forked from OSchip/llvm-project
15081 lines
570 KiB
C++
15081 lines
570 KiB
C++
//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for C++ declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/CXXFieldCollector.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <map>
|
|
#include <set>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CheckDefaultArgumentVisitor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
|
|
/// the default argument of a parameter to determine whether it
|
|
/// contains any ill-formed subexpressions. For example, this will
|
|
/// diagnose the use of local variables or parameters within the
|
|
/// default argument expression.
|
|
class CheckDefaultArgumentVisitor
|
|
: public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
|
|
Expr *DefaultArg;
|
|
Sema *S;
|
|
|
|
public:
|
|
CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
|
|
: DefaultArg(defarg), S(s) {}
|
|
|
|
bool VisitExpr(Expr *Node);
|
|
bool VisitDeclRefExpr(DeclRefExpr *DRE);
|
|
bool VisitCXXThisExpr(CXXThisExpr *ThisE);
|
|
bool VisitLambdaExpr(LambdaExpr *Lambda);
|
|
bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
|
|
};
|
|
|
|
/// VisitExpr - Visit all of the children of this expression.
|
|
bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
|
|
bool IsInvalid = false;
|
|
for (Stmt *SubStmt : Node->children())
|
|
IsInvalid |= Visit(SubStmt);
|
|
return IsInvalid;
|
|
}
|
|
|
|
/// VisitDeclRefExpr - Visit a reference to a declaration, to
|
|
/// determine whether this declaration can be used in the default
|
|
/// argument expression.
|
|
bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
|
|
NamedDecl *Decl = DRE->getDecl();
|
|
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
|
|
// C++ [dcl.fct.default]p9
|
|
// Default arguments are evaluated each time the function is
|
|
// called. The order of evaluation of function arguments is
|
|
// unspecified. Consequently, parameters of a function shall not
|
|
// be used in default argument expressions, even if they are not
|
|
// evaluated. Parameters of a function declared before a default
|
|
// argument expression are in scope and can hide namespace and
|
|
// class member names.
|
|
return S->Diag(DRE->getLocStart(),
|
|
diag::err_param_default_argument_references_param)
|
|
<< Param->getDeclName() << DefaultArg->getSourceRange();
|
|
} else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
|
|
// C++ [dcl.fct.default]p7
|
|
// Local variables shall not be used in default argument
|
|
// expressions.
|
|
if (VDecl->isLocalVarDecl())
|
|
return S->Diag(DRE->getLocStart(),
|
|
diag::err_param_default_argument_references_local)
|
|
<< VDecl->getDeclName() << DefaultArg->getSourceRange();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// VisitCXXThisExpr - Visit a C++ "this" expression.
|
|
bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
|
|
// C++ [dcl.fct.default]p8:
|
|
// The keyword this shall not be used in a default argument of a
|
|
// member function.
|
|
return S->Diag(ThisE->getLocStart(),
|
|
diag::err_param_default_argument_references_this)
|
|
<< ThisE->getSourceRange();
|
|
}
|
|
|
|
bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
|
|
bool Invalid = false;
|
|
for (PseudoObjectExpr::semantics_iterator
|
|
i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
|
|
Expr *E = *i;
|
|
|
|
// Look through bindings.
|
|
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
|
|
E = OVE->getSourceExpr();
|
|
assert(E && "pseudo-object binding without source expression?");
|
|
}
|
|
|
|
Invalid |= Visit(E);
|
|
}
|
|
return Invalid;
|
|
}
|
|
|
|
bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
|
|
// C++11 [expr.lambda.prim]p13:
|
|
// A lambda-expression appearing in a default argument shall not
|
|
// implicitly or explicitly capture any entity.
|
|
if (Lambda->capture_begin() == Lambda->capture_end())
|
|
return false;
|
|
|
|
return S->Diag(Lambda->getLocStart(),
|
|
diag::err_lambda_capture_default_arg);
|
|
}
|
|
}
|
|
|
|
void
|
|
Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
|
|
const CXXMethodDecl *Method) {
|
|
// If we have an MSAny spec already, don't bother.
|
|
if (!Method || ComputedEST == EST_MSAny)
|
|
return;
|
|
|
|
const FunctionProtoType *Proto
|
|
= Method->getType()->getAs<FunctionProtoType>();
|
|
Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
|
|
if (!Proto)
|
|
return;
|
|
|
|
ExceptionSpecificationType EST = Proto->getExceptionSpecType();
|
|
|
|
// If we have a throw-all spec at this point, ignore the function.
|
|
if (ComputedEST == EST_None)
|
|
return;
|
|
|
|
if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
|
|
EST = EST_BasicNoexcept;
|
|
|
|
switch(EST) {
|
|
// If this function can throw any exceptions, make a note of that.
|
|
case EST_MSAny:
|
|
case EST_None:
|
|
ClearExceptions();
|
|
ComputedEST = EST;
|
|
return;
|
|
// FIXME: If the call to this decl is using any of its default arguments, we
|
|
// need to search them for potentially-throwing calls.
|
|
// If this function has a basic noexcept, it doesn't affect the outcome.
|
|
case EST_BasicNoexcept:
|
|
return;
|
|
// If we're still at noexcept(true) and there's a nothrow() callee,
|
|
// change to that specification.
|
|
case EST_DynamicNone:
|
|
if (ComputedEST == EST_BasicNoexcept)
|
|
ComputedEST = EST_DynamicNone;
|
|
return;
|
|
// Check out noexcept specs.
|
|
case EST_ComputedNoexcept:
|
|
{
|
|
FunctionProtoType::NoexceptResult NR =
|
|
Proto->getNoexceptSpec(Self->Context);
|
|
assert(NR != FunctionProtoType::NR_NoNoexcept &&
|
|
"Must have noexcept result for EST_ComputedNoexcept.");
|
|
assert(NR != FunctionProtoType::NR_Dependent &&
|
|
"Should not generate implicit declarations for dependent cases, "
|
|
"and don't know how to handle them anyway.");
|
|
// noexcept(false) -> no spec on the new function
|
|
if (NR == FunctionProtoType::NR_Throw) {
|
|
ClearExceptions();
|
|
ComputedEST = EST_None;
|
|
}
|
|
// noexcept(true) won't change anything either.
|
|
return;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
assert(EST == EST_Dynamic && "EST case not considered earlier.");
|
|
assert(ComputedEST != EST_None &&
|
|
"Shouldn't collect exceptions when throw-all is guaranteed.");
|
|
ComputedEST = EST_Dynamic;
|
|
// Record the exceptions in this function's exception specification.
|
|
for (const auto &E : Proto->exceptions())
|
|
if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
|
|
Exceptions.push_back(E);
|
|
}
|
|
|
|
void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
|
|
if (!E || ComputedEST == EST_MSAny)
|
|
return;
|
|
|
|
// FIXME:
|
|
//
|
|
// C++0x [except.spec]p14:
|
|
// [An] implicit exception-specification specifies the type-id T if and
|
|
// only if T is allowed by the exception-specification of a function directly
|
|
// invoked by f's implicit definition; f shall allow all exceptions if any
|
|
// function it directly invokes allows all exceptions, and f shall allow no
|
|
// exceptions if every function it directly invokes allows no exceptions.
|
|
//
|
|
// Note in particular that if an implicit exception-specification is generated
|
|
// for a function containing a throw-expression, that specification can still
|
|
// be noexcept(true).
|
|
//
|
|
// Note also that 'directly invoked' is not defined in the standard, and there
|
|
// is no indication that we should only consider potentially-evaluated calls.
|
|
//
|
|
// Ultimately we should implement the intent of the standard: the exception
|
|
// specification should be the set of exceptions which can be thrown by the
|
|
// implicit definition. For now, we assume that any non-nothrow expression can
|
|
// throw any exception.
|
|
|
|
if (Self->canThrow(E))
|
|
ComputedEST = EST_None;
|
|
}
|
|
|
|
bool
|
|
Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
|
|
SourceLocation EqualLoc) {
|
|
if (RequireCompleteType(Param->getLocation(), Param->getType(),
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
Param->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// C++ [dcl.fct.default]p5
|
|
// A default argument expression is implicitly converted (clause
|
|
// 4) to the parameter type. The default argument expression has
|
|
// the same semantic constraints as the initializer expression in
|
|
// a declaration of a variable of the parameter type, using the
|
|
// copy-initialization semantics (8.5).
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
|
|
Param);
|
|
InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
|
|
EqualLoc);
|
|
InitializationSequence InitSeq(*this, Entity, Kind, Arg);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
Arg = Result.getAs<Expr>();
|
|
|
|
CheckCompletedExpr(Arg, EqualLoc);
|
|
Arg = MaybeCreateExprWithCleanups(Arg);
|
|
|
|
// Okay: add the default argument to the parameter
|
|
Param->setDefaultArg(Arg);
|
|
|
|
// We have already instantiated this parameter; provide each of the
|
|
// instantiations with the uninstantiated default argument.
|
|
UnparsedDefaultArgInstantiationsMap::iterator InstPos
|
|
= UnparsedDefaultArgInstantiations.find(Param);
|
|
if (InstPos != UnparsedDefaultArgInstantiations.end()) {
|
|
for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
|
|
InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
|
|
|
|
// We're done tracking this parameter's instantiations.
|
|
UnparsedDefaultArgInstantiations.erase(InstPos);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnParamDefaultArgument - Check whether the default argument
|
|
/// provided for a function parameter is well-formed. If so, attach it
|
|
/// to the parameter declaration.
|
|
void
|
|
Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
|
|
Expr *DefaultArg) {
|
|
if (!param || !DefaultArg)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(param);
|
|
UnparsedDefaultArgLocs.erase(Param);
|
|
|
|
// Default arguments are only permitted in C++
|
|
if (!getLangOpts().CPlusPlus) {
|
|
Diag(EqualLoc, diag::err_param_default_argument)
|
|
<< DefaultArg->getSourceRange();
|
|
Param->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
|
|
Param->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++11 [dcl.fct.default]p3
|
|
// A default argument expression [...] shall not be specified for a
|
|
// parameter pack.
|
|
if (Param->isParameterPack()) {
|
|
Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
|
|
<< DefaultArg->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Check that the default argument is well-formed
|
|
CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
|
|
if (DefaultArgChecker.Visit(DefaultArg)) {
|
|
Param->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
|
|
}
|
|
|
|
/// ActOnParamUnparsedDefaultArgument - We've seen a default
|
|
/// argument for a function parameter, but we can't parse it yet
|
|
/// because we're inside a class definition. Note that this default
|
|
/// argument will be parsed later.
|
|
void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
|
|
SourceLocation EqualLoc,
|
|
SourceLocation ArgLoc) {
|
|
if (!param)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(param);
|
|
Param->setUnparsedDefaultArg();
|
|
UnparsedDefaultArgLocs[Param] = ArgLoc;
|
|
}
|
|
|
|
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
|
|
/// the default argument for the parameter param failed.
|
|
void Sema::ActOnParamDefaultArgumentError(Decl *param,
|
|
SourceLocation EqualLoc) {
|
|
if (!param)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(param);
|
|
Param->setInvalidDecl();
|
|
UnparsedDefaultArgLocs.erase(Param);
|
|
Param->setDefaultArg(new(Context)
|
|
OpaqueValueExpr(EqualLoc,
|
|
Param->getType().getNonReferenceType(),
|
|
VK_RValue));
|
|
}
|
|
|
|
/// CheckExtraCXXDefaultArguments - Check for any extra default
|
|
/// arguments in the declarator, which is not a function declaration
|
|
/// or definition and therefore is not permitted to have default
|
|
/// arguments. This routine should be invoked for every declarator
|
|
/// that is not a function declaration or definition.
|
|
void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
|
|
// C++ [dcl.fct.default]p3
|
|
// A default argument expression shall be specified only in the
|
|
// parameter-declaration-clause of a function declaration or in a
|
|
// template-parameter (14.1). It shall not be specified for a
|
|
// parameter pack. If it is specified in a
|
|
// parameter-declaration-clause, it shall not occur within a
|
|
// declarator or abstract-declarator of a parameter-declaration.
|
|
bool MightBeFunction = D.isFunctionDeclarationContext();
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = D.getTypeObject(i);
|
|
if (chunk.Kind == DeclaratorChunk::Function) {
|
|
if (MightBeFunction) {
|
|
// This is a function declaration. It can have default arguments, but
|
|
// keep looking in case its return type is a function type with default
|
|
// arguments.
|
|
MightBeFunction = false;
|
|
continue;
|
|
}
|
|
for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
|
|
++argIdx) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
|
|
if (Param->hasUnparsedDefaultArg()) {
|
|
std::unique_ptr<CachedTokens> Toks =
|
|
std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
|
|
SourceRange SR;
|
|
if (Toks->size() > 1)
|
|
SR = SourceRange((*Toks)[1].getLocation(),
|
|
Toks->back().getLocation());
|
|
else
|
|
SR = UnparsedDefaultArgLocs[Param];
|
|
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
|
|
<< SR;
|
|
} else if (Param->getDefaultArg()) {
|
|
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
|
|
<< Param->getDefaultArg()->getSourceRange();
|
|
Param->setDefaultArg(nullptr);
|
|
}
|
|
}
|
|
} else if (chunk.Kind != DeclaratorChunk::Paren) {
|
|
MightBeFunction = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
|
|
for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
|
|
const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
|
|
if (!PVD->hasDefaultArg())
|
|
return false;
|
|
if (!PVD->hasInheritedDefaultArg())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// MergeCXXFunctionDecl - Merge two declarations of the same C++
|
|
/// function, once we already know that they have the same
|
|
/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
|
|
/// error, false otherwise.
|
|
bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
|
|
Scope *S) {
|
|
bool Invalid = false;
|
|
|
|
// The declaration context corresponding to the scope is the semantic
|
|
// parent, unless this is a local function declaration, in which case
|
|
// it is that surrounding function.
|
|
DeclContext *ScopeDC = New->isLocalExternDecl()
|
|
? New->getLexicalDeclContext()
|
|
: New->getDeclContext();
|
|
|
|
// Find the previous declaration for the purpose of default arguments.
|
|
FunctionDecl *PrevForDefaultArgs = Old;
|
|
for (/**/; PrevForDefaultArgs;
|
|
// Don't bother looking back past the latest decl if this is a local
|
|
// extern declaration; nothing else could work.
|
|
PrevForDefaultArgs = New->isLocalExternDecl()
|
|
? nullptr
|
|
: PrevForDefaultArgs->getPreviousDecl()) {
|
|
// Ignore hidden declarations.
|
|
if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
|
|
continue;
|
|
|
|
if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
|
|
!New->isCXXClassMember()) {
|
|
// Ignore default arguments of old decl if they are not in
|
|
// the same scope and this is not an out-of-line definition of
|
|
// a member function.
|
|
continue;
|
|
}
|
|
|
|
if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
|
|
// If only one of these is a local function declaration, then they are
|
|
// declared in different scopes, even though isDeclInScope may think
|
|
// they're in the same scope. (If both are local, the scope check is
|
|
// sufficient, and if neither is local, then they are in the same scope.)
|
|
continue;
|
|
}
|
|
|
|
// We found the right previous declaration.
|
|
break;
|
|
}
|
|
|
|
// C++ [dcl.fct.default]p4:
|
|
// For non-template functions, default arguments can be added in
|
|
// later declarations of a function in the same
|
|
// scope. Declarations in different scopes have completely
|
|
// distinct sets of default arguments. That is, declarations in
|
|
// inner scopes do not acquire default arguments from
|
|
// declarations in outer scopes, and vice versa. In a given
|
|
// function declaration, all parameters subsequent to a
|
|
// parameter with a default argument shall have default
|
|
// arguments supplied in this or previous declarations. A
|
|
// default argument shall not be redefined by a later
|
|
// declaration (not even to the same value).
|
|
//
|
|
// C++ [dcl.fct.default]p6:
|
|
// Except for member functions of class templates, the default arguments
|
|
// in a member function definition that appears outside of the class
|
|
// definition are added to the set of default arguments provided by the
|
|
// member function declaration in the class definition.
|
|
for (unsigned p = 0, NumParams = PrevForDefaultArgs
|
|
? PrevForDefaultArgs->getNumParams()
|
|
: 0;
|
|
p < NumParams; ++p) {
|
|
ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
|
|
ParmVarDecl *NewParam = New->getParamDecl(p);
|
|
|
|
bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
|
|
bool NewParamHasDfl = NewParam->hasDefaultArg();
|
|
|
|
if (OldParamHasDfl && NewParamHasDfl) {
|
|
unsigned DiagDefaultParamID =
|
|
diag::err_param_default_argument_redefinition;
|
|
|
|
// MSVC accepts that default parameters be redefined for member functions
|
|
// of template class. The new default parameter's value is ignored.
|
|
Invalid = true;
|
|
if (getLangOpts().MicrosoftExt) {
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
|
|
if (MD && MD->getParent()->getDescribedClassTemplate()) {
|
|
// Merge the old default argument into the new parameter.
|
|
NewParam->setHasInheritedDefaultArg();
|
|
if (OldParam->hasUninstantiatedDefaultArg())
|
|
NewParam->setUninstantiatedDefaultArg(
|
|
OldParam->getUninstantiatedDefaultArg());
|
|
else
|
|
NewParam->setDefaultArg(OldParam->getInit());
|
|
DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
|
|
Invalid = false;
|
|
}
|
|
}
|
|
|
|
// FIXME: If we knew where the '=' was, we could easily provide a fix-it
|
|
// hint here. Alternatively, we could walk the type-source information
|
|
// for NewParam to find the last source location in the type... but it
|
|
// isn't worth the effort right now. This is the kind of test case that
|
|
// is hard to get right:
|
|
// int f(int);
|
|
// void g(int (*fp)(int) = f);
|
|
// void g(int (*fp)(int) = &f);
|
|
Diag(NewParam->getLocation(), DiagDefaultParamID)
|
|
<< NewParam->getDefaultArgRange();
|
|
|
|
// Look for the function declaration where the default argument was
|
|
// actually written, which may be a declaration prior to Old.
|
|
for (auto Older = PrevForDefaultArgs;
|
|
OldParam->hasInheritedDefaultArg(); /**/) {
|
|
Older = Older->getPreviousDecl();
|
|
OldParam = Older->getParamDecl(p);
|
|
}
|
|
|
|
Diag(OldParam->getLocation(), diag::note_previous_definition)
|
|
<< OldParam->getDefaultArgRange();
|
|
} else if (OldParamHasDfl) {
|
|
// Merge the old default argument into the new parameter unless the new
|
|
// function is a friend declaration in a template class. In the latter
|
|
// case the default arguments will be inherited when the friend
|
|
// declaration will be instantiated.
|
|
if (New->getFriendObjectKind() == Decl::FOK_None ||
|
|
!New->getLexicalDeclContext()->isDependentContext()) {
|
|
// It's important to use getInit() here; getDefaultArg()
|
|
// strips off any top-level ExprWithCleanups.
|
|
NewParam->setHasInheritedDefaultArg();
|
|
if (OldParam->hasUnparsedDefaultArg())
|
|
NewParam->setUnparsedDefaultArg();
|
|
else if (OldParam->hasUninstantiatedDefaultArg())
|
|
NewParam->setUninstantiatedDefaultArg(
|
|
OldParam->getUninstantiatedDefaultArg());
|
|
else
|
|
NewParam->setDefaultArg(OldParam->getInit());
|
|
}
|
|
} else if (NewParamHasDfl) {
|
|
if (New->getDescribedFunctionTemplate()) {
|
|
// Paragraph 4, quoted above, only applies to non-template functions.
|
|
Diag(NewParam->getLocation(),
|
|
diag::err_param_default_argument_template_redecl)
|
|
<< NewParam->getDefaultArgRange();
|
|
Diag(PrevForDefaultArgs->getLocation(),
|
|
diag::note_template_prev_declaration)
|
|
<< false;
|
|
} else if (New->getTemplateSpecializationKind()
|
|
!= TSK_ImplicitInstantiation &&
|
|
New->getTemplateSpecializationKind() != TSK_Undeclared) {
|
|
// C++ [temp.expr.spec]p21:
|
|
// Default function arguments shall not be specified in a declaration
|
|
// or a definition for one of the following explicit specializations:
|
|
// - the explicit specialization of a function template;
|
|
// - the explicit specialization of a member function template;
|
|
// - the explicit specialization of a member function of a class
|
|
// template where the class template specialization to which the
|
|
// member function specialization belongs is implicitly
|
|
// instantiated.
|
|
Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
|
|
<< (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
|
|
<< New->getDeclName()
|
|
<< NewParam->getDefaultArgRange();
|
|
} else if (New->getDeclContext()->isDependentContext()) {
|
|
// C++ [dcl.fct.default]p6 (DR217):
|
|
// Default arguments for a member function of a class template shall
|
|
// be specified on the initial declaration of the member function
|
|
// within the class template.
|
|
//
|
|
// Reading the tea leaves a bit in DR217 and its reference to DR205
|
|
// leads me to the conclusion that one cannot add default function
|
|
// arguments for an out-of-line definition of a member function of a
|
|
// dependent type.
|
|
int WhichKind = 2;
|
|
if (CXXRecordDecl *Record
|
|
= dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
|
|
if (Record->getDescribedClassTemplate())
|
|
WhichKind = 0;
|
|
else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
|
|
WhichKind = 1;
|
|
else
|
|
WhichKind = 2;
|
|
}
|
|
|
|
Diag(NewParam->getLocation(),
|
|
diag::err_param_default_argument_member_template_redecl)
|
|
<< WhichKind
|
|
<< NewParam->getDefaultArgRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
// DR1344: If a default argument is added outside a class definition and that
|
|
// default argument makes the function a special member function, the program
|
|
// is ill-formed. This can only happen for constructors.
|
|
if (isa<CXXConstructorDecl>(New) &&
|
|
New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
|
|
CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
|
|
OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
|
|
if (NewSM != OldSM) {
|
|
ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
|
|
assert(NewParam->hasDefaultArg());
|
|
Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
|
|
<< NewParam->getDefaultArgRange() << NewSM;
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
|
|
const FunctionDecl *Def;
|
|
// C++11 [dcl.constexpr]p1: If any declaration of a function or function
|
|
// template has a constexpr specifier then all its declarations shall
|
|
// contain the constexpr specifier.
|
|
if (New->isConstexpr() != Old->isConstexpr()) {
|
|
Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
|
|
<< New << New->isConstexpr();
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
Invalid = true;
|
|
} else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
|
|
Old->isDefined(Def) &&
|
|
// If a friend function is inlined but does not have 'inline'
|
|
// specifier, it is a definition. Do not report attribute conflict
|
|
// in this case, redefinition will be diagnosed later.
|
|
(New->isInlineSpecified() ||
|
|
New->getFriendObjectKind() == Decl::FOK_None)) {
|
|
// C++11 [dcl.fcn.spec]p4:
|
|
// If the definition of a function appears in a translation unit before its
|
|
// first declaration as inline, the program is ill-formed.
|
|
Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
Invalid = true;
|
|
}
|
|
|
|
// FIXME: It's not clear what should happen if multiple declarations of a
|
|
// deduction guide have different explicitness. For now at least we simply
|
|
// reject any case where the explicitness changes.
|
|
auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
|
|
if (NewGuide && NewGuide->isExplicitSpecified() !=
|
|
cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
|
|
Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
|
|
<< NewGuide->isExplicitSpecified();
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
|
|
// C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
|
|
// argument expression, that declaration shall be a definition and shall be
|
|
// the only declaration of the function or function template in the
|
|
// translation unit.
|
|
if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
|
|
functionDeclHasDefaultArgument(Old)) {
|
|
Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
Invalid = true;
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
NamedDecl *
|
|
Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParamLists) {
|
|
assert(D.isDecompositionDeclarator());
|
|
const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
|
|
|
|
// The syntax only allows a decomposition declarator as a simple-declaration
|
|
// or a for-range-declaration, but we parse it in more cases than that.
|
|
if (!D.mayHaveDecompositionDeclarator()) {
|
|
Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
|
|
<< Decomp.getSourceRange();
|
|
return nullptr;
|
|
}
|
|
|
|
if (!TemplateParamLists.empty()) {
|
|
// FIXME: There's no rule against this, but there are also no rules that
|
|
// would actually make it usable, so we reject it for now.
|
|
Diag(TemplateParamLists.front()->getTemplateLoc(),
|
|
diag::err_decomp_decl_template);
|
|
return nullptr;
|
|
}
|
|
|
|
Diag(Decomp.getLSquareLoc(), getLangOpts().CPlusPlus1z
|
|
? diag::warn_cxx14_compat_decomp_decl
|
|
: diag::ext_decomp_decl)
|
|
<< Decomp.getSourceRange();
|
|
|
|
// The semantic context is always just the current context.
|
|
DeclContext *const DC = CurContext;
|
|
|
|
// C++1z [dcl.dcl]/8:
|
|
// The decl-specifier-seq shall contain only the type-specifier auto
|
|
// and cv-qualifiers.
|
|
auto &DS = D.getDeclSpec();
|
|
{
|
|
SmallVector<StringRef, 8> BadSpecifiers;
|
|
SmallVector<SourceLocation, 8> BadSpecifierLocs;
|
|
if (auto SCS = DS.getStorageClassSpec()) {
|
|
BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
|
|
BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
|
|
}
|
|
if (auto TSCS = DS.getThreadStorageClassSpec()) {
|
|
BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
|
|
BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
|
|
}
|
|
if (DS.isConstexprSpecified()) {
|
|
BadSpecifiers.push_back("constexpr");
|
|
BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
|
|
}
|
|
if (DS.isInlineSpecified()) {
|
|
BadSpecifiers.push_back("inline");
|
|
BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
|
|
}
|
|
if (!BadSpecifiers.empty()) {
|
|
auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
|
|
Err << (int)BadSpecifiers.size()
|
|
<< llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
|
|
// Don't add FixItHints to remove the specifiers; we do still respect
|
|
// them when building the underlying variable.
|
|
for (auto Loc : BadSpecifierLocs)
|
|
Err << SourceRange(Loc, Loc);
|
|
}
|
|
// We can't recover from it being declared as a typedef.
|
|
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
|
|
return nullptr;
|
|
}
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType R = TInfo->getType();
|
|
|
|
if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
|
|
UPPC_DeclarationType))
|
|
D.setInvalidType();
|
|
|
|
// The syntax only allows a single ref-qualifier prior to the decomposition
|
|
// declarator. No other declarator chunks are permitted. Also check the type
|
|
// specifier here.
|
|
if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
|
|
D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
|
|
(D.getNumTypeObjects() == 1 &&
|
|
D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
|
|
Diag(Decomp.getLSquareLoc(),
|
|
(D.hasGroupingParens() ||
|
|
(D.getNumTypeObjects() &&
|
|
D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
|
|
? diag::err_decomp_decl_parens
|
|
: diag::err_decomp_decl_type)
|
|
<< R;
|
|
|
|
// In most cases, there's no actual problem with an explicitly-specified
|
|
// type, but a function type won't work here, and ActOnVariableDeclarator
|
|
// shouldn't be called for such a type.
|
|
if (R->isFunctionType())
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Build the BindingDecls.
|
|
SmallVector<BindingDecl*, 8> Bindings;
|
|
|
|
// Build the BindingDecls.
|
|
for (auto &B : D.getDecompositionDeclarator().bindings()) {
|
|
// Check for name conflicts.
|
|
DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
ForVisibleRedeclaration);
|
|
LookupName(Previous, S,
|
|
/*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
|
|
|
|
// It's not permitted to shadow a template parameter name.
|
|
if (Previous.isSingleResult() &&
|
|
Previous.getFoundDecl()->isTemplateParameter()) {
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
|
|
Previous.getFoundDecl());
|
|
Previous.clear();
|
|
}
|
|
|
|
bool ConsiderLinkage = DC->isFunctionOrMethod() &&
|
|
DS.getStorageClassSpec() == DeclSpec::SCS_extern;
|
|
FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
|
|
/*AllowInlineNamespace*/false);
|
|
if (!Previous.empty()) {
|
|
auto *Old = Previous.getRepresentativeDecl();
|
|
Diag(B.NameLoc, diag::err_redefinition) << B.Name;
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
}
|
|
|
|
auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
|
|
PushOnScopeChains(BD, S, true);
|
|
Bindings.push_back(BD);
|
|
ParsingInitForAutoVars.insert(BD);
|
|
}
|
|
|
|
// There are no prior lookup results for the variable itself, because it
|
|
// is unnamed.
|
|
DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
|
|
Decomp.getLSquareLoc());
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
ForVisibleRedeclaration);
|
|
|
|
// Build the variable that holds the non-decomposed object.
|
|
bool AddToScope = true;
|
|
NamedDecl *New =
|
|
ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
|
|
MultiTemplateParamsArg(), AddToScope, Bindings);
|
|
if (AddToScope) {
|
|
S->AddDecl(New);
|
|
CurContext->addHiddenDecl(New);
|
|
}
|
|
|
|
if (isInOpenMPDeclareTargetContext())
|
|
checkDeclIsAllowedInOpenMPTarget(nullptr, New);
|
|
|
|
return New;
|
|
}
|
|
|
|
static bool checkSimpleDecomposition(
|
|
Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
|
|
QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
|
|
llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
|
|
if ((int64_t)Bindings.size() != NumElems) {
|
|
S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
|
|
<< DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
|
|
<< (NumElems < Bindings.size());
|
|
return true;
|
|
}
|
|
|
|
unsigned I = 0;
|
|
for (auto *B : Bindings) {
|
|
SourceLocation Loc = B->getLocation();
|
|
ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
|
|
if (E.isInvalid())
|
|
return true;
|
|
E = GetInit(Loc, E.get(), I++);
|
|
if (E.isInvalid())
|
|
return true;
|
|
B->setBinding(ElemType, E.get());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool checkArrayLikeDecomposition(Sema &S,
|
|
ArrayRef<BindingDecl *> Bindings,
|
|
ValueDecl *Src, QualType DecompType,
|
|
const llvm::APSInt &NumElems,
|
|
QualType ElemType) {
|
|
return checkSimpleDecomposition(
|
|
S, Bindings, Src, DecompType, NumElems, ElemType,
|
|
[&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
|
|
ExprResult E = S.ActOnIntegerConstant(Loc, I);
|
|
if (E.isInvalid())
|
|
return ExprError();
|
|
return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
|
|
});
|
|
}
|
|
|
|
static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
|
|
ValueDecl *Src, QualType DecompType,
|
|
const ConstantArrayType *CAT) {
|
|
return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
|
|
llvm::APSInt(CAT->getSize()),
|
|
CAT->getElementType());
|
|
}
|
|
|
|
static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
|
|
ValueDecl *Src, QualType DecompType,
|
|
const VectorType *VT) {
|
|
return checkArrayLikeDecomposition(
|
|
S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
|
|
S.Context.getQualifiedType(VT->getElementType(),
|
|
DecompType.getQualifiers()));
|
|
}
|
|
|
|
static bool checkComplexDecomposition(Sema &S,
|
|
ArrayRef<BindingDecl *> Bindings,
|
|
ValueDecl *Src, QualType DecompType,
|
|
const ComplexType *CT) {
|
|
return checkSimpleDecomposition(
|
|
S, Bindings, Src, DecompType, llvm::APSInt::get(2),
|
|
S.Context.getQualifiedType(CT->getElementType(),
|
|
DecompType.getQualifiers()),
|
|
[&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
|
|
return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
|
|
});
|
|
}
|
|
|
|
static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
|
|
TemplateArgumentListInfo &Args) {
|
|
SmallString<128> SS;
|
|
llvm::raw_svector_ostream OS(SS);
|
|
bool First = true;
|
|
for (auto &Arg : Args.arguments()) {
|
|
if (!First)
|
|
OS << ", ";
|
|
Arg.getArgument().print(PrintingPolicy, OS);
|
|
First = false;
|
|
}
|
|
return OS.str();
|
|
}
|
|
|
|
static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
|
|
SourceLocation Loc, StringRef Trait,
|
|
TemplateArgumentListInfo &Args,
|
|
unsigned DiagID) {
|
|
auto DiagnoseMissing = [&] {
|
|
if (DiagID)
|
|
S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
|
|
Args);
|
|
return true;
|
|
};
|
|
|
|
// FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
|
|
NamespaceDecl *Std = S.getStdNamespace();
|
|
if (!Std)
|
|
return DiagnoseMissing();
|
|
|
|
// Look up the trait itself, within namespace std. We can diagnose various
|
|
// problems with this lookup even if we've been asked to not diagnose a
|
|
// missing specialization, because this can only fail if the user has been
|
|
// declaring their own names in namespace std or we don't support the
|
|
// standard library implementation in use.
|
|
LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
|
|
Loc, Sema::LookupOrdinaryName);
|
|
if (!S.LookupQualifiedName(Result, Std))
|
|
return DiagnoseMissing();
|
|
if (Result.isAmbiguous())
|
|
return true;
|
|
|
|
ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
|
|
if (!TraitTD) {
|
|
Result.suppressDiagnostics();
|
|
NamedDecl *Found = *Result.begin();
|
|
S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
|
|
S.Diag(Found->getLocation(), diag::note_declared_at);
|
|
return true;
|
|
}
|
|
|
|
// Build the template-id.
|
|
QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
|
|
if (TraitTy.isNull())
|
|
return true;
|
|
if (!S.isCompleteType(Loc, TraitTy)) {
|
|
if (DiagID)
|
|
S.RequireCompleteType(
|
|
Loc, TraitTy, DiagID,
|
|
printTemplateArgs(S.Context.getPrintingPolicy(), Args));
|
|
return true;
|
|
}
|
|
|
|
CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
|
|
assert(RD && "specialization of class template is not a class?");
|
|
|
|
// Look up the member of the trait type.
|
|
S.LookupQualifiedName(TraitMemberLookup, RD);
|
|
return TraitMemberLookup.isAmbiguous();
|
|
}
|
|
|
|
static TemplateArgumentLoc
|
|
getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
|
|
uint64_t I) {
|
|
TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
|
|
return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
|
|
}
|
|
|
|
static TemplateArgumentLoc
|
|
getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
|
|
return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
|
|
}
|
|
|
|
namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
|
|
|
|
static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
|
|
llvm::APSInt &Size) {
|
|
EnterExpressionEvaluationContext ContextRAII(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
DeclarationName Value = S.PP.getIdentifierInfo("value");
|
|
LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
|
|
|
|
// Form template argument list for tuple_size<T>.
