llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_win.cc

424 lines
10 KiB
C++

//===-- sanitizer_win.cc --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements windows-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_WINDOWS
#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <stdlib.h>
#include <io.h>
#include <windows.h>
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_stacktrace.h"
namespace __sanitizer {
#include "sanitizer_syscall_generic.inc"
// --------------------- sanitizer_common.h
uptr GetPageSize() {
return 1U << 14; // FIXME: is this configurable?
}
uptr GetMmapGranularity() {
return 1U << 16; // FIXME: is this configurable?
}
uptr GetMaxVirtualAddress() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (uptr)si.lpMaximumApplicationAddress;
}
bool FileExists(const char *filename) {
UNIMPLEMENTED();
}
uptr internal_getpid() {
return GetProcessId(GetCurrentProcess());
}
// In contrast to POSIX, on Windows GetCurrentThreadId()
// returns a system-unique identifier.
uptr GetTid() {
return GetCurrentThreadId();
}
uptr GetThreadSelf() {
return GetTid();
}
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom) {
CHECK(stack_top);
CHECK(stack_bottom);
MEMORY_BASIC_INFORMATION mbi;
CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
// FIXME: is it possible for the stack to not be a single allocation?
// Are these values what ASan expects to get (reserved, not committed;
// including stack guard page) ?
*stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
*stack_bottom = (uptr)mbi.AllocationBase;
}
void *MmapOrDie(uptr size, const char *mem_type) {
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (rv == 0) {
Report("ERROR: Failed to allocate 0x%zx (%zd) bytes of %s\n",
size, size, mem_type);
CHECK("unable to mmap" && 0);
}
return rv;
}
void UnmapOrDie(void *addr, uptr size) {
if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
Report("ERROR: Failed to deallocate 0x%zx (%zd) bytes at address %p\n",
size, size, addr);
CHECK("unable to unmap" && 0);
}
}
void *MmapFixedNoReserve(uptr fixed_addr, uptr size) {
// FIXME: is this really "NoReserve"? On Win32 this does not matter much,
// but on Win64 it does.
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (p == 0)
Report("ERROR: Failed to allocate 0x%zx (%zd) bytes at %p (%d)\n",
size, size, fixed_addr, GetLastError());
return p;
}
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
return MmapFixedNoReserve(fixed_addr, size);
}
void *Mprotect(uptr fixed_addr, uptr size) {
return VirtualAlloc((LPVOID)fixed_addr, size,
MEM_RESERVE | MEM_COMMIT, PAGE_NOACCESS);
}
void FlushUnneededShadowMemory(uptr addr, uptr size) {
// This is almost useless on 32-bits.
// FIXME: add madvice-analog when we move to 64-bits.
}
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
// FIXME: shall we do anything here on Windows?
return true;
}
void *MapFileToMemory(const char *file_name, uptr *buff_size) {
UNIMPLEMENTED();
}
static const int kMaxEnvNameLength = 128;
static const DWORD kMaxEnvValueLength = 32767;
namespace {
struct EnvVariable {
char name[kMaxEnvNameLength];
char value[kMaxEnvValueLength];
};
} // namespace
static const int kEnvVariables = 5;
static EnvVariable env_vars[kEnvVariables];
static int num_env_vars;
const char *GetEnv(const char *name) {
// Note: this implementation caches the values of the environment variables
// and limits their quantity.
for (int i = 0; i < num_env_vars; i++) {
if (0 == internal_strcmp(name, env_vars[i].name))
return env_vars[i].value;
}
CHECK_LT(num_env_vars, kEnvVariables);
DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
kMaxEnvValueLength);
if (rv > 0 && rv < kMaxEnvValueLength) {
CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
num_env_vars++;
return env_vars[num_env_vars - 1].value;
}
return 0;
}
const char *GetPwd() {
UNIMPLEMENTED();
}
u32 GetUid() {
UNIMPLEMENTED();
}
void DumpProcessMap() {
UNIMPLEMENTED();
}
void DisableCoreDumper() {
UNIMPLEMENTED();
}
void ReExec() {
UNIMPLEMENTED();
}
void PrepareForSandboxing() {
// Nothing here for now.
}
bool StackSizeIsUnlimited() {
UNIMPLEMENTED();
}
void SetStackSizeLimitInBytes(uptr limit) {
UNIMPLEMENTED();
}
char *FindPathToBinary(const char *name) {
// Nothing here for now.
return 0;
}
void SleepForSeconds(int seconds) {
Sleep(seconds * 1000);
}
void SleepForMillis(int millis) {
Sleep(millis);
}
u64 NanoTime() {
return 0;
}
void Abort() {
abort();
_exit(-1); // abort is not NORETURN on Windows.
