T1Encoding<{1,1,0,0,1,?}>; // A6.2 & A8.6.53
} // mayLoad, neverHasSideEffects = 1, hasExtraDefRegAllocReq
let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in
def tSTM_UPD : T1It<(outs tGPR:$wb),
(ins addrmode4:$addr, pred:$p, reglist:$srcs, variable_ops),
IIC_iStorem,
"stm${addr:submode}${p}\t$addr!, $srcs",
"$addr.addr = $wb", []>,
T1Encoding<{1,1,0,0,0,?}>; // A6.2 & A8.6.189
let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in
def tPOP : T1I<(outs), (ins pred:$p, reglist:$dsts, variable_ops), IIC_Br,
"pop${p}\t$dsts", []>,
T1Misc<{1,1,0,?,?,?,?}>;
let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
def tPUSH : T1I<(outs), (ins pred:$p, reglist:$srcs, variable_ops), IIC_Br,
"push${p}\t$srcs", []>,
T1Misc<{0,1,0,?,?,?,?}>;
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
// Add with carry register
let isCommutable = 1, Uses = [CPSR] in
def tADC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"adc", "\t$dst, $rhs",
[(set tGPR:$dst, (adde tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0101>;
// Add immediate
def tADDi3 : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
"add", "\t$dst, $lhs, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm0_7:$rhs))]>,
T1General<0b01110>;
def tADDi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
"add", "\t$dst, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm8_255:$rhs))]>,
T1General<{1,1,0,?,?}>;
// Add register
let isCommutable = 1 in
def tADDrr : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"add", "\t$dst, $lhs, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, tGPR:$rhs))]>,
T1General<0b01100>;
let neverHasSideEffects = 1 in
def tADDhirr : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
"add", "\t$dst, $rhs", []>,
T1Special<{0,0,?,?}>;
// And register
let isCommutable = 1 in
def tAND : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"and", "\t$dst, $rhs",
[(set tGPR:$dst, (and tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0000>;
// ASR immediate
def tASRri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iMOVsi,
"asr", "\t$dst, $lhs, $rhs",
[(set tGPR:$dst, (sra tGPR:$lhs, (i32 imm:$rhs)))]>,
T1General<{0,1,0,?,?}>;
// ASR register
def tASRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
"asr", "\t$dst, $rhs",
[(set tGPR:$dst, (sra tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0100>;
// BIC register
def tBIC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"bic", "\t$dst, $rhs",
[(set tGPR:$dst, (and tGPR:$lhs, (not tGPR:$rhs)))]>,
T1DataProcessing<0b1110>;
// CMN register
let Defs = [CPSR] in {
//FIXME: Disable CMN, as CCodes are backwards from compare expectations
// Compare-to-zero still works out, just not the relationals
//def tCMN : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
// "cmn", "\t$lhs, $rhs",
// [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>,
// T1DataProcessing<0b1011>;
def tCMNz : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
"cmn", "\t$lhs, $rhs",
[(ARMcmpZ tGPR:$lhs, (ineg tGPR:$rhs))]>,
T1DataProcessing<0b1011>;
}
// CMP immediate
let Defs = [CPSR] in {
def tCMPi8 : T1pI<(outs), (ins tGPR:$lhs, i32imm:$rhs), IIC_iCMPi,
"cmp", "\t$lhs, $rhs",
[(ARMcmp tGPR:$lhs, imm0_255:$rhs)]>,
T1General<{1,0,1,?,?}>;
def tCMPzi8 : T1pI<(outs), (ins tGPR:$lhs, i32imm:$rhs), IIC_iCMPi,
"cmp", "\t$lhs, $rhs",
[(ARMcmpZ tGPR:$lhs, imm0_255:$rhs)]>,
T1General<{1,0,1,?,?}>;
}
// CMP register
let Defs = [CPSR] in {
def tCMPr : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
"cmp", "\t$lhs, $rhs",
[(ARMcmp tGPR:$lhs, tGPR:$rhs)]>,
T1DataProcessing<0b1010>;
def tCMPzr : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
"cmp", "\t$lhs, $rhs",
[(ARMcmpZ tGPR:$lhs, tGPR:$rhs)]>,
T1DataProcessing<0b1010>;
def tCMPhir : T1pI<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iCMPr,
"cmp", "\t$lhs, $rhs", []>,
T1Special<{0,1,?,?}>;
def tCMPzhir : T1pI<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iCMPr,
"cmp", "\t$lhs, $rhs", []>,
T1Special<{0,1,?,?}>;
}
// XOR register
let isCommutable = 1 in
def tEOR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"eor", "\t$dst, $rhs",
[(set tGPR:$dst, (xor tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0001>;
// LSL immediate
def tLSLri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iMOVsi,