|
|
TemplateArgumentListInfo Args(Loc, Loc);
|
|
Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
|
|
|
|
// If there's no tuple_size specialization, it's not tuple-like.
|
|
if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
|
|
return IsTupleLike::NotTupleLike;
|
|
|
|
// If we get this far, we've committed to the tuple interpretation, but
|
|
// we can still fail if there actually isn't a usable ::value.
|
|
|
|
struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
|
|
LookupResult &R;
|
|
TemplateArgumentListInfo &Args;
|
|
ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
|
|
: R(R), Args(Args) {}
|
|
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
|
|
S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
|
|
<< printTemplateArgs(S.Context.getPrintingPolicy(), Args);
|
|
}
|
|
} Diagnoser(R, Args);
|
|
|
|
if (R.empty()) {
|
|
Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
|
|
return IsTupleLike::Error;
|
|
}
|
|
|
|
ExprResult E =
|
|
S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
|
|
if (E.isInvalid())
|
|
return IsTupleLike::Error;
|
|
|
|
E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
|
|
if (E.isInvalid())
|
|
return IsTupleLike::Error;
|
|
|
|
return IsTupleLike::TupleLike;
|
|
}
|
|
|
|
/// \return std::tuple_element<I, T>::type.
|
|
static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
|
|
unsigned I, QualType T) {
|
|
// Form template argument list for tuple_element<I, T>.
|
|
TemplateArgumentListInfo Args(Loc, Loc);
|
|
Args.addArgument(
|
|
getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
|
|
Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
|
|
|
|
DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
|
|
LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
|
|
if (lookupStdTypeTraitMember(
|
|
S, R, Loc, "tuple_element", Args,
|
|
diag::err_decomp_decl_std_tuple_element_not_specialized))
|
|
return QualType();
|
|
|
|
auto *TD = R.getAsSingle<TypeDecl>();
|
|
if (!TD) {
|
|
R.suppressDiagnostics();
|
|
S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
|
|
<< printTemplateArgs(S.Context.getPrintingPolicy(), Args);
|
|
if (!R.empty())
|
|
S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
|
|
return QualType();
|
|
}
|
|
|
|
return S.Context.getTypeDeclType(TD);
|
|
}
|
|
|
|
namespace {
|
|
struct BindingDiagnosticTrap {
|
|
Sema &S;
|
|
DiagnosticErrorTrap Trap;
|
|
BindingDecl *BD;
|
|
|
|
BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
|
|
: S(S), Trap(S.Diags), BD(BD) {}
|
|
~BindingDiagnosticTrap() {
|
|
if (Trap.hasErrorOccurred())
|
|
S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
|
|
}
|
|
};
|
|
}
|
|
|
|
static bool checkTupleLikeDecomposition(Sema &S,
|
|
ArrayRef<BindingDecl *> Bindings,
|
|
VarDecl *Src, QualType DecompType,
|
|
const llvm::APSInt &TupleSize) {
|
|
if ((int64_t)Bindings.size() != TupleSize) {
|
|
S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
|
|
<< DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
|
|
<< (TupleSize < Bindings.size());
|
|
return true;
|
|
}
|
|
|
|
if (Bindings.empty())
|
|
return false;
|
|
|
|
DeclarationName GetDN = S.PP.getIdentifierInfo("get");
|
|
|
|
// [dcl.decomp]p3:
|
|
// The unqualified-id get is looked up in the scope of E by class member
|
|
// access lookup
|
|
LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
|
|
bool UseMemberGet = false;
|
|
if (S.isCompleteType(Src->getLocation(), DecompType)) {
|
|
if (auto *RD = DecompType->getAsCXXRecordDecl())
|
|
S.LookupQualifiedName(MemberGet, RD);
|
|
if (MemberGet.isAmbiguous())
|
|
return true;
|
|
UseMemberGet = !MemberGet.empty();
|
|
S.FilterAcceptableTemplateNames(MemberGet);
|
|
}
|
|
|
|
unsigned I = 0;
|
|
for (auto *B : Bindings) {
|
|
BindingDiagnosticTrap Trap(S, B);
|
|
SourceLocation Loc = B->getLocation();
|
|
|
|
ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
// e is an lvalue if the type of the entity is an lvalue reference and
|
|
// an xvalue otherwise
|
|
if (!Src->getType()->isLValueReferenceType())
|
|
E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
|
|
E.get(), nullptr, VK_XValue);
|
|
|
|
TemplateArgumentListInfo Args(Loc, Loc);
|
|
Args.addArgument(
|
|
getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
|
|
|
|
if (UseMemberGet) {
|
|
// if [lookup of member get] finds at least one declaration, the
|
|
// initializer is e.get<i-1>().
|
|
E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
|
|
CXXScopeSpec(), SourceLocation(), nullptr,
|
|
MemberGet, &Args, nullptr);
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
|
|
} else {
|
|
// Otherwise, the initializer is get<i-1>(e), where get is looked up
|
|
// in the associated namespaces.
|
|
Expr *Get = UnresolvedLookupExpr::Create(
|
|
S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
|
|
DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
|
|
UnresolvedSetIterator(), UnresolvedSetIterator());
|
|
|
|
Expr *Arg = E.get();
|
|
E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
|
|
}
|
|
if (E.isInvalid())
|
|
return true;
|
|
Expr *Init = E.get();
|
|
|
|
// Given the type T designated by std::tuple_element<i - 1, E>::type,
|
|
QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
// each vi is a variable of type "reference to T" initialized with the
|
|
// initializer, where the reference is an lvalue reference if the
|
|
// initializer is an lvalue and an rvalue reference otherwise
|
|
QualType RefType =
|
|
S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
|
|
if (RefType.isNull())
|
|
return true;
|
|
auto *RefVD = VarDecl::Create(
|
|
S.Context, Src->getDeclContext(), Loc, Loc,
|
|
B->getDeclName().getAsIdentifierInfo(), RefType,
|
|
S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
|
|
RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
|
|
RefVD->setTSCSpec(Src->getTSCSpec());
|
|
RefVD->setImplicit();
|
|
if (Src->isInlineSpecified())
|
|
RefVD->setInlineSpecified();
|
|
RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
|
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
|
|
InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
|
|
InitializationSequence Seq(S, Entity, Kind, Init);
|
|
E = Seq.Perform(S, Entity, Kind, Init);
|
|
if (E.isInvalid())
|
|
return true;
|
|
E = S.ActOnFinishFullExpr(E.get(), Loc);
|
|
if (E.isInvalid())
|
|
return true;
|
|
RefVD->setInit(E.get());
|
|
RefVD->checkInitIsICE();
|
|
|
|
E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
|
|
DeclarationNameInfo(B->getDeclName(), Loc),
|
|
RefVD);
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
B->setBinding(T, E.get());
|
|
I++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Find the base class to decompose in a built-in decomposition of a class type.
|
|
/// This base class search is, unfortunately, not quite like any other that we
|
|
/// perform anywhere else in C++.
|
|
static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
|
|
SourceLocation Loc,
|
|
const CXXRecordDecl *RD,
|
|
CXXCastPath &BasePath) {
|
|
auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path) {
|
|
return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
|
|
};
|
|
|
|
const CXXRecordDecl *ClassWithFields = nullptr;
|
|
if (RD->hasDirectFields())
|
|
// [dcl.decomp]p4:
|
|
// Otherwise, all of E's non-static data members shall be public direct
|
|
// members of E ...
|
|
ClassWithFields = RD;
|
|
else {
|
|
// ... or of ...
|
|
CXXBasePaths Paths;
|
|
Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
|
|
if (!RD->lookupInBases(BaseHasFields, Paths)) {
|
|
// If no classes have fields, just decompose RD itself. (This will work
|
|
// if and only if zero bindings were provided.)
|
|
return RD;
|
|
}
|
|
|
|
CXXBasePath *BestPath = nullptr;
|
|
for (auto &P : Paths) {
|
|
if (!BestPath)
|
|
BestPath = &P;
|
|
else if (!S.Context.hasSameType(P.back().Base->getType(),
|
|
BestPath->back().Base->getType())) {
|
|
// ... the same ...
|
|
S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
|
|
<< false << RD << BestPath->back().Base->getType()
|
|
<< P.back().Base->getType();
|
|
return nullptr;
|
|
} else if (P.Access < BestPath->Access) {
|
|
BestPath = &P;
|
|
}
|
|
}
|
|
|
|
// ... unambiguous ...
|
|
QualType BaseType = BestPath->back().Base->getType();
|
|
if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
|
|
S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
|
|
<< RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
|
|
return nullptr;
|
|
}
|
|
|
|
// ... public base class of E.
|
|
if (BestPath->Access != AS_public) {
|
|
S.Diag(Loc, diag::err_decomp_decl_non_public_base)
|
|
<< RD << BaseType;
|
|
for (auto &BS : *BestPath) {
|
|
if (BS.Base->getAccessSpecifier() != AS_public) {
|
|
S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
|
|
<< (BS.Base->getAccessSpecifier() == AS_protected)
|
|
<< (BS.Base->getAccessSpecifierAsWritten() == AS_none);
|
|
break;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ClassWithFields = BaseType->getAsCXXRecordDecl();
|
|
S.BuildBasePathArray(Paths, BasePath);
|
|
}
|
|
|
|
// The above search did not check whether the selected class itself has base
|
|
// classes with fields, so check that now.
|
|
CXXBasePaths Paths;
|
|
if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
|
|
S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
|
|
<< (ClassWithFields == RD) << RD << ClassWithFields
|
|
<< Paths.front().back().Base->getType();
|
|
return nullptr;
|
|
}
|
|
|
|
return ClassWithFields;
|
|
}
|
|
|
|
static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
|
|
ValueDecl *Src, QualType DecompType,
|
|
const CXXRecordDecl *RD) {
|
|
CXXCastPath BasePath;
|
|
RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
|
|
if (!RD)
|
|
return true;
|
|
QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
|
|
DecompType.getQualifiers());
|
|
|
|
auto DiagnoseBadNumberOfBindings = [&]() -> bool {
|
|
unsigned NumFields =
|
|
std::count_if(RD->field_begin(), RD->field_end(),
|
|
[](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
|
|
assert(Bindings.size() != NumFields);
|
|
S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
|
|
<< DecompType << (unsigned)Bindings.size() << NumFields
|
|
<< (NumFields < Bindings.size());
|
|
return true;
|
|
};
|
|
|
|
// all of E's non-static data members shall be public [...] members,
|
|
// E shall not have an anonymous union member, ...
|
|
unsigned I = 0;
|
|
for (auto *FD : RD->fields()) {
|
|
if (FD->isUnnamedBitfield())
|
|
continue;
|
|
|
|
if (FD->isAnonymousStructOrUnion()) {
|
|
S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
|
|
<< DecompType << FD->getType()->isUnionType();
|
|
S.Diag(FD->getLocation(), diag::note_declared_at);
|
|
return true;
|
|
}
|
|
|
|
// We have a real field to bind.
|
|
if (I >= Bindings.size())
|
|
return DiagnoseBadNumberOfBindings();
|
|
auto *B = Bindings[I++];
|
|
|
|
SourceLocation Loc = B->getLocation();
|
|
if (FD->getAccess() != AS_public) {
|
|
S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
|
|
|
|
// Determine whether the access specifier was explicit.
|
|
bool Implicit = true;
|
|
for (const auto *D : RD->decls()) {
|
|
if (declaresSameEntity(D, FD))
|
|
break;
|
|
if (isa<AccessSpecDecl>(D)) {
|
|
Implicit = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
S.Diag(FD->getLocation(), diag::note_access_natural)
|
|
<< (FD->getAccess() == AS_protected) << Implicit;
|
|
return true;
|
|
}
|
|
|
|
// Initialize the binding to Src.FD.
|
|
ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
|
|
if (E.isInvalid())
|
|
return true;
|
|
E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
|
|
VK_LValue, &BasePath);
|
|
if (E.isInvalid())
|
|
return true;
|
|
E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
|
|
CXXScopeSpec(), FD,
|
|
DeclAccessPair::make(FD, FD->getAccess()),
|
|
DeclarationNameInfo(FD->getDeclName(), Loc));
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
// If the type of the member is T, the referenced type is cv T, where cv is
|
|
// the cv-qualification of the decomposition expression.
|
|
//
|
|
// FIXME: We resolve a defect here: if the field is mutable, we do not add
|
|
// 'const' to the type of the field.
|
|
Qualifiers Q = DecompType.getQualifiers();
|
|
if (FD->isMutable())
|
|
Q.removeConst();
|
|
B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
|
|
}
|
|
|
|
if (I != Bindings.size())
|
|
return DiagnoseBadNumberOfBindings();
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
|
|
QualType DecompType = DD->getType();
|
|
|
|
// If the type of the decomposition is dependent, then so is the type of
|
|
// each binding.
|
|
if (DecompType->isDependentType()) {
|
|
for (auto *B : DD->bindings())
|
|
B->setType(Context.DependentTy);
|
|
return;
|
|
}
|
|
|
|
DecompType = DecompType.getNonReferenceType();
|
|
ArrayRef<BindingDecl*> Bindings = DD->bindings();
|
|
|
|
// C++1z [dcl.decomp]/2:
|
|
// If E is an array type [...]
|
|
// As an extension, we also support decomposition of built-in complex and
|
|
// vector types.
|
|
if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
|
|
if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
|
|
DD->setInvalidDecl();
|
|
return;
|
|
}
|
|
if (auto *VT = DecompType->getAs<VectorType>()) {
|
|
if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
|
|
DD->setInvalidDecl();
|
|
return;
|
|
}
|
|
if (auto *CT = DecompType->getAs<ComplexType>()) {
|
|
if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
|
|
DD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++1z [dcl.decomp]/3:
|
|
// if the expression std::tuple_size<E>::value is a well-formed integral
|
|
// constant expression, [...]
|
|
llvm::APSInt TupleSize(32);
|
|
switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
|
|
case IsTupleLike::Error:
|
|
DD->setInvalidDecl();
|
|
return;
|
|
|
|
case IsTupleLike::TupleLike:
|
|
if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
|
|
DD->setInvalidDecl();
|
|
return;
|
|
|
|
case IsTupleLike::NotTupleLike:
|
|
break;
|
|
}
|
|
|
|
// C++1z [dcl.dcl]/8:
|
|
// [E shall be of array or non-union class type]
|
|
CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
|
|
if (!RD || RD->isUnion()) {
|
|
Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
|
|
<< DD << !RD << DecompType;
|
|
DD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++1z [dcl.decomp]/4:
|
|
// all of E's non-static data members shall be [...] direct members of
|
|
// E or of the same unambiguous public base class of E, ...
|
|
if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
|
|
DD->setInvalidDecl();
|
|
}
|
|
|
|
/// \brief Merge the exception specifications of two variable declarations.
|
|
///
|
|
/// This is called when there's a redeclaration of a VarDecl. The function
|
|
/// checks if the redeclaration might have an exception specification and
|
|
/// validates compatibility and merges the specs if necessary.
|
|
void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
|
|
// Shortcut if exceptions are disabled.
|
|
if (!getLangOpts().CXXExceptions)
|
|
return;
|
|
|
|
assert(Context.hasSameType(New->getType(), Old->getType()) &&
|
|
"Should only be called if types are otherwise the same.");
|
|
|
|
QualType NewType = New->getType();
|
|
QualType OldType = Old->getType();
|
|
|
|
// We're only interested in pointers and references to functions, as well
|
|
// as pointers to member functions.
|
|
if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
|
|
NewType = R->getPointeeType();
|
|
OldType = OldType->getAs<ReferenceType>()->getPointeeType();
|
|
} else if (const PointerType *P = NewType->getAs<PointerType>()) {
|
|
NewType = P->getPointeeType();
|
|
OldType = OldType->getAs<PointerType>()->getPointeeType();
|
|
} else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
|
|
NewType = M->getPointeeType();
|
|
OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
|
|
}
|
|
|
|
if (!NewType->isFunctionProtoType())
|
|
return;
|
|
|
|
// There's lots of special cases for functions. For function pointers, system
|
|
// libraries are hopefully not as broken so that we don't need these
|
|
// workarounds.
|
|
if (CheckEquivalentExceptionSpec(
|
|
OldType->getAs<FunctionProtoType>(), Old->getLocation(),
|
|
NewType->getAs<FunctionProtoType>(), New->getLocation())) {
|
|
New->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
/// CheckCXXDefaultArguments - Verify that the default arguments for a
|
|
/// function declaration are well-formed according to C++
|
|
/// [dcl.fct.default].
|
|
void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
|
|
unsigned NumParams = FD->getNumParams();
|
|
unsigned p;
|
|
|
|
// Find first parameter with a default argument
|
|
for (p = 0; p < NumParams; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
if (Param->hasDefaultArg())
|
|
break;
|
|
}
|
|
|
|
// C++11 [dcl.fct.default]p4:
|
|
// In a given function declaration, each parameter subsequent to a parameter
|
|
// with a default argument shall have a default argument supplied in this or
|
|
// a previous declaration or shall be a function parameter pack. A default
|
|
// argument shall not be redefined by a later declaration (not even to the
|
|
// same value).
|
|
unsigned LastMissingDefaultArg = 0;
|
|
for (; p < NumParams; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
|
|
if (Param->isInvalidDecl())
|
|
/* We already complained about this parameter. */;
|
|
else if (Param->getIdentifier())
|
|
Diag(Param->getLocation(),
|
|
diag::err_param_default_argument_missing_name)
|
|
<< Param->getIdentifier();
|
|
else
|
|
Diag(Param->getLocation(),
|
|
diag::err_param_default_argument_missing);
|
|
|
|
LastMissingDefaultArg = p;
|
|
}
|
|
}
|
|
|
|
if (LastMissingDefaultArg > 0) {
|
|
// Some default arguments were missing. Clear out all of the
|
|
// default arguments up to (and including) the last missing
|
|
// default argument, so that we leave the function parameters
|
|
// in a semantically valid state.
|
|
for (p = 0; p <= LastMissingDefaultArg; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
if (Param->hasDefaultArg()) {
|
|
Param->setDefaultArg(nullptr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// CheckConstexprParameterTypes - Check whether a function's parameter types
|
|
// are all literal types. If so, return true. If not, produce a suitable
|
|
// diagnostic and return false.
|
|
static bool CheckConstexprParameterTypes(Sema &SemaRef,
|
|
const FunctionDecl *FD) {
|
|
unsigned ArgIndex = 0;
|
|
const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
|
|
for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
|
|
e = FT->param_type_end();
|
|
i != e; ++i, ++ArgIndex) {
|
|
const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
|
|
SourceLocation ParamLoc = PD->getLocation();
|
|
if (!(*i)->isDependentType() &&
|
|
SemaRef.RequireLiteralType(ParamLoc, *i,
|
|
diag::err_constexpr_non_literal_param,
|
|
ArgIndex+1, PD->getSourceRange(),
|
|
isa<CXXConstructorDecl>(FD)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Get diagnostic %select index for tag kind for
|
|
/// record diagnostic message.
|
|
/// WARNING: Indexes apply to particular diagnostics only!
|
|
///
|
|
/// \returns diagnostic %select index.
|
|
static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
|
|
switch (Tag) {
|
|
case TTK_Struct: return 0;
|
|
case TTK_Interface: return 1;
|
|
case TTK_Class: return 2;
|
|
default: llvm_unreachable("Invalid tag kind for record diagnostic!");
|
|
}
|
|
}
|
|
|
|
// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
|
|
// the requirements of a constexpr function definition or a constexpr
|
|
// constructor definition. If so, return true. If not, produce appropriate
|
|
// diagnostics and return false.
|
|
//
|
|
// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
|
|
bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
|
|
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
|
|
if (MD && MD->isInstance()) {
|
|
// C++11 [dcl.constexpr]p4:
|
|
// The definition of a constexpr constructor shall satisfy the following
|
|
// constraints:
|
|
// - the class shall not have any virtual base classes;
|
|
const CXXRecordDecl *RD = MD->getParent();
|
|
if (RD->getNumVBases()) {
|
|
Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
|
|
<< isa<CXXConstructorDecl>(NewFD)
|
|
<< getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
|
|
for (const auto &I : RD->vbases())
|
|
Diag(I.getLocStart(),
|
|
diag::note_constexpr_virtual_base_here) << I.getSourceRange();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!isa<CXXConstructorDecl>(NewFD)) {
|
|
// C++11 [dcl.constexpr]p3:
|
|
// The definition of a constexpr function shall satisfy the following
|
|
// constraints:
|
|
// - it shall not be virtual;
|
|
const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
|
|
if (Method && Method->isVirtual()) {
|
|
Method = Method->getCanonicalDecl();
|
|
Diag(Method->getLocation(), diag::err_constexpr_virtual);
|
|
|
|
// If it's not obvious why this function is virtual, find an overridden
|
|
// function which uses the 'virtual' keyword.
|
|
const CXXMethodDecl *WrittenVirtual = Method;
|
|
while (!WrittenVirtual->isVirtualAsWritten())
|
|
WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
|
|
if (WrittenVirtual != Method)
|
|
Diag(WrittenVirtual->getLocation(),
|
|
diag::note_overridden_virtual_function);
|
|
return false;
|
|
}
|
|
|
|
// - its return type shall be a literal type;
|
|
QualType RT = NewFD->getReturnType();
|
|
if (!RT->isDependentType() &&
|
|
RequireLiteralType(NewFD->getLocation(), RT,
|
|
diag::err_constexpr_non_literal_return))
|
|
return false;
|
|
}
|
|
|
|
// - each of its parameter types shall be a literal type;
|
|
if (!CheckConstexprParameterTypes(*this, NewFD))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check the given declaration statement is legal within a constexpr function
|
|
/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
|
|
///
|
|
/// \return true if the body is OK (maybe only as an extension), false if we
|
|
/// have diagnosed a problem.
|
|
static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
|
|
DeclStmt *DS, SourceLocation &Cxx1yLoc) {
|
|
// C++11 [dcl.constexpr]p3 and p4:
|
|
// The definition of a constexpr function(p3) or constructor(p4) [...] shall
|
|
// contain only
|
|
for (const auto *DclIt : DS->decls()) {
|
|
switch (DclIt->getKind()) {
|
|
case Decl::StaticAssert:
|
|
case Decl::Using:
|
|
case Decl::UsingShadow:
|
|
case Decl::UsingDirective:
|
|
case Decl::UnresolvedUsingTypename:
|
|
case Decl::UnresolvedUsingValue:
|
|
// - static_assert-declarations
|
|
// - using-declarations,
|
|
// - using-directives,
|
|
continue;
|
|
|
|
case Decl::Typedef:
|
|
case Decl::TypeAlias: {
|
|
// - typedef declarations and alias-declarations that do not define
|
|
// classes or enumerations,
|
|
const auto *TN = cast<TypedefNameDecl>(DclIt);
|
|
if (TN->getUnderlyingType()->isVariablyModifiedType()) {
|
|
// Don't allow variably-modified types in constexpr functions.
|
|
TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
|
|
SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
|
|
<< TL.getSourceRange() << TL.getType()
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case Decl::Enum:
|
|
case Decl::CXXRecord:
|
|
// C++1y allows types to be defined, not just declared.
|
|
if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
|
|
SemaRef.Diag(DS->getLocStart(),
|
|
SemaRef.getLangOpts().CPlusPlus14
|
|
? diag::warn_cxx11_compat_constexpr_type_definition
|
|
: diag::ext_constexpr_type_definition)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
continue;
|
|
|
|
case Decl::EnumConstant:
|
|
case Decl::IndirectField:
|
|
case Decl::ParmVar:
|
|
// These can only appear with other declarations which are banned in
|
|
// C++11 and permitted in C++1y, so ignore them.
|
|
continue;
|
|
|
|
case Decl::Var:
|
|
case Decl::Decomposition: {
|
|
// C++1y [dcl.constexpr]p3 allows anything except:
|
|
// a definition of a variable of non-literal type or of static or
|
|
// thread storage duration or for which no initialization is performed.
|
|
const auto *VD = cast<VarDecl>(DclIt);
|
|
if (VD->isThisDeclarationADefinition()) {
|
|
if (VD->isStaticLocal()) {
|
|
SemaRef.Diag(VD->getLocation(),
|
|
diag::err_constexpr_local_var_static)
|
|
<< isa<CXXConstructorDecl>(Dcl)
|
|
<< (VD->getTLSKind() == VarDecl::TLS_Dynamic);
|
|
return false;
|
|
}
|
|
if (!VD->getType()->isDependentType() &&
|
|
SemaRef.RequireLiteralType(
|
|
VD->getLocation(), VD->getType(),
|
|
diag::err_constexpr_local_var_non_literal_type,
|
|
isa<CXXConstructorDecl>(Dcl)))
|
|
return false;
|
|
if (!VD->getType()->isDependentType() &&
|
|
!VD->hasInit() && !VD->isCXXForRangeDecl()) {
|
|
SemaRef.Diag(VD->getLocation(),
|
|
diag::err_constexpr_local_var_no_init)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
return false;
|
|
}
|
|
}
|
|
SemaRef.Diag(VD->getLocation(),
|
|
SemaRef.getLangOpts().CPlusPlus14
|
|
? diag::warn_cxx11_compat_constexpr_local_var
|
|
: diag::ext_constexpr_local_var)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
continue;
|
|
}
|
|
|
|
case Decl::NamespaceAlias:
|
|
case Decl::Function:
|
|
// These are disallowed in C++11 and permitted in C++1y. Allow them
|
|
// everywhere as an extension.
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = DS->getLocStart();
|
|
continue;
|
|
|
|
default:
|
|
SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check that the given field is initialized within a constexpr constructor.
|
|
///
|
|
/// \param Dcl The constexpr constructor being checked.
|
|
/// \param Field The field being checked. This may be a member of an anonymous
|
|
/// struct or union nested within the class being checked.
|
|
/// \param Inits All declarations, including anonymous struct/union members and
|
|
/// indirect members, for which any initialization was provided.
|
|
/// \param Diagnosed Set to true if an error is produced.
|
|
static void CheckConstexprCtorInitializer(Sema &SemaRef,
|
|
const FunctionDecl *Dcl,
|
|
FieldDecl *Field,
|
|
llvm::SmallSet<Decl*, 16> &Inits,
|
|
bool &Diagnosed) {
|
|
if (Field->isInvalidDecl())
|
|
return;
|
|
|
|
if (Field->isUnnamedBitfield())
|
|
return;
|
|
|
|
// Anonymous unions with no variant members and empty anonymous structs do not
|
|
// need to be explicitly initialized. FIXME: Anonymous structs that contain no
|
|
// indirect fields don't need initializing.
|
|
if (Field->isAnonymousStructOrUnion() &&
|
|
(Field->getType()->isUnionType()
|
|
? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
|
|
: Field->getType()->getAsCXXRecordDecl()->isEmpty()))
|
|
return;
|
|
|
|
if (!Inits.count(Field)) {
|
|
if (!Diagnosed) {
|
|
SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
|
|
Diagnosed = true;
|
|
}
|
|
SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
|
|
} else if (Field->isAnonymousStructOrUnion()) {
|
|
const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
|
|
for (auto *I : RD->fields())
|
|
// If an anonymous union contains an anonymous struct of which any member
|
|
// is initialized, all members must be initialized.
|
|
if (!RD->isUnion() || Inits.count(I))
|
|
CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
|
|
}
|
|
}
|
|
|
|
/// Check the provided statement is allowed in a constexpr function
|
|
/// definition.
|
|
static bool
|
|
CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
|
|
SmallVectorImpl<SourceLocation> &ReturnStmts,
|
|
SourceLocation &Cxx1yLoc) {
|
|
// - its function-body shall be [...] a compound-statement that contains only
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::NullStmtClass:
|
|
// - null statements,
|
|
return true;
|
|
|
|
case Stmt::DeclStmtClass:
|
|
// - static_assert-declarations
|
|
// - using-declarations,
|
|
// - using-directives,
|
|
// - typedef declarations and alias-declarations that do not define
|
|
// classes or enumerations,
|
|
if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
|
|
return false;
|
|
return true;
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
// - and exactly one return statement;
|
|
if (isa<CXXConstructorDecl>(Dcl)) {
|
|
// C++1y allows return statements in constexpr constructors.
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = S->getLocStart();
|
|
return true;
|
|
}
|
|
|
|
ReturnStmts.push_back(S->getLocStart());
|
|
return true;
|
|
|
|
case Stmt::CompoundStmtClass: {
|
|
// C++1y allows compound-statements.
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = S->getLocStart();
|
|
|
|
CompoundStmt *CompStmt = cast<CompoundStmt>(S);
|
|
for (auto *BodyIt : CompStmt->body()) {
|
|
if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
|
|
Cxx1yLoc))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Stmt::AttributedStmtClass:
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = S->getLocStart();
|
|
return true;
|
|
|
|
case Stmt::IfStmtClass: {
|
|
// C++1y allows if-statements.
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = S->getLocStart();
|
|
|
|
IfStmt *If = cast<IfStmt>(S);
|
|
if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
|
|
Cxx1yLoc))
|
|
return false;
|
|
if (If->getElse() &&
|
|
!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
|
|
Cxx1yLoc))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::CXXForRangeStmtClass:
|
|
case Stmt::ContinueStmtClass:
|
|
// C++1y allows all of these. We don't allow them as extensions in C++11,
|
|
// because they don't make sense without variable mutation.
|
|
if (!SemaRef.getLangOpts().CPlusPlus14)
|
|
break;
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = S->getLocStart();
|
|
for (Stmt *SubStmt : S->children())
|
|
if (SubStmt &&
|
|
!CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
|
|
Cxx1yLoc))
|
|
return false;
|
|
return true;
|
|
|
|
case Stmt::SwitchStmtClass:
|
|
case Stmt::CaseStmtClass:
|
|
case Stmt::DefaultStmtClass:
|
|
case Stmt::BreakStmtClass:
|
|
// C++1y allows switch-statements, and since they don't need variable
|
|
// mutation, we can reasonably allow them in C++11 as an extension.
