forked from OSchip/llvm-project
550 lines
20 KiB
C++
550 lines
20 KiB
C++
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Aggregate Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Intrinsics.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aggregate Expression Emitter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
|
|
CodeGenFunction &CGF;
|
|
CGBuilderTy &Builder;
|
|
llvm::Value *DestPtr;
|
|
bool VolatileDest;
|
|
public:
|
|
AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
|
|
: CGF(cgf), Builder(CGF.Builder),
|
|
DestPtr(destPtr), VolatileDest(volatileDest) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
|
|
/// represents a value lvalue, this method emits the address of the lvalue,
|
|
/// then loads the result into DestPtr.
|
|
void EmitAggLoadOfLValue(const Expr *E);
|
|
|
|
void EmitNonConstInit(InitListExpr *E);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void VisitStmt(Stmt *S) {
|
|
CGF.ErrorUnsupported(S, "aggregate expression");
|
|
}
|
|
void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
|
|
void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
|
|
|
|
// l-values.
|
|
void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
|
|
void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
|
|
void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
|
|
void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
|
|
void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
|
|
{ EmitAggLoadOfLValue(E); }
|
|
|
|
void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
EmitAggLoadOfLValue(E);
|
|
}
|
|
|
|
// Operators.
|
|
// case Expr::UnaryOperatorClass:
|
|
// case Expr::CastExprClass:
|
|
void VisitCStyleCastExpr(CStyleCastExpr *E);
|
|
void VisitImplicitCastExpr(ImplicitCastExpr *E);
|
|
void VisitCallExpr(const CallExpr *E);
|
|
void VisitStmtExpr(const StmtExpr *E);
|
|
void VisitBinaryOperator(const BinaryOperator *BO);
|
|
void VisitBinAssign(const BinaryOperator *E);
|
|
void VisitBinComma(const BinaryOperator *E);
|
|
|
|
void VisitObjCMessageExpr(ObjCMessageExpr *E);
|
|
void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
EmitAggLoadOfLValue(E);
|
|
}
|
|
void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
|
|
void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
|
|
|
|
void VisitConditionalOperator(const ConditionalOperator *CO);
|
|
void VisitInitListExpr(InitListExpr *E);
|
|
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
|
Visit(DAE->getExpr());
|
|
}
|
|
void VisitVAArgExpr(VAArgExpr *E);
|
|
|
|
void EmitInitializationToLValue(Expr *E, LValue Address);
|
|
void EmitNullInitializationToLValue(LValue Address, QualType T);
|
|
// case Expr::ChooseExprClass:
|
|
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
|
|
/// represents a value lvalue, this method emits the address of the lvalue,
|
|
/// then loads the result into DestPtr.
|
|
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
|
|
LValue LV = CGF.EmitLValue(E);
|
|
assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
|
|
llvm::Value *SrcPtr = LV.getAddress();
|
|
|
|
// If the result is ignored, don't copy from the value.
|
|
if (DestPtr == 0)
|
|
// FIXME: If the source is volatile, we must read from it.
|
|
return;
|
|
|
|
CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
|
|
// GCC union extension
|
|
if (E->getType()->isUnionType()) {
|
|
RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
|
|
LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0);
|
|
EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
|
|
return;
|
|
}
|
|
|
|
Visit(E->getSubExpr());
|
|
}
|
|
|
|
void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
|
assert(CGF.getContext().typesAreCompatible(
|
|
E->getSubExpr()->getType().getUnqualifiedType(),
|
|
E->getType().getUnqualifiedType()) &&
|
|
"Implicit cast types must be compatible");
|
|
Visit(E->getSubExpr());
|
|
}
|
|
|
|
void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
|
|
RValue RV = CGF.EmitCallExpr(E);
|
|
assert(RV.isAggregate() && "Return value must be aggregate value!");
|
|
|
|
// If the result is ignored, don't copy from the value.
|
|
if (DestPtr == 0)
|
|
// FIXME: If the source is volatile, we must read from it.
|
|
return;
|
|
|
|
CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
|
|
}
|
|
|
|
void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
|
RValue RV = CGF.EmitObjCMessageExpr(E);
|
|
assert(RV.isAggregate() && "Return value must be aggregate value!");
|
|
|
|
// If the result is ignored, don't copy from the value.