}
uptr GetListOfModules(LoadedModule *modules, uptr max_modules,
string_predicate_t filter) {
UNIMPLEMENTED();
};
#ifndef SANITIZER_GO
int Atexit(void (*function)(void)) {
return atexit(function);
}
#endif
// ------------------ sanitizer_libc.h
uptr internal_mmap(void *addr, uptr length, int prot, int flags,
int fd, u64 offset) {
UNIMPLEMENTED();
}
uptr internal_munmap(void *addr, uptr length) {
UNIMPLEMENTED();
}
uptr internal_close(fd_t fd) {
UNIMPLEMENTED();
}
int internal_isatty(fd_t fd) {
return _isatty(fd);
}
uptr internal_open(const char *filename, int flags) {
UNIMPLEMENTED();
}
uptr internal_open(const char *filename, int flags, u32 mode) {
UNIMPLEMENTED();
}
uptr OpenFile(const char *filename, bool write) {
UNIMPLEMENTED();
}
uptr internal_read(fd_t fd, void *buf, uptr count) {
UNIMPLEMENTED();
}
uptr internal_write(fd_t fd, const void *buf, uptr count) {
if (fd != kStderrFd)
UNIMPLEMENTED();
HANDLE err = GetStdHandle(STD_ERROR_HANDLE);
if (err == 0)
return 0; // FIXME: this might not work on some apps.
DWORD ret;
if (!WriteFile(err, buf, count, &ret, 0))
return 0;
return ret;
}
uptr internal_stat(const char *path, void *buf) {
UNIMPLEMENTED();
}
uptr internal_lstat(const char *path, void *buf) {
UNIMPLEMENTED();
}
uptr internal_fstat(fd_t fd, void *buf) {
UNIMPLEMENTED();
}
uptr internal_filesize(fd_t fd) {
UNIMPLEMENTED();
}
uptr internal_dup2(int oldfd, int newfd) {
UNIMPLEMENTED();
}
uptr internal_readlink(const char *path, char *buf, uptr bufsize) {
UNIMPLEMENTED();
}
uptr internal_sched_yield() {
Sleep(0);
return 0;
}
void internal__exit(int exitcode) {
_exit(exitcode);
}
// ---------------------- BlockingMutex ---------------- {{{1
const uptr LOCK_UNINITIALIZED = 0;
const uptr LOCK_READY = (uptr)-1;
BlockingMutex::BlockingMutex(LinkerInitialized li) {
// FIXME: see comments in BlockingMutex::Lock() for the details.
CHECK(li == LINKER_INITIALIZED || owner_ == LOCK_UNINITIALIZED);
CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
owner_ = LOCK_READY;
}
BlockingMutex::BlockingMutex() {
CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
owner_ = LOCK_READY;
}
void BlockingMutex::Lock() {
if (owner_ == LOCK_UNINITIALIZED) {
// FIXME: hm, global BlockingMutex objects are not initialized?!?
// This might be a side effect of the clang+cl+link Frankenbuild...
new(this) BlockingMutex((LinkerInitialized)(LINKER_INITIALIZED + 1));
// FIXME: If it turns out the linker doesn't invoke our
// constructors, we should probably manually Lock/Unlock all the global
// locks while we're starting in one thread to avoid double-init races.
}
EnterCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
CHECK_EQ(owner_, LOCK_READY);
owner_ = GetThreadSelf();
}
void BlockingMutex::Unlock() {
CHECK_EQ(owner_, GetThreadSelf());
owner_ = LOCK_READY;
LeaveCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
}
void BlockingMutex::CheckLocked() {
CHECK_EQ(owner_, GetThreadSelf());
}
uptr GetTlsSize() {
return 0;
}
void InitTlsSize() {
}
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size) {
#ifdef SANITIZER_GO
*stk_addr = 0;
*stk_size = 0;
*tls_addr = 0;
*tls_size = 0;
#else
uptr stack_top, stack_bottom;
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
*stk_addr = stack_bottom;
*stk_size = stack_top - stack_bottom;
*tls_addr = 0;
*tls_size = 0;
#endif
}
void StackTrace::Unwind(uptr max_depth, uptr pc, uptr bp, uptr stack_top,
uptr stack_bottom, bool fast) {
(void)fast;
(void)stack_top;
(void)stack_bottom;
void *tmp[kStackTraceMax];
// FIXME: CaptureStackBackTrace might be too slow for us.
// FIXME: Compare with StackWalk64.
// FIXME: Look at LLVMUnhandledExceptionFilter in Signals.inc
uptr cs_ret = CaptureStackBackTrace(1, max_depth, tmp, 0);
uptr offset = 0;
// Skip the RTL frames by searching for the PC in the stacktrace.
// FIXME: this doesn't work well for the malloc/free stacks yet.
for (uptr i = 0; i < cs_ret; i++) {
if (pc != (uptr)tmp[i])
continue;
offset = i;
break;
}
CopyFrom((uptr*)&tmp[offset], cs_ret - offset);
}
void MaybeOpenReportFile() {
// Windows doesn't have native fork, and we don't support Cygwin or other
// environments that try to fake it, so the initial report_fd will always be
// correct.
}
void RawWrite(const char *buffer) {
static const char *kRawWriteError =
"RawWrite can't output requested buffer!\n";
uptr length = (uptr)internal_strlen(buffer);
if (length != internal_write(report_fd, buffer, length)) {
// stderr may be closed, but we may be able to print to the debugger
// instead. This is the case when launching a program from Visual Studio,
// and the following routine should write to its console.
OutputDebugStringA(buffer);
}
}
} // namespace __sanitizer
#endif // _WIN32