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = S->getLocStart();
|
|
for (Stmt *SubStmt : S->children())
|
|
if (SubStmt &&
|
|
!CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
|
|
Cxx1yLoc))
|
|
return false;
|
|
return true;
|
|
|
|
default:
|
|
if (!isa<Expr>(S))
|
|
break;
|
|
|
|
// C++1y allows expression-statements.
|
|
if (!Cxx1yLoc.isValid())
|
|
Cxx1yLoc = S->getLocStart();
|
|
return true;
|
|
}
|
|
|
|
SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
return false;
|
|
}
|
|
|
|
/// Check the body for the given constexpr function declaration only contains
|
|
/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
|
|
///
|
|
/// \return true if the body is OK, false if we have diagnosed a problem.
|
|
bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
|
|
if (isa<CXXTryStmt>(Body)) {
|
|
// C++11 [dcl.constexpr]p3:
|
|
// The definition of a constexpr function shall satisfy the following
|
|
// constraints: [...]
|
|
// - its function-body shall be = delete, = default, or a
|
|
// compound-statement
|
|
//
|
|
// C++11 [dcl.constexpr]p4:
|
|
// In the definition of a constexpr constructor, [...]
|
|
// - its function-body shall not be a function-try-block;
|
|
Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
return false;
|
|
}
|
|
|
|
SmallVector<SourceLocation, 4> ReturnStmts;
|
|
|
|
// - its function-body shall be [...] a compound-statement that contains only
|
|
// [... list of cases ...]
|
|
CompoundStmt *CompBody = cast<CompoundStmt>(Body);
|
|
SourceLocation Cxx1yLoc;
|
|
for (auto *BodyIt : CompBody->body()) {
|
|
if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
|
|
return false;
|
|
}
|
|
|
|
if (Cxx1yLoc.isValid())
|
|
Diag(Cxx1yLoc,
|
|
getLangOpts().CPlusPlus14
|
|
? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
|
|
: diag::ext_constexpr_body_invalid_stmt)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
|
|
if (const CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(Dcl)) {
|
|
const CXXRecordDecl *RD = Constructor->getParent();
|
|
// DR1359:
|
|
// - every non-variant non-static data member and base class sub-object
|
|
// shall be initialized;
|
|
// DR1460:
|
|
// - if the class is a union having variant members, exactly one of them
|
|
// shall be initialized;
|
|
if (RD->isUnion()) {
|
|
if (Constructor->getNumCtorInitializers() == 0 &&
|
|
RD->hasVariantMembers()) {
|
|
Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
|
|
return false;
|
|
}
|
|
} else if (!Constructor->isDependentContext() &&
|
|
!Constructor->isDelegatingConstructor()) {
|
|
assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
|
|
|
|
// Skip detailed checking if we have enough initializers, and we would
|
|
// allow at most one initializer per member.
|
|
bool AnyAnonStructUnionMembers = false;
|
|
unsigned Fields = 0;
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(),
|
|
E = RD->field_end(); I != E; ++I, ++Fields) {
|
|
if (I->isAnonymousStructOrUnion()) {
|
|
AnyAnonStructUnionMembers = true;
|
|
break;
|
|
}
|
|
}
|
|
// DR1460:
|
|
// - if the class is a union-like class, but is not a union, for each of
|
|
// its anonymous union members having variant members, exactly one of
|
|
// them shall be initialized;
|
|
if (AnyAnonStructUnionMembers ||
|
|
Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
|
|
// Check initialization of non-static data members. Base classes are
|
|
// always initialized so do not need to be checked. Dependent bases
|
|
// might not have initializers in the member initializer list.
|
|
llvm::SmallSet<Decl*, 16> Inits;
|
|
for (const auto *I: Constructor->inits()) {
|
|
if (FieldDecl *FD = I->getMember())
|
|
Inits.insert(FD);
|
|
else if (IndirectFieldDecl *ID = I->getIndirectMember())
|
|
Inits.insert(ID->chain_begin(), ID->chain_end());
|
|
}
|
|
|
|
bool Diagnosed = false;
|
|
for (auto *I : RD->fields())
|
|
CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
|
|
if (Diagnosed)
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
if (ReturnStmts.empty()) {
|
|
// C++1y doesn't require constexpr functions to contain a 'return'
|
|
// statement. We still do, unless the return type might be void, because
|
|
// otherwise if there's no return statement, the function cannot
|
|
// be used in a core constant expression.
|
|
bool OK = getLangOpts().CPlusPlus14 &&
|
|
(Dcl->getReturnType()->isVoidType() ||
|
|
Dcl->getReturnType()->isDependentType());
|
|
Diag(Dcl->getLocation(),
|
|
OK ? diag::warn_cxx11_compat_constexpr_body_no_return
|
|
: diag::err_constexpr_body_no_return);
|
|
if (!OK)
|
|
return false;
|
|
} else if (ReturnStmts.size() > 1) {
|
|
Diag(ReturnStmts.back(),
|
|
getLangOpts().CPlusPlus14
|
|
? diag::warn_cxx11_compat_constexpr_body_multiple_return
|
|
: diag::ext_constexpr_body_multiple_return);
|
|
for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
|
|
Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
|
|
}
|
|
}
|
|
|
|
// C++11 [dcl.constexpr]p5:
|
|
// if no function argument values exist such that the function invocation
|
|
// substitution would produce a constant expression, the program is
|
|
// ill-formed; no diagnostic required.
|
|
// C++11 [dcl.constexpr]p3:
|
|
// - every constructor call and implicit conversion used in initializing the
|
|
// return value shall be one of those allowed in a constant expression.
|
|
// C++11 [dcl.constexpr]p4:
|
|
// - every constructor involved in initializing non-static data members and
|
|
// base class sub-objects shall be a constexpr constructor.
|
|
SmallVector<PartialDiagnosticAt, 8> Diags;
|
|
if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
|
|
Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
|
|
<< isa<CXXConstructorDecl>(Dcl);
|
|
for (size_t I = 0, N = Diags.size(); I != N; ++I)
|
|
Diag(Diags[I].first, Diags[I].second);
|
|
// Don't return false here: we allow this for compatibility in
|
|
// system headers.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isCurrentClassName - Determine whether the identifier II is the
|
|
/// name of the class type currently being defined. In the case of
|
|
/// nested classes, this will only return true if II is the name of
|
|
/// the innermost class.
|
|
bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
|
|
const CXXScopeSpec *SS) {
|
|
assert(getLangOpts().CPlusPlus && "No class names in C!");
|
|
|
|
CXXRecordDecl *CurDecl;
|
|
if (SS && SS->isSet() && !SS->isInvalid()) {
|
|
DeclContext *DC = computeDeclContext(*SS, true);
|
|
CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
|
|
} else
|
|
CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
|
|
|
|
if (CurDecl && CurDecl->getIdentifier())
|
|
return &II == CurDecl->getIdentifier();
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether the identifier II is a typo for the name of
|
|
/// the class type currently being defined. If so, update it to the identifier
|
|
/// that should have been used.
|
|
bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
|
|
assert(getLangOpts().CPlusPlus && "No class names in C!");
|
|
|
|
if (!getLangOpts().SpellChecking)
|
|
return false;
|
|
|
|
CXXRecordDecl *CurDecl;
|
|
if (SS && SS->isSet() && !SS->isInvalid()) {
|
|
DeclContext *DC = computeDeclContext(*SS, true);
|
|
CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
|
|
} else
|
|
CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
|
|
|
|
if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
|
|
3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
|
|
< II->getLength()) {
|
|
II = CurDecl->getIdentifier();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether the given class is a base class of the given
|
|
/// class, including looking at dependent bases.
|
|
static bool findCircularInheritance(const CXXRecordDecl *Class,
|
|
const CXXRecordDecl *Current) {
|
|
SmallVector<const CXXRecordDecl*, 8> Queue;
|
|
|
|
Class = Class->getCanonicalDecl();
|
|
while (true) {
|
|
for (const auto &I : Current->bases()) {
|
|
CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
|
|
if (!Base)
|
|
continue;
|
|
|
|
Base = Base->getDefinition();
|
|
if (!Base)
|
|
continue;
|
|
|
|
if (Base->getCanonicalDecl() == Class)
|
|
return true;
|
|
|
|
Queue.push_back(Base);
|
|
}
|
|
|
|
if (Queue.empty())
|
|
return false;
|
|
|
|
Current = Queue.pop_back_val();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check the validity of a C++ base class specifier.
|
|
///
|
|
/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
|
|
/// and returns NULL otherwise.
|
|
CXXBaseSpecifier *
|
|
Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
|
|
SourceRange SpecifierRange,
|
|
bool Virtual, AccessSpecifier Access,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation EllipsisLoc) {
|
|
QualType BaseType = TInfo->getType();
|
|
|
|
// C++ [class.union]p1:
|
|
// A union shall not have base classes.
|
|
if (Class->isUnion()) {
|
|
Diag(Class->getLocation(), diag::err_base_clause_on_union)
|
|
<< SpecifierRange;
|
|
return nullptr;
|
|
}
|
|
|
|
if (EllipsisLoc.isValid() &&
|
|
!TInfo->getType()->containsUnexpandedParameterPack()) {
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
|
|
<< TInfo->getTypeLoc().getSourceRange();
|
|
EllipsisLoc = SourceLocation();
|
|
}
|
|
|
|
SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
|
|
|
|
if (BaseType->isDependentType()) {
|
|
// Make sure that we don't have circular inheritance among our dependent
|
|
// bases. For non-dependent bases, the check for completeness below handles
|
|
// this.
|
|
if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
|
|
if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
|
|
((BaseDecl = BaseDecl->getDefinition()) &&
|
|
findCircularInheritance(Class, BaseDecl))) {
|
|
Diag(BaseLoc, diag::err_circular_inheritance)
|
|
<< BaseType << Context.getTypeDeclType(Class);
|
|
|
|
if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
|
|
Diag(BaseDecl->getLocation(), diag::note_previous_decl)
|
|
<< BaseType;
|
|
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
|
|
Class->getTagKind() == TTK_Class,
|
|
Access, TInfo, EllipsisLoc);
|
|
}
|
|
|
|
// Base specifiers must be record types.
|
|
if (!BaseType->isRecordType()) {
|
|
Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
|
|
return nullptr;
|
|
}
|
|
|
|
// C++ [class.union]p1:
|
|
// A union shall not be used as a base class.
|
|
if (BaseType->isUnionType()) {
|
|
Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
|
|
return nullptr;
|
|
}
|
|
|
|
// For the MS ABI, propagate DLL attributes to base class templates.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
if (Attr *ClassAttr = getDLLAttr(Class)) {
|
|
if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
|
|
BaseType->getAsCXXRecordDecl())) {
|
|
propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
|
|
BaseLoc);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [class.derived]p2:
|
|
// The class-name in a base-specifier shall not be an incompletely
|
|
// defined class.
|
|
if (RequireCompleteType(BaseLoc, BaseType,
|
|
diag::err_incomplete_base_class, SpecifierRange)) {
|
|
Class->setInvalidDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
// If the base class is polymorphic or isn't empty, the new one is/isn't, too.
|
|
RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
|
|
assert(BaseDecl && "Record type has no declaration");
|
|
BaseDecl = BaseDecl->getDefinition();
|
|
assert(BaseDecl && "Base type is not incomplete, but has no definition");
|
|
CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
|
|
assert(CXXBaseDecl && "Base type is not a C++ type");
|
|
|
|
// A class which contains a flexible array member is not suitable for use as a
|
|
// base class:
|
|
// - If the layout determines that a base comes before another base,
|
|
// the flexible array member would index into the subsequent base.
|
|
// - If the layout determines that base comes before the derived class,
|
|
// the flexible array member would index into the derived class.
|
|
if (CXXBaseDecl->hasFlexibleArrayMember()) {
|
|
Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
|
|
<< CXXBaseDecl->getDeclName();
|
|
return nullptr;
|
|
}
|
|
|
|
// C++ [class]p3:
|
|
// If a class is marked final and it appears as a base-type-specifier in
|
|
// base-clause, the program is ill-formed.
|
|
if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
|
|
Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
|
|
<< CXXBaseDecl->getDeclName()
|
|
<< FA->isSpelledAsSealed();
|
|
Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
|
|
<< CXXBaseDecl->getDeclName() << FA->getRange();
|
|
return nullptr;
|
|
}
|
|
|
|
if (BaseDecl->isInvalidDecl())
|
|
Class->setInvalidDecl();
|
|
|
|
// Create the base specifier.
|
|
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
|
|
Class->getTagKind() == TTK_Class,
|
|
Access, TInfo, EllipsisLoc);
|
|
}
|
|
|
|
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
|
|
/// one entry in the base class list of a class specifier, for
|
|
/// example:
|
|
/// class foo : public bar, virtual private baz {
|
|
/// 'public bar' and 'virtual private baz' are each base-specifiers.
|
|
BaseResult
|
|
Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
|
|
ParsedAttributes &Attributes,
|
|
bool Virtual, AccessSpecifier Access,
|
|
ParsedType basetype, SourceLocation BaseLoc,
|
|
SourceLocation EllipsisLoc) {
|
|
if (!classdecl)
|
|
return true;
|
|
|
|
AdjustDeclIfTemplate(classdecl);
|
|
CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
|
|
if (!Class)
|
|
return true;
|
|
|
|
// We haven't yet attached the base specifiers.
|
|
Class->setIsParsingBaseSpecifiers();
|
|
|
|
// We do not support any C++11 attributes on base-specifiers yet.
|
|
// Diagnose any attributes we see.
|
|
if (!Attributes.empty()) {
|
|
for (AttributeList *Attr = Attributes.getList(); Attr;
|
|
Attr = Attr->getNext()) {
|
|
if (Attr->isInvalid() ||
|
|
Attr->getKind() == AttributeList::IgnoredAttribute)
|
|
continue;
|
|
Diag(Attr->getLoc(),
|
|
Attr->getKind() == AttributeList::UnknownAttribute
|
|
? diag::warn_unknown_attribute_ignored
|
|
: diag::err_base_specifier_attribute)
|
|
<< Attr->getName();
|
|
}
|
|
}
|
|
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
GetTypeFromParser(basetype, &TInfo);
|
|
|
|
if (EllipsisLoc.isInvalid() &&
|
|
DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
|
|
UPPC_BaseType))
|
|
return true;
|
|
|
|
if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
|
|
Virtual, Access, TInfo,
|
|
EllipsisLoc))
|
|
return BaseSpec;
|
|
else
|
|
Class->setInvalidDecl();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Use small set to collect indirect bases. As this is only used
|
|
/// locally, there's no need to abstract the small size parameter.
|
|
typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
|
|
|
|
/// \brief Recursively add the bases of Type. Don't add Type itself.
|
|
static void
|
|
NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
|
|
const QualType &Type)
|
|
{
|
|
// Even though the incoming type is a base, it might not be
|
|
// a class -- it could be a template parm, for instance.
|
|
if (auto Rec = Type->getAs<RecordType>()) {
|
|
auto Decl = Rec->getAsCXXRecordDecl();
|
|
|
|
// Iterate over its bases.
|
|
for (const auto &BaseSpec : Decl->bases()) {
|
|
QualType Base = Context.getCanonicalType(BaseSpec.getType())
|
|
.getUnqualifiedType();
|
|
if (Set.insert(Base).second)
|
|
// If we've not already seen it, recurse.
|
|
NoteIndirectBases(Context, Set, Base);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Performs the actual work of attaching the given base class
|
|
/// specifiers to a C++ class.
|
|
bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
|
|
MutableArrayRef<CXXBaseSpecifier *> Bases) {
|
|
if (Bases.empty())
|
|
return false;
|
|
|
|
// Used to keep track of which base types we have already seen, so
|
|
// that we can properly diagnose redundant direct base types. Note
|
|
// that the key is always the unqualified canonical type of the base
|
|
// class.
|
|
std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
|
|
|
|
// Used to track indirect bases so we can see if a direct base is
|
|
// ambiguous.
|
|
IndirectBaseSet IndirectBaseTypes;
|
|
|
|
// Copy non-redundant base specifiers into permanent storage.
|
|
unsigned NumGoodBases = 0;
|
|
bool Invalid = false;
|
|
for (unsigned idx = 0; idx < Bases.size(); ++idx) {
|
|
QualType NewBaseType
|
|
= Context.getCanonicalType(Bases[idx]->getType());
|
|
NewBaseType = NewBaseType.getLocalUnqualifiedType();
|
|
|
|
CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
|
|
if (KnownBase) {
|
|
// C++ [class.mi]p3:
|
|
// A class shall not be specified as a direct base class of a
|
|
// derived class more than once.
|
|
Diag(Bases[idx]->getLocStart(),
|
|
diag::err_duplicate_base_class)
|
|
<< KnownBase->getType()
|
|
<< Bases[idx]->getSourceRange();
|
|
|
|
// Delete the duplicate base class specifier; we're going to
|
|
// overwrite its pointer later.
|
|
Context.Deallocate(Bases[idx]);
|
|
|
|
Invalid = true;
|
|
} else {
|
|
// Okay, add this new base class.
|
|
KnownBase = Bases[idx];
|
|
Bases[NumGoodBases++] = Bases[idx];
|
|
|
|
// Note this base's direct & indirect bases, if there could be ambiguity.
|
|
if (Bases.size() > 1)
|
|
NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
|
|
|
|
if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
|
|
if (Class->isInterface() &&
|
|
(!RD->isInterfaceLike() ||
|
|
KnownBase->getAccessSpecifier() != AS_public)) {
|
|
// The Microsoft extension __interface does not permit bases that
|
|
// are not themselves public interfaces.
|
|
Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
|
|
<< getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
|
|
<< RD->getSourceRange();
|
|
Invalid = true;
|
|
}
|
|
if (RD->hasAttr<WeakAttr>())
|
|
Class->addAttr(WeakAttr::CreateImplicit(Context));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Attach the remaining base class specifiers to the derived class.
|
|
Class->setBases(Bases.data(), NumGoodBases);
|
|
|
|
for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
|
|
// Check whether this direct base is inaccessible due to ambiguity.
|
|
QualType BaseType = Bases[idx]->getType();
|
|
CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
|
|
.getUnqualifiedType();
|
|
|
|
if (IndirectBaseTypes.count(CanonicalBase)) {
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/true);
|
|
bool found
|
|
= Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
|
|
assert(found);
|
|
(void)found;
|
|
|
|
if (Paths.isAmbiguous(CanonicalBase))
|
|
Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
|
|
<< BaseType << getAmbiguousPathsDisplayString(Paths)
|
|
<< Bases[idx]->getSourceRange();
|
|
else
|
|
assert(Bases[idx]->isVirtual());
|
|
}
|
|
|
|
// Delete the base class specifier, since its data has been copied
|
|
// into the CXXRecordDecl.
|
|
Context.Deallocate(Bases[idx]);
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
|
|
/// class, after checking whether there are any duplicate base
|
|
/// classes.
|
|
void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
|
|
MutableArrayRef<CXXBaseSpecifier *> Bases) {
|
|
if (!ClassDecl || Bases.empty())
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(ClassDecl);
|
|
AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
|
|
}
|
|
|
|
/// \brief Determine whether the type \p Derived is a C++ class that is
|
|
/// derived from the type \p Base.
|
|
bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
|
|
if (!DerivedRD)
|
|
return false;
|
|
|
|
CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
|
|
if (!BaseRD)
|
|
return false;
|
|
|
|
// If either the base or the derived type is invalid, don't try to
|
|
// check whether one is derived from the other.
|
|
if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
|
|
return false;
|
|
|
|
// FIXME: In a modules build, do we need the entire path to be visible for us
|
|
// to be able to use the inheritance relationship?
|
|
if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
|
|
return false;
|
|
|
|
return DerivedRD->isDerivedFrom(BaseRD);
|
|
}
|
|
|
|
/// \brief Determine whether the type \p Derived is a C++ class that is
|
|
/// derived from the type \p Base.
|
|
bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
|
|
CXXBasePaths &Paths) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
|
|
if (!DerivedRD)
|
|
return false;
|
|
|
|
CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
|
|
if (!BaseRD)
|
|
return false;
|
|
|
|
if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
|
|
return false;
|
|
|
|
return DerivedRD->isDerivedFrom(BaseRD, Paths);
|
|
}
|
|
|
|
static void BuildBasePathArray(const CXXBasePath &Path,
|
|
CXXCastPath &BasePathArray) {
|
|
// We first go backward and check if we have a virtual base.
|
|
// FIXME: It would be better if CXXBasePath had the base specifier for
|
|
// the nearest virtual base.
|
|
unsigned Start = 0;
|
|
for (unsigned I = Path.size(); I != 0; --I) {
|
|
if (Path[I - 1].Base->isVirtual()) {
|
|
Start = I - 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now add all bases.
|
|
for (unsigned I = Start, E = Path.size(); I != E; ++I)
|
|
BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
|
|
}
|
|
|
|
|
|
void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
|
|
CXXCastPath &BasePathArray) {
|
|
assert(BasePathArray.empty() && "Base path array must be empty!");
|
|
assert(Paths.isRecordingPaths() && "Must record paths!");
|
|
return ::BuildBasePathArray(Paths.front(), BasePathArray);
|
|
}
|
|
/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
|
|
/// conversion (where Derived and Base are class types) is
|
|
/// well-formed, meaning that the conversion is unambiguous (and
|
|
/// that all of the base classes are accessible). Returns true
|
|
/// and emits a diagnostic if the code is ill-formed, returns false
|
|
/// otherwise. Loc is the location where this routine should point to
|
|
/// if there is an error, and Range is the source range to highlight
|
|
/// if there is an error.
|
|
///
|
|
/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
|
|
/// diagnostic for the respective type of error will be suppressed, but the
|
|
/// check for ill-formed code will still be performed.
|
|
bool
|
|
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
unsigned InaccessibleBaseID,
|
|
unsigned AmbigiousBaseConvID,
|
|
SourceLocation Loc, SourceRange Range,
|
|
DeclarationName Name,
|
|
CXXCastPath *BasePath,
|
|
bool IgnoreAccess) {
|
|
// First, determine whether the path from Derived to Base is
|
|
// ambiguous. This is slightly more expensive than checking whether
|
|
// the Derived to Base conversion exists, because here we need to
|
|
// explore multiple paths to determine if there is an ambiguity.
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/false);
|
|
bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
|
|
if (!DerivationOkay)
|
|
return true;
|
|
|
|
const CXXBasePath *Path = nullptr;
|
|
if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
|
|
Path = &Paths.front();
|
|
|
|
// For MSVC compatibility, check if Derived directly inherits from Base. Clang
|
|
// warns about this hierarchy under -Winaccessible-base, but MSVC allows the
|
|
// user to access such bases.
|
|
if (!Path && getLangOpts().MSVCCompat) {
|
|
for (const CXXBasePath &PossiblePath : Paths) {
|
|
if (PossiblePath.size() == 1) {
|
|
Path = &PossiblePath;
|
|
if (AmbigiousBaseConvID)
|
|
Diag(Loc, diag::ext_ms_ambiguous_direct_base)
|
|
<< Base << Derived << Range;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Path) {
|
|
if (!IgnoreAccess) {
|
|
// Check that the base class can be accessed.
|
|
switch (
|
|
CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
|
|
case AR_inaccessible:
|
|
return true;
|
|
case AR_accessible:
|
|
case AR_dependent:
|
|
case AR_delayed:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Build a base path if necessary.
|
|
if (BasePath)
|
|
::BuildBasePathArray(*Path, *BasePath);
|
|
return false;
|
|
}
|
|
|
|
if (AmbigiousBaseConvID) {
|
|
// We know that the derived-to-base conversion is ambiguous, and
|
|
// we're going to produce a diagnostic. Perform the derived-to-base
|
|
// search just one more time to compute all of the possible paths so
|
|
// that we can print them out. This is more expensive than any of
|
|
// the previous derived-to-base checks we've done, but at this point
|
|
// performance isn't as much of an issue.
|
|
Paths.clear();
|
|
Paths.setRecordingPaths(true);
|
|
bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
|
|
assert(StillOkay && "Can only be used with a derived-to-base conversion");
|
|
(void)StillOkay;
|
|
|
|
// Build up a textual representation of the ambiguous paths, e.g.,
|
|
// D -> B -> A, that will be used to illustrate the ambiguous
|
|
// conversions in the diagnostic. We only print one of the paths
|
|
// to each base class subobject.
|
|
std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
|
|
|
|
Diag(Loc, AmbigiousBaseConvID)
|
|
<< Derived << Base << PathDisplayStr << Range << Name;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
SourceLocation Loc, SourceRange Range,
|
|
CXXCastPath *BasePath,
|
|
bool IgnoreAccess) {
|
|
return CheckDerivedToBaseConversion(
|
|
Derived, Base, diag::err_upcast_to_inaccessible_base,
|
|
diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
|
|
BasePath, IgnoreAccess);
|
|
}
|
|
|
|
|
|
/// @brief Builds a string representing ambiguous paths from a
|
|
/// specific derived class to different subobjects of the same base
|
|
/// class.
|
|
///
|
|
/// This function builds a string that can be used in error messages
|
|
/// to show the different paths that one can take through the
|
|
/// inheritance hierarchy to go from the derived class to different
|
|
/// subobjects of a base class. The result looks something like this:
|
|
/// @code
|
|
/// struct D -> struct B -> struct A
|
|
/// struct D -> struct C -> struct A
|
|
/// @endcode
|
|
std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
|
|
std::string PathDisplayStr;
|
|
std::set<unsigned> DisplayedPaths;
|
|
for (CXXBasePaths::paths_iterator Path = Paths.begin();
|
|
Path != Paths.end(); ++Path) {
|
|
if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
|
|
// We haven't displayed a path to this particular base
|
|
// class subobject yet.
|
|
PathDisplayStr += "\n ";
|
|
PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
|
|
for (CXXBasePath::const_iterator Element = Path->begin();
|
|
Element != Path->end(); ++Element)
|
|
PathDisplayStr += " -> " + Element->Base->getType().getAsString();
|
|
}
|
|
}
|
|
|
|
return PathDisplayStr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// C++ class member Handling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
|
|
bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
|
|
SourceLocation ASLoc,
|
|
SourceLocation ColonLoc,
|
|
AttributeList *Attrs) {
|
|
assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
|
|
AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
|
|
ASLoc, ColonLoc);
|
|
CurContext->addHiddenDecl(ASDecl);
|
|
return ProcessAccessDeclAttributeList(ASDecl, Attrs);
|
|
}
|
|
|
|
/// CheckOverrideControl - Check C++11 override control semantics.
|
|
void Sema::CheckOverrideControl(NamedDecl *D) {
|
|
if (D->isInvalidDecl())
|
|
return;
|
|
|
|
// We only care about "override" and "final" declarations.
|
|
if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
|
|
return;
|
|
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
|
|
|
|
// We can't check dependent instance methods.
|
|
if (MD && MD->isInstance() &&
|
|
(MD->getParent()->hasAnyDependentBases() ||
|
|
MD->getType()->isDependentType()))
|
|
return;
|
|
|
|
if (MD && !MD->isVirtual()) {
|
|
// If we have a non-virtual method, check if if hides a virtual method.
|
|
// (In that case, it's most likely the method has the wrong type.)
|
|
SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
|
|
FindHiddenVirtualMethods(MD, OverloadedMethods);
|
|
|
|
if (!OverloadedMethods.empty()) {
|
|
if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
|
|
Diag(OA->getLocation(),
|
|
diag::override_keyword_hides_virtual_member_function)
|
|
<< "override" << (OverloadedMethods.size() > 1);
|
|
} else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
|
|
Diag(FA->getLocation(),
|
|
diag::override_keyword_hides_virtual_member_function)
|
|
<< (FA->isSpelledAsSealed() ? "sealed" : "final")
|
|
<< (OverloadedMethods.size() > 1);
|
|
}
|
|
NoteHiddenVirtualMethods(MD, OverloadedMethods);
|
|
MD->setInvalidDecl();
|
|
return;
|
|
}
|
|
// Fall through into the general case diagnostic.
|
|
// FIXME: We might want to attempt typo correction here.
|
|
}
|
|
|
|
if (!MD || !MD->isVirtual()) {
|
|
if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
|
|
Diag(OA->getLocation(),
|
|
diag::override_keyword_only_allowed_on_virtual_member_functions)
|
|
<< "override" << FixItHint::CreateRemoval(OA->getLocation());
|
|
D->dropAttr<OverrideAttr>();
|
|
}
|
|
if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
|
|
Diag(FA->getLocation(),
|
|
diag::override_keyword_only_allowed_on_virtual_member_functions)
|
|
<< (FA->isSpelledAsSealed() ? "sealed" : "final")
|
|
<< FixItHint::CreateRemoval(FA->getLocation());
|
|
D->dropAttr<FinalAttr>();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// C++11 [class.virtual]p5:
|
|
// If a function is marked with the virt-specifier override and
|
|
// does not override a member function of a base class, the program is
|
|
// ill-formed.
|
|
bool HasOverriddenMethods =
|
|
MD->begin_overridden_methods() != MD->end_overridden_methods();
|
|
if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
|
|
Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
|
|
<< MD->getDeclName();
|
|
}
|
|
|
|
void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
|
|
if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
|
|
return;
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
|
|
if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
|
|
return;
|
|
|
|
SourceLocation Loc = MD->getLocation();
|
|
SourceLocation SpellingLoc = Loc;
|
|
if (getSourceManager().isMacroArgExpansion(Loc))
|
|
SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
|
|
SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
|
|
if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
|
|
return;
|
|
|
|
if (MD->size_overridden_methods() > 0) {
|
|
unsigned DiagID = isa<CXXDestructorDecl>(MD)
|
|
? diag::warn_destructor_marked_not_override_overriding
|
|
: diag::warn_function_marked_not_override_overriding;
|
|
Diag(MD->getLocation(), DiagID) << MD->getDeclName();
|
|
const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
|
|
Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
|
|
}
|
|
}
|
|
|
|
/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
|
|
/// function overrides a virtual member function marked 'final', according to
|
|
/// C++11 [class.virtual]p4.
|
|
bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old) {
|
|
FinalAttr *FA = Old->getAttr<FinalAttr>();
|
|
if (!FA)
|
|
return false;
|
|
|
|
Diag(New->getLocation(), diag::err_final_function_overridden)
|
|
<< New->getDeclName()
|
|
<< FA->isSpelledAsSealed();
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
return true;
|
|
}
|
|
|
|
static bool InitializationHasSideEffects(const FieldDecl &FD) {
|
|
const Type *T = FD.getType()->getBaseElementTypeUnsafe();
|
|
// FIXME: Destruction of ObjC lifetime types has side-effects.
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return !RD->isCompleteDefinition() ||
|
|
!RD->hasTrivialDefaultConstructor() ||
|
|
!RD->hasTrivialDestructor();
|
|
return false;
|
|
}
|
|
|
|
static AttributeList *getMSPropertyAttr(AttributeList *list) {
|
|
for (AttributeList *it = list; it != nullptr; it = it->getNext())
|
|
if (it->isDeclspecPropertyAttribute())
|
|
return it;
|
|
return nullptr;
|
|
}
|
|
|
|
// Check if there is a field shadowing.
|
|
void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
|
|
DeclarationName FieldName,
|
|
const CXXRecordDecl *RD) {
|
|
if (Diags.isIgnored(diag::warn_shadow_field, Loc))
|
|
return;
|
|
|
|
// To record a shadowed field in a base
|
|
std::map<CXXRecordDecl*, NamedDecl*> Bases;
|
|
auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path) {
|
|
const auto Base = Specifier->getType()->getAsCXXRecordDecl();
|
|
// Record an ambiguous path directly
|
|
if (Bases.find(Base) != Bases.end())
|
|
return true;
|
|
for (const auto Field : Base->lookup(FieldName)) {
|
|
if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
|
|
Field->getAccess() != AS_private) {
|
|
assert(Field->getAccess() != AS_none);
|
|
assert(Bases.find(Base) == Bases.end());
|
|
Bases[Base] = Field;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/true);
|
|
if (!RD->lookupInBases(FieldShadowed, Paths))
|
|
return;
|
|
|
|
for (const auto &P : Paths) {
|
|
auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
|
|
auto It = Bases.find(Base);
|
|
// Skip duplicated bases
|
|
if (It == Bases.end())
|
|
continue;
|
|
auto BaseField = It->second;
|
|
assert(BaseField->getAccess() != AS_private);
|
|
if (AS_none !=
|
|
CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
|
|
Diag(Loc, diag::warn_shadow_field)
|
|
<< FieldName.getAsString() << RD->getName() << Base->getName();
|
|
Diag(BaseField->getLocation(), diag::note_shadow_field);
|
|
Bases.erase(It);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
|
|
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
|
|
/// bitfield width if there is one, 'InitExpr' specifies the initializer if
|
|
/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
|
|
/// present (but parsing it has been deferred).
|
|
NamedDecl *
|
|
Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
Expr *BW, const VirtSpecifiers &VS,
|
|
InClassInitStyle InitStyle) {
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
SourceLocation Loc = NameInfo.getLoc();
|
|
|
|
// For anonymous bitfields, the location should point to the type.
|
|
if (Loc.isInvalid())
|
|
Loc = D.getLocStart();
|
|
|
|
Expr *BitWidth = static_cast<Expr*>(BW);
|
|
|
|
assert(isa<CXXRecordDecl>(CurContext));
|
|
assert(!DS.isFriendSpecified());
|
|
|
|
bool isFunc = D.isDeclarationOfFunction();
|
|
AttributeList *MSPropertyAttr =
|
|
getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
|
|
|
|
if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
|
|
// The Microsoft extension __interface only permits public member functions
|
|
// and prohibits constructors, destructors, operators, non-public member
|
|
// functions, static methods and data members.
|
|
unsigned InvalidDecl;
|
|
bool ShowDeclName = true;
|
|
if (!isFunc &&
|
|
(DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
|
|
InvalidDecl = 0;
|
|
else if (!isFunc)
|
|
InvalidDecl = 1;
|
|
else if (AS != AS_public)
|
|
InvalidDecl = 2;
|
|
else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
|
|
InvalidDecl = 3;
|
|
else switch (Name.getNameKind()) {
|
|
case DeclarationName::CXXConstructorName:
|
|
InvalidDecl = 4;
|
|
ShowDeclName = false;
|
|
break;
|
|
|
|
case DeclarationName::CXXDestructorName:
|
|
InvalidDecl = 5;
|
|
ShowDeclName = false;
|
|
break;
|
|
|
|
case DeclarationName::CXXOperatorName:
|
|
case DeclarationName::CXXConversionFunctionName:
|
|
InvalidDecl = 6;
|
|
break;
|
|
|
|
default:
|
|
InvalidDecl = 0;
|
|
break;
|
|
}
|
|
|
|
if (InvalidDecl) {
|
|
if (ShowDeclName)
|
|
Diag(Loc, diag::err_invalid_member_in_interface)
|
|
<< (InvalidDecl-1) << Name;
|
|
else
|
|
Diag(Loc, diag::err_invalid_member_in_interface)
|
|
<< (InvalidDecl-1) << "";
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// C++ 9.2p6: A member shall not be declared to have automatic storage
|
|
// duration (auto, register) or with the extern storage-class-specifier.
|
|
// C++ 7.1.1p8: The mutable specifier can be applied only to names of class
|
|
// data members and cannot be applied to names declared const or static,
|
|
// and cannot be applied to reference members.
|
|
switch (DS.getStorageClassSpec()) {
|
|
case DeclSpec::SCS_unspecified:
|
|
case DeclSpec::SCS_typedef:
|
|
case DeclSpec::SCS_static:
|
|
break;
|
|
case DeclSpec::SCS_mutable:
|
|
if (isFunc) {
|
|
Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
|
|
|
|
// FIXME: It would be nicer if the keyword was ignored only for this
|
|
// declarator. Otherwise we could get follow-up errors.
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
break;
|
|
default:
|
|
Diag(DS.getStorageClassSpecLoc(),
|
|
diag::err_storageclass_invalid_for_member);
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
break;
|
|
}
|
|
|
|
bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
|
|
DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
|
|
!isFunc);
|
|
|
|
if (DS.isConstexprSpecified() && isInstField) {
|
|
SemaDiagnosticBuilder B =
|
|
Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
|
|
SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
|
|
if (InitStyle == ICIS_NoInit) {
|
|
B << 0 << 0;
|
|
if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
|
|
B << FixItHint::CreateRemoval(ConstexprLoc);
|
|
else {
|
|
B << FixItHint::CreateReplacement(ConstexprLoc, "const");
|
|
D.getMutableDeclSpec().ClearConstexprSpec();
|
|
const char *PrevSpec;
|
|
unsigned DiagID;
|
|
bool Failed = D.getMutableDeclSpec().SetTypeQual(
|
|
DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
|
|
(void)Failed;
|
|
assert(!Failed && "Making a constexpr member const shouldn't fail");
|
|
}
|
|
} else {
|
|
B << 1;
|
|
const char *PrevSpec;
|
|
unsigned DiagID;
|
|
if (D.getMutableDeclSpec().SetStorageClassSpec(
|
|
*this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
|
|
Context.getPrintingPolicy())) {
|
|
assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
|
|
"This is the only DeclSpec that should fail to be applied");
|
|
B << 1;
|
|
} else {
|
|
B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
|
|
isInstField = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
NamedDecl *Member;
|
|
if (isInstField) {
|
|
CXXScopeSpec &SS = D.getCXXScopeSpec();
|
|
|
|
// Data members must have identifiers for names.
|
|
if (!Name.isIdentifier()) {
|
|
Diag(Loc, diag::err_bad_variable_name)
|
|
<< Name;
|
|
return nullptr;
|
|
}
|
|
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
|
|
// Member field could not be with "template" keyword.
|
|
// So TemplateParameterLists should be empty in this case.
|
|
if (TemplateParameterLists.size()) {
|
|
TemplateParameterList* TemplateParams = TemplateParameterLists[0];
|
|
if (TemplateParams->size()) {
|
|
// There is no such thing as a member field template.
|
|
Diag(D.getIdentifierLoc(), diag::err_template_member)
|
|
<< II
|
|
<< SourceRange(TemplateParams->getTemplateLoc(),
|
|
TemplateParams->getRAngleLoc());
|
|
} else {
|
|
// There is an extraneous 'template<>' for this member.
|
|
Diag(TemplateParams->getTemplateLoc(),
|
|
diag::err_template_member_noparams)
|
|
<< II
|
|
<< SourceRange(TemplateParams->getTemplateLoc(),
|
|
TemplateParams->getRAngleLoc());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
if (SS.isSet() && !SS.isInvalid()) {
|
|
// The user provided a superfluous scope specifier inside a class
|
|
// definition:
|
|
//
|
|
// class X {
|
|
// int X::member;
|
|
// };
|
|
if (DeclContext *DC = computeDeclContext(SS, false))
|
|
diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
|
|
else
|
|
Diag(D.getIdentifierLoc(), diag::err_member_qualification)
|
|
<< Name << SS.getRange();
|
|
|
|
SS.clear();
|
|
}
|
|
|
|
if (MSPropertyAttr) {
|
|
Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
|
|
BitWidth, InitStyle, AS, MSPropertyAttr);
|
|
if (!Member)
|
|
return nullptr;
|
|
isInstField = false;
|
|
} else {
|
|
Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
|
|
BitWidth, InitStyle, AS);
|
|
if (!Member)
|
|
return nullptr;
|
|
}
|
|
|
|
CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
|
|
} else {
|
|
Member = HandleDeclarator(S, D, TemplateParameterLists);
|
|
if (!Member)
|
|
return nullptr;
|
|
|
|
// Non-instance-fields can't have a bitfield.
|
|
if (BitWidth) {
|
|
if (Member->isInvalidDecl()) {
|
|
// don't emit another diagnostic.
|
|
} else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
|
|
// C++ 9.6p3: A bit-field shall not be a static member.
|
|
// "static member 'A' cannot be a bit-field"
|
|
Diag(Loc, diag::err_static_not_bitfield)
|
|
<< Name << BitWidth->getSourceRange();
|
|
} else if (isa<TypedefDecl>(Member)) {
|
|
// "typedef member 'x' cannot be a bit-field"
|
|
Diag(Loc, diag::err_typedef_not_bitfield)
|
|
<< Name << BitWidth->getSourceRange();
|
|
} else {
|
|
// A function typedef ("typedef int f(); f a;").
|
|
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
|
|
Diag(Loc, diag::err_not_integral_type_bitfield)
|
|
<< Name << cast<ValueDecl>(Member)->getType()
|
|
<< BitWidth->getSourceRange();
|
|
}
|
|
|
|
BitWidth = nullptr;
|
|
Member->setInvalidDecl();
|
|
}
|
|
|
|
Member->setAccess(AS);
|
|
|
|
// If we have declared a member function template or static data member
|
|
// template, set the access of the templated declaration as well.