"lsl", "\t$dst, $lhs, $rhs",
[(set tGPR:$dst, (shl tGPR:$lhs, (i32 imm:$rhs)))]>,
T1General<{0,0,0,?,?}>;
// LSL register
def tLSLrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
"lsl", "\t$dst, $rhs",
[(set tGPR:$dst, (shl tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0010>;
// LSR immediate
def tLSRri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iMOVsi,
"lsr", "\t$dst, $lhs, $rhs",
[(set tGPR:$dst, (srl tGPR:$lhs, (i32 imm:$rhs)))]>,
T1General<{0,0,1,?,?}>;
// LSR register
def tLSRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
"lsr", "\t$dst, $rhs",
[(set tGPR:$dst, (srl tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0011>;
// move register
def tMOVi8 : T1sI<(outs tGPR:$dst), (ins i32imm:$src), IIC_iMOVi,
"mov", "\t$dst, $src",
[(set tGPR:$dst, imm0_255:$src)]>,
T1General<{1,0,0,?,?}>;
// TODO: A7-73: MOV(2) - mov setting flag.
let neverHasSideEffects = 1 in {
// FIXME: Make this predicable.
def tMOVr : T1I<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr,
"mov\t$dst, $src", []>,
T1Special<0b1000>;
let Defs = [CPSR] in
def tMOVSr : T1I<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr,
"movs\t$dst, $src", []>, Encoding16 {
let Inst{15-6} = 0b0000000000;
}
// FIXME: Make these predicable.
def tMOVgpr2tgpr : T1I<(outs tGPR:$dst), (ins GPR:$src), IIC_iMOVr,
"mov\t$dst, $src", []>,
T1Special<{1,0,0,?}>;
def tMOVtgpr2gpr : T1I<(outs GPR:$dst), (ins tGPR:$src), IIC_iMOVr,
"mov\t$dst, $src", []>,
T1Special<{1,0,?,0}>;
def tMOVgpr2gpr : T1I<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVr,
"mov\t$dst, $src", []>,
T1Special<{1,0,?,?}>;
} // neverHasSideEffects
// multiply register
let isCommutable = 1 in
def tMUL : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMUL32,
"mul", "\t$dst, $rhs, $dst", /* A8.6.105 MUL Encoding T1 */
[(set tGPR:$dst, (mul tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b1101>;
// move inverse register
def tMVN : T1sI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr,
"mvn", "\t$dst, $src",
[(set tGPR:$dst, (not tGPR:$src))]>,
T1DataProcessing<0b1111>;
// bitwise or register
let isCommutable = 1 in
def tORR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"orr", "\t$dst, $rhs",
[(set tGPR:$dst, (or tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b1100>;
// swaps
def tREV : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
"rev", "\t$dst, $src",
[(set tGPR:$dst, (bswap tGPR:$src))]>,
Requires<[IsThumb1Only, HasV6]>,
T1Misc<{1,0,1,0,0,0,?}>;
def tREV16 : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
"rev16", "\t$dst, $src",
[(set tGPR:$dst,
(or (and (srl tGPR:$src, (i32 8)), 0xFF),
(or (and (shl tGPR:$src, (i32 8)), 0xFF00),
(or (and (srl tGPR:$src, (i32 8)), 0xFF0000),
(and (shl tGPR:$src, (i32 8)), 0xFF000000)))))]>,
Requires<[IsThumb1Only, HasV6]>,
T1Misc<{1,0,1,0,0,1,?}>;
def tREVSH : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
"revsh", "\t$dst, $src",
[(set tGPR:$dst,
(sext_inreg
(or (srl (and tGPR:$src, 0xFF00), (i32 8)),
(shl tGPR:$src, (i32 8))), i16))]>,
Requires<[IsThumb1Only, HasV6]>,
T1Misc<{1,0,1,0,1,1,?}>;
// rotate right register
def tROR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
"ror", "\t$dst, $rhs",
[(set tGPR:$dst, (rotr tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0111>;
// negate register
def tRSB : T1sI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iALUi,
"rsb", "\t$dst, $src, #0",
[(set tGPR:$dst, (ineg tGPR:$src))]>,
T1DataProcessing<0b1001>;
// Subtract with carry register
let Uses = [CPSR] in
def tSBC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"sbc", "\t$dst, $rhs",
[(set tGPR:$dst, (sube tGPR:$lhs, tGPR:$rhs))]>,
T1DataProcessing<0b0110>;
// Subtract immediate
def tSUBi3 : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
"sub", "\t$dst, $lhs, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm0_7_neg:$rhs))]>,
T1General<0b01111>;
def tSUBi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
"sub", "\t$dst, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm8_255_neg:$rhs))]>,
T1General<{1,1,1,?,?}>;
// subtract register
def tSUBrr : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
"sub", "\t$dst, $lhs, $rhs",
[(set tGPR:$dst, (sub tGPR:$lhs, tGPR:$rhs))]>,
T1General<0b01101>;
// TODO: A7-96: STMIA - store multiple.