|
|
if (DestPtr == 0)
|
|
// FIXME: If the source is volatile, we must read from it.
|
|
return;
|
|
|
|
CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
|
|
}
|
|
|
|
void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
|
|
RValue RV = CGF.EmitObjCPropertyGet(E);
|
|
assert(RV.isAggregate() && "Return value must be aggregate value!");
|
|
|
|
// If the result is ignored, don't copy from the value.
|
|
if (DestPtr == 0)
|
|
// FIXME: If the source is volatile, we must read from it.
|
|
return;
|
|
|
|
CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
|
|
}
|
|
|
|
void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
|
|
RValue RV = CGF.EmitObjCPropertyGet(E);
|
|
assert(RV.isAggregate() && "Return value must be aggregate value!");
|
|
|
|
// If the result is ignored, don't copy from the value.
|
|
if (DestPtr == 0)
|
|
// FIXME: If the source is volatile, we must read from it.
|
|
return;
|
|
|
|
CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
|
|
}
|
|
|
|
void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
|
|
CGF.EmitAnyExpr(E->getLHS());
|
|
CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
|
|
}
|
|
|
|
void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
|
|
CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
|
|
}
|
|
|
|
void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
|
|
CGF.ErrorUnsupported(E, "aggregate binary expression");
|
|
}
|
|
|
|
void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
|
|
// For an assignment to work, the value on the right has
|
|
// to be compatible with the value on the left.
|
|
assert(CGF.getContext().typesAreCompatible(
|
|
E->getLHS()->getType().getUnqualifiedType(),
|
|
E->getRHS()->getType().getUnqualifiedType())
|
|
&& "Invalid assignment");
|
|
LValue LHS = CGF.EmitLValue(E->getLHS());
|
|
|
|
// We have to special case property setters, otherwise we must have
|
|
// a simple lvalue (no aggregates inside vectors, bitfields).
|
|
if (LHS.isPropertyRef()) {
|
|
// FIXME: Volatility?
|
|
llvm::Value *AggLoc = DestPtr;
|
|
if (!AggLoc)
|
|
AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
|
|
CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
|
|
CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
|
|
RValue::getAggregate(AggLoc));
|
|
}
|
|
else if (LHS.isKVCRef()) {
|
|
// FIXME: Volatility?
|
|
llvm::Value *AggLoc = DestPtr;
|
|
if (!AggLoc)
|
|
AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
|
|
CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
|
|
CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
|
|
RValue::getAggregate(AggLoc));
|
|
} else {
|
|
// Codegen the RHS so that it stores directly into the LHS.
|
|
CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
|
|
|
|
if (DestPtr == 0)
|
|
return;
|
|
|
|
// If the result of the assignment is used, copy the RHS there also.
|
|
CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
|
|
}
|
|
}
|
|
|
|
void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
|
|
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
|
|
|
|
llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
|
|
Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
|
|
|
|
CGF.EmitBlock(LHSBlock);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
assert(E->getLHS() && "Must have LHS for aggregate value");
|
|
|
|
Visit(E->getLHS());
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.EmitBlock(RHSBlock);
|
|
|
|
Visit(E->getRHS());
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.EmitBlock(ContBlock);
|
|
}
|
|
|
|
void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
|
|
llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
|
|
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
|
|
|
|
if (!ArgPtr) {
|
|
CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
|
|
return;
|
|
}
|
|
|
|
if (DestPtr)
|
|
// FIXME: volatility
|
|
CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType());
|
|
}
|
|
|
|
void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
|
|
const llvm::PointerType *APType =
|
|
cast<llvm::PointerType>(DestPtr->getType());
|
|
const llvm::Type *DestType = APType->getElementType();
|
|
|
|
if (E->hadArrayRangeDesignator()) {
|
|
CGF.ErrorUnsupported(E, "GNU array range designator extension");
|
|
}
|
|
|
|
if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
|
|
unsigned NumInitElements = E->getNumInits();
|
|
|
|
unsigned i;
|
|
for (i = 0; i != NumInitElements; ++i) {
|
|
llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
|
|
Expr *Init = E->getInit(i);
|
|
if (isa<InitListExpr>(Init))
|
|
CGF.EmitAggExpr(Init, NextVal, VolatileDest);
|
|
else
|
|
// FIXME: volatility
|
|
Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
|
|
}
|
|
|
|
// Emit remaining default initializers
|
|
unsigned NumArrayElements = AType->getNumElements();
|
|
QualType QType = E->getInit(0)->getType();
|
|
const llvm::Type *EType = AType->getElementType();
|
|
for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
|
|
llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
|
|
if (EType->isSingleValueType())
|
|
// FIXME: volatility
|
|
Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
|
|
else
|
|
CGF.EmitAggregateClear(NextVal, QType);
|
|
}
|
|
} else
|
|
assert(false && "Invalid initializer");
|
|
}
|
|
|
|
void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
|
|
// FIXME: Are initializers affected by volatile?