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
|
|
FunTmpl->getTemplatedDecl()->setAccess(AS);
|
|
else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
|
|
VarTmpl->getTemplatedDecl()->setAccess(AS);
|
|
}
|
|
|
|
if (VS.isOverrideSpecified())
|
|
Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
|
|
if (VS.isFinalSpecified())
|
|
Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
|
|
VS.isFinalSpelledSealed()));
|
|
|
|
if (VS.getLastLocation().isValid()) {
|
|
// Update the end location of a method that has a virt-specifiers.
|
|
if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
|
|
MD->setRangeEnd(VS.getLastLocation());
|
|
}
|
|
|
|
CheckOverrideControl(Member);
|
|
|
|
assert((Name || isInstField) && "No identifier for non-field ?");
|
|
|
|
if (isInstField) {
|
|
FieldDecl *FD = cast<FieldDecl>(Member);
|
|
FieldCollector->Add(FD);
|
|
|
|
if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
|
|
// Remember all explicit private FieldDecls that have a name, no side
|
|
// effects and are not part of a dependent type declaration.
|
|
if (!FD->isImplicit() && FD->getDeclName() &&
|
|
FD->getAccess() == AS_private &&
|
|
!FD->hasAttr<UnusedAttr>() &&
|
|
!FD->getParent()->isDependentContext() &&
|
|
!InitializationHasSideEffects(*FD))
|
|
UnusedPrivateFields.insert(FD);
|
|
}
|
|
}
|
|
|
|
return Member;
|
|
}
|
|
|
|
namespace {
|
|
class UninitializedFieldVisitor
|
|
: public EvaluatedExprVisitor<UninitializedFieldVisitor> {
|
|
Sema &S;
|
|
// List of Decls to generate a warning on. Also remove Decls that become
|
|
// initialized.
|
|
llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
|
|
// List of base classes of the record. Classes are removed after their
|
|
// initializers.
|
|
llvm::SmallPtrSetImpl<QualType> &BaseClasses;
|
|
// Vector of decls to be removed from the Decl set prior to visiting the
|
|
// nodes. These Decls may have been initialized in the prior initializer.
|
|
llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
|
|
// If non-null, add a note to the warning pointing back to the constructor.
|
|
const CXXConstructorDecl *Constructor;
|
|
// Variables to hold state when processing an initializer list. When
|
|
// InitList is true, special case initialization of FieldDecls matching
|
|
// InitListFieldDecl.
|
|
bool InitList;
|
|
FieldDecl *InitListFieldDecl;
|
|
llvm::SmallVector<unsigned, 4> InitFieldIndex;
|
|
|
|
public:
|
|
typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
|
|
UninitializedFieldVisitor(Sema &S,
|
|
llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
|
|
llvm::SmallPtrSetImpl<QualType> &BaseClasses)
|
|
: Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
|
|
Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
|
|
|
|
// Returns true if the use of ME is not an uninitialized use.
|
|
bool IsInitListMemberExprInitialized(MemberExpr *ME,
|
|
bool CheckReferenceOnly) {
|
|
llvm::SmallVector<FieldDecl*, 4> Fields;
|
|
bool ReferenceField = false;
|
|
while (ME) {
|
|
FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
if (!FD)
|
|
return false;
|
|
Fields.push_back(FD);
|
|
if (FD->getType()->isReferenceType())
|
|
ReferenceField = true;
|
|
ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
|
|
}
|
|
|
|
// Binding a reference to an unintialized field is not an
|
|
// uninitialized use.
|
|
if (CheckReferenceOnly && !ReferenceField)
|
|
return true;
|
|
|
|
llvm::SmallVector<unsigned, 4> UsedFieldIndex;
|
|
// Discard the first field since it is the field decl that is being
|
|
// initialized.
|
|
for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
|
|
UsedFieldIndex.push_back((*I)->getFieldIndex());
|
|
}
|
|
|
|
for (auto UsedIter = UsedFieldIndex.begin(),
|
|
UsedEnd = UsedFieldIndex.end(),
|
|
OrigIter = InitFieldIndex.begin(),
|
|
OrigEnd = InitFieldIndex.end();
|
|
UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
|
|
if (*UsedIter < *OrigIter)
|
|
return true;
|
|
if (*UsedIter > *OrigIter)
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
|
|
bool AddressOf) {
|
|
if (isa<EnumConstantDecl>(ME->getMemberDecl()))
|
|
return;
|
|
|
|
// FieldME is the inner-most MemberExpr that is not an anonymous struct
|
|
// or union.
|
|
MemberExpr *FieldME = ME;
|
|
|
|
bool AllPODFields = FieldME->getType().isPODType(S.Context);
|
|
|
|
Expr *Base = ME;
|
|
while (MemberExpr *SubME =
|
|
dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
|
|
|
|
if (isa<VarDecl>(SubME->getMemberDecl()))
|
|
return;
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
|
|
if (!FD->isAnonymousStructOrUnion())
|
|
FieldME = SubME;
|
|
|
|
if (!FieldME->getType().isPODType(S.Context))
|
|
AllPODFields = false;
|
|
|
|
Base = SubME->getBase();
|
|
}
|
|
|
|
if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
|
|
return;
|
|
|
|
if (AddressOf && AllPODFields)
|
|
return;
|
|
|
|
ValueDecl* FoundVD = FieldME->getMemberDecl();
|
|
|
|
if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
|
|
while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
|
|
BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
|
|
}
|
|
|
|
if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
|
|
QualType T = BaseCast->getType();
|
|
if (T->isPointerType() &&
|
|
BaseClasses.count(T->getPointeeType())) {
|
|
S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
|
|
<< T->getPointeeType() << FoundVD;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Decls.count(FoundVD))
|
|
return;
|
|
|
|
const bool IsReference = FoundVD->getType()->isReferenceType();
|
|
|
|
if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
|
|
// Special checking for initializer lists.
|
|
if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
|
|
return;
|
|
}
|
|
} else {
|
|
// Prevent double warnings on use of unbounded references.
|
|
if (CheckReferenceOnly && !IsReference)
|
|
return;
|
|
}
|
|
|
|
unsigned diag = IsReference
|
|
? diag::warn_reference_field_is_uninit
|
|
: diag::warn_field_is_uninit;
|
|
S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
|
|
if (Constructor)
|
|
S.Diag(Constructor->getLocation(),
|
|
diag::note_uninit_in_this_constructor)
|
|
<< (Constructor->isDefaultConstructor() && Constructor->isImplicit());
|
|
|
|
}
|
|
|
|
void HandleValue(Expr *E, bool AddressOf) {
|
|
E = E->IgnoreParens();
|
|
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
|
|
AddressOf /*AddressOf*/);
|
|
return;
|
|
}
|
|
|
|
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
Visit(CO->getCond());
|
|
HandleValue(CO->getTrueExpr(), AddressOf);
|
|
HandleValue(CO->getFalseExpr(), AddressOf);
|
|
return;
|
|
}
|
|
|
|
if (BinaryConditionalOperator *BCO =
|
|
dyn_cast<BinaryConditionalOperator>(E)) {
|
|
Visit(BCO->getCond());
|
|
HandleValue(BCO->getFalseExpr(), AddressOf);
|
|
return;
|
|
}
|
|
|
|
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
|
|
HandleValue(OVE->getSourceExpr(), AddressOf);
|
|
return;
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
switch (BO->getOpcode()) {
|
|
default:
|
|
break;
|
|
case(BO_PtrMemD):
|
|
case(BO_PtrMemI):
|
|
HandleValue(BO->getLHS(), AddressOf);
|
|
Visit(BO->getRHS());
|
|
return;
|
|
case(BO_Comma):
|
|
Visit(BO->getLHS());
|
|
HandleValue(BO->getRHS(), AddressOf);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Visit(E);
|
|
}
|
|
|
|
void CheckInitListExpr(InitListExpr *ILE) {
|
|
InitFieldIndex.push_back(0);
|
|
for (auto Child : ILE->children()) {
|
|
if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
|
|
CheckInitListExpr(SubList);
|
|
} else {
|
|
Visit(Child);
|
|
}
|
|
++InitFieldIndex.back();
|
|
}
|
|
InitFieldIndex.pop_back();
|
|
}
|
|
|
|
void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
|
|
FieldDecl *Field, const Type *BaseClass) {
|
|
// Remove Decls that may have been initialized in the previous
|
|
// initializer.
|
|
for (ValueDecl* VD : DeclsToRemove)
|
|
Decls.erase(VD);
|
|
DeclsToRemove.clear();
|
|
|
|
Constructor = FieldConstructor;
|
|
InitListExpr *ILE = dyn_cast<InitListExpr>(E);
|
|
|
|
if (ILE && Field) {
|
|
InitList = true;
|
|
InitListFieldDecl = Field;
|
|
InitFieldIndex.clear();
|
|
CheckInitListExpr(ILE);
|
|
} else {
|
|
InitList = false;
|
|
Visit(E);
|
|
}
|
|
|
|
if (Field)
|
|
Decls.erase(Field);
|
|
if (BaseClass)
|
|
BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
|
|
}
|
|
|
|
void VisitMemberExpr(MemberExpr *ME) {
|
|
// All uses of unbounded reference fields will warn.
|
|
HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
|
|
}
|
|
|
|
void VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
|
if (E->getCastKind() == CK_LValueToRValue) {
|
|
HandleValue(E->getSubExpr(), false /*AddressOf*/);
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitImplicitCastExpr(E);
|
|
}
|
|
|
|
void VisitCXXConstructExpr(CXXConstructExpr *E) {
|
|
if (E->getConstructor()->isCopyConstructor()) {
|
|
Expr *ArgExpr = E->getArg(0);
|
|
if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
|
|
if (ILE->getNumInits() == 1)
|
|
ArgExpr = ILE->getInit(0);
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
|
|
if (ICE->getCastKind() == CK_NoOp)
|
|
ArgExpr = ICE->getSubExpr();
|
|
HandleValue(ArgExpr, false /*AddressOf*/);
|
|
return;
|
|
}
|
|
Inherited::VisitCXXConstructExpr(E);
|
|
}
|
|
|
|
void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
|
|
Expr *Callee = E->getCallee();
|
|
if (isa<MemberExpr>(Callee)) {
|
|
HandleValue(Callee, false /*AddressOf*/);
|
|
for (auto Arg : E->arguments())
|
|
Visit(Arg);
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitCXXMemberCallExpr(E);
|
|
}
|
|
|
|
void VisitCallExpr(CallExpr *E) {
|
|
// Treat std::move as a use.
|
|
if (E->isCallToStdMove()) {
|
|
HandleValue(E->getArg(0), /*AddressOf=*/false);
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitCallExpr(E);
|
|
}
|
|
|
|
void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
|
|
Expr *Callee = E->getCallee();
|
|
|
|
if (isa<UnresolvedLookupExpr>(Callee))
|
|
return Inherited::VisitCXXOperatorCallExpr(E);
|
|
|
|
Visit(Callee);
|
|
for (auto Arg : E->arguments())
|
|
HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
|
|
}
|
|
|
|
void VisitBinaryOperator(BinaryOperator *E) {
|
|
// If a field assignment is detected, remove the field from the
|
|
// uninitiailized field set.
|
|
if (E->getOpcode() == BO_Assign)
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
|
|
if (!FD->getType()->isReferenceType())
|
|
DeclsToRemove.push_back(FD);
|
|
|
|
if (E->isCompoundAssignmentOp()) {
|
|
HandleValue(E->getLHS(), false /*AddressOf*/);
|
|
Visit(E->getRHS());
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitBinaryOperator(E);
|
|
}
|
|
|
|
void VisitUnaryOperator(UnaryOperator *E) {
|
|
if (E->isIncrementDecrementOp()) {
|
|
HandleValue(E->getSubExpr(), false /*AddressOf*/);
|
|
return;
|
|
}
|
|
if (E->getOpcode() == UO_AddrOf) {
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
|
|
HandleValue(ME->getBase(), true /*AddressOf*/);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Inherited::VisitUnaryOperator(E);
|
|
}
|
|
};
|
|
|
|
// Diagnose value-uses of fields to initialize themselves, e.g.
|
|
// foo(foo)
|
|
// where foo is not also a parameter to the constructor.
|
|
// Also diagnose across field uninitialized use such as
|
|
// x(y), y(x)
|
|
// TODO: implement -Wuninitialized and fold this into that framework.
|
|
static void DiagnoseUninitializedFields(
|
|
Sema &SemaRef, const CXXConstructorDecl *Constructor) {
|
|
|
|
if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
|
|
Constructor->getLocation())) {
|
|
return;
|
|
}
|
|
|
|
if (Constructor->isInvalidDecl())
|
|
return;
|
|
|
|
const CXXRecordDecl *RD = Constructor->getParent();
|
|
|
|
if (RD->getDescribedClassTemplate())
|
|
return;
|
|
|
|
// Holds fields that are uninitialized.
|
|
llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
|
|
|
|
// At the beginning, all fields are uninitialized.
|
|
for (auto *I : RD->decls()) {
|
|
if (auto *FD = dyn_cast<FieldDecl>(I)) {
|
|
UninitializedFields.insert(FD);
|
|
} else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
|
|
UninitializedFields.insert(IFD->getAnonField());
|
|
}
|
|
}
|
|
|
|
llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
|
|
for (auto I : RD->bases())
|
|
UninitializedBaseClasses.insert(I.getType().getCanonicalType());
|
|
|
|
if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
|
|
return;
|
|
|
|
UninitializedFieldVisitor UninitializedChecker(SemaRef,
|
|
UninitializedFields,
|
|
UninitializedBaseClasses);
|
|
|
|
for (const auto *FieldInit : Constructor->inits()) {
|
|
if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
|
|
break;
|
|
|
|
Expr *InitExpr = FieldInit->getInit();
|
|
if (!InitExpr)
|
|
continue;
|
|
|
|
if (CXXDefaultInitExpr *Default =
|
|
dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
|
|
InitExpr = Default->getExpr();
|
|
if (!InitExpr)
|
|
continue;
|
|
// In class initializers will point to the constructor.
|
|
UninitializedChecker.CheckInitializer(InitExpr, Constructor,
|
|
FieldInit->getAnyMember(),
|
|
FieldInit->getBaseClass());
|
|
} else {
|
|
UninitializedChecker.CheckInitializer(InitExpr, nullptr,
|
|
FieldInit->getAnyMember(),
|
|
FieldInit->getBaseClass());
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
/// \brief Enter a new C++ default initializer scope. After calling this, the
|
|
/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
|
|
/// parsing or instantiating the initializer failed.
|
|
void Sema::ActOnStartCXXInClassMemberInitializer() {
|
|
// Create a synthetic function scope to represent the call to the constructor
|
|
// that notionally surrounds a use of this initializer.
|
|
PushFunctionScope();
|
|
}
|
|
|
|
/// \brief This is invoked after parsing an in-class initializer for a
|
|
/// non-static C++ class member, and after instantiating an in-class initializer
|
|
/// in a class template. Such actions are deferred until the class is complete.
|
|
void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
|
|
SourceLocation InitLoc,
|
|
Expr *InitExpr) {
|
|
// Pop the notional constructor scope we created earlier.
|
|
PopFunctionScopeInfo(nullptr, D);
|
|
|
|
FieldDecl *FD = dyn_cast<FieldDecl>(D);
|
|
assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
|
|
"must set init style when field is created");
|
|
|
|
if (!InitExpr) {
|
|
D->setInvalidDecl();
|
|
if (FD)
|
|
FD->removeInClassInitializer();
|
|
return;
|
|
}
|
|
|
|
if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
|
|
FD->setInvalidDecl();
|
|
FD->removeInClassInitializer();
|
|
return;
|
|
}
|
|
|
|
ExprResult Init = InitExpr;
|
|
if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
|
|
InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
|
|
InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
|
|
? InitializationKind::CreateDirectList(InitExpr->getLocStart())
|
|
: InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
|
|
InitializationSequence Seq(*this, Entity, Kind, InitExpr);
|
|
Init = Seq.Perform(*this, Entity, Kind, InitExpr);
|
|
if (Init.isInvalid()) {
|
|
FD->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// C++11 [class.base.init]p7:
|
|
// The initialization of each base and member constitutes a
|
|
// full-expression.
|
|
Init = ActOnFinishFullExpr(Init.get(), InitLoc);
|
|
if (Init.isInvalid()) {
|
|
FD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
InitExpr = Init.get();
|
|
|
|
FD->setInClassInitializer(InitExpr);
|
|
}
|
|
|
|
/// \brief Find the direct and/or virtual base specifiers that
|
|
/// correspond to the given base type, for use in base initialization
|
|
/// within a constructor.
|
|
static bool FindBaseInitializer(Sema &SemaRef,
|
|
CXXRecordDecl *ClassDecl,
|
|
QualType BaseType,
|
|
const CXXBaseSpecifier *&DirectBaseSpec,
|
|
const CXXBaseSpecifier *&VirtualBaseSpec) {
|
|
// First, check for a direct base class.
|
|
DirectBaseSpec = nullptr;
|
|
for (const auto &Base : ClassDecl->bases()) {
|
|
if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
|
|
// We found a direct base of this type. That's what we're
|
|
// initializing.
|
|
DirectBaseSpec = &Base;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check for a virtual base class.
|
|
// FIXME: We might be able to short-circuit this if we know in advance that
|
|
// there are no virtual bases.
|
|
VirtualBaseSpec = nullptr;
|
|
if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
|
|
// We haven't found a base yet; search the class hierarchy for a
|
|
// virtual base class.
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/false);
|
|
if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
|
|
SemaRef.Context.getTypeDeclType(ClassDecl),
|
|
BaseType, Paths)) {
|
|
for (CXXBasePaths::paths_iterator Path = Paths.begin();
|
|
Path != Paths.end(); ++Path) {
|
|
if (Path->back().Base->isVirtual()) {
|
|
VirtualBaseSpec = Path->back().Base;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return DirectBaseSpec || VirtualBaseSpec;
|
|
}
|
|
|
|
/// \brief Handle a C++ member initializer using braced-init-list syntax.
|
|
MemInitResult
|
|
Sema::ActOnMemInitializer(Decl *ConstructorD,
|
|
Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS,
|
|
SourceLocation IdLoc,
|
|
Expr *InitList,
|
|
SourceLocation EllipsisLoc) {
|
|
return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
|
|
DS, IdLoc, InitList,
|
|
EllipsisLoc);
|
|
}
|
|
|
|
/// \brief Handle a C++ member initializer using parentheses syntax.
|
|
MemInitResult
|
|
Sema::ActOnMemInitializer(Decl *ConstructorD,
|
|
Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS,
|
|
SourceLocation IdLoc,
|
|
SourceLocation LParenLoc,
|
|
ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc,
|
|
SourceLocation EllipsisLoc) {
|
|
Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
|
|
Args, RParenLoc);
|
|
return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
|
|
DS, IdLoc, List, EllipsisLoc);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Callback to only accept typo corrections that can be a valid C++ member
|
|
// intializer: either a non-static field member or a base class.
|
|
class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
|
|
public:
|
|
explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
|
|
: ClassDecl(ClassDecl) {}
|
|
|
|
bool ValidateCandidate(const TypoCorrection &candidate) override {
|
|
if (NamedDecl *ND = candidate.getCorrectionDecl()) {
|
|
if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
|
|
return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
|
|
return isa<TypeDecl>(ND);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
CXXRecordDecl *ClassDecl;
|
|
};
|
|
|
|
}
|
|
|
|
/// \brief Handle a C++ member initializer.
|
|
MemInitResult
|
|
Sema::BuildMemInitializer(Decl *ConstructorD,
|
|
Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS,
|
|
SourceLocation IdLoc,
|
|
Expr *Init,
|
|
SourceLocation EllipsisLoc) {
|
|
ExprResult Res = CorrectDelayedTyposInExpr(Init);
|
|
if (!Res.isUsable())
|
|
return true;
|
|
Init = Res.get();
|
|
|
|
if (!ConstructorD)
|
|
return true;
|
|
|
|
AdjustDeclIfTemplate(ConstructorD);
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(ConstructorD);
|
|
if (!Constructor) {
|
|
// The user wrote a constructor initializer on a function that is
|
|
// not a C++ constructor. Ignore the error for now, because we may
|
|
// have more member initializers coming; we'll diagnose it just
|
|
// once in ActOnMemInitializers.
|
|
return true;
|
|
}
|
|
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
|
|
// C++ [class.base.init]p2:
|
|
// Names in a mem-initializer-id are looked up in the scope of the
|
|
// constructor's class and, if not found in that scope, are looked
|
|
// up in the scope containing the constructor's definition.
|
|
// [Note: if the constructor's class contains a member with the
|
|
// same name as a direct or virtual base class of the class, a
|
|
// mem-initializer-id naming the member or base class and composed
|
|
// of a single identifier refers to the class member. A
|
|
// mem-initializer-id for the hidden base class may be specified
|
|
// using a qualified name. ]
|
|
if (!SS.getScopeRep() && !TemplateTypeTy) {
|
|
// Look for a member, first.
|
|
DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
|
|
if (!Result.empty()) {
|
|
ValueDecl *Member;
|
|
if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
|
|
(Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
|
|
if (EllipsisLoc.isValid())
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
|
|
<< MemberOrBase
|
|
<< SourceRange(IdLoc, Init->getSourceRange().getEnd());
|
|
|
|
return BuildMemberInitializer(Member, Init, IdLoc);
|
|
}
|
|
}
|
|
}
|
|
// It didn't name a member, so see if it names a class.
|
|
QualType BaseType;
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
|
|
if (TemplateTypeTy) {
|
|
BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
|
|
} else if (DS.getTypeSpecType() == TST_decltype) {
|
|
BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
|
|
} else if (DS.getTypeSpecType() == TST_decltype_auto) {
|
|
Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
|
|
return true;
|
|
} else {
|
|
LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
|
|
LookupParsedName(R, S, &SS);
|
|
|
|
TypeDecl *TyD = R.getAsSingle<TypeDecl>();
|
|
if (!TyD) {
|
|
if (R.isAmbiguous()) return true;
|
|
|
|
// We don't want access-control diagnostics here.
|
|
R.suppressDiagnostics();
|
|
|
|
if (SS.isSet() && isDependentScopeSpecifier(SS)) {
|
|
bool NotUnknownSpecialization = false;
|
|
DeclContext *DC = computeDeclContext(SS, false);
|
|
if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
|
|
NotUnknownSpecialization = !Record->hasAnyDependentBases();
|
|
|
|
if (!NotUnknownSpecialization) {
|
|
// When the scope specifier can refer to a member of an unknown
|
|
// specialization, we take it as a type name.
|
|
BaseType = CheckTypenameType(ETK_None, SourceLocation(),
|
|
SS.getWithLocInContext(Context),
|
|
*MemberOrBase, IdLoc);
|
|
if (BaseType.isNull())
|
|
return true;
|
|
|
|
TInfo = Context.CreateTypeSourceInfo(BaseType);
|
|
DependentNameTypeLoc TL =
|
|
TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
|
|
if (!TL.isNull()) {
|
|
TL.setNameLoc(IdLoc);
|
|
TL.setElaboratedKeywordLoc(SourceLocation());
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
}
|
|
|
|
R.clear();
|
|
R.setLookupName(MemberOrBase);
|
|
}
|
|
}
|
|
|
|
// If no results were found, try to correct typos.
|
|
TypoCorrection Corr;
|
|
if (R.empty() && BaseType.isNull() &&
|
|
(Corr = CorrectTypo(
|
|
R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
|
|
llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
|
|
CTK_ErrorRecovery, ClassDecl))) {
|
|
if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
|
|
// We have found a non-static data member with a similar
|
|
// name to what was typed; complain and initialize that
|
|
// member.
|
|
diagnoseTypo(Corr,
|
|
PDiag(diag::err_mem_init_not_member_or_class_suggest)
|
|
<< MemberOrBase << true);
|
|
return BuildMemberInitializer(Member, Init, IdLoc);
|
|
} else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
|
|
const CXXBaseSpecifier *DirectBaseSpec;
|
|
const CXXBaseSpecifier *VirtualBaseSpec;
|
|
if (FindBaseInitializer(*this, ClassDecl,
|
|
Context.getTypeDeclType(Type),
|
|
DirectBaseSpec, VirtualBaseSpec)) {
|
|
// We have found a direct or virtual base class with a
|
|
// similar name to what was typed; complain and initialize
|
|
// that base class.
|
|
diagnoseTypo(Corr,
|
|
PDiag(diag::err_mem_init_not_member_or_class_suggest)
|
|
<< MemberOrBase << false,
|
|
PDiag() /*Suppress note, we provide our own.*/);
|
|
|
|
const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
|
|
: VirtualBaseSpec;
|
|
Diag(BaseSpec->getLocStart(),
|
|
diag::note_base_class_specified_here)
|
|
<< BaseSpec->getType()
|
|
<< BaseSpec->getSourceRange();
|
|
|
|
TyD = Type;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!TyD && BaseType.isNull()) {
|
|
Diag(IdLoc, diag::err_mem_init_not_member_or_class)
|
|
<< MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (BaseType.isNull()) {
|
|
BaseType = Context.getTypeDeclType(TyD);
|
|
MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
|
|
if (SS.isSet()) {
|
|
BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
|
|
BaseType);
|
|
TInfo = Context.CreateTypeSourceInfo(BaseType);
|
|
ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
|
|
TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
|
|
TL.setElaboratedKeywordLoc(SourceLocation());
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
|
|
|
|
return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
|
|
}
|
|
|
|
/// Checks a member initializer expression for cases where reference (or
|
|
/// pointer) members are bound to by-value parameters (or their addresses).
|
|
static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
|
|
Expr *Init,
|
|
SourceLocation IdLoc) {
|
|
QualType MemberTy = Member->getType();
|
|
|
|
// We only handle pointers and references currently.
|
|
// FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
|
|
if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
|
|
return;
|
|
|
|
const bool IsPointer = MemberTy->isPointerType();
|
|
if (IsPointer) {
|
|
if (const UnaryOperator *Op
|
|
= dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
|
|
// The only case we're worried about with pointers requires taking the
|
|
// address.
|
|
if (Op->getOpcode() != UO_AddrOf)
|
|
return;
|
|
|
|
Init = Op->getSubExpr();
|
|
} else {
|
|
// We only handle address-of expression initializers for pointers.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
|
|
// We only warn when referring to a non-reference parameter declaration.
|
|
const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
|
|
if (!Parameter || Parameter->getType()->isReferenceType())
|
|
return;
|
|
|
|
S.Diag(Init->getExprLoc(),
|
|
IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
|
|
: diag::warn_bind_ref_member_to_parameter)
|
|
<< Member << Parameter << Init->getSourceRange();
|
|
} else {
|
|
// Other initializers are fine.
|
|
return;
|
|
}
|
|
|
|
S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
|
|
<< (unsigned)IsPointer;
|
|
}
|
|
|
|
MemInitResult
|
|
Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
|
|
SourceLocation IdLoc) {
|
|
FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
|
|
IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
|
|
assert((DirectMember || IndirectMember) &&
|
|
"Member must be a FieldDecl or IndirectFieldDecl");
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
|
|
return true;
|
|
|
|
if (Member->isInvalidDecl())
|
|
return true;
|
|
|
|
MultiExprArg Args;
|
|
if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
|
|
Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
|
|
} else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
|
|
Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
|
|
} else {
|
|
// Template instantiation doesn't reconstruct ParenListExprs for us.
|
|
Args = Init;
|
|
}
|
|
|
|
SourceRange InitRange = Init->getSourceRange();
|
|
|
|
if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
|
|
// Can't check initialization for a member of dependent type or when
|
|
// any of the arguments are type-dependent expressions.
|
|
DiscardCleanupsInEvaluationContext();
|
|
} else {
|
|
bool InitList = false;
|
|
if (isa<InitListExpr>(Init)) {
|
|
InitList = true;
|
|
Args = Init;
|
|
}
|
|
|
|
// Initialize the member.
|
|
InitializedEntity MemberEntity =
|
|
DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
|
|
: InitializedEntity::InitializeMember(IndirectMember,
|
|
nullptr);
|
|
InitializationKind Kind =
|
|
InitList ? InitializationKind::CreateDirectList(IdLoc)
|
|
: InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
|
|
InitRange.getEnd());
|
|
|
|
InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
|
|
ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
|
|
nullptr);
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
|
|
|
|
// C++11 [class.base.init]p7:
|
|
// The initialization of each base and member constitutes a
|
|
// full-expression.
|
|
MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
Init = MemberInit.get();
|
|
}
|
|
|
|
if (DirectMember) {
|
|
return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
|
|
InitRange.getBegin(), Init,
|
|
InitRange.getEnd());
|
|
} else {
|
|
return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
|
|
InitRange.getBegin(), Init,
|
|
InitRange.getEnd());
|
|
}
|
|
}
|
|
|
|
MemInitResult
|
|
Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
|
|
CXXRecordDecl *ClassDecl) {
|
|
SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
|
|
if (!LangOpts.CPlusPlus11)
|
|
return Diag(NameLoc, diag::err_delegating_ctor)
|
|
<< TInfo->getTypeLoc().getLocalSourceRange();
|
|
Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
|
|
|
|
bool InitList = true;
|
|
MultiExprArg Args = Init;
|
|
if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
|
|
InitList = false;
|
|
Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
|
|
}
|
|
|
|
SourceRange InitRange = Init->getSourceRange();
|
|
// Initialize the object.
|
|
InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
|
|
QualType(ClassDecl->getTypeForDecl(), 0));
|
|
InitializationKind Kind =
|
|
InitList ? InitializationKind::CreateDirectList(NameLoc)
|
|
: InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
|
|
InitRange.getEnd());
|
|
InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
|
|
ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
|
|
Args, nullptr);
|
|
if (DelegationInit.isInvalid())
|
|
return true;
|
|
|
|
assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
|
|
"Delegating constructor with no target?");
|
|
|
|
// C++11 [class.base.init]p7:
|
|
// The initialization of each base and member constitutes a
|
|
// full-expression.
|
|
DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
|
|
InitRange.getBegin());
|
|
if (DelegationInit.isInvalid())
|
|
return true;
|
|
|
|
// If we are in a dependent context, template instantiation will
|
|
// perform this type-checking again. Just save the arguments that we
|
|
// received in a ParenListExpr.
|
|
// FIXME: This isn't quite ideal, since our ASTs don't capture all
|
|
// of the information that we have about the base
|
|
// initializer. However, deconstructing the ASTs is a dicey process,
|
|
// and this approach is far more likely to get the corner cases right.
|
|
if (CurContext->isDependentContext())
|
|
DelegationInit = Init;
|
|
|
|
return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
|
|
DelegationInit.getAs<Expr>(),
|
|
InitRange.getEnd());
|
|
}
|
|
|
|
MemInitResult
|
|
Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
|
|
Expr *Init, CXXRecordDecl *ClassDecl,
|
|
SourceLocation EllipsisLoc) {
|
|
SourceLocation BaseLoc
|
|
= BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
|
|
|
|
if (!BaseType->isDependentType() && !BaseType->isRecordType())
|
|
return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
|
|
<< BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
// C++ [class.base.init]p2:
|
|
// [...] Unless the mem-initializer-id names a nonstatic data
|
|
// member of the constructor's class or a direct or virtual base
|
|
// of that class, the mem-initializer is ill-formed. A
|
|
// mem-initializer-list can initialize a base class using any
|
|
// name that denotes that base class type.
|
|
bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
|
|
|
|
SourceRange InitRange = Init->getSourceRange();
|
|
if (EllipsisLoc.isValid()) {
|
|
// This is a pack expansion.
|
|
if (!BaseType->containsUnexpandedParameterPack()) {
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
|
|
<< SourceRange(BaseLoc, InitRange.getEnd());
|
|
|
|
EllipsisLoc = SourceLocation();
|
|
}
|
|
} else {
|
|
// Check for any unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
|
|
return true;
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
|
|
return true;
|
|
}
|
|
|
|
// Check for direct and virtual base classes.
|
|
const CXXBaseSpecifier *DirectBaseSpec = nullptr;
|
|
const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
|
|
if (!Dependent) {
|
|
if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
|
|
BaseType))
|
|
return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
|
|
|
|
FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
|
|
VirtualBaseSpec);
|
|
|
|
// C++ [base.class.init]p2:
|
|
// Unless the mem-initializer-id names a nonstatic data member of the
|
|
// constructor's class or a direct or virtual base of that class, the
|
|
// mem-initializer is ill-formed.