// sign-extend byte
def tSXTB : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
"sxtb", "\t$dst, $src",
[(set tGPR:$dst, (sext_inreg tGPR:$src, i8))]>,
Requires<[IsThumb1Only, HasV6]>,
T1Misc<{0,0,1,0,0,1,?}>;
// sign-extend short
def tSXTH : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
"sxth", "\t$dst, $src",
[(set tGPR:$dst, (sext_inreg tGPR:$src, i16))]>,
Requires<[IsThumb1Only, HasV6]>,
T1Misc<{0,0,1,0,0,0,?}>;
// test
let isCommutable = 1, Defs = [CPSR] in
def tTST : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
"tst", "\t$lhs, $rhs",
[(ARMcmpZ (and tGPR:$lhs, tGPR:$rhs), 0)]>,
T1DataProcessing<0b1000>;
// zero-extend byte
def tUXTB : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
"uxtb", "\t$dst, $src",
[(set tGPR:$dst, (and tGPR:$src, 0xFF))]>,
Requires<[IsThumb1Only, HasV6]>,
T1Misc<{0,0,1,0,1,1,?}>;
// zero-extend short
def tUXTH : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
"uxth", "\t$dst, $src",
[(set tGPR:$dst, (and tGPR:$src, 0xFFFF))]>,
Requires<[IsThumb1Only, HasV6]>,
T1Misc<{0,0,1,0,1,0,?}>;
// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
// Expanded after instruction selection into a branch sequence.
let usesCustomInserter = 1 in // Expanded after instruction selection.
def tMOVCCr_pseudo :
PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, pred:$cc),
NoItinerary, "${:comment} tMOVCCr $cc",
[/*(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, imm:$cc))*/]>;
// 16-bit movcc in IT blocks for Thumb2.
let neverHasSideEffects = 1 in {
def tMOVCCr : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iCMOVr,
"mov", "\t$dst, $rhs", []>,
T1Special<{1,0,?,?}>;
def tMOVCCi : T1pIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iCMOVi,
"mov", "\t$dst, $rhs", []>,
T1General<{1,0,0,?,?}>;
} // neverHasSideEffects
// tLEApcrel - Load a pc-relative address into a register without offending the
// assembler.
let neverHasSideEffects = 1 in {
let isReMaterializable = 1 in
def tLEApcrel : T1I<(outs tGPR:$dst), (ins i32imm:$label, pred:$p), IIC_iALUi,
"adr$p\t$dst, #$label", []>,
T1Encoding<{1,0,1,0,0,?}>; // A6.2 & A8.6.10
} // neverHasSideEffects
def tLEApcrelJT : T1I<(outs tGPR:$dst),
(ins i32imm:$label, nohash_imm:$id, pred:$p),
IIC_iALUi, "adr$p\t$dst, #${label}_${id}", []>,
T1Encoding<{1,0,1,0,0,?}>; // A6.2 & A8.6.10
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
let isCall = 1,
Defs = [R0, LR] in {
def tTPsoft : TIx2<0b11110, 0b11, 1, (outs), (ins), IIC_Br,
"bl\t__aeabi_read_tp",
[(set R0, ARMthread_pointer)]>;
}
// SJLJ Exception handling intrinsics
// eh_sjlj_setjmp() is an instruction sequence to store the return
// address and save #0 in R0 for the non-longjmp case.