|
|
if (isa<ImplicitValueInitExpr>(E)) {
|
|
EmitNullInitializationToLValue(LV, E->getType());
|
|
} else if (E->getType()->isComplexType()) {
|
|
CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
|
|
} else if (CGF.hasAggregateLLVMType(E->getType())) {
|
|
CGF.EmitAnyExpr(E, LV.getAddress(), false);
|
|
} else {
|
|
CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
|
|
}
|
|
}
|
|
|
|
void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
|
|
if (!CGF.hasAggregateLLVMType(T)) {
|
|
// For non-aggregates, we can store zero
|
|
llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
|
|
CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
|
|
} else {
|
|
// Otherwise, just memset the whole thing to zero. This is legal
|
|
// because in LLVM, all default initializers are guaranteed to have a
|
|
// bit pattern of all zeros.
|
|
// There's a potential optimization opportunity in combining
|
|
// memsets; that would be easy for arrays, but relatively
|
|
// difficult for structures with the current code.
|
|
const llvm::Type *SizeTy = llvm::Type::Int64Ty;
|
|
llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset,
|
|
&SizeTy, 1);
|
|
uint64_t Size = CGF.getContext().getTypeSize(T);
|
|
|
|
const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
|
|
llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
|
|
Builder.CreateCall4(MemSet, DestPtr,
|
|
llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
|
|
llvm::ConstantInt::get(SizeTy, Size/8),
|
|
llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
|
|
}
|
|
}
|
|
|
|
void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
|
|
#if 0
|
|
// FIXME: Disabled while we figure out what to do about
|
|
// test/CodeGen/bitfield.c
|
|
//
|
|
// If we can, prefer a copy from a global; this is a lot less
|
|
// code for long globals, and it's easier for the current optimizers
|
|
// to analyze.
|
|
// FIXME: Should we really be doing this? Should we try to avoid
|
|
// cases where we emit a global with a lot of zeros? Should
|
|
// we try to avoid short globals?
|
|
if (E->isConstantInitializer(CGF.getContext(), 0)) {
|
|
llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
|
|
llvm::GlobalVariable* GV =
|
|
new llvm::GlobalVariable(C->getType(), true,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, "", &CGF.CGM.getModule(), 0);
|
|
CGF.EmitAggregateCopy(DestPtr, GV, E->getType());
|
|
return;
|
|
}
|
|
#endif
|
|
if (E->hadArrayRangeDesignator()) {
|
|
CGF.ErrorUnsupported(E, "GNU array range designator extension");
|
|
}
|
|
|
|
// Handle initialization of an array.
|
|
if (E->getType()->isArrayType()) {
|
|
const llvm::PointerType *APType =
|
|
cast<llvm::PointerType>(DestPtr->getType());
|
|
const llvm::ArrayType *AType =
|
|
cast<llvm::ArrayType>(APType->getElementType());
|
|
|
|
uint64_t NumInitElements = E->getNumInits();
|
|
|
|
if (E->getNumInits() > 0) {
|
|
QualType T1 = E->getType();
|
|
QualType T2 = E->getInit(0)->getType();
|
|
if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
|
|
CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
|
|
EmitAggLoadOfLValue(E->getInit(0));
|
|
return;
|
|
}
|
|
}
|
|
|
|
uint64_t NumArrayElements = AType->getNumElements();
|
|
QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
|
|
ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
|
|
|
|
unsigned CVRqualifier = ElementType.getCVRQualifiers();
|
|
|
|
for (uint64_t i = 0; i != NumArrayElements; ++i) {
|
|
llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
|
|
if (i < NumInitElements)
|
|
EmitInitializationToLValue(E->getInit(i),
|
|
LValue::MakeAddr(NextVal, CVRqualifier));
|
|
else
|
|
EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
|
|
ElementType);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(E->getType()->isRecordType() && "Only support structs/unions here!");
|
|
|
|
// Do struct initialization; this code just sets each individual member
|
|
// to the approprate value. This makes bitfield support automatic;
|
|
// the disadvantage is that the generated code is more difficult for
|
|
// the optimizer, especially with bitfields.