|
|
if (!DirectBaseSpec && !VirtualBaseSpec) {
|
|
// If the class has any dependent bases, then it's possible that
|
|
// one of those types will resolve to the same type as
|
|
// BaseType. Therefore, just treat this as a dependent base
|
|
// class initialization. FIXME: Should we try to check the
|
|
// initialization anyway? It seems odd.
|
|
if (ClassDecl->hasAnyDependentBases())
|
|
Dependent = true;
|
|
else
|
|
return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
|
|
<< BaseType << Context.getTypeDeclType(ClassDecl)
|
|
<< BaseTInfo->getTypeLoc().getLocalSourceRange();
|
|
}
|
|
}
|
|
|
|
if (Dependent) {
|
|
DiscardCleanupsInEvaluationContext();
|
|
|
|
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
|
|
/*IsVirtual=*/false,
|
|
InitRange.getBegin(), Init,
|
|
InitRange.getEnd(), EllipsisLoc);
|
|
}
|
|
|
|
// C++ [base.class.init]p2:
|
|
// If a mem-initializer-id is ambiguous because it designates both
|
|
// a direct non-virtual base class and an inherited virtual base
|
|
// class, the mem-initializer is ill-formed.
|
|
if (DirectBaseSpec && VirtualBaseSpec)
|
|
return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
|
|
<< BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
|
|
if (!BaseSpec)
|
|
BaseSpec = VirtualBaseSpec;
|
|
|
|
// Initialize the base.
|
|
bool InitList = true;
|
|
MultiExprArg Args = Init;
|
|
if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
|
|
InitList = false;
|
|
Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
|
|
}
|
|
|
|
InitializedEntity BaseEntity =
|
|
InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
|
|
InitializationKind Kind =
|
|
InitList ? InitializationKind::CreateDirectList(BaseLoc)
|
|
: InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
|
|
InitRange.getEnd());
|
|
InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
|
|
ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
|
|
if (BaseInit.isInvalid())
|
|
return true;
|
|
|
|
// C++11 [class.base.init]p7:
|
|
// The initialization of each base and member constitutes a
|
|
// full-expression.
|
|
BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
|
|
if (BaseInit.isInvalid())
|
|
return true;
|
|
|
|
// If we are in a dependent context, template instantiation will
|
|
// perform this type-checking again. Just save the arguments that we
|
|
// received in a ParenListExpr.
|
|
// FIXME: This isn't quite ideal, since our ASTs don't capture all
|
|
// of the information that we have about the base
|
|
// initializer. However, deconstructing the ASTs is a dicey process,
|
|
// and this approach is far more likely to get the corner cases right.
|
|
if (CurContext->isDependentContext())
|
|
BaseInit = Init;
|
|
|
|
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
|
|
BaseSpec->isVirtual(),
|
|
InitRange.getBegin(),
|
|
BaseInit.getAs<Expr>(),
|
|
InitRange.getEnd(), EllipsisLoc);
|
|
}
|
|
|
|
// Create a static_cast\<T&&>(expr).
|
|
static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
|
|
if (T.isNull()) T = E->getType();
|
|
QualType TargetType = SemaRef.BuildReferenceType(
|
|
T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
|
|
SourceLocation ExprLoc = E->getLocStart();
|
|
TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
|
|
TargetType, ExprLoc);
|
|
|
|
return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
|
|
SourceRange(ExprLoc, ExprLoc),
|
|
E->getSourceRange()).get();
|
|
}
|
|
|
|
/// ImplicitInitializerKind - How an implicit base or member initializer should
|
|
/// initialize its base or member.
|
|
enum ImplicitInitializerKind {
|
|
IIK_Default,
|
|
IIK_Copy,
|
|
IIK_Move,
|
|
IIK_Inherit
|
|
};
|
|
|
|
static bool
|
|
BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
|
|
ImplicitInitializerKind ImplicitInitKind,
|
|
CXXBaseSpecifier *BaseSpec,
|
|
bool IsInheritedVirtualBase,
|
|
CXXCtorInitializer *&CXXBaseInit) {
|
|
InitializedEntity InitEntity
|
|
= InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
|
|
IsInheritedVirtualBase);
|
|
|
|
ExprResult BaseInit;
|
|
|
|
switch (ImplicitInitKind) {
|
|
case IIK_Inherit:
|
|
case IIK_Default: {
|
|
InitializationKind InitKind
|
|
= InitializationKind::CreateDefault(Constructor->getLocation());
|
|
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
|
|
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
|
|
break;
|
|
}
|
|
|
|
case IIK_Move:
|
|
case IIK_Copy: {
|
|
bool Moving = ImplicitInitKind == IIK_Move;
|
|
ParmVarDecl *Param = Constructor->getParamDecl(0);
|
|
QualType ParamType = Param->getType().getNonReferenceType();
|
|
|
|
Expr *CopyCtorArg =
|
|
DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
|
|
SourceLocation(), Param, false,
|
|
Constructor->getLocation(), ParamType,
|
|
VK_LValue, nullptr);
|
|
|
|
SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
|
|
|
|
// Cast to the base class to avoid ambiguities.
|
|
QualType ArgTy =
|
|
SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
|
|
ParamType.getQualifiers());
|
|
|
|
if (Moving) {
|
|
CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
|
|
}
|
|
|
|
CXXCastPath BasePath;
|
|
BasePath.push_back(BaseSpec);
|
|
CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
|
|
CK_UncheckedDerivedToBase,
|
|
Moving ? VK_XValue : VK_LValue,
|
|
&BasePath).get();
|
|
|
|
InitializationKind InitKind
|
|
= InitializationKind::CreateDirect(Constructor->getLocation(),
|
|
SourceLocation(), SourceLocation());
|
|
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
|
|
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
|
|
if (BaseInit.isInvalid())
|
|
return true;
|
|
|
|
CXXBaseInit =
|
|
new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
|
|
SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
|
|
SourceLocation()),
|
|
BaseSpec->isVirtual(),
|
|
SourceLocation(),
|
|
BaseInit.getAs<Expr>(),
|
|
SourceLocation(),
|
|
SourceLocation());
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool RefersToRValueRef(Expr *MemRef) {
|
|
ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
|
|
return Referenced->getType()->isRValueReferenceType();
|
|
}
|
|
|
|
static bool
|
|
BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
|
|
ImplicitInitializerKind ImplicitInitKind,
|
|
FieldDecl *Field, IndirectFieldDecl *Indirect,
|
|
CXXCtorInitializer *&CXXMemberInit) {
|
|
if (Field->isInvalidDecl())
|
|
return true;
|
|
|
|
SourceLocation Loc = Constructor->getLocation();
|
|
|
|
if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
|
|
bool Moving = ImplicitInitKind == IIK_Move;
|
|
ParmVarDecl *Param = Constructor->getParamDecl(0);
|
|
QualType ParamType = Param->getType().getNonReferenceType();
|
|
|
|
// Suppress copying zero-width bitfields.
|
|
if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
|
|
return false;
|
|
|
|
Expr *MemberExprBase =
|
|
DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
|
|
SourceLocation(), Param, false,
|
|
Loc, ParamType, VK_LValue, nullptr);
|
|
|
|
SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
|
|
|
|
if (Moving) {
|
|
MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
|
|
}
|
|
|
|
// Build a reference to this field within the parameter.
|
|
CXXScopeSpec SS;
|
|
LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
|
|
Sema::LookupMemberName);
|
|
MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
|
|
: cast<ValueDecl>(Field), AS_public);
|
|
MemberLookup.resolveKind();
|
|
ExprResult CtorArg
|
|
= SemaRef.BuildMemberReferenceExpr(MemberExprBase,
|
|
ParamType, Loc,
|
|
/*IsArrow=*/false,
|
|
SS,
|
|
/*TemplateKWLoc=*/SourceLocation(),
|
|
/*FirstQualifierInScope=*/nullptr,
|
|
MemberLookup,
|
|
/*TemplateArgs=*/nullptr,
|
|
/*S*/nullptr);
|
|
if (CtorArg.isInvalid())
|
|
return true;
|
|
|
|
// C++11 [class.copy]p15:
|
|
// - if a member m has rvalue reference type T&&, it is direct-initialized
|
|
// with static_cast<T&&>(x.m);
|
|
if (RefersToRValueRef(CtorArg.get())) {
|
|
CtorArg = CastForMoving(SemaRef, CtorArg.get());
|
|
}
|
|
|
|
InitializedEntity Entity =
|
|
Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
|
|
/*Implicit*/ true)
|
|
: InitializedEntity::InitializeMember(Field, nullptr,
|
|
/*Implicit*/ true);
|
|
|
|
// Direct-initialize to use the copy constructor.
|
|
InitializationKind InitKind =
|
|
InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
|
|
|
|
Expr *CtorArgE = CtorArg.getAs<Expr>();
|
|
InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
|
|
ExprResult MemberInit =
|
|
InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
|
|
MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
if (Indirect)
|
|
CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
|
|
SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
|
|
else
|
|
CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
|
|
SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
|
|
return false;
|
|
}
|
|
|
|
assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
|
|
"Unhandled implicit init kind!");
|
|
|
|
QualType FieldBaseElementType =
|
|
SemaRef.Context.getBaseElementType(Field->getType());
|
|
|
|
if (FieldBaseElementType->isRecordType()) {
|
|
InitializedEntity InitEntity =
|
|
Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
|
|
/*Implicit*/ true)
|
|
: InitializedEntity::InitializeMember(Field, nullptr,
|
|
/*Implicit*/ true);
|
|
InitializationKind InitKind =
|
|
InitializationKind::CreateDefault(Loc);
|
|
|
|
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
|
|
ExprResult MemberInit =
|
|
InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
|
|
|
|
MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
if (Indirect)
|
|
CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
|
|
Indirect, Loc,
|
|
Loc,
|
|
MemberInit.get(),
|
|
Loc);
|
|
else
|
|
CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
|
|
Field, Loc, Loc,
|
|
MemberInit.get(),
|
|
Loc);
|
|
return false;
|
|
}
|
|
|
|
if (!Field->getParent()->isUnion()) {
|
|
if (FieldBaseElementType->isReferenceType()) {
|
|
SemaRef.Diag(Constructor->getLocation(),
|
|
diag::err_uninitialized_member_in_ctor)
|
|
<< (int)Constructor->isImplicit()
|
|
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
|
|
<< 0 << Field->getDeclName();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
|
|
return true;
|
|
}
|
|
|
|
if (FieldBaseElementType.isConstQualified()) {
|
|
SemaRef.Diag(Constructor->getLocation(),
|
|
diag::err_uninitialized_member_in_ctor)
|
|
<< (int)Constructor->isImplicit()
|
|
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
|
|
<< 1 << Field->getDeclName();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
|
|
// ARC and Weak:
|
|
// Default-initialize Objective-C pointers to NULL.
|
|
CXXMemberInit
|
|
= new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
|
|
Loc, Loc,
|
|
new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
|
|
Loc);
|
|
return false;
|
|
}
|
|
|
|
// Nothing to initialize.
|
|
CXXMemberInit = nullptr;
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
struct BaseAndFieldInfo {
|
|
Sema &S;
|
|
CXXConstructorDecl *Ctor;
|
|
bool AnyErrorsInInits;
|
|
ImplicitInitializerKind IIK;
|
|
llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
|
|
SmallVector<CXXCtorInitializer*, 8> AllToInit;
|
|
llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
|
|
|
|
BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
|
|
: S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
|
|
bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
|
|
if (Ctor->getInheritedConstructor())
|
|
IIK = IIK_Inherit;
|
|
else if (Generated && Ctor->isCopyConstructor())
|
|
IIK = IIK_Copy;
|
|
else if (Generated && Ctor->isMoveConstructor())
|
|
IIK = IIK_Move;
|
|
else
|
|
IIK = IIK_Default;
|
|
}
|
|
|
|
bool isImplicitCopyOrMove() const {
|
|
switch (IIK) {
|
|
case IIK_Copy:
|
|
case IIK_Move:
|
|
return true;
|
|
|
|
case IIK_Default:
|
|
case IIK_Inherit:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Invalid ImplicitInitializerKind!");
|
|
}
|
|
|
|
bool addFieldInitializer(CXXCtorInitializer *Init) {
|
|
AllToInit.push_back(Init);
|
|
|
|
// Check whether this initializer makes the field "used".
|
|
if (Init->getInit()->HasSideEffects(S.Context))
|
|
S.UnusedPrivateFields.remove(Init->getAnyMember());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isInactiveUnionMember(FieldDecl *Field) {
|
|
RecordDecl *Record = Field->getParent();
|
|
if (!Record->isUnion())
|
|
return false;
|
|
|
|
if (FieldDecl *Active =
|
|
ActiveUnionMember.lookup(Record->getCanonicalDecl()))
|
|
return Active != Field->getCanonicalDecl();
|
|
|
|
// In an implicit copy or move constructor, ignore any in-class initializer.
|
|
if (isImplicitCopyOrMove())
|
|
return true;
|
|
|
|
// If there's no explicit initialization, the field is active only if it
|
|
// has an in-class initializer...
|
|
if (Field->hasInClassInitializer())
|
|
return false;
|
|
// ... or it's an anonymous struct or union whose class has an in-class
|
|
// initializer.
|
|
if (!Field->isAnonymousStructOrUnion())
|
|
return true;
|
|
CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
|
|
return !FieldRD->hasInClassInitializer();
|
|
}
|
|
|
|
/// \brief Determine whether the given field is, or is within, a union member
|
|
/// that is inactive (because there was an initializer given for a different
|
|
/// member of the union, or because the union was not initialized at all).
|
|
bool isWithinInactiveUnionMember(FieldDecl *Field,
|
|
IndirectFieldDecl *Indirect) {
|
|
if (!Indirect)
|
|
return isInactiveUnionMember(Field);
|
|
|
|
for (auto *C : Indirect->chain()) {
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(C);
|
|
if (Field && isInactiveUnionMember(Field))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Determine whether the given type is an incomplete or zero-lenfgth
|
|
/// array type.
|
|
static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
|
|
if (T->isIncompleteArrayType())
|
|
return true;
|
|
|
|
while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
|
|
if (!ArrayT->getSize())
|
|
return true;
|
|
|
|
T = ArrayT->getElementType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
|
|
FieldDecl *Field,
|
|
IndirectFieldDecl *Indirect = nullptr) {
|
|
if (Field->isInvalidDecl())
|
|
return false;
|
|
|
|
// Overwhelmingly common case: we have a direct initializer for this field.
|
|
if (CXXCtorInitializer *Init =
|
|
Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
|
|
return Info.addFieldInitializer(Init);
|
|
|
|
// C++11 [class.base.init]p8:
|
|
// if the entity is a non-static data member that has a
|
|
// brace-or-equal-initializer and either
|
|
// -- the constructor's class is a union and no other variant member of that
|
|
// union is designated by a mem-initializer-id or
|
|
// -- the constructor's class is not a union, and, if the entity is a member
|
|
// of an anonymous union, no other member of that union is designated by
|
|
// a mem-initializer-id,
|
|
// the entity is initialized as specified in [dcl.init].
|
|
//
|
|
// We also apply the same rules to handle anonymous structs within anonymous
|
|
// unions.
|
|
if (Info.isWithinInactiveUnionMember(Field, Indirect))
|
|
return false;
|
|
|
|
if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
|
|
ExprResult DIE =
|
|
SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
|
|
if (DIE.isInvalid())
|
|
return true;
|
|
CXXCtorInitializer *Init;
|
|
if (Indirect)
|
|
Init = new (SemaRef.Context)
|
|
CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
|
|
SourceLocation(), DIE.get(), SourceLocation());
|
|
else
|
|
Init = new (SemaRef.Context)
|
|
CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
|
|
SourceLocation(), DIE.get(), SourceLocation());
|
|
return Info.addFieldInitializer(Init);
|
|
}
|
|
|
|
// Don't initialize incomplete or zero-length arrays.
|
|
if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
|
|
return false;
|
|
|
|
// Don't try to build an implicit initializer if there were semantic
|
|
// errors in any of the initializers (and therefore we might be
|
|
// missing some that the user actually wrote).
|
|
if (Info.AnyErrorsInInits)
|
|
return false;
|
|
|
|
CXXCtorInitializer *Init = nullptr;
|
|
if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
|
|
Indirect, Init))
|
|
return true;
|
|
|
|
if (!Init)
|
|
return false;
|
|
|
|
return Info.addFieldInitializer(Init);
|
|
}
|
|
|
|
bool
|
|
Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
|
|
CXXCtorInitializer *Initializer) {
|
|
assert(Initializer->isDelegatingInitializer());
|
|
Constructor->setNumCtorInitializers(1);
|
|
CXXCtorInitializer **initializer =
|
|
new (Context) CXXCtorInitializer*[1];
|
|
memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
|
|
Constructor->setCtorInitializers(initializer);
|
|
|
|
if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
|
|
MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
|
|
DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
|
|
}
|
|
|
|
DelegatingCtorDecls.push_back(Constructor);
|
|
|
|
DiagnoseUninitializedFields(*this, Constructor);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
|
|
ArrayRef<CXXCtorInitializer *> Initializers) {
|
|
if (Constructor->isDependentContext()) {
|
|
// Just store the initializers as written, they will be checked during
|
|
// instantiation.
|
|
if (!Initializers.empty()) {
|
|
Constructor->setNumCtorInitializers(Initializers.size());
|
|
CXXCtorInitializer **baseOrMemberInitializers =
|
|
new (Context) CXXCtorInitializer*[Initializers.size()];
|
|
memcpy(baseOrMemberInitializers, Initializers.data(),
|
|
Initializers.size() * sizeof(CXXCtorInitializer*));
|
|
Constructor->setCtorInitializers(baseOrMemberInitializers);
|
|
}
|
|
|
|
// Let template instantiation know whether we had errors.
|
|
if (AnyErrors)
|
|
Constructor->setInvalidDecl();
|
|
|
|
return false;
|
|
}
|
|
|
|
BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
|
|
|
|
// We need to build the initializer AST according to order of construction
|
|
// and not what user specified in the Initializers list.
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
|
|
if (!ClassDecl)
|
|
return true;
|
|
|
|
bool HadError = false;
|
|
|
|
for (unsigned i = 0; i < Initializers.size(); i++) {
|
|
CXXCtorInitializer *Member = Initializers[i];
|
|
|
|
if (Member->isBaseInitializer())
|
|
Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
|
|
else {
|
|
Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
|
|
|
|
if (IndirectFieldDecl *F = Member->getIndirectMember()) {
|
|
for (auto *C : F->chain()) {
|
|
FieldDecl *FD = dyn_cast<FieldDecl>(C);
|
|
if (FD && FD->getParent()->isUnion())
|
|
Info.ActiveUnionMember.insert(std::make_pair(
|
|
FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
|
|
}
|
|
} else if (FieldDecl *FD = Member->getMember()) {
|
|
if (FD->getParent()->isUnion())
|
|
Info.ActiveUnionMember.insert(std::make_pair(
|
|
FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Keep track of the direct virtual bases.
|
|
llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
|
|
for (auto &I : ClassDecl->bases()) {
|
|
if (I.isVirtual())
|
|
DirectVBases.insert(&I);
|
|
}
|
|
|
|
// Push virtual bases before others.
|
|
for (auto &VBase : ClassDecl->vbases()) {
|
|
if (CXXCtorInitializer *Value
|
|
= Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
|
|
// [class.base.init]p7, per DR257:
|
|
// A mem-initializer where the mem-initializer-id names a virtual base
|
|
// class is ignored during execution of a constructor of any class that
|
|
// is not the most derived class.
|
|
if (ClassDecl->isAbstract()) {
|
|
// FIXME: Provide a fixit to remove the base specifier. This requires
|
|
// tracking the location of the associated comma for a base specifier.
|
|
Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
|
|
<< VBase.getType() << ClassDecl;
|
|
DiagnoseAbstractType(ClassDecl);
|
|
}
|
|
|
|
Info.AllToInit.push_back(Value);
|
|
} else if (!AnyErrors && !ClassDecl->isAbstract()) {
|
|
// [class.base.init]p8, per DR257:
|
|
// If a given [...] base class is not named by a mem-initializer-id
|
|
// [...] and the entity is not a virtual base class of an abstract
|
|
// class, then [...] the entity is default-initialized.
|
|
bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
|
|
CXXCtorInitializer *CXXBaseInit;
|
|
if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
|
|
&VBase, IsInheritedVirtualBase,
|
|
CXXBaseInit)) {
|
|
HadError = true;
|
|
continue;
|
|
}
|
|
|
|
Info.AllToInit.push_back(CXXBaseInit);
|
|
}
|
|
}
|
|
|
|
// Non-virtual bases.
|
|
for (auto &Base : ClassDecl->bases()) {
|
|
// Virtuals are in the virtual base list and already constructed.
|
|
if (Base.isVirtual())
|
|
continue;
|
|
|
|
if (CXXCtorInitializer *Value
|
|
= Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
|
|
Info.AllToInit.push_back(Value);
|
|
} else if (!AnyErrors) {
|
|
CXXCtorInitializer *CXXBaseInit;
|
|
if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
|
|
&Base, /*IsInheritedVirtualBase=*/false,
|
|
CXXBaseInit)) {
|
|
HadError = true;
|
|
continue;
|
|
}
|
|
|
|
Info.AllToInit.push_back(CXXBaseInit);
|
|
}
|
|
}
|
|
|
|
// Fields.
|
|
for (auto *Mem : ClassDecl->decls()) {
|
|
if (auto *F = dyn_cast<FieldDecl>(Mem)) {
|
|
// C++ [class.bit]p2:
|
|
// A declaration for a bit-field that omits the identifier declares an
|
|
// unnamed bit-field. Unnamed bit-fields are not members and cannot be
|
|
// initialized.
|
|
if (F->isUnnamedBitfield())
|
|
continue;
|
|
|
|
// If we're not generating the implicit copy/move constructor, then we'll
|
|
// handle anonymous struct/union fields based on their individual
|
|
// indirect fields.
|
|
if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
|
|
continue;
|
|
|
|
if (CollectFieldInitializer(*this, Info, F))
|
|
HadError = true;
|
|
continue;
|
|
}
|
|
|
|
// Beyond this point, we only consider default initialization.
|
|
if (Info.isImplicitCopyOrMove())
|
|
continue;
|
|
|
|
if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
|
|
if (F->getType()->isIncompleteArrayType()) {
|
|
assert(ClassDecl->hasFlexibleArrayMember() &&
|
|
"Incomplete array type is not valid");
|
|
continue;
|
|
}
|
|
|
|
// Initialize each field of an anonymous struct individually.
|
|
if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
|
|
HadError = true;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
unsigned NumInitializers = Info.AllToInit.size();
|
|
if (NumInitializers > 0) {
|
|
Constructor->setNumCtorInitializers(NumInitializers);
|
|
CXXCtorInitializer **baseOrMemberInitializers =
|
|
new (Context) CXXCtorInitializer*[NumInitializers];
|
|
memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
|
|
NumInitializers * sizeof(CXXCtorInitializer*));
|
|
Constructor->setCtorInitializers(baseOrMemberInitializers);
|
|
|
|
// Constructors implicitly reference the base and member
|
|
// destructors.
|
|
MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
|
|
Constructor->getParent());
|
|
}
|
|
|
|
return HadError;
|
|
}
|
|
|
|
static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
|
|
if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->isAnonymousStructOrUnion()) {
|
|
for (auto *Field : RD->fields())
|
|
PopulateKeysForFields(Field, IdealInits);
|
|
return;
|
|
}
|
|
}
|
|
IdealInits.push_back(Field->getCanonicalDecl());
|
|
}
|
|
|
|
static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
|
|
return Context.getCanonicalType(BaseType).getTypePtr();
|
|
}
|
|
|
|
static const void *GetKeyForMember(ASTContext &Context,
|
|
CXXCtorInitializer *Member) {
|
|
if (!Member->isAnyMemberInitializer())
|
|
return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
|
|
|
|
return Member->getAnyMember()->getCanonicalDecl();
|
|
}
|
|
|
|
static void DiagnoseBaseOrMemInitializerOrder(
|
|
Sema &SemaRef, const CXXConstructorDecl *Constructor,
|
|
ArrayRef<CXXCtorInitializer *> Inits) {
|
|
if (Constructor->getDeclContext()->isDependentContext())
|
|
return;
|
|
|
|
// Don't check initializers order unless the warning is enabled at the
|
|
// location of at least one initializer.
|
|
bool ShouldCheckOrder = false;
|
|
for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
|
|
CXXCtorInitializer *Init = Inits[InitIndex];
|
|
if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
|
|
Init->getSourceLocation())) {
|
|
ShouldCheckOrder = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!ShouldCheckOrder)
|
|
return;
|
|
|
|
// Build the list of bases and members in the order that they'll
|
|
// actually be initialized. The explicit initializers should be in
|
|
// this same order but may be missing things.
|
|
SmallVector<const void*, 32> IdealInitKeys;
|
|
|
|
const CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
|
|
// 1. Virtual bases.
|
|
for (const auto &VBase : ClassDecl->vbases())
|
|
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
|
|
|
|
// 2. Non-virtual bases.
|
|
for (const auto &Base : ClassDecl->bases()) {
|
|
if (Base.isVirtual())
|
|
continue;
|
|
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
|
|
}
|
|
|
|
// 3. Direct fields.
|
|
for (auto *Field : ClassDecl->fields()) {
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
PopulateKeysForFields(Field, IdealInitKeys);
|
|
}
|
|
|
|
unsigned NumIdealInits = IdealInitKeys.size();
|
|
unsigned IdealIndex = 0;
|
|
|
|
CXXCtorInitializer *PrevInit = nullptr;
|
|
for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
|
|
CXXCtorInitializer *Init = Inits[InitIndex];
|
|
const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
|
|
|
|
// Scan forward to try to find this initializer in the idealized
|
|
// initializers list.
|
|
for (; IdealIndex != NumIdealInits; ++IdealIndex)
|
|
if (InitKey == IdealInitKeys[IdealIndex])
|
|
break;
|
|
|
|
// If we didn't find this initializer, it must be because we
|
|
// scanned past it on a previous iteration. That can only
|
|
// happen if we're out of order; emit a warning.
|
|
if (IdealIndex == NumIdealInits && PrevInit) {
|
|
Sema::SemaDiagnosticBuilder D =
|
|
SemaRef.Diag(PrevInit->getSourceLocation(),
|
|
diag::warn_initializer_out_of_order);
|
|
|
|
if (PrevInit->isAnyMemberInitializer())
|
|
D << 0 << PrevInit->getAnyMember()->getDeclName();
|
|
else
|
|
D << 1 << PrevInit->getTypeSourceInfo()->getType();
|
|
|
|
if (Init->isAnyMemberInitializer())
|
|
D << 0 << Init->getAnyMember()->getDeclName();
|
|
else
|
|
D << 1 << Init->getTypeSourceInfo()->getType();
|
|
|
|
// Move back to the initializer's location in the ideal list.
|
|
for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
|
|
if (InitKey == IdealInitKeys[IdealIndex])
|
|
break;
|
|
|
|
assert(IdealIndex < NumIdealInits &&
|
|
"initializer not found in initializer list");
|
|
}
|
|
|
|
PrevInit = Init;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
bool CheckRedundantInit(Sema &S,
|
|
CXXCtorInitializer *Init,
|
|
CXXCtorInitializer *&PrevInit) {
|
|
if (!PrevInit) {
|
|
PrevInit = Init;
|
|
return false;
|
|
}
|
|
|
|
if (FieldDecl *Field = Init->getAnyMember())
|
|
S.Diag(Init->getSourceLocation(),
|
|
diag::err_multiple_mem_initialization)
|
|
<< Field->getDeclName()
|
|
<< Init->getSourceRange();
|
|
else {
|
|
const Type *BaseClass = Init->getBaseClass();
|
|
assert(BaseClass && "neither field nor base");
|
|
S.Diag(Init->getSourceLocation(),
|
|
diag::err_multiple_base_initialization)
|
|
<< QualType(BaseClass, 0)
|
|
<< Init->getSourceRange();
|
|
}
|
|
S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
|
|
<< 0 << PrevInit->getSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
|
|
typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
|
|
|
|
bool CheckRedundantUnionInit(Sema &S,
|
|
CXXCtorInitializer *Init,
|
|
RedundantUnionMap &Unions) {
|
|
FieldDecl *Field = Init->getAnyMember();
|
|
RecordDecl *Parent = Field->getParent();
|
|
NamedDecl *Child = Field;
|
|
|
|
while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
|
|
if (Parent->isUnion()) {
|
|
UnionEntry &En = Unions[Parent];
|
|
if (En.first && En.first != Child) {
|
|
S.Diag(Init->getSourceLocation(),
|
|
diag::err_multiple_mem_union_initialization)
|
|
<< Field->getDeclName()
|
|
<< Init->getSourceRange();
|
|
S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
|
|
<< 0 << En.second->getSourceRange();
|
|
return true;
|
|
}
|
|
if (!En.first) {
|
|
En.first = Child;
|
|
En.second = Init;
|
|
}
|
|
if (!Parent->isAnonymousStructOrUnion())
|
|
return false;
|
|
}
|
|
|
|
Child = Parent;
|
|
Parent = cast<RecordDecl>(Parent->getDeclContext());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// ActOnMemInitializers - Handle the member initializers for a constructor.
|
|
void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
|
|
SourceLocation ColonLoc,
|
|
ArrayRef<CXXCtorInitializer*> MemInits,
|
|
bool AnyErrors) {
|
|
if (!ConstructorDecl)
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(ConstructorDecl);
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(ConstructorDecl);
|
|
|
|
if (!Constructor) {
|
|
Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
|
|
return;
|
|
}
|
|
|
|
// Mapping for the duplicate initializers check.
|
|
// For member initializers, this is keyed with a FieldDecl*.
|
|
// For base initializers, this is keyed with a Type*.
|
|
llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
|
|
|
|
// Mapping for the inconsistent anonymous-union initializers check.
|
|
RedundantUnionMap MemberUnions;
|
|
|
|
bool HadError = false;
|
|
for (unsigned i = 0; i < MemInits.size(); i++) {
|
|
CXXCtorInitializer *Init = MemInits[i];
|
|
|
|
// Set the source order index.
|
|
Init->setSourceOrder(i);
|
|
|
|
if (Init->isAnyMemberInitializer()) {
|
|
const void *Key = GetKeyForMember(Context, Init);
|
|
if (CheckRedundantInit(*this, Init, Members[Key]) ||
|
|
CheckRedundantUnionInit(*this, Init, MemberUnions))
|
|
HadError = true;
|
|
} else if (Init->isBaseInitializer()) {
|
|
const void *Key = GetKeyForMember(Context, Init);
|
|
if (CheckRedundantInit(*this, Init, Members[Key]))
|
|
HadError = true;
|
|
} else {
|
|
assert(Init->isDelegatingInitializer());
|
|
// This must be the only initializer
|
|
if (MemInits.size() != 1) {
|
|
Diag(Init->getSourceLocation(),
|
|
diag::err_delegating_initializer_alone)
|
|
<< Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
|
|
// We will treat this as being the only initializer.
|
|
}
|
|
SetDelegatingInitializer(Constructor, MemInits[i]);
|
|
// Return immediately as the initializer is set.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (HadError)
|
|
return;
|
|
|
|
DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
|
|
|
|
SetCtorInitializers(Constructor, AnyErrors, MemInits);
|
|
|
|
DiagnoseUninitializedFields(*this, Constructor);
|
|
}
|
|
|
|
void
|
|
Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
|
|
CXXRecordDecl *ClassDecl) {
|
|
// Ignore dependent contexts. Also ignore unions, since their members never
|
|
// have destructors implicitly called.
|
|
if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
|
|
return;
|
|
|
|
// FIXME: all the access-control diagnostics are positioned on the
|
|
// field/base declaration. That's probably good; that said, the
|
|
// user might reasonably want to know why the destructor is being
|
|
// emitted, and we currently don't say.
|
|
|
|
// Non-static data members.
|
|
for (auto *Field : ClassDecl->fields()) {
|
|
if (Field->isInvalidDecl())
|
|
continue;
|
|
|
|
// Don't destroy incomplete or zero-length arrays.
|
|
if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
|
|
continue;
|
|
|
|
QualType FieldType = Context.getBaseElementType(Field->getType());
|
|
|
|
const RecordType* RT = FieldType->getAs<RecordType>();
|
|
if (!RT)
|
|
continue;
|
|
|
|
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (FieldClassDecl->isInvalidDecl())
|
|
continue;
|
|
if (FieldClassDecl->hasIrrelevantDestructor())
|
|
continue;
|
|
// The destructor for an implicit anonymous union member is never invoked.
|
|
if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
|
|
continue;
|
|
|
|
CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
|
|
assert(Dtor && "No dtor found for FieldClassDecl!");
|
|
CheckDestructorAccess(Field->getLocation(), Dtor,
|
|
PDiag(diag::err_access_dtor_field)
|
|
<< Field->getDeclName()
|
|
<< FieldType);
|
|
|
|
MarkFunctionReferenced(Location, Dtor);
|
|
DiagnoseUseOfDecl(Dtor, Location);
|
|
}
|
|
|
|
// We only potentially invoke the destructors of potentially constructed
|
|
// subobjects.
|
|
bool VisitVirtualBases = !ClassDecl->isAbstract();
|
|
|
|
llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
|
|
|
|
// Bases.
|
|
for (const auto &Base : ClassDecl->bases()) {
|
|
// Bases are always records in a well-formed non-dependent class.
|
|
const RecordType *RT = Base.getType()->getAs<RecordType>();
|
|
|
|
// Remember direct virtual bases.
|
|
if (Base.isVirtual()) {
|
|
if (!VisitVirtualBases)
|
|
continue;
|
|
DirectVirtualBases.insert(RT);
|
|
}
|
|
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
// If our base class is invalid, we probably can't get its dtor anyway.