// Since by its nature we may be coming from some other function to get
// here, and we're using the stack frame for the containing function to
// save/restore registers, we can't keep anything live in regs across
// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
// when we get here from a longjmp(). We force everthing out of registers
// except for our own input by listing the relevant registers in Defs. By
// doing so, we also cause the prologue/epilogue code to actively preserve
// all of the callee-saved resgisters, which is exactly what we want.
// $val is a scratch register for our use.
let Defs =
[ R0, R1, R2, R3, R4, R5, R6, R7, R12 ], hasSideEffects = 1,
isBarrier = 1 in {
def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
AddrModeNone, SizeSpecial, NoItinerary,
"mov\t$val, pc\t${:comment} begin eh.setjmp\n\t"
"adds\t$val, #7\n\t"
"str\t$val, [$src, #4]\n\t"
"movs\tr0, #0\n\t"
"b\t1f\n\t"
"movs\tr0, #1\t${:comment} end eh.setjmp\n\t"
"1:", "",
[(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;
}
// FIXME: Non-Darwin version(s)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
Defs = [ R7, LR, SP ] in {
def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch),
AddrModeNone, SizeSpecial, IndexModeNone,
Pseudo, NoItinerary,
"ldr\t$scratch, [$src, #8]\n\t"
"mov\tsp, $scratch\n\t"
"ldr\t$scratch, [$src, #4]\n\t"
"ldr\tr7, [$src]\n\t"
"bx\t$scratch", "",
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
Requires<[IsThumb, IsDarwin]>;
}
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// Add with carry
def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs),
(tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs),
(tADDi8 tGPR:$lhs, imm8_255:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs),
(tADDrr tGPR:$lhs, tGPR:$rhs)>;
// Subtract with carry
def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs),
(tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs),
(tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs),
(tSUBrr tGPR:$lhs, tGPR:$rhs)>;
// ConstantPool, GlobalAddress
def : T1Pat<(ARMWrapper tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>;
def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
// JumpTable
def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(tLEApcrelJT tjumptable:$dst, imm:$id)>;
// Direct calls
def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
Requires<[IsThumb, IsNotDarwin]>;
def : T1Pat<(ARMtcall texternalsym:$func), (tBLr9 texternalsym:$func)>,
Requires<[IsThumb, IsDarwin]>;
def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
Requires<[IsThumb, HasV5T, IsNotDarwin]>;
def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi_r9 texternalsym:$func)>,
Requires<[IsThumb, HasV5T, IsDarwin]>;
// Indirect calls to ARM routines
def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
Requires<[IsThumb, HasV5T, IsNotDarwin]>;
def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr_r9 GPR:$dst)>,
Requires<[IsThumb, HasV5T, IsDarwin]>;
// zextload i1 -> zextload i8
def : T1Pat<(zextloadi1 t_addrmode_s1:$addr),
(tLDRB t_addrmode_s1:$addr)>;
// extload -> zextload
def : T1Pat<(extloadi1 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi8 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_s2:$addr), (tLDRH t_addrmode_s2:$addr)>;
// If it's impossible to use [r,r] address mode for sextload, select to
// ldr{b|h} + sxt{b|h} instead.
def : T1Pat<(sextloadi8 t_addrmode_s1:$addr),
(tSXTB (tLDRB t_addrmode_s1:$addr))>,
Requires<[IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi16 t_addrmode_s2:$addr),
(tSXTH (tLDRH t_addrmode_s2:$addr))>,
Requires<[IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi8 t_addrmode_s1:$addr),
(tASRri (tLSLri (tLDRB t_addrmode_s1:$addr), 24), 24)>;
def : T1Pat<(sextloadi16 t_addrmode_s1:$addr),
(tASRri (tLSLri (tLDRH t_addrmode_s1:$addr), 16), 16)>;
// Large immediate handling.
// Two piece imms.
def : T1Pat<(i32 thumb_immshifted:$src),
(tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
(thumb_immshifted_shamt imm:$src))>;
def : T1Pat<(i32 imm0_255_comp:$src),
(tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>;
// Pseudo instruction that combines ldr from constpool and add pc. This should
// be expanded into two instructions late to allow if-conversion and
// scheduling.
let isReMaterializable = 1 in
def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp),
NoItinerary,
"${:comment} ldr.n\t$dst, $addr\n$cp:\n\tadd\t$dst, pc",
[(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
imm:$cp))]>,
Requires<[IsThumb1Only]>;