|
|
unsigned NumInitElements = E->getNumInits();
|
|
RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
|
|
unsigned CurInitVal = 0;
|
|
|
|
if (E->getType()->isUnionType()) {
|
|
// Only initialize one field of a union. The field itself is
|
|
// specified by the initializer list.
|
|
if (!E->getInitializedFieldInUnion()) {
|
|
// Empty union; we have nothing to do.
|
|
|
|
#ifndef NDEBUG
|
|
// Make sure that it's really an empty and not a failure of
|
|
// semantic analysis.
|
|
for (RecordDecl::field_iterator Field = SD->field_begin(),
|
|
FieldEnd = SD->field_end();
|
|
Field != FieldEnd; ++Field)
|
|
assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// FIXME: volatility
|
|
FieldDecl *Field = E->getInitializedFieldInUnion();
|
|
LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
|
|
|
|
if (NumInitElements) {
|
|
// Store the initializer into the field
|
|
EmitInitializationToLValue(E->getInit(0), FieldLoc);
|
|
} else {
|
|
// Default-initialize to null
|
|
EmitNullInitializationToLValue(FieldLoc, Field->getType());
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Here we iterate over the fields; this makes it simpler to both
|
|
// default-initialize fields and skip over unnamed fields.
|
|
for (RecordDecl::field_iterator Field = SD->field_begin(),
|
|
FieldEnd = SD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
// We're done once we hit the flexible array member
|
|
if (Field->getType()->isIncompleteArrayType())
|
|
break;
|
|
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
// FIXME: volatility
|
|
LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
|
|
if (CurInitVal < NumInitElements) {
|
|
// Store the initializer into the field
|
|
EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
|
|
} else {
|
|
// We're out of initalizers; default-initialize to null
|
|
EmitNullInitializationToLValue(FieldLoc, Field->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Points into this File
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitAggExpr - Emit the computation of the specified expression of
|
|
/// aggregate type. The result is computed into DestPtr. Note that if
|
|
/// DestPtr is null, the value of the aggregate expression is not needed.
|
|
void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
|
|
bool VolatileDest) {
|
|
assert(E && hasAggregateLLVMType(E->getType()) &&
|
|
"Invalid aggregate expression to emit");
|
|
|
|
AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
|
|
assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
|
|
|
|
EmitMemSetToZero(DestPtr, Ty);
|
|
}
|
|
|
|
void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
|
|
llvm::Value *SrcPtr, QualType Ty) {
|
|
assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
|
|
|
|
// Aggregate assignment turns into llvm.memcpy. This is almost valid per
|
|
// C99 6.5.16.1p3, which states "If the value being stored in an object is
|
|
// read from another object that overlaps in anyway the storage of the first
|
|
// object, then the overlap shall be exact and the two objects shall have
|
|
// qualified or unqualified versions of a compatible type."
|
|
//
|
|
// memcpy is not defined if the source and destination pointers are exactly
|
|
// equal, but other compilers do this optimization, and almost every memcpy
|
|
// implementation handles this case safely. If there is a libc that does not
|
|
// safely handle this, we can add a target hook.
|
|
const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
|
|
if (DestPtr->getType() != BP)
|
|
DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
|
|
if (SrcPtr->getType() != BP)
|
|
SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
|
|
|
|
// Get size and alignment info for this aggregate.
|
|
std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
|
|
|
|
// FIXME: Handle variable sized types.
|
|
const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
|
|
|
|
Builder.CreateCall4(CGM.getMemCpyFn(),
|
|
DestPtr, SrcPtr,
|
|
// TypeInfo.first describes size in bits.
|
|
llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
|
|
llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
TypeInfo.second/8));
|
|
}
|