|
|
if (BaseClassDecl->isInvalidDecl())
|
|
continue;
|
|
if (BaseClassDecl->hasIrrelevantDestructor())
|
|
continue;
|
|
|
|
CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
|
|
assert(Dtor && "No dtor found for BaseClassDecl!");
|
|
|
|
// FIXME: caret should be on the start of the class name
|
|
CheckDestructorAccess(Base.getLocStart(), Dtor,
|
|
PDiag(diag::err_access_dtor_base)
|
|
<< Base.getType()
|
|
<< Base.getSourceRange(),
|
|
Context.getTypeDeclType(ClassDecl));
|
|
|
|
MarkFunctionReferenced(Location, Dtor);
|
|
DiagnoseUseOfDecl(Dtor, Location);
|
|
}
|
|
|
|
if (!VisitVirtualBases)
|
|
return;
|
|
|
|
// Virtual bases.
|
|
for (const auto &VBase : ClassDecl->vbases()) {
|
|
// Bases are always records in a well-formed non-dependent class.
|
|
const RecordType *RT = VBase.getType()->castAs<RecordType>();
|
|
|
|
// Ignore direct virtual bases.
|
|
if (DirectVirtualBases.count(RT))
|
|
continue;
|
|
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
// If our base class is invalid, we probably can't get its dtor anyway.
|
|
if (BaseClassDecl->isInvalidDecl())
|
|
continue;
|
|
if (BaseClassDecl->hasIrrelevantDestructor())
|
|
continue;
|
|
|
|
CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
|
|
assert(Dtor && "No dtor found for BaseClassDecl!");
|
|
if (CheckDestructorAccess(
|
|
ClassDecl->getLocation(), Dtor,
|
|
PDiag(diag::err_access_dtor_vbase)
|
|
<< Context.getTypeDeclType(ClassDecl) << VBase.getType(),
|
|
Context.getTypeDeclType(ClassDecl)) ==
|
|
AR_accessible) {
|
|
CheckDerivedToBaseConversion(
|
|
Context.getTypeDeclType(ClassDecl), VBase.getType(),
|
|
diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
|
|
SourceRange(), DeclarationName(), nullptr);
|
|
}
|
|
|
|
MarkFunctionReferenced(Location, Dtor);
|
|
DiagnoseUseOfDecl(Dtor, Location);
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
|
|
if (!CDtorDecl)
|
|
return;
|
|
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
|
|
SetCtorInitializers(Constructor, /*AnyErrors=*/false);
|
|
DiagnoseUninitializedFields(*this, Constructor);
|
|
}
|
|
}
|
|
|
|
bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
|
|
if (!RD)
|
|
return false;
|
|
|
|
// FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
|
|
// class template specialization here, but doing so breaks a lot of code.
|
|
|
|
// We can't answer whether something is abstract until it has a
|
|
// definition. If it's currently being defined, we'll walk back
|
|
// over all the declarations when we have a full definition.
|
|
const CXXRecordDecl *Def = RD->getDefinition();
|
|
if (!Def || Def->isBeingDefined())
|
|
return false;
|
|
|
|
return RD->isAbstract();
|
|
}
|
|
|
|
bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser) {
|
|
if (!isAbstractType(Loc, T))
|
|
return false;
|
|
|
|
T = Context.getBaseElementType(T);
|
|
Diagnoser.diagnose(*this, Loc, T);
|
|
DiagnoseAbstractType(T->getAsCXXRecordDecl());
|
|
return true;
|
|
}
|
|
|
|
void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
|
|
// Check if we've already emitted the list of pure virtual functions
|
|
// for this class.
|
|
if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
|
|
return;
|
|
|
|
// If the diagnostic is suppressed, don't emit the notes. We're only
|
|
// going to emit them once, so try to attach them to a diagnostic we're
|
|
// actually going to show.
|
|
if (Diags.isLastDiagnosticIgnored())
|
|
return;
|
|
|
|
CXXFinalOverriderMap FinalOverriders;
|
|
RD->getFinalOverriders(FinalOverriders);
|
|
|
|
// Keep a set of seen pure methods so we won't diagnose the same method
|
|
// more than once.
|
|
llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
|
|
|
|
for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
|
|
MEnd = FinalOverriders.end();
|
|
M != MEnd;
|
|
++M) {
|
|
for (OverridingMethods::iterator SO = M->second.begin(),
|
|
SOEnd = M->second.end();
|
|
SO != SOEnd; ++SO) {
|
|
// C++ [class.abstract]p4:
|
|
// A class is abstract if it contains or inherits at least one
|
|
// pure virtual function for which the final overrider is pure
|
|
// virtual.
|
|
|
|
//
|
|
if (SO->second.size() != 1)
|
|
continue;
|
|
|
|
if (!SO->second.front().Method->isPure())
|
|
continue;
|
|
|
|
if (!SeenPureMethods.insert(SO->second.front().Method).second)
|
|
continue;
|
|
|
|
Diag(SO->second.front().Method->getLocation(),
|
|
diag::note_pure_virtual_function)
|
|
<< SO->second.front().Method->getDeclName() << RD->getDeclName();
|
|
}
|
|
}
|
|
|
|
if (!PureVirtualClassDiagSet)
|
|
PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
|
|
PureVirtualClassDiagSet->insert(RD);
|
|
}
|
|
|
|
namespace {
|
|
struct AbstractUsageInfo {
|
|
Sema &S;
|
|
CXXRecordDecl *Record;
|
|
CanQualType AbstractType;
|
|
bool Invalid;
|
|
|
|
AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
|
|
: S(S), Record(Record),
|
|
AbstractType(S.Context.getCanonicalType(
|
|
S.Context.getTypeDeclType(Record))),
|
|
Invalid(false) {}
|
|
|
|
void DiagnoseAbstractType() {
|
|
if (Invalid) return;
|
|
S.DiagnoseAbstractType(Record);
|
|
Invalid = true;
|
|
}
|
|
|
|
void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
|
|
};
|
|
|
|
struct CheckAbstractUsage {
|
|
AbstractUsageInfo &Info;
|
|
const NamedDecl *Ctx;
|
|
|
|
CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
|
|
: Info(Info), Ctx(Ctx) {}
|
|
|
|
void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
switch (TL.getTypeLocClass()) {
|
|
#define ABSTRACT_TYPELOC(CLASS, PARENT)
|
|
#define TYPELOC(CLASS, PARENT) \
|
|
case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
}
|
|
}
|
|
|
|
void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
|
|
for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
|
|
if (!TL.getParam(I))
|
|
continue;
|
|
|
|
TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
|
|
if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
|
|
}
|
|
}
|
|
|
|
void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
Visit(TL.getElementLoc(), Sema::AbstractArrayType);
|
|
}
|
|
|
|
void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
// Visit the type parameters from a permissive context.
|
|
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
|
|
TemplateArgumentLoc TAL = TL.getArgLoc(I);
|
|
if (TAL.getArgument().getKind() == TemplateArgument::Type)
|
|
if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
|
|
Visit(TSI->getTypeLoc(), Sema::AbstractNone);
|
|
// TODO: other template argument types?
|
|
}
|
|
}
|
|
|
|
// Visit pointee types from a permissive context.
|
|
#define CheckPolymorphic(Type) \
|
|
void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
|
|
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
|
|
}
|
|
CheckPolymorphic(PointerTypeLoc)
|
|
CheckPolymorphic(ReferenceTypeLoc)
|
|
CheckPolymorphic(MemberPointerTypeLoc)
|
|
CheckPolymorphic(BlockPointerTypeLoc)
|
|
CheckPolymorphic(AtomicTypeLoc)
|
|
|
|
/// Handle all the types we haven't given a more specific
|
|
/// implementation for above.
|
|
void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
// Every other kind of type that we haven't called out already
|
|
// that has an inner type is either (1) sugar or (2) contains that
|
|
// inner type in some way as a subobject.
|
|
if (TypeLoc Next = TL.getNextTypeLoc())
|
|
return Visit(Next, Sel);
|
|
|
|
// If there's no inner type and we're in a permissive context,
|
|
// don't diagnose.
|
|
if (Sel == Sema::AbstractNone) return;
|
|
|
|
// Check whether the type matches the abstract type.
|
|
QualType T = TL.getType();
|
|
if (T->isArrayType()) {
|
|
Sel = Sema::AbstractArrayType;
|
|
T = Info.S.Context.getBaseElementType(T);
|
|
}
|
|
CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
|
|
if (CT != Info.AbstractType) return;
|
|
|
|
// It matched; do some magic.
|
|
if (Sel == Sema::AbstractArrayType) {
|
|
Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
|
|
<< T << TL.getSourceRange();
|
|
} else {
|
|
Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
|
|
<< Sel << T << TL.getSourceRange();
|
|
}
|
|
Info.DiagnoseAbstractType();
|
|
}
|
|
};
|
|
|
|
void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
|
|
Sema::AbstractDiagSelID Sel) {
|
|
CheckAbstractUsage(*this, D).Visit(TL, Sel);
|
|
}
|
|
|
|
}
|
|
|
|
/// Check for invalid uses of an abstract type in a method declaration.
|
|
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
|
|
CXXMethodDecl *MD) {
|
|
// No need to do the check on definitions, which require that
|
|
// the return/param types be complete.
|
|
if (MD->doesThisDeclarationHaveABody())
|
|
return;
|
|
|
|
// For safety's sake, just ignore it if we don't have type source
|
|
// information. This should never happen for non-implicit methods,
|
|
// but...
|
|
if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
|
|
Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
|
|
}
|
|
|
|
/// Check for invalid uses of an abstract type within a class definition.
|
|
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
|
|
CXXRecordDecl *RD) {
|
|
for (auto *D : RD->decls()) {
|
|
if (D->isImplicit()) continue;
|
|
|
|
// Methods and method templates.
|
|
if (isa<CXXMethodDecl>(D)) {
|
|
CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
|
|
} else if (isa<FunctionTemplateDecl>(D)) {
|
|
FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
|
|
CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
|
|
|
|
// Fields and static variables.
|
|
} else if (isa<FieldDecl>(D)) {
|
|
FieldDecl *FD = cast<FieldDecl>(D);
|
|
if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
|
|
Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
|
|
} else if (isa<VarDecl>(D)) {
|
|
VarDecl *VD = cast<VarDecl>(D);
|
|
if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
|
|
Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
|
|
|
|
// Nested classes and class templates.
|
|
} else if (isa<CXXRecordDecl>(D)) {
|
|
CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
|
|
} else if (isa<ClassTemplateDecl>(D)) {
|
|
CheckAbstractClassUsage(Info,
|
|
cast<ClassTemplateDecl>(D)->getTemplatedDecl());
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
|
|
Attr *ClassAttr = getDLLAttr(Class);
|
|
if (!ClassAttr)
|
|
return;
|
|
|
|
assert(ClassAttr->getKind() == attr::DLLExport);
|
|
|
|
TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
|
|
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration)
|
|
// Don't go any further if this is just an explicit instantiation
|
|
// declaration.
|
|
return;
|
|
|
|
for (Decl *Member : Class->decls()) {
|
|
auto *MD = dyn_cast<CXXMethodDecl>(Member);
|
|
if (!MD)
|
|
continue;
|
|
|
|
if (Member->getAttr<DLLExportAttr>()) {
|
|
if (MD->isUserProvided()) {
|
|
// Instantiate non-default class member functions ...
|
|
|
|
// .. except for certain kinds of template specializations.
|
|
if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
|
|
continue;
|
|
|
|
S.MarkFunctionReferenced(Class->getLocation(), MD);
|
|
|
|
// The function will be passed to the consumer when its definition is
|
|
// encountered.
|
|
} else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
|
|
MD->isCopyAssignmentOperator() ||
|
|
MD->isMoveAssignmentOperator()) {
|
|
// Synthesize and instantiate non-trivial implicit methods, explicitly
|
|
// defaulted methods, and the copy and move assignment operators. The
|
|
// latter are exported even if they are trivial, because the address of
|
|
// an operator can be taken and should compare equal across libraries.
|
|
DiagnosticErrorTrap Trap(S.Diags);
|
|
S.MarkFunctionReferenced(Class->getLocation(), MD);
|
|
if (Trap.hasErrorOccurred()) {
|
|
S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
|
|
<< Class->getName() << !S.getLangOpts().CPlusPlus11;
|
|
break;
|
|
}
|
|
|
|
// There is no later point when we will see the definition of this
|
|
// function, so pass it to the consumer now.
|
|
S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void checkForMultipleExportedDefaultConstructors(Sema &S,
|
|
CXXRecordDecl *Class) {
|
|
// Only the MS ABI has default constructor closures, so we don't need to do
|
|
// this semantic checking anywhere else.
|
|
if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
return;
|
|
|
|
CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
|
|
for (Decl *Member : Class->decls()) {
|
|
// Look for exported default constructors.
|
|
auto *CD = dyn_cast<CXXConstructorDecl>(Member);
|
|
if (!CD || !CD->isDefaultConstructor())
|
|
continue;
|
|
auto *Attr = CD->getAttr<DLLExportAttr>();
|
|
if (!Attr)
|
|
continue;
|
|
|
|
// If the class is non-dependent, mark the default arguments as ODR-used so
|
|
// that we can properly codegen the constructor closure.
|
|
if (!Class->isDependentContext()) {
|
|
for (ParmVarDecl *PD : CD->parameters()) {
|
|
(void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
|
|
S.DiscardCleanupsInEvaluationContext();
|
|
}
|
|
}
|
|
|
|
if (LastExportedDefaultCtor) {
|
|
S.Diag(LastExportedDefaultCtor->getLocation(),
|
|
diag::err_attribute_dll_ambiguous_default_ctor)
|
|
<< Class;
|
|
S.Diag(CD->getLocation(), diag::note_entity_declared_at)
|
|
<< CD->getDeclName();
|
|
return;
|
|
}
|
|
LastExportedDefaultCtor = CD;
|
|
}
|
|
}
|
|
|
|
/// \brief Check class-level dllimport/dllexport attribute.
|
|
void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
|
|
Attr *ClassAttr = getDLLAttr(Class);
|
|
|
|
// MSVC inherits DLL attributes to partial class template specializations.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
|
|
if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
|
|
if (Attr *TemplateAttr =
|
|
getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
|
|
auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
|
|
A->setInherited(true);
|
|
ClassAttr = A;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ClassAttr)
|
|
return;
|
|
|
|
if (!Class->isExternallyVisible()) {
|
|
Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
|
|
<< Class << ClassAttr;
|
|
return;
|
|
}
|
|
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
!ClassAttr->isInherited()) {
|
|
// Diagnose dll attributes on members of class with dll attribute.
|
|
for (Decl *Member : Class->decls()) {
|
|
if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
|
|
continue;
|
|
InheritableAttr *MemberAttr = getDLLAttr(Member);
|
|
if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
|
|
continue;
|
|
|
|
Diag(MemberAttr->getLocation(),
|
|
diag::err_attribute_dll_member_of_dll_class)
|
|
<< MemberAttr << ClassAttr;
|
|
Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
|
|
Member->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
if (Class->getDescribedClassTemplate())
|
|
// Don't inherit dll attribute until the template is instantiated.
|
|
return;
|
|
|
|
// The class is either imported or exported.
|
|
const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
|
|
|
|
TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
|
|
|
|
// Ignore explicit dllexport on explicit class template instantiation declarations.
|
|
if (ClassExported && !ClassAttr->isInherited() &&
|
|
TSK == TSK_ExplicitInstantiationDeclaration) {
|
|
Class->dropAttr<DLLExportAttr>();
|
|
return;
|
|
}
|
|
|
|
// Force declaration of implicit members so they can inherit the attribute.
|
|
ForceDeclarationOfImplicitMembers(Class);
|
|
|
|
// FIXME: MSVC's docs say all bases must be exportable, but this doesn't
|
|
// seem to be true in practice?
|
|
|
|
for (Decl *Member : Class->decls()) {
|
|
VarDecl *VD = dyn_cast<VarDecl>(Member);
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
|
|
|
|
// Only methods and static fields inherit the attributes.
|
|
if (!VD && !MD)
|
|
continue;
|
|
|
|
if (MD) {
|
|
// Don't process deleted methods.
|
|
if (MD->isDeleted())
|
|
continue;
|
|
|
|
if (MD->isInlined()) {
|
|
// MinGW does not import or export inline methods.
|
|
if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
!Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
|
|
continue;
|
|
|
|
// MSVC versions before 2015 don't export the move assignment operators
|
|
// and move constructor, so don't attempt to import/export them if
|
|
// we have a definition.
|
|
auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
|
|
if ((MD->isMoveAssignmentOperator() ||
|
|
(Ctor && Ctor->isMoveConstructor())) &&
|
|
!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
|
|
continue;
|
|
|
|
// MSVC2015 doesn't export trivial defaulted x-tor but copy assign
|
|
// operator is exported anyway.
|
|
if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
|
|
(Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!cast<NamedDecl>(Member)->isExternallyVisible())
|
|
continue;
|
|
|
|
if (!getDLLAttr(Member)) {
|
|
auto *NewAttr =
|
|
cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
|
|
NewAttr->setInherited(true);
|
|
Member->addAttr(NewAttr);
|
|
}
|
|
}
|
|
|
|
if (ClassExported)
|
|
DelayedDllExportClasses.push_back(Class);
|
|
}
|
|
|
|
/// \brief Perform propagation of DLL attributes from a derived class to a
|
|
/// templated base class for MS compatibility.
|
|
void Sema::propagateDLLAttrToBaseClassTemplate(
|
|
CXXRecordDecl *Class, Attr *ClassAttr,
|
|
ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
|
|
if (getDLLAttr(
|
|
BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
|
|
// If the base class template has a DLL attribute, don't try to change it.
|
|
return;
|
|
}
|
|
|
|
auto TSK = BaseTemplateSpec->getSpecializationKind();
|
|
if (!getDLLAttr(BaseTemplateSpec) &&
|
|
(TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
|
|
TSK == TSK_ImplicitInstantiation)) {
|
|
// The template hasn't been instantiated yet (or it has, but only as an
|
|
// explicit instantiation declaration or implicit instantiation, which means
|
|
// we haven't codegenned any members yet), so propagate the attribute.
|
|
auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
|
|
NewAttr->setInherited(true);
|
|
BaseTemplateSpec->addAttr(NewAttr);
|
|
|
|
// If the template is already instantiated, checkDLLAttributeRedeclaration()
|
|
// needs to be run again to work see the new attribute. Otherwise this will
|
|
// get run whenever the template is instantiated.
|
|
if (TSK != TSK_Undeclared)
|
|
checkClassLevelDLLAttribute(BaseTemplateSpec);
|
|
|
|
return;
|
|
}
|
|
|
|
if (getDLLAttr(BaseTemplateSpec)) {
|
|
// The template has already been specialized or instantiated with an
|
|
// attribute, explicitly or through propagation. We should not try to change
|
|
// it.
|
|
return;
|
|
}
|
|
|
|
// The template was previously instantiated or explicitly specialized without
|
|
// a dll attribute, It's too late for us to add an attribute, so warn that
|
|
// this is unsupported.
|
|
Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
|
|
<< BaseTemplateSpec->isExplicitSpecialization();
|
|
Diag(ClassAttr->getLocation(), diag::note_attribute);
|
|
if (BaseTemplateSpec->isExplicitSpecialization()) {
|
|
Diag(BaseTemplateSpec->getLocation(),
|
|
diag::note_template_class_explicit_specialization_was_here)
|
|
<< BaseTemplateSpec;
|
|
} else {
|
|
Diag(BaseTemplateSpec->getPointOfInstantiation(),
|
|
diag::note_template_class_instantiation_was_here)
|
|
<< BaseTemplateSpec;
|
|
}
|
|
}
|
|
|
|
static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
|
|
SourceLocation DefaultLoc) {
|
|
switch (S.getSpecialMember(MD)) {
|
|
case Sema::CXXDefaultConstructor:
|
|
S.DefineImplicitDefaultConstructor(DefaultLoc,
|
|
cast<CXXConstructorDecl>(MD));
|
|
break;
|
|
case Sema::CXXCopyConstructor:
|
|
S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
|
|
break;
|
|
case Sema::CXXCopyAssignment:
|
|
S.DefineImplicitCopyAssignment(DefaultLoc, MD);
|
|
break;
|
|
case Sema::CXXDestructor:
|
|
S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
|
|
break;
|
|
case Sema::CXXMoveConstructor:
|
|
S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
|
|
break;
|
|
case Sema::CXXMoveAssignment:
|
|
S.DefineImplicitMoveAssignment(DefaultLoc, MD);
|
|
break;
|
|
case Sema::CXXInvalid:
|
|
llvm_unreachable("Invalid special member.");
|
|
}
|
|
}
|
|
|
|
/// Determine whether a type is permitted to be passed or returned in
|
|
/// registers, per C++ [class.temporary]p3.
|
|
static bool computeCanPassInRegisters(Sema &S, CXXRecordDecl *D) {
|
|
if (D->isDependentType() || D->isInvalidDecl())
|
|
return false;
|
|
|
|
// Per C++ [class.temporary]p3, the relevant condition is:
|
|
// each copy constructor, move constructor, and destructor of X is
|
|
// either trivial or deleted, and X has at least one non-deleted copy
|
|
// or move constructor
|
|
bool HasNonDeletedCopyOrMove = false;
|
|
|
|
if (D->needsImplicitCopyConstructor() &&
|
|
!D->defaultedCopyConstructorIsDeleted()) {
|
|
if (!D->hasTrivialCopyConstructor())
|
|
return false;
|
|
HasNonDeletedCopyOrMove = true;
|
|
}
|
|
|
|
if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
|
|
!D->defaultedMoveConstructorIsDeleted()) {
|
|
if (!D->hasTrivialMoveConstructor())
|
|
return false;
|
|
HasNonDeletedCopyOrMove = true;
|
|
}
|
|
|
|
if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
|
|
!D->hasTrivialDestructor())
|
|
return false;
|
|
|
|
for (const CXXMethodDecl *MD : D->methods()) {
|
|
if (MD->isDeleted())
|
|
continue;
|
|
|
|
auto *CD = dyn_cast<CXXConstructorDecl>(MD);
|
|
if (CD && CD->isCopyOrMoveConstructor())
|
|
HasNonDeletedCopyOrMove = true;
|
|
else if (!isa<CXXDestructorDecl>(MD))
|
|
continue;
|
|
|
|
if (!MD->isTrivial())
|
|
return false;
|
|
}
|
|
|
|
return HasNonDeletedCopyOrMove;
|
|
}
|
|
|
|
/// \brief Perform semantic checks on a class definition that has been
|
|
/// completing, introducing implicitly-declared members, checking for
|
|
/// abstract types, etc.
|
|
void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
|
|
if (!Record)
|
|
return;
|
|
|
|
if (Record->isAbstract() && !Record->isInvalidDecl()) {
|
|
AbstractUsageInfo Info(*this, Record);
|
|
CheckAbstractClassUsage(Info, Record);
|
|
}
|
|
|
|
// If this is not an aggregate type and has no user-declared constructor,
|
|
// complain about any non-static data members of reference or const scalar
|
|
// type, since they will never get initializers.
|
|
if (!Record->isInvalidDecl() && !Record->isDependentType() &&
|
|
!Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
|
|
!Record->isLambda()) {
|
|
bool Complained = false;
|
|
for (const auto *F : Record->fields()) {
|
|
if (F->hasInClassInitializer() || F->isUnnamedBitfield())
|
|
continue;
|
|
|
|
if (F->getType()->isReferenceType() ||
|
|
(F->getType().isConstQualified() && F->getType()->isScalarType())) {
|
|
if (!Complained) {
|
|
Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
|
|
<< Record->getTagKind() << Record;
|
|
Complained = true;
|
|
}
|
|
|
|
Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
|
|
<< F->getType()->isReferenceType()
|
|
<< F->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Record->getIdentifier()) {
|
|
// C++ [class.mem]p13:
|
|
// If T is the name of a class, then each of the following shall have a
|
|
// name different from T:
|
|
// - every member of every anonymous union that is a member of class T.
|
|
//
|
|
// C++ [class.mem]p14:
|
|
// In addition, if class T has a user-declared constructor (12.1), every
|
|
// non-static data member of class T shall have a name different from T.
|
|
DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
|
|
for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
|
|
++I) {
|
|
NamedDecl *D = *I;
|
|
if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
|
|
isa<IndirectFieldDecl>(D)) {
|
|
Diag(D->getLocation(), diag::err_member_name_of_class)
|
|
<< D->getDeclName();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Warn if the class has virtual methods but non-virtual public destructor.
|
|
if (Record->isPolymorphic() && !Record->isDependentType()) {
|
|
CXXDestructorDecl *dtor = Record->getDestructor();
|
|
if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
|
|
!Record->hasAttr<FinalAttr>())
|
|
Diag(dtor ? dtor->getLocation() : Record->getLocation(),
|
|
diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
|
|
}
|
|
|
|
if (Record->isAbstract()) {
|
|
if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
|
|
Diag(Record->getLocation(), diag::warn_abstract_final_class)
|
|
<< FA->isSpelledAsSealed();
|
|
DiagnoseAbstractType(Record);
|
|
}
|
|
}
|
|
|
|
bool HasMethodWithOverrideControl = false,
|
|
HasOverridingMethodWithoutOverrideControl = false;
|
|
if (!Record->isDependentType()) {
|
|
for (auto *M : Record->methods()) {
|
|
// See if a method overloads virtual methods in a base
|
|
// class without overriding any.
|
|
if (!M->isStatic())
|
|
DiagnoseHiddenVirtualMethods(M);
|
|
if (M->hasAttr<OverrideAttr>())
|
|
HasMethodWithOverrideControl = true;
|
|
else if (M->size_overridden_methods() > 0)
|
|
HasOverridingMethodWithoutOverrideControl = true;
|
|
// Check whether the explicitly-defaulted special members are valid.
|
|
if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
|
|
CheckExplicitlyDefaultedSpecialMember(M);
|
|
|
|
// For an explicitly defaulted or deleted special member, we defer
|
|
// determining triviality until the class is complete. That time is now!
|
|
CXXSpecialMember CSM = getSpecialMember(M);
|
|
if (!M->isImplicit() && !M->isUserProvided()) {
|
|
if (CSM != CXXInvalid) {
|
|
M->setTrivial(SpecialMemberIsTrivial(M, CSM));
|
|
|
|
// Inform the class that we've finished declaring this member.
|
|
Record->finishedDefaultedOrDeletedMember(M);
|
|
}
|
|
}
|
|
|
|
if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
|
|
M->hasAttr<DLLExportAttr>()) {
|
|
if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
|
|
M->isTrivial() &&
|
|
(CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
|
|
CSM == CXXDestructor))
|
|
M->dropAttr<DLLExportAttr>();
|
|
|
|
if (M->hasAttr<DLLExportAttr>()) {
|
|
DefineImplicitSpecialMember(*this, M, M->getLocation());
|
|
ActOnFinishInlineFunctionDef(M);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (HasMethodWithOverrideControl &&
|
|
HasOverridingMethodWithoutOverrideControl) {
|
|
// At least one method has the 'override' control declared.
|
|
// Diagnose all other overridden methods which do not have 'override' specified on them.
|
|
for (auto *M : Record->methods())
|
|
DiagnoseAbsenceOfOverrideControl(M);
|
|
}
|
|
|
|
// ms_struct is a request to use the same ABI rules as MSVC. Check
|
|
// whether this class uses any C++ features that are implemented
|
|
// completely differently in MSVC, and if so, emit a diagnostic.
|
|
// That diagnostic defaults to an error, but we allow projects to
|
|
// map it down to a warning (or ignore it). It's a fairly common
|
|
// practice among users of the ms_struct pragma to mass-annotate
|
|
// headers, sweeping up a bunch of types that the project doesn't
|
|
// really rely on MSVC-compatible layout for. We must therefore
|
|
// support "ms_struct except for C++ stuff" as a secondary ABI.
|
|
if (Record->isMsStruct(Context) &&
|
|
(Record->isPolymorphic() || Record->getNumBases())) {
|
|
Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
|
|
}
|
|
|
|
checkClassLevelDLLAttribute(Record);
|
|
|
|
Record->setCanPassInRegisters(computeCanPassInRegisters(*this, Record));
|
|
}
|
|
|
|
/// Look up the special member function that would be called by a special
|
|
/// member function for a subobject of class type.
|
|
///
|
|
/// \param Class The class type of the subobject.
|
|
/// \param CSM The kind of special member function.
|
|
/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
|
|
/// \param ConstRHS True if this is a copy operation with a const object
|
|
/// on its RHS, that is, if the argument to the outer special member
|
|
/// function is 'const' and this is not a field marked 'mutable'.
|
|
static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
|
|
Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
|
|
unsigned FieldQuals, bool ConstRHS) {
|
|
unsigned LHSQuals = 0;
|
|
if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
|
|
LHSQuals = FieldQuals;
|
|
|
|
unsigned RHSQuals = FieldQuals;
|
|
if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
|
|
RHSQuals = 0;
|
|
else if (ConstRHS)
|
|
RHSQuals |= Qualifiers::Const;
|
|
|
|
return S.LookupSpecialMember(Class, CSM,
|
|
RHSQuals & Qualifiers::Const,
|
|
RHSQuals & Qualifiers::Volatile,
|
|
false,
|
|
LHSQuals & Qualifiers::Const,
|
|
LHSQuals & Qualifiers::Volatile);
|
|
}
|
|
|
|
class Sema::InheritedConstructorInfo {
|
|
Sema &S;
|
|
SourceLocation UseLoc;
|
|
|
|
/// A mapping from the base classes through which the constructor was
|
|
/// inherited to the using shadow declaration in that base class (or a null
|
|
/// pointer if the constructor was declared in that base class).
|
|
llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
|
|
InheritedFromBases;
|
|
|
|
public:
|
|
InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
|
|
ConstructorUsingShadowDecl *Shadow)
|
|
: S(S), UseLoc(UseLoc) {
|
|
bool DiagnosedMultipleConstructedBases = false;
|
|
CXXRecordDecl *ConstructedBase = nullptr;
|
|
UsingDecl *ConstructedBaseUsing = nullptr;
|
|
|
|
// Find the set of such base class subobjects and check that there's a
|
|
// unique constructed subobject.
|
|
for (auto *D : Shadow->redecls()) {
|
|
auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
|
|
auto *DNominatedBase = DShadow->getNominatedBaseClass();
|
|
auto *DConstructedBase = DShadow->getConstructedBaseClass();
|
|
|
|
InheritedFromBases.insert(
|
|
std::make_pair(DNominatedBase->getCanonicalDecl(),
|
|
DShadow->getNominatedBaseClassShadowDecl()));
|
|
if (DShadow->constructsVirtualBase())
|
|
InheritedFromBases.insert(
|
|
std::make_pair(DConstructedBase->getCanonicalDecl(),
|
|
DShadow->getConstructedBaseClassShadowDecl()));
|
|
else
|
|
assert(DNominatedBase == DConstructedBase);
|
|
|
|
// [class.inhctor.init]p2:
|
|
// If the constructor was inherited from multiple base class subobjects
|
|
// of type B, the program is ill-formed.
|
|
if (!ConstructedBase) {
|
|
ConstructedBase = DConstructedBase;
|
|
ConstructedBaseUsing = D->getUsingDecl();
|
|
} else if (ConstructedBase != DConstructedBase &&
|
|
!Shadow->isInvalidDecl()) {
|
|
if (!DiagnosedMultipleConstructedBases) {
|
|
S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
|
|
<< Shadow->getTargetDecl();
|
|
S.Diag(ConstructedBaseUsing->getLocation(),
|
|
diag::note_ambiguous_inherited_constructor_using)
|
|
<< ConstructedBase;
|
|
DiagnosedMultipleConstructedBases = true;
|
|
}
|
|
S.Diag(D->getUsingDecl()->getLocation(),
|
|
diag::note_ambiguous_inherited_constructor_using)
|
|
<< DConstructedBase;
|
|
}
|
|
}
|
|
|
|
if (DiagnosedMultipleConstructedBases)
|
|
Shadow->setInvalidDecl();
|
|
}
|
|
|
|
/// Find the constructor to use for inherited construction of a base class,
|
|
/// and whether that base class constructor inherits the constructor from a
|
|
/// virtual base class (in which case it won't actually invoke it).
|
|
std::pair<CXXConstructorDecl *, bool>
|
|
findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
|
|
auto It = InheritedFromBases.find(Base->getCanonicalDecl());
|
|
if (It == InheritedFromBases.end())
|
|
return std::make_pair(nullptr, false);
|
|
|
|
// This is an intermediary class.
|
|
if (It->second)
|
|
return std::make_pair(
|
|
S.findInheritingConstructor(UseLoc, Ctor, It->second),
|
|
It->second->constructsVirtualBase());
|
|
|
|
// This is the base class from which the constructor was inherited.
|
|
return std::make_pair(Ctor, false);
|
|
}
|
|
};
|
|
|
|
/// Is the special member function which would be selected to perform the
|
|
/// specified operation on the specified class type a constexpr constructor?
|
|
static bool
|
|
specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
|
|
Sema::CXXSpecialMember CSM, unsigned Quals,
|
|
bool ConstRHS,
|
|
CXXConstructorDecl *InheritedCtor = nullptr,
|
|
Sema::InheritedConstructorInfo *Inherited = nullptr) {
|
|
// If we're inheriting a constructor, see if we need to call it for this base
|
|
// class.
|
|
if (InheritedCtor) {
|
|
assert(CSM == Sema::CXXDefaultConstructor);
|
|
auto BaseCtor =
|
|
Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
|
|
if (BaseCtor)
|
|
return BaseCtor->isConstexpr();
|
|
}
|
|
|
|
if (CSM == Sema::CXXDefaultConstructor)
|
|
return ClassDecl->hasConstexprDefaultConstructor();
|
|
|
|
Sema::SpecialMemberOverloadResult SMOR =
|
|
lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
|
|
if (!SMOR.getMethod())
|
|
// A constructor we wouldn't select can't be "involved in initializing"
|
|
// anything.
|
|
return true;
|
|
return SMOR.getMethod()->isConstexpr();
|
|
}
|
|
|
|
/// Determine whether the specified special member function would be constexpr
|
|
/// if it were implicitly defined.
|
|
static bool defaultedSpecialMemberIsConstexpr(
|
|
Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
|
|
bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
|
|
Sema::InheritedConstructorInfo *Inherited = nullptr) {
|
|
if (!S.getLangOpts().CPlusPlus11)
|
|
return false;
|
|
|
|
// C++11 [dcl.constexpr]p4:
|
|
// In the definition of a constexpr constructor [...]
|
|
bool Ctor = true;
|
|
switch (CSM) {
|
|
case Sema::CXXDefaultConstructor:
|
|
if (Inherited)
|
|
break;
|
|
// Since default constructor lookup is essentially trivial (and cannot
|
|
// involve, for instance, template instantiation), we compute whether a
|
|
// defaulted default constructor is constexpr directly within CXXRecordDecl.
|
|
//
|
|
// This is important for performance; we need to know whether the default
|
|
// constructor is constexpr to determine whether the type is a literal type.
|
|
return ClassDecl->defaultedDefaultConstructorIsConstexpr();
|
|
|
|
case Sema::CXXCopyConstructor:
|
|
case Sema::CXXMoveConstructor:
|
|
// For copy or move constructors, we need to perform overload resolution.
|
|
break;
|
|
|
|
case Sema::CXXCopyAssignment:
|
|
case Sema::CXXMoveAssignment:
|
|
if (!S.getLangOpts().CPlusPlus14)
|
|
return false;
|
|
// In C++1y, we need to perform overload resolution.
|
|
Ctor = false;
|
|
break;
|
|
|
|
case Sema::CXXDestructor:
|
|
case Sema::CXXInvalid:
|
|
return false;
|
|
}
|
|
|
|
// -- if the class is a non-empty union, or for each non-empty anonymous
|
|
// union member of a non-union class, exactly one non-static data member
|
|
// shall be initialized; [DR1359]
|
|
//
|
|
// If we squint, this is guaranteed, since exactly one non-static data member
|
|
// will be initialized (if the constructor isn't deleted), we just don't know
|
|
// which one.
|
|
if (Ctor && ClassDecl->isUnion())
|
|
return CSM == Sema::CXXDefaultConstructor
|
|
? ClassDecl->hasInClassInitializer() ||
|
|
!ClassDecl->hasVariantMembers()
|
|
: true;
|
|
|
|
// -- the class shall not have any virtual base classes;
|
|
if (Ctor && ClassDecl->getNumVBases())
|
|
return false;
|
|
|
|
// C++1y [class.copy]p26:
|
|
// -- [the class] is a literal type, and
|
|
if (!Ctor && !ClassDecl->isLiteral())
|
|
return false;
|
|
|
|
// -- every constructor involved in initializing [...] base class
|
|
// sub-objects shall be a constexpr constructor;
|
|
// -- the assignment operator selected to copy/move each direct base
|
|
// class is a constexpr function, and
|
|
for (const auto &B : ClassDecl->bases()) {
|
|
const RecordType *BaseType = B.getType()->getAs<RecordType>();
|
|
if (!BaseType) continue;
|
|
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
|
|
if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
|
|
InheritedCtor, Inherited))
|
|
return false;
|
|
}
|
|
|
|
// -- every constructor involved in initializing non-static data members
|
|
// [...] shall be a constexpr constructor;
|
|
// -- every non-static data member and base class sub-object shall be
|
|
// initialized
|
|
// -- for each non-static data member of X that is of class type (or array
|
|
// thereof), the assignment operator selected to copy/move that member is
|
|
// a constexpr function
|
|
for (const auto *F : ClassDecl->fields()) {
|
|
if (F->isInvalidDecl())
|
|
continue;
|
|
if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
|
|
continue;
|
|
QualType BaseType = S.Context.getBaseElementType(F->getType());
|
|
if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
|
|
CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
|
|
BaseType.getCVRQualifiers(),
|
|
ConstArg && !F->isMutable()))
|
|
return false;
|
|
} else if (CSM == Sema::CXXDefaultConstructor) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// All OK, it's constexpr!
|
|
return true;
|
|
}
|
|
|
|
static Sema::ImplicitExceptionSpecification
|
|
ComputeDefaultedSpecialMemberExceptionSpec(
|
|
Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
|
|
Sema::InheritedConstructorInfo *ICI);
|
|
|
|
static Sema::ImplicitExceptionSpecification
|
|
computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
|
|
auto CSM = S.getSpecialMember(MD);
|
|
if (CSM != Sema::CXXInvalid)
|
|
return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
|
|
|
|
auto *CD = cast<CXXConstructorDecl>(MD);
|
|
assert(CD->getInheritedConstructor() &&
|
|
"only special members have implicit exception specs");
|
|
Sema::InheritedConstructorInfo ICI(
|
|
S, Loc, CD->getInheritedConstructor().getShadowDecl());
|
|
return ComputeDefaultedSpecialMemberExceptionSpec(
|
|
S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
|
|
}
|
|
|
|
static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
|
|
CXXMethodDecl *MD) {
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
|
|
// Build an exception specification pointing back at this member.
|
|
EPI.ExceptionSpec.Type = EST_Unevaluated;
|
|
EPI.ExceptionSpec.SourceDecl = MD;
|
|
|
|
// Set the calling convention to the default for C++ instance methods.
|
|
EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
|
|
S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
|
|
/*IsCXXMethod=*/true));
|
|
return EPI;
|
|
}
|
|
|
|
void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
|
|
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
|
|
if (FPT->getExceptionSpecType() != EST_Unevaluated)
|
|
return;
|
|
|
|
// Evaluate the exception specification.
|
|
auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
|
|
auto ESI = IES.getExceptionSpec();
|
|
|
|
// Update the type of the special member to use it.
|
|
UpdateExceptionSpec(MD, ESI);
|
|
|
|
// A user-provided destructor can be defined outside the class. When that
|
|
// happens, be sure to update the exception specification on both
|
|
// declarations.
|
|
const FunctionProtoType *CanonicalFPT =
|
|
MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
|
|
if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
|
|
UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
|
|
}
|
|
|
|
void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
|
|
CXXRecordDecl *RD = MD->getParent();
|
|
CXXSpecialMember CSM = getSpecialMember(MD);
|
|
|
|
assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
|
|
"not an explicitly-defaulted special member");
|
|
|
|
// Whether this was the first-declared instance of the constructor.
|
|
// This affects whether we implicitly add an exception spec and constexpr.
|
|
bool First = MD == MD->getCanonicalDecl();
|
|
|
|
bool HadError = false;
|
|
|
|
// C++11 [dcl.fct.def.default]p1:
|
|
// A function that is explicitly defaulted shall
|
|
// -- be a special member function (checked elsewhere),
|
|
// -- have the same type (except for ref-qualifiers, and except that a
|
|
// copy operation can take a non-const reference) as an implicit
|
|
// declaration, and
|
|
// -- not have default arguments.
|
|
unsigned ExpectedParams = 1;
|
|
if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
|
|
ExpectedParams = 0;
|
|
if (MD->getNumParams() != ExpectedParams) {
|
|
// This also checks for default arguments: a copy or move constructor with a
|
|
// default argument is classified as a default constructor, and assignment
|
|
// operations and destructors can't have default arguments.
|
|
Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
|
|
<< CSM << MD->getSourceRange();
|
|
HadError = true;
|
|
} else if (MD->isVariadic()) {
|
|
Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
|
|
<< CSM << MD->getSourceRange();
|
|
HadError = true;
|
|
}
|
|
|
|
const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
|
|
|
|
bool CanHaveConstParam = false;
|
|
if (CSM == CXXCopyConstructor)
|
|
CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
|
|
else if (CSM == CXXCopyAssignment)
|
|
CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
|
|
|
|
QualType ReturnType = Context.VoidTy;
|
|
if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
|
|
// Check for return type matching.
|
|
ReturnType = Type->getReturnType();
|
|
QualType ExpectedReturnType =
|
|
Context.getLValueReferenceType(Context.getTypeDeclType(RD));
|
|
if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
|
|
Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
|
|
<< (CSM == CXXMoveAssignment) << ExpectedReturnType;
|
|
HadError = true;
|
|
}
|
|
|
|
// A defaulted special member cannot have cv-qualifiers.
|
|
if (Type->getTypeQuals()) {
|
|
Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
|
|
<< (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
|
|
HadError = true;
|
|
}
|
|
}
|
|
|
|
// Check for parameter type matching.
|
|
QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
|
|
bool HasConstParam = false;
|
|
if (ExpectedParams && ArgType->isReferenceType()) {
|
|
// Argument must be reference to possibly-const T.
|
|
QualType ReferentType = ArgType->getPointeeType();
|
|
HasConstParam = ReferentType.isConstQualified();
|
|
|
|
if (ReferentType.isVolatileQualified()) {
|
|
Diag(MD->getLocation(),
|
|
diag::err_defaulted_special_member_volatile_param) << CSM;
|
|
HadError = true;
|
|
}
|
|
|
|
if (HasConstParam && !CanHaveConstParam) {
|
|
if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
|
|
Diag(MD->getLocation(),
|
|
diag::err_defaulted_special_member_copy_const_param)
|
|
<< (CSM == CXXCopyAssignment);
|
|
// FIXME: Explain why this special member can't be const.
|
|
} else {
|
|
Diag(MD->getLocation(),
|
|
diag::err_defaulted_special_member_move_const_param)
|
|
<< (CSM == CXXMoveAssignment);
|
|
}
|
|
HadError = true;
|
|
}
|
|
} else if (ExpectedParams) {
|
|
// A copy assignment operator can take its argument by value, but a
|
|
// defaulted one cannot.
|
|
assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
|
|
Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
|
|
HadError = true;
|
|
}
|
|
|
|
// C++11 [dcl.fct.def.default]p2:
|
|
// An explicitly-defaulted function may be declared constexpr only if it
|
|
// would have been implicitly declared as constexpr,
|
|
// Do not apply this rule to members of class templates, since core issue 1358
|
|
// makes such functions always instantiate to constexpr functions. For
|
|
// functions which cannot be constexpr (for non-constructors in C++11 and for
|
|
// destructors in C++1y), this is checked elsewhere.
|
|
bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
|
|
HasConstParam);
|
|
if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
|
|
: isa<CXXConstructorDecl>(MD)) &&
|
|
MD->isConstexpr() && !Constexpr &&
|
|
MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
|
|
Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
|
|
// FIXME: Explain why the special member can't be constexpr.
|
|
HadError = true;
|
|
}
|
|
|
|
// and may have an explicit exception-specification only if it is compatible
|
|
// with the exception-specification on the implicit declaration.
|
|
if (Type->hasExceptionSpec()) {
|
|
// Delay the check if this is the first declaration of the special member,
|
|
// since we may not have parsed some necessary in-class initializers yet.
|
|
if (First) {
|
|
// If the exception specification needs to be instantiated, do so now,
|
|
// before we clobber it with an EST_Unevaluated specification below.
|
|
if (Type->getExceptionSpecType() == EST_Uninstantiated) {
|
|
InstantiateExceptionSpec(MD->getLocStart(), MD);
|
|
Type = MD->getType()->getAs<FunctionProtoType>();
|
|
}
|
|
DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
|
|
} else
|
|
CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
|
|
}
|
|
|
|
// If a function is explicitly defaulted on its first declaration,
|
|
if (First) {
|
|
// -- it is implicitly considered to be constexpr if the implicit
|
|
// definition would be,
|
|
MD->setConstexpr(Constexpr);
|
|
|
|
// -- it is implicitly considered to have the same exception-specification
|
|
// as if it had been implicitly declared,
|
|
FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
|
|
EPI.ExceptionSpec.Type = EST_Unevaluated;
|
|
EPI.ExceptionSpec.SourceDecl = MD;
|
|
MD->setType(Context.getFunctionType(ReturnType,
|
|
llvm::makeArrayRef(&ArgType,
|
|
ExpectedParams),
|
|
EPI));
|
|
}
|
|
|
|
if (ShouldDeleteSpecialMember(MD, CSM)) {
|
|
if (First) {
|
|
SetDeclDeleted(MD, MD->getLocation());
|
|
} else {
|
|
// C++11 [dcl.fct.def.default]p4:
|
|
// [For a] user-provided explicitly-defaulted function [...] if such a
|
|
// function is implicitly defined as deleted, the program is ill-formed.
|
|
Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
|
|
ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
|
|
HadError = true;
|
|
}
|
|
}
|
|
|
|
if (HadError)
|
|
MD->setInvalidDecl();
|
|
}
|
|
|
|
/// Check whether the exception specification provided for an
|
|
/// explicitly-defaulted special member matches the exception specification
|
|
/// that would have been generated for an implicit special member, per
|
|
/// C++11 [dcl.fct.def.default]p2.
|
|
void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
|
|
CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
|
|
// If the exception specification was explicitly specified but hadn't been
|
|
// parsed when the method was defaulted, grab it now.
|
|
if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
|
|
SpecifiedType =
|
|
MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
|
|
|
|
// Compute the implicit exception specification.
|
|
CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
|
|
/*IsCXXMethod=*/true);
|
|
FunctionProtoType::ExtProtoInfo EPI(CC);
|
|
auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
|
|
EPI.ExceptionSpec = IES.getExceptionSpec();
|
|
const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
|
|
Context.getFunctionType(Context.VoidTy, None, EPI));
|
|
|
|
// Ensure that it matches.
|
|
CheckEquivalentExceptionSpec(
|
|
PDiag(diag::err_incorrect_defaulted_exception_spec)
|
|
<< getSpecialMember(MD), PDiag(),
|
|
ImplicitType, SourceLocation(),
|
|
SpecifiedType, MD->getLocation());
|
|
}
|
|
|
|
void Sema::CheckDelayedMemberExceptionSpecs() {
|
|
decltype(DelayedExceptionSpecChecks) Checks;
|
|
decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
|
|
|
|
std::swap(Checks, DelayedExceptionSpecChecks);
|
|
std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
|
|
|
|
// Perform any deferred checking of exception specifications for virtual
|
|
// destructors.
|
|
for (auto &Check : Checks)
|
|
CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
|
|
|
|
// Check that any explicitly-defaulted methods have exception specifications
|
|
// compatible with their implicit exception specifications.
|
|
for (auto &Spec : Specs)
|
|
CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
|
|
}
|
|
|
|
namespace {
|
|
/// CRTP base class for visiting operations performed by a special member
|
|
/// function (or inherited constructor).
|
|
template<typename Derived>
|
|
struct SpecialMemberVisitor {
|
|
Sema &S;
|
|
CXXMethodDecl *MD;
|
|
Sema::CXXSpecialMember CSM;
|
|
Sema::InheritedConstructorInfo *ICI;
|
|
|
|
// Properties of the special member, computed for convenience.
|
|
bool IsConstructor = false, IsAssignment = false, ConstArg = false;
|
|
|
|
SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
|
|
Sema::InheritedConstructorInfo *ICI)
|
|
: S(S), MD(MD), CSM(CSM), ICI(ICI) {
|
|
switch (CSM) {
|
|
case Sema::CXXDefaultConstructor:
|
|
case Sema::CXXCopyConstructor:
|
|
case Sema::CXXMoveConstructor:
|
|
IsConstructor = true;
|
|
break;
|
|
case Sema::CXXCopyAssignment:
|
|
case Sema::CXXMoveAssignment:
|
|
IsAssignment = true;
|
|
break;
|
|
case Sema::CXXDestructor:
|
|
break;
|
|
case Sema::CXXInvalid:
|
|
llvm_unreachable("invalid special member kind");
|
|
}
|
|
|
|
if (MD->getNumParams()) {
|
|
if (const ReferenceType *RT =
|
|
MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
|
|
ConstArg = RT->getPointeeType().isConstQualified();
|
|
}
|
|
}
|
|
|
|
Derived &getDerived() { return static_cast<Derived&>(*this); }
|
|
|
|
/// Is this a "move" special member?
|
|
bool isMove() const {
|
|
return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
|
|
}
|
|
|
|
/// Look up the corresponding special member in the given class.
|
|
Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
|
|
unsigned Quals, bool IsMutable) {
|
|
return lookupCallFromSpecialMember(S, Class, CSM, Quals,
|
|
ConstArg && !IsMutable);
|
|
}
|
|
|
|
/// Look up the constructor for the specified base class to see if it's
|
|
/// overridden due to this being an inherited constructor.
|
|
Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
|
|
if (!ICI)
|
|
return {};
|
|
assert(CSM == Sema::CXXDefaultConstructor);
|
|
auto *BaseCtor =
|
|
cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
|
|
if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
|
|
return MD;
|
|
return {};
|
|
}
|
|
|
|
/// A base or member subobject.
|
|
typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
|
|
|
|
/// Get the location to use for a subobject in diagnostics.
|
|
static SourceLocation getSubobjectLoc(Subobject Subobj) {
|
|
// FIXME: For an indirect virtual base, the direct base leading to
|
|
// the indirect virtual base would be a more useful choice.
|
|
if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
|
|
return B->getBaseTypeLoc();
|
|
else
|
|
return Subobj.get<FieldDecl*>()->getLocation();
|
|
}
|
|
|
|
enum BasesToVisit {
|
|
/// Visit all non-virtual (direct) bases.
|
|
VisitNonVirtualBases,
|
|
/// Visit all direct bases, virtual or not.
|
|
VisitDirectBases,
|
|
/// Visit all non-virtual bases, and all virtual bases if the class
|
|
/// is not abstract.
|
|
VisitPotentiallyConstructedBases,
|
|
/// Visit all direct or virtual bases.
|
|
VisitAllBases
|
|
};
|
|
|
|
// Visit the bases and members of the class.
|
|
bool visit(BasesToVisit Bases) {
|
|
CXXRecordDecl *RD = MD->getParent();
|
|
|
|
if (Bases == VisitPotentiallyConstructedBases)
|
|
Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
|
|
|
|
for (auto &B : RD->bases())
|
|
if ((Bases == VisitDirectBases || !B.isVirtual()) &&
|
|
getDerived().visitBase(&B))
|
|
return true;
|
|
|
|
if (Bases == VisitAllBases)
|
|
for (auto &B : RD->vbases())
|
|
if (getDerived().visitBase(&B))
|
|
return true;
|
|
|
|
for (auto *F : RD->fields())
|
|
if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
|
|
getDerived().visitField(F))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
struct SpecialMemberDeletionInfo
|
|
: SpecialMemberVisitor<SpecialMemberDeletionInfo> {
|
|
bool Diagnose;
|
|
|
|
SourceLocation Loc;
|
|
|
|
bool AllFieldsAreConst;
|
|
|
|
SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
|
|
Sema::CXXSpecialMember CSM,
|
|
Sema::InheritedConstructorInfo *ICI, bool Diagnose)
|
|
: SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
|
|
Loc(MD->getLocation()), AllFieldsAreConst(true) {}
|
|
|
|
bool inUnion() const { return MD->getParent()->isUnion(); }
|
|
|
|
Sema::CXXSpecialMember getEffectiveCSM() {
|
|
return ICI ? Sema::CXXInvalid : CSM;
|
|
}
|
|
|
|
bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
|
|
bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
|
|
|
|
bool shouldDeleteForBase(CXXBaseSpecifier *Base);
|
|
bool shouldDeleteForField(FieldDecl *FD);
|
|
bool shouldDeleteForAllConstMembers();
|
|
|
|
bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
|
|
unsigned Quals);
|
|
bool shouldDeleteForSubobjectCall(Subobject Subobj,
|
|
Sema::SpecialMemberOverloadResult SMOR,
|
|
bool IsDtorCallInCtor);
|
|
|
|
bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
|
|
};
|
|
}
|
|
|
|
/// Is the given special member inaccessible when used on the given
|
|
/// sub-object.
|
|
bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
|
|
CXXMethodDecl *target) {
|
|
/// If we're operating on a base class, the object type is the
|
|
/// type of this special member.
|
|
QualType objectTy;
|
|
AccessSpecifier access = target->getAccess();
|
|
if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
|
|
objectTy = S.Context.getTypeDeclType(MD->getParent());
|
|
access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
|
|
|
|
// If we're operating on a field, the object type is the type of the field.
|
|
} else {
|
|
objectTy = S.Context.getTypeDeclType(target->getParent());
|
|
}
|
|
|
|
return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
|
|
}
|
|
|
|
/// Check whether we should delete a special member due to the implicit
|
|
/// definition containing a call to a special member of a subobject.
|
|
bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
|
|
Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
|
|
bool IsDtorCallInCtor) {
|
|
CXXMethodDecl *Decl = SMOR.getMethod();
|
|
FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
|
|
|
|
int DiagKind = -1;
|
|
|
|
if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
|
|
DiagKind = !Decl ? 0 : 1;
|
|
else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
|
|
DiagKind = 2;
|
|
else if (!isAccessible(Subobj, Decl))
|
|
DiagKind = 3;
|
|
else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
|
|
!Decl->isTrivial()) {
|
|
// A member of a union must have a trivial corresponding special member.
|
|
// As a weird special case, a destructor call from a union's constructor
|
|
// must be accessible and non-deleted, but need not be trivial. Such a
|
|
// destructor is never actually called, but is semantically checked as
|
|
// if it were.
|
|
DiagKind = 4;
|
|
}
|
|
|
|
if (DiagKind == -1)
|
|
return false;
|
|
|
|
if (Diagnose) {
|
|
if (Field) {
|
|
S.Diag(Field->getLocation(),
|
|
diag::note_deleted_special_member_class_subobject)
|
|
<< getEffectiveCSM() << MD->getParent() << /*IsField*/true
|
|
<< Field << DiagKind << IsDtorCallInCtor;
|
|
} else {
|
|
CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
|
|
S.Diag(Base->getLocStart(),
|
|
diag::note_deleted_special_member_class_subobject)
|
|
<< getEffectiveCSM() << MD->getParent() << /*IsField*/false
|
|
<< Base->getType() << DiagKind << IsDtorCallInCtor;
|
|
}
|
|
|
|
if (DiagKind == 1)
|
|
S.NoteDeletedFunction(Decl);
|
|
// FIXME: Explain inaccessibility if DiagKind == 3.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check whether we should delete a special member function due to having a
|
|
/// direct or virtual base class or non-static data member of class type M.
|
|
bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
|
|
CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
|
|
FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
|
|
bool IsMutable = Field && Field->isMutable();
|
|
|
|
// C++11 [class.ctor]p5:
|
|
// -- any direct or virtual base class, or non-static data member with no
|
|
// brace-or-equal-initializer, has class type M (or array thereof) and
|
|
// either M has no default constructor or overload resolution as applied
|
|
// to M's default constructor results in an ambiguity or in a function
|
|
// that is deleted or inaccessible
|
|
// C++11 [class.copy]p11, C++11 [class.copy]p23:
|
|
// -- a direct or virtual base class B that cannot be copied/moved because
|
|
// overload resolution, as applied to B's corresponding special member,
|
|
// results in an ambiguity or a function that is deleted or inaccessible
|
|
// from the defaulted special member
|
|
// C++11 [class.dtor]p5:
|
|
// -- any direct or virtual base class [...] has a type with a destructor
|
|
// that is deleted or inaccessible
|
|
if (!(CSM == Sema::CXXDefaultConstructor &&
|
|
Field && Field->hasInClassInitializer()) &&
|
|
shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
|
|
false))
|
|
return true;
|
|
|
|
// C++11 [class.ctor]p5, C++11 [class.copy]p11:
|
|
// -- any direct or virtual base class or non-static data member has a
|
|
// type with a destructor that is deleted or inaccessible
|
|
if (IsConstructor) {
|
|
Sema::SpecialMemberOverloadResult SMOR =
|
|
S.LookupSpecialMember(Class, Sema::CXXDestructor,
|
|
false, false, false, false, false);
|
|
if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check whether we should delete a special member function due to the class
|
|
/// having a particular direct or virtual base class.
|
|
bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
|
|
CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
|
|
// If program is correct, BaseClass cannot be null, but if it is, the error
|
|
// must be reported elsewhere.
|
|
if (!BaseClass)
|
|
return false;
|
|
// If we have an inheriting constructor, check whether we're calling an
|
|
// inherited constructor instead of a default constructor.
|
|
Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
|
|
if (auto *BaseCtor = SMOR.getMethod()) {
|
|
// Note that we do not check access along this path; other than that,
|
|
// this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
|
|
// FIXME: Check that the base has a usable destructor! Sink this into
|
|
// shouldDeleteForClassSubobject.
|
|
if (BaseCtor->isDeleted() && Diagnose) {
|
|
S.Diag(Base->getLocStart(),
|
|
diag::note_deleted_special_member_class_subobject)
|
|
<< getEffectiveCSM() << MD->getParent() << /*IsField*/false
|
|
<< Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
|
|
S.NoteDeletedFunction(BaseCtor);
|
|
}
|
|
return BaseCtor->isDeleted();
|
|
}
|
|
return shouldDeleteForClassSubobject(BaseClass, Base, 0);
|
|
}
|
|
|
|
/// Check whether we should delete a special member function due to the class
|
|
/// having a particular non-static data member.
|
|
bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
|
|
QualType FieldType = S.Context.getBaseElementType(FD->getType());
|
|
CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
|
|
|
|
if (CSM == Sema::CXXDefaultConstructor) {
|
|
// For a default constructor, all references must be initialized in-class
|
|
// and, if a union, it must have a non-const member.
|
|
if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
|
|
if (Diagnose)
|
|
S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
|
|
<< !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
|
|
return true;
|
|
}
|
|
// C++11 [class.ctor]p5: any non-variant non-static data member of
|
|
// const-qualified type (or array thereof) with no
|
|
// brace-or-equal-initializer does not have a user-provided default
|
|
// constructor.
|
|
if (!inUnion() && FieldType.isConstQualified() &&
|
|
!FD->hasInClassInitializer() &&
|
|
(!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
|
|
if (Diagnose)
|
|
S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
|
|
<< !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
|
|
return true;
|
|
}
|
|
|
|
if (inUnion() && !FieldType.isConstQualified())
|
|
AllFieldsAreConst = false;
|
|
} else if (CSM == Sema::CXXCopyConstructor) {
|
|
// For a copy constructor, data members must not be of rvalue reference
|
|
// type.
|
|
if (FieldType->isRValueReferenceType()) {
|
|
if (Diagnose)
|
|
S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
|
|
<< MD->getParent() << FD << FieldType;
|
|
return true;
|
|
}
|
|
} else if (IsAssignment) {
|
|
// For an assignment operator, data members must not be of reference type.
|
|
if (FieldType->isReferenceType()) {
|
|
if (Diagnose)
|
|
S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
|
|
<< isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
|
|
return true;
|
|
}
|
|
if (!FieldRecord && FieldType.isConstQualified()) {
|
|
// C++11 [class.copy]p23:
|
|
// -- a non-static data member of const non-class type (or array thereof)
|
|
if (Diagnose)
|
|
S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
|
|
<< isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (FieldRecord) {
|
|
// Some additional restrictions exist on the variant members.
|
|
if (!inUnion() && FieldRecord->isUnion() &&
|
|
FieldRecord->isAnonymousStructOrUnion()) {
|
|
bool AllVariantFieldsAreConst = true;
|
|
|
|
// FIXME: Handle anonymous unions declared within anonymous unions.
|
|
for (auto *UI : FieldRecord->fields()) {
|
|
QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
|
|
|
|
if (!UnionFieldType.isConstQualified())
|
|
AllVariantFieldsAreConst = false;
|
|
|
|
CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
|
|
if (UnionFieldRecord &&
|
|
shouldDeleteForClassSubobject(UnionFieldRecord, UI,
|
|
UnionFieldType.getCVRQualifiers()))
|
|
return true;
|
|
}
|
|
|
|
// At least one member in each anonymous union must be non-const
|
|
if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
|
|
!FieldRecord->field_empty()) {
|
|
if (Diagnose)
|
|
S.Diag(FieldRecord->getLocation(),
|
|
diag::note_deleted_default_ctor_all_const)
|
|
<< !!ICI << MD->getParent() << /*anonymous union*/1;
|
|
return true;
|
|
}
|
|
|
|
// Don't check the implicit member of the anonymous union type.
|
|
// This is technically non-conformant, but sanity demands it.
|
|
return false;
|
|
}
|
|
|
|
if (shouldDeleteForClassSubobject(FieldRecord, FD,
|
|
FieldType.getCVRQualifiers()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// C++11 [class.ctor] p5:
|
|
/// A defaulted default constructor for a class X is defined as deleted if
|
|
/// X is a union and all of its variant members are of const-qualified type.
|
|
bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
|
|
// This is a silly definition, because it gives an empty union a deleted
|
|
// default constructor. Don't do that.
|
|
if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
|
|
bool AnyFields = false;
|
|
for (auto *F : MD->getParent()->fields())
|
|
if ((AnyFields = !F->isUnnamedBitfield()))
|
|
break;
|
|
if (!AnyFields)
|
|
return false;
|
|
if (Diagnose)
|
|
S.Diag(MD->getParent()->getLocation(),
|
|
diag::note_deleted_default_ctor_all_const)
|
|
<< !!ICI << MD->getParent() << /*not anonymous union*/0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether a defaulted special member function should be defined as
|
|
/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
|
|
/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
|
|
bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
|
|
InheritedConstructorInfo *ICI,
|
|
bool Diagnose) {
|
|
if (MD->isInvalidDecl())
|
|
return false;
|
|
CXXRecordDecl *RD = MD->getParent();
|
|
assert(!RD->isDependentType() && "do deletion after instantiation");
|
|
if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
|
|
return false;
|
|
|
|
// C++11 [expr.lambda.prim]p19:
|
|
// The closure type associated with a lambda-expression has a
|
|
// deleted (8.4.3) default constructor and a deleted copy
|
|
// assignment operator.
|
|
if (RD->isLambda() &&
|
|
(CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
|
|
if (Diagnose)
|
|
Diag(RD->getLocation(), diag::note_lambda_decl);
|
|
return true;
|
|
}
|
|
|
|
// For an anonymous struct or union, the copy and assignment special members
|
|
// will never be used, so skip the check. For an anonymous union declared at
|
|
// namespace scope, the constructor and destructor are used.
|
|
if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
|
|
RD->isAnonymousStructOrUnion())
|
|
return false;
|
|
|
|
// C++11 [class.copy]p7, p18:
|
|
// If the class definition declares a move constructor or move assignment
|
|
// operator, an implicitly declared copy constructor or copy assignment
|
|
// operator is defined as deleted.
|
|
if (MD->isImplicit() &&
|
|
(CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
|
|
CXXMethodDecl *UserDeclaredMove = nullptr;
|
|
|
|
// In Microsoft mode up to MSVC 2013, a user-declared move only causes the
|
|
// deletion of the corresponding copy operation, not both copy operations.
|
|
// MSVC 2015 has adopted the standards conforming behavior.
|
|
bool DeletesOnlyMatchingCopy =
|
|
getLangOpts().MSVCCompat &&
|
|
!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
|
|
|
|
if (RD->hasUserDeclaredMoveConstructor() &&
|
|
(!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
|
|
if (!Diagnose) return true;
|
|
|
|
// Find any user-declared move constructor.
|
|
for (auto *I : RD->ctors()) {
|
|
if (I->isMoveConstructor()) {
|
|
UserDeclaredMove = I;
|
|
break;
|
|
}
|
|
}
|
|
assert(UserDeclaredMove);
|
|
} else if (RD->hasUserDeclaredMoveAssignment() &&
|
|
(!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
|
|
if (!Diagnose) return true;
|
|
|
|
// Find any user-declared move assignment operator.
|
|
for (auto *I : RD->methods()) {
|
|
if (I->isMoveAssignmentOperator()) {
|
|
UserDeclaredMove = I;
|
|
break;
|
|
}
|
|
}
|
|
assert(UserDeclaredMove);
|
|
}
|
|
|
|
if (UserDeclaredMove) {
|
|
Diag(UserDeclaredMove->getLocation(),
|
|
diag::note_deleted_copy_user_declared_move)
|
|
<< (CSM == CXXCopyAssignment) << RD
|
|
<< UserDeclaredMove->isMoveAssignmentOperator();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Do access control from the special member function
|
|
ContextRAII MethodContext(*this, MD);
|
|
|
|
// C++11 [class.dtor]p5:
|
|
// -- for a virtual destructor, lookup of the non-array deallocation function
|
|
// results in an ambiguity or in a function that is deleted or inaccessible
|
|
if (CSM == CXXDestructor && MD->isVirtual()) {
|
|
FunctionDecl *OperatorDelete = nullptr;
|
|
DeclarationName Name =
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Delete);
|
|
if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
|
|
OperatorDelete, /*Diagnose*/false)) {
|
|
if (Diagnose)
|
|
Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
|
|
|
|
// Per DR1611, do not consider virtual bases of constructors of abstract
|
|
// classes, since we are not going to construct them.
|
|
// Per DR1658, do not consider virtual bases of destructors of abstract
|
|
// classes either.
|
|
// Per DR2180, for assignment operators we only assign (and thus only
|
|
// consider) direct bases.
|
|
if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
|
|
: SMI.VisitPotentiallyConstructedBases))
|
|
return true;
|
|
|
|
if (SMI.shouldDeleteForAllConstMembers())
|
|
return true;
|
|
|
|
if (getLangOpts().CUDA) {
|
|
// We should delete the special member in CUDA mode if target inference
|
|
// failed.
|
|
return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
|
|
Diagnose);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Perform lookup for a special member of the specified kind, and determine
|
|
/// whether it is trivial. If the triviality can be determined without the
|
|
/// lookup, skip it. This is intended for use when determining whether a
|
|
/// special member of a containing object is trivial, and thus does not ever
|
|
/// perform overload resolution for default constructors.
|
|
///
|
|
/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
|
|
/// member that was most likely to be intended to be trivial, if any.
|
|
static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
|
|
Sema::CXXSpecialMember CSM, unsigned Quals,
|
|
bool ConstRHS, CXXMethodDecl **Selected) {
|
|
if (Selected)
|
|
*Selected = nullptr;
|
|
|
|
switch (CSM) {
|
|
case Sema::CXXInvalid:
|
|
llvm_unreachable("not a special member");
|
|
|
|
case Sema::CXXDefaultConstructor:
|
|
// C++11 [class.ctor]p5:
|
|
// A default constructor is trivial if:
|
|
// - all the [direct subobjects] have trivial default constructors
|
|
//
|
|
// Note, no overload resolution is performed in this case.
|
|
if (RD->hasTrivialDefaultConstructor())
|
|
return true;
|
|
|
|
if (Selected) {
|
|
// If there's a default constructor which could have been trivial, dig it
|
|
// out. Otherwise, if there's any user-provided default constructor, point
|
|
// to that as an example of why there's not a trivial one.
|
|
CXXConstructorDecl *DefCtor = nullptr;
|
|
if (RD->needsImplicitDefaultConstructor())
|
|
S.DeclareImplicitDefaultConstructor(RD);
|
|
for (auto *CI : RD->ctors()) {
|
|
if (!CI->isDefaultConstructor())
|
|
continue;
|
|
DefCtor = CI;
|
|
if (!DefCtor->isUserProvided())
|
|
break;
|
|
}
|
|
|
|
*Selected = DefCtor;
|
|
}
|
|
|
|
return false;
|
|
|
|
case Sema::CXXDestructor:
|
|
// C++11 [class.dtor]p5:
|
|
// A destructor is trivial if:
|
|
// - all the direct [subobjects] have trivial destructors
|
|
if (RD->hasTrivialDestructor())
|
|
return true;
|
|
|
|
if (Selected) {
|
|
if (RD->needsImplicitDestructor())
|
|
S.DeclareImplicitDestructor(RD);
|
|
*Selected = RD->getDestructor();
|
|
}
|
|
|
|
return false;
|
|
|
|
case Sema::CXXCopyConstructor:
|
|
// C++11 [class.copy]p12:
|
|
// A copy constructor is trivial if:
|
|
// - the constructor selected to copy each direct [subobject] is trivial
|
|
if (RD->hasTrivialCopyConstructor()) {
|
|
if (Quals == Qualifiers::Const)
|
|
// We must either select the trivial copy constructor or reach an
|
|
// ambiguity; no need to actually perform overload resolution.
|
|
return true;
|
|
} else if (!Selected) {
|
|
return false;
|
|
}
|
|
// In C++98, we are not supposed to perform overload resolution here, but we
|
|
// treat that as a language defect, as suggested on cxx-abi-dev, to treat
|
|
// cases like B as having a non-trivial copy constructor:
|
|
// struct A { template<typename T> A(T&); };
|
|
// struct B { mutable A a; };
|
|
goto NeedOverloadResolution;
|
|
|
|
case Sema::CXXCopyAssignment:
|
|
// C++11 [class.copy]p25:
|
|
// A copy assignment operator is trivial if:
|
|
// - the assignment operator selected to copy each direct [subobject] is
|
|
// trivial
|
|
if (RD->hasTrivialCopyAssignment()) {
|
|
if (Quals == Qualifiers::Const)
|
|
return true;
|
|
} else if (!Selected) {
|
|
return false;
|
|
}
|
|
// In C++98, we are not supposed to perform overload resolution here, but we
|
|
// treat that as a language defect.
|
|
goto NeedOverloadResolution;
|
|
|
|
case Sema::CXXMoveConstructor:
|
|
case Sema::CXXMoveAssignment:
|
|
NeedOverloadResolution:
|
|
Sema::SpecialMemberOverloadResult SMOR =
|
|
lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
|
|
|
|
// The standard doesn't describe how to behave if the lookup is ambiguous.
|
|
// We treat it as not making the member non-trivial, just like the standard
|
|
// mandates for the default constructor. This should rarely matter, because
|
|
// the member will also be deleted.
|
|
if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
|
|
return true;
|
|
|
|
if (!SMOR.getMethod()) {
|
|
assert(SMOR.getKind() ==
|
|
Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
|
|
return false;
|
|
}
|
|
|
|
// We deliberately don't check if we found a deleted special member. We're
|
|
// not supposed to!
|
|
if (Selected)
|
|
*Selected = SMOR.getMethod();
|
|
return SMOR.getMethod()->isTrivial();
|
|
}
|
|
|
|
llvm_unreachable("unknown special method kind");
|
|
}
|
|
|
|
static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
|
|
for (auto *CI : RD->ctors())
|
|
if (!CI->isImplicit())
|
|
return CI;
|
|
|
|
// Look for constructor templates.
|
|
typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
|
|
for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
|
|
if (CXXConstructorDecl *CD =
|
|
dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
|
|
return CD;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// The kind of subobject we are checking for triviality. The values of this
|
|
/// enumeration are used in diagnostics.
|
|
enum TrivialSubobjectKind {
|
|
/// The subobject is a base class.
|
|
TSK_BaseClass,
|
|
/// The subobject is a non-static data member.
|
|
TSK_Field,
|
|
/// The object is actually the complete object.
|
|
TSK_CompleteObject
|
|
};
|
|
|
|
/// Check whether the special member selected for a given type would be trivial.
|
|
static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
|
|
QualType SubType, bool ConstRHS,
|
|
Sema::CXXSpecialMember CSM,
|
|
TrivialSubobjectKind Kind,
|
|
bool Diagnose) {
|
|
CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
|
|
if (!SubRD)
|
|
return true;
|
|
|
|
CXXMethodDecl *Selected;
|
|
if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
|
|
ConstRHS, Diagnose ? &Selected : nullptr))
|
|
return true;
|
|
|
|
if (Diagnose) {
|
|
if (ConstRHS)
|
|
SubType.addConst();
|
|
|
|
if (!Selected && CSM == Sema::CXXDefaultConstructor) {
|
|
S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
|
|
<< Kind << SubType.getUnqualifiedType();
|
|
if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
|
|
S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
|
|
} else if (!Selected)
|
|
S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
|
|
<< Kind << SubType.getUnqualifiedType() << CSM << SubType;
|
|
else if (Selected->isUserProvided()) {
|
|
if (Kind == TSK_CompleteObject)
|
|
S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
|
|
<< Kind << SubType.getUnqualifiedType() << CSM;
|
|
else {
|
|
S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
|
|
<< Kind << SubType.getUnqualifiedType() << CSM;
|
|
S.Diag(Selected->getLocation(), diag::note_declared_at);
|
|
}
|
|
} else {
|
|
if (Kind != TSK_CompleteObject)
|
|
S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
|
|
<< Kind << SubType.getUnqualifiedType() << CSM;
|
|
|
|
// Explain why the defaulted or deleted special member isn't trivial.
|
|
S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the members of a class type allow a special member to be
|
|
/// trivial.
|
|
static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
|
|
Sema::CXXSpecialMember CSM,
|
|
bool ConstArg, bool Diagnose) {
|
|
for (const auto *FI : RD->fields()) {
|
|
if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
|
|
continue;
|
|
|
|
QualType FieldType = S.Context.getBaseElementType(FI->getType());
|
|
|
|
// Pretend anonymous struct or union members are members of this class.
|
|
if (FI->isAnonymousStructOrUnion()) {
|
|
if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
|
|
CSM, ConstArg, Diagnose))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// C++11 [class.ctor]p5:
|
|
// A default constructor is trivial if [...]
|
|
// -- no non-static data member of its class has a
|
|
// brace-or-equal-initializer
|
|
if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
|
|
if (Diagnose)
|
|
S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
|
|
return false;
|
|
}
|
|
|
|
// Objective C ARC 4.3.5:
|
|
// [...] nontrivally ownership-qualified types are [...] not trivially
|
|
// default constructible, copy constructible, move constructible, copy
|
|
// assignable, move assignable, or destructible [...]
|
|
if (FieldType.hasNonTrivialObjCLifetime()) {
|
|
if (Diagnose)
|
|
S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
|
|
<< RD << FieldType.getObjCLifetime();
|
|
return false;
|
|
}
|
|
|
|
bool ConstRHS = ConstArg && !FI->isMutable();
|
|
if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
|
|
CSM, TSK_Field, Diagnose))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Diagnose why the specified class does not have a trivial special member of
|
|
/// the given kind.
|
|
void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
|
|
QualType Ty = Context.getRecordType(RD);
|
|
|
|
bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
|
|
checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
|
|
TSK_CompleteObject, /*Diagnose*/true);
|
|
}
|
|
|
|
/// Determine whether a defaulted or deleted special member function is trivial,
|
|
/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
|
|
/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
|
|
bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
|
|
bool Diagnose) {
|
|
assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
|
|
|
|
CXXRecordDecl *RD = MD->getParent();
|
|
|
|
bool ConstArg = false;
|
|
|
|
// C++11 [class.copy]p12, p25: [DR1593]
|
|
// A [special member] is trivial if [...] its parameter-type-list is
|
|
// equivalent to the parameter-type-list of an implicit declaration [...]
|
|
switch (CSM) {
|
|
case CXXDefaultConstructor:
|
|
case CXXDestructor:
|
|
// Trivial default constructors and destructors cannot have parameters.
|
|
break;
|
|
|
|
case CXXCopyConstructor:
|
|
case CXXCopyAssignment: {
|
|
// Trivial copy operations always have const, non-volatile parameter types.
|
|
ConstArg = true;
|
|
const ParmVarDecl *Param0 = MD->getParamDecl(0);
|
|
const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
|
|
if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
|
|
if (Diagnose)
|
|
Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
|
|
<< Param0->getSourceRange() << Param0->getType()
|
|
<< Context.getLValueReferenceType(
|
|
Context.getRecordType(RD).withConst());
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case CXXMoveConstructor:
|
|
case CXXMoveAssignment: {
|
|
// Trivial move operations always have non-cv-qualified parameters.
|
|
const ParmVarDecl *Param0 = MD->getParamDecl(0);
|
|
const RValueReferenceType *RT =
|
|
Param0->getType()->getAs<RValueReferenceType>();
|
|
if (!RT || RT->getPointeeType().getCVRQualifiers()) {
|
|
if (Diagnose)
|
|
Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
|
|
<< Param0->getSourceRange() << Param0->getType()
|
|
<< Context.getRValueReferenceType(Context.getRecordType(RD));
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case CXXInvalid:
|
|
llvm_unreachable("not a special member");
|
|
}
|
|
|
|
if (MD->getMinRequiredArguments() < MD->getNumParams()) {
|
|
if (Diagnose)
|
|
Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
|
|
diag::note_nontrivial_default_arg)
|
|
<< MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
|
|
return false;
|
|
}
|
|
if (MD->isVariadic()) {
|
|
if (Diagnose)
|
|
Diag(MD->getLocation(), diag::note_nontrivial_variadic);
|
|
return false;
|
|
}
|
|
|
|
// C++11 [class.ctor]p5, C++11 [class.dtor]p5:
|
|
// A copy/move [constructor or assignment operator] is trivial if
|
|
// -- the [member] selected to copy/move each direct base class subobject
|
|
// is trivial
|
|
//
|
|
// C++11 [class.copy]p12, C++11 [class.copy]p25:
|
|
// A [default constructor or destructor] is trivial if
|
|
// -- all the direct base classes have trivial [default constructors or
|
|
// destructors]
|
|
for (const auto &BI : RD->bases())
|
|
if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
|
|
ConstArg, CSM, TSK_BaseClass, Diagnose))
|
|
return false;
|
|
|
|
// C++11 [class.ctor]p5, C++11 [class.dtor]p5:
|
|
// A copy/move [constructor or assignment operator] for a class X is
|
|
// trivial if
|
|
// -- for each non-static data member of X that is of class type (or array
|
|
// thereof), the constructor selected to copy/move that member is
|
|
// trivial
|
|
//
|
|
// C++11 [class.copy]p12, C++11 [class.copy]p25:
|
|
// A [default constructor or destructor] is trivial if
|
|
// -- for all of the non-static data members of its class that are of class
|
|
// type (or array thereof), each such class has a trivial [default
|
|
// constructor or destructor]
|
|
if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
|
|
return false;
|
|
|
|
// C++11 [class.dtor]p5:
|
|
// A destructor is trivial if [...]
|
|
// -- the destructor is not virtual
|
|
if (CSM == CXXDestructor && MD->isVirtual()) {
|
|
if (Diagnose)
|
|
Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
|
|
return false;
|
|
}
|
|
|
|
// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
|
|
// A [special member] for class X is trivial if [...]
|
|
// -- class X has no virtual functions and no virtual base classes
|
|
if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
|
|
if (!Diagnose)
|
|
return false;
|
|
|
|
if (RD->getNumVBases()) {
|
|
// Check for virtual bases. We already know that the corresponding
|
|
// member in all bases is trivial, so vbases must all be direct.
|
|
CXXBaseSpecifier &BS = *RD->vbases_begin();
|
|
assert(BS.isVirtual());
|
|
Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
|
|
return false;
|
|
}
|
|
|
|
// Must have a virtual method.
|
|
for (const auto *MI : RD->methods()) {
|
|
if (MI->isVirtual()) {
|
|
SourceLocation MLoc = MI->getLocStart();
|
|
Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("dynamic class with no vbases and no virtual functions");
|
|
}
|
|
|
|
// Looks like it's trivial!
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
struct FindHiddenVirtualMethod {
|
|
Sema *S;
|
|
CXXMethodDecl *Method;
|
|
llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
|
|
SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
|
|
|
|
private:
|
|
/// Check whether any most overriden method from MD in Methods
|
|
static bool CheckMostOverridenMethods(
|
|
const CXXMethodDecl *MD,
|
|
const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
|
|
if (MD->size_overridden_methods() == 0)
|
|
return Methods.count(MD->getCanonicalDecl());
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods();
|
|
I != E; ++I)
|
|
if (CheckMostOverridenMethods(*I, Methods))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
/// Member lookup function that determines whether a given C++
|
|
/// method overloads virtual methods in a base class without overriding any,
|
|
/// to be used with CXXRecordDecl::lookupInBases().
|
|
bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
|
|
RecordDecl *BaseRecord =
|
|
Specifier->getType()->getAs<RecordType>()->getDecl();
|
|
|
|
DeclarationName Name = Method->getDeclName();
|
|
assert(Name.getNameKind() == DeclarationName::Identifier);
|
|
|
|
bool foundSameNameMethod = false;
|
|
SmallVector<CXXMethodDecl *, 8> overloadedMethods;
|
|
for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
|
|
Path.Decls = Path.Decls.slice(1)) {
|
|
NamedDecl *D = Path.Decls.front();
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
MD = MD->getCanonicalDecl();
|
|
foundSameNameMethod = true;
|
|
// Interested only in hidden virtual methods.
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
// If the method we are checking overrides a method from its base
|
|
// don't warn about the other overloaded methods. Clang deviates from
|
|
// GCC by only diagnosing overloads of inherited virtual functions that
|
|
// do not override any other virtual functions in the base. GCC's
|
|
// -Woverloaded-virtual diagnoses any derived function hiding a virtual
|
|
// function from a base class. These cases may be better served by a
|
|
// warning (not specific to virtual functions) on call sites when the
|
|
// call would select a different function from the base class, were it
|
|
// visible.
|
|
// See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
|
|
if (!S->IsOverload(Method, MD, false))
|
|
return true;
|
|
// Collect the overload only if its hidden.
|
|
if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
|
|
overloadedMethods.push_back(MD);
|
|
}
|
|
}
|
|
|
|
if (foundSameNameMethod)
|
|
OverloadedMethods.append(overloadedMethods.begin(),
|
|
overloadedMethods.end());
|
|
return foundSameNameMethod;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// \brief Add the most overriden methods from MD to Methods
|
|
static void AddMostOverridenMethods(const CXXMethodDecl *MD,
|
|
llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
|
|
if (MD->size_overridden_methods() == 0)
|
|
Methods.insert(MD->getCanonicalDecl());
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods();
|
|
I != E; ++I)
|
|
AddMostOverridenMethods(*I, Methods);
|
|
}
|
|
|
|
/// \brief Check if a method overloads virtual methods in a base class without
|
|
/// overriding any.
|
|
void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
|
|
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
|
|
if (!MD->getDeclName().isIdentifier())
|
|
return;
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
|
|
/*bool RecordPaths=*/false,
|
|
/*bool DetectVirtual=*/false);
|
|
FindHiddenVirtualMethod FHVM;
|
|
FHVM.Method = MD;
|
|
FHVM.S = this;
|
|
|
|
// Keep the base methods that were overriden or introduced in the subclass
|
|
// by 'using' in a set. A base method not in this set is hidden.
|
|
CXXRecordDecl *DC = MD->getParent();
|
|
DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
|
|
for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *ND = *I;
|
|
if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
|
|
ND = shad->getTargetDecl();
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
|
|
AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
|
|
}
|
|
|
|
if (DC->lookupInBases(FHVM, Paths))
|
|
OverloadedMethods = FHVM.OverloadedMethods;
|
|
}
|
|
|
|
void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
|
|
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
|
|
for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
|
|
CXXMethodDecl *overloadedMD = OverloadedMethods[i];
|
|
PartialDiagnostic PD = PDiag(
|
|
diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
|
|
HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
|
|
Diag(overloadedMD->getLocation(), PD);
|
|
}
|
|
}
|
|
|
|
/// \brief Diagnose methods which overload virtual methods in a base class
|
|
/// without overriding any.
|
|
void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
|
|
if (MD->isInvalidDecl())
|
|
return;
|
|
|
|
if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
|
|
return;
|
|
|
|
SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
|
|
FindHiddenVirtualMethods(MD, OverloadedMethods);
|
|
if (!OverloadedMethods.empty()) {
|
|
Diag(MD->getLocation(), diag::warn_overloaded_virtual)
|
|
<< MD << (OverloadedMethods.size() > 1);
|
|
|
|
NoteHiddenVirtualMethods(MD, OverloadedMethods);
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
|
|
Decl *TagDecl,
|
|
SourceLocation LBrac,
|
|
SourceLocation RBrac,
|
|
AttributeList *AttrList) {
|
|
if (!TagDecl)
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(TagDecl);
|
|
|
|
for (const AttributeList* l = AttrList; l; l = l->getNext()) {
|
|
if (l->getKind() != AttributeList::AT_Visibility)
|
|
continue;
|
|
l->setInvalid();
|
|
Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
|
|
l->getName();
|
|
}
|
|
|
|
ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
|
|
// strict aliasing violation!
|
|
reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
|
|
FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
|
|
|
|
CheckCompletedCXXClass(dyn_cast_or_null<CXXRecordDecl>(TagDecl));
|
|
}
|
|
|
|
/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
|
|
/// special functions, such as the default constructor, copy
|
|
/// constructor, or destructor, to the given C++ class (C++
|
|
/// [special]p1). This routine can only be executed just before the
|
|
/// definition of the class is complete.
|
|
void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
|
|
if (ClassDecl->needsImplicitDefaultConstructor()) {
|
|
++ASTContext::NumImplicitDefaultConstructors;
|
|
|
|
if (ClassDecl->hasInheritedConstructor())
|
|
DeclareImplicitDefaultConstructor(ClassDecl);
|
|
}
|
|
|
|
if (ClassDecl->needsImplicitCopyConstructor()) {
|
|
++ASTContext::NumImplicitCopyConstructors;
|
|
|
|
// If the properties or semantics of the copy constructor couldn't be
|
|
// determined while the class was being declared, force a declaration
|
|
// of it now.
|
|
if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
|
|
ClassDecl->hasInheritedConstructor())
|
|
DeclareImplicitCopyConstructor(ClassDecl);
|
|
// For the MS ABI we need to know whether the copy ctor is deleted. A
|
|
// prerequisite for deleting the implicit copy ctor is that the class has a
|
|
// move ctor or move assignment that is either user-declared or whose
|
|
// semantics are inherited from a subobject. FIXME: We should provide a more
|
|
// direct way for CodeGen to ask whether the constructor was deleted.
|
|
else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
(ClassDecl->hasUserDeclaredMoveConstructor() ||
|
|
ClassDecl->needsOverloadResolutionForMoveConstructor() ||
|
|
ClassDecl->hasUserDeclaredMoveAssignment() ||
|
|
ClassDecl->needsOverloadResolutionForMoveAssignment()))
|
|
DeclareImplicitCopyConstructor(ClassDecl);
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
|
|
++ASTContext::NumImplicitMoveConstructors;
|
|
|
|
if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
|
|
ClassDecl->hasInheritedConstructor())
|
|
DeclareImplicitMoveConstructor(ClassDecl);
|
|
}
|
|
|
|
if (ClassDecl->needsImplicitCopyAssignment()) {
|
|
++ASTContext::NumImplicitCopyAssignmentOperators;
|
|
|
|
// If we have a dynamic class, then the copy assignment operator may be
|
|
// virtual, so we have to declare it immediately. This ensures that, e.g.,
|
|
// it shows up in the right place in the vtable and that we diagnose
|
|
// problems with the implicit exception specification.
|
|
if (ClassDecl->isDynamicClass() ||
|
|
ClassDecl->needsOverloadResolutionForCopyAssignment() ||
|
|
ClassDecl->hasInheritedAssignment())
|
|
DeclareImplicitCopyAssignment(ClassDecl);
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
|
|
++ASTContext::NumImplicitMoveAssignmentOperators;
|
|
|
|
// Likewise for the move assignment operator.
|
|
if (ClassDecl->isDynamicClass() ||
|
|
ClassDecl->needsOverloadResolutionForMoveAssignment() ||
|
|
ClassDecl->hasInheritedAssignment())
|
|
DeclareImplicitMoveAssignment(ClassDecl);
|
|
}
|
|
|
|
if (ClassDecl->needsImplicitDestructor()) {
|
|
++ASTContext::NumImplicitDestructors;
|
|
|
|
// If we have a dynamic class, then the destructor may be virtual, so we
|
|
// have to declare the destructor immediately. This ensures that, e.g., it
|
|
// shows up in the right place in the vtable and that we diagnose problems
|
|
// with the implicit exception specification.
|
|
if (ClassDecl->isDynamicClass() ||
|
|
ClassDecl->needsOverloadResolutionForDestructor())
|
|
DeclareImplicitDestructor(ClassDecl);
|
|
}
|
|
}
|
|
|
|
unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
|
|
if (!D)
|
|
return 0;
|
|
|
|
// The order of template parameters is not important here. All names
|
|
// get added to the same scope.
|
|
SmallVector<TemplateParameterList *, 4> ParameterLists;
|
|
|
|
if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
|
|
D = TD->getTemplatedDecl();
|
|
|
|
if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
|
|
ParameterLists.push_back(PSD->getTemplateParameters());
|
|
|
|
if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
|
|
for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
|
|
ParameterLists.push_back(DD->getTemplateParameterList(i));
|
|
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
|
|
ParameterLists.push_back(FTD->getTemplateParameters());
|
|
}
|
|
}
|
|
|
|
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
|
|
for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
|
|
ParameterLists.push_back(TD->getTemplateParameterList(i));
|
|
|
|
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
|
|
if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
|
|
ParameterLists.push_back(CTD->getTemplateParameters());
|
|
}
|
|
}
|
|
|
|
unsigned Count = 0;
|
|
for (TemplateParameterList *Params : ParameterLists) {
|
|
if (Params->size() > 0)
|
|
// Ignore explicit specializations; they don't contribute to the template
|
|
// depth.
|
|
++Count;
|
|
for (NamedDecl *Param : *Params) {
|
|
if (Param->getDeclName()) {
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Count;
|
|
}
|
|
|
|
void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
|
|
if (!RecordD) return;
|
|
AdjustDeclIfTemplate(RecordD);
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
|
|
PushDeclContext(S, Record);
|
|
}
|
|
|
|
void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
|
|
if (!RecordD) return;
|
|
PopDeclContext();
|
|
}
|
|
|
|
/// This is used to implement the constant expression evaluation part of the
|
|
/// attribute enable_if extension. There is nothing in standard C++ which would
|
|
/// require reentering parameters.
|
|
void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
|
|
if (!Param)
|
|
return;
|
|
|
|
S->AddDecl(Param);
|
|
if (Param->getDeclName())
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
|
|
/// parsing a top-level (non-nested) C++ class, and we are now
|
|
/// parsing those parts of the given Method declaration that could
|
|
/// not be parsed earlier (C++ [class.mem]p2), such as default
|
|
/// arguments. This action should enter the scope of the given
|
|
/// Method declaration as if we had just parsed the qualified method
|
|
/// name. However, it should not bring the parameters into scope;
|
|
/// that will be performed by ActOnDelayedCXXMethodParameter.
|
|
void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
|
|
}
|
|
|
|
/// ActOnDelayedCXXMethodParameter - We've already started a delayed
|
|
/// C++ method declaration. We're (re-)introducing the given
|
|
/// function parameter into scope for use in parsing later parts of
|
|
/// the method declaration. For example, we could see an
|
|
/// ActOnParamDefaultArgument event for this parameter.
|
|
void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
|
|
if (!ParamD)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
|
|
|
|
// If this parameter has an unparsed default argument, clear it out
|
|
// to make way for the parsed default argument.
|
|
if (Param->hasUnparsedDefaultArg())
|
|
Param->setDefaultArg(nullptr);
|
|
|
|
S->AddDecl(Param);
|
|
if (Param->getDeclName())
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
|
|
/// processing the delayed method declaration for Method. The method
|
|
/// declaration is now considered finished. There may be a separate
|
|
/// ActOnStartOfFunctionDef action later (not necessarily
|
|
/// immediately!) for this method, if it was also defined inside the
|
|
/// class body.
|
|
void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
|
|
if (!MethodD)
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(MethodD);
|
|
|
|
FunctionDecl *Method = cast<FunctionDecl>(MethodD);
|
|
|
|
// Now that we have our default arguments, check the constructor
|
|
// again. It could produce additional diagnostics or affect whether
|
|
// the class has implicitly-declared destructors, among other
|
|
// things.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
|
|
CheckConstructor(Constructor);
|
|
|
|
// Check the default arguments, which we may have added.
|
|
if (!Method->isInvalidDecl())
|
|
CheckCXXDefaultArguments(Method);
|
|
}
|
|
|
|
/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
|
|
/// the well-formedness of the constructor declarator @p D with type @p
|
|
/// R. If there are any errors in the declarator, this routine will
|
|
/// emit diagnostics and set the invalid bit to true. In any case, the type
|
|
/// will be updated to reflect a well-formed type for the constructor and
|
|
/// returned.
|
|
QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass &SC) {
|
|
bool isVirtual = D.getDeclSpec().isVirtualSpecified();
|
|
|
|
// C++ [class.ctor]p3:
|
|
// A constructor shall not be virtual (10.3) or static (9.4). A
|
|
// constructor can be invoked for a const, volatile or const
|
|
// volatile object. A constructor shall not be declared const,
|
|
// volatile, or const volatile (9.3.2).
|
|
if (isVirtual) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
|
|
<< "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
if (SC == SC_Static) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
|
|
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
SC = SC_None;
|
|
}
|
|
|
|
if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
|
|
diagnoseIgnoredQualifiers(
|
|
diag::err_constructor_return_type, TypeQuals, SourceLocation(),
|
|
D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
|
|
D.getDeclSpec().getRestrictSpecLoc(),
|
|
D.getDeclSpec().getAtomicSpecLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
|
|
if (FTI.TypeQuals != 0) {
|
|
if (FTI.TypeQuals & Qualifiers::Const)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
|
<< "const" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Volatile)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
|
<< "volatile" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Restrict)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
|
<< "restrict" << SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// C++0x [class.ctor]p4:
|
|
// A constructor shall not be declared with a ref-qualifier.
|
|
if (FTI.hasRefQualifier()) {
|
|
Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
|
|
<< FTI.RefQualifierIsLValueRef
|
|
<< FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Rebuild the function type "R" without any type qualifiers (in
|
|
// case any of the errors above fired) and with "void" as the
|
|
// return type, since constructors don't have return types.
|
|
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
|
if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
|
|
return R;
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
|
|
EPI.TypeQuals = 0;
|
|
EPI.RefQualifier = RQ_None;
|
|
|
|
return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
|
|
}
|
|
|
|
/// CheckConstructor - Checks a fully-formed constructor for
|
|
/// well-formedness, issuing any diagnostics required. Returns true if
|
|
/// the constructor declarator is invalid.
|
|
void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
|
|
CXXRecordDecl *ClassDecl
|
|
= dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
|
|
if (!ClassDecl)
|
|
return Constructor->setInvalidDecl();
|
|
|
|
// C++ [class.copy]p3:
|
|
// A declaration of a constructor for a class X is ill-formed if
|
|
// its first parameter is of type (optionally cv-qualified) X and
|
|
// either there are no other parameters or else all other
|
|
// parameters have default arguments.
|
|
if (!Constructor->isInvalidDecl() &&
|
|
((Constructor->getNumParams() == 1) ||
|
|
(Constructor->getNumParams() > 1 &&
|
|
Constructor->getParamDecl(1)->hasDefaultArg())) &&
|
|
Constructor->getTemplateSpecializationKind()
|
|
!= TSK_ImplicitInstantiation) {
|
|
QualType ParamType = Constructor->getParamDecl(0)->getType();
|
|
QualType ClassTy = Context.getTagDeclType(ClassDecl);
|
|
if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
|
|
SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
|
|
const char *ConstRef
|
|
= Constructor->getParamDecl(0)->getIdentifier() ? "const &"
|
|
: " const &";
|
|
Diag(ParamLoc, diag::err_constructor_byvalue_arg)
|
|
<< FixItHint::CreateInsertion(ParamLoc, ConstRef);
|
|
|
|
// FIXME: Rather that making the constructor invalid, we should endeavor
|
|
// to fix the type.
|
|
Constructor->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CheckDestructor - Checks a fully-formed destructor definition for
|
|
/// well-formedness, issuing any diagnostics required. Returns true
|
|
/// on error.
|
|
bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
|
|
CXXRecordDecl *RD = Destructor->getParent();
|
|
|
|
if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
|
|
SourceLocation Loc;
|
|
|
|
if (!Destructor->isImplicit())
|
|
Loc = Destructor->getLocation();
|
|
else
|
|
Loc = RD->getLocation();
|
|
|
|
// If we have a virtual destructor, look up the deallocation function
|
|
if (FunctionDecl *OperatorDelete =
|
|
FindDeallocationFunctionForDestructor(Loc, RD)) {
|
|
Expr *ThisArg = nullptr;
|
|
|
|
// If the notional 'delete this' expression requires a non-trivial
|
|
// conversion from 'this' to the type of a destroying operator delete's
|
|
// first parameter, perform that conversion now.
|
|
if (OperatorDelete->isDestroyingOperatorDelete()) {
|
|
QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
|
|
if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
|
|
// C++ [class.dtor]p13:
|
|
// ... as if for the expression 'delete this' appearing in a
|
|
// non-virtual destructor of the destructor's class.
|
|
ContextRAII SwitchContext(*this, Destructor);
|
|
ExprResult This =
|
|
ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
|
|
assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
|
|
This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
|
|
if (This.isInvalid()) {
|
|
// FIXME: Register this as a context note so that it comes out
|
|
// in the right order.
|
|
Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
|
|
return true;
|
|
}
|
|
ThisArg = This.get();
|
|
}
|
|
}
|
|
|
|
MarkFunctionReferenced(Loc, OperatorDelete);
|
|
Destructor->setOperatorDelete(OperatorDelete, ThisArg);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
|
|
/// the well-formednes of the destructor declarator @p D with type @p
|
|
/// R. If there are any errors in the declarator, this routine will
|
|
/// emit diagnostics and set the declarator to invalid. Even if this happens,
|
|
/// will be updated to reflect a well-formed type for the destructor and
|
|
/// returned.
|
|
QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass& SC) {
|
|
// C++ [class.dtor]p1:
|
|
// [...] A typedef-name that names a class is a class-name
|
|
// (7.1.3); however, a typedef-name that names a class shall not
|
|
// be used as the identifier in the declarator for a destructor
|
|
// declaration.
|
|
QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
|
|
if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
|
|
<< DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
|
|
else if (const TemplateSpecializationType *TST =
|
|
DeclaratorType->getAs<TemplateSpecializationType>())
|
|
if (TST->isTypeAlias())
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
|
|
<< DeclaratorType << 1;
|
|
|
|
// C++ [class.dtor]p2:
|
|
// A destructor is used to destroy objects of its class type. A
|
|
// destructor takes no parameters, and no return type can be
|
|
// specified for it (not even void). The address of a destructor
|
|
// shall not be taken. A destructor shall not be static. A
|
|
// destructor can be invoked for a const, volatile or const
|
|
// volatile object. A destructor shall not be declared const,
|
|
// volatile or const volatile (9.3.2).
|
|
if (SC == SC_Static) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
|
|
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
|
<< SourceRange(D.getIdentifierLoc())
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
|
|
SC = SC_None;
|
|
}
|
|
if (!D.isInvalidType()) {
|
|
// Destructors don't have return types, but the parser will
|
|
// happily parse something like:
|
|
//
|
|
// class X {
|
|
// float ~X();
|
|
// };
|
|
//
|
|
// The return type will be eliminated later.
|
|
if (D.getDeclSpec().hasTypeSpecifier())
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
|
|
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
|
|
diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
|
|
SourceLocation(),
|
|
D.getDeclSpec().getConstSpecLoc(),
|
|
D.getDeclSpec().getVolatileSpecLoc(),
|
|
D.getDeclSpec().getRestrictSpecLoc(),
|
|
D.getDeclSpec().getAtomicSpecLoc());
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
|
|
if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
|
|
if (FTI.TypeQuals & Qualifiers::Const)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
|
<< "const" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Volatile)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
|
<< "volatile" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Restrict)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
|
<< "restrict" << SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// C++0x [class.dtor]p2:
|
|
// A destructor shall not be declared with a ref-qualifier.
|
|
if (FTI.hasRefQualifier()) {
|
|
Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
|
|
<< FTI.RefQualifierIsLValueRef
|
|
<< FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Make sure we don't have any parameters.
|
|
if (FTIHasNonVoidParameters(FTI)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
|
|
|
|
// Delete the parameters.
|
|
FTI.freeParams();
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Make sure the destructor isn't variadic.
|
|
if (FTI.isVariadic) {
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Rebuild the function type "R" without any type qualifiers or
|
|
// parameters (in case any of the errors above fired) and with
|
|
// "void" as the return type, since destructors don't have return
|
|
// types.
|
|
if (!D.isInvalidType())
|
|
return R;
|
|
|
|
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
|
|
EPI.Variadic = false;
|
|
EPI.TypeQuals = 0;
|
|
EPI.RefQualifier = RQ_None;
|
|
return Context.getFunctionType(Context.VoidTy, None, EPI);
|
|
}
|
|
|
|
static void extendLeft(SourceRange &R, SourceRange Before) {
|
|
if (Before.isInvalid())
|
|
return;
|
|
R.setBegin(Before.getBegin());
|
|
if (R.getEnd().isInvalid())
|
|
R.setEnd(Before.getEnd());
|
|
}
|
|
|
|
static void extendRight(SourceRange &R, SourceRange After) {
|
|
if (After.isInvalid())
|
|
return;
|
|
if (R.getBegin().isInvalid())
|
|
R.setBegin(After.getBegin());
|
|
R.setEnd(After.getEnd());
|
|
}
|
|
|
|
/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
|
|
/// well-formednes of the conversion function declarator @p D with
|
|
/// type @p R. If there are any errors in the declarator, this routine
|
|
/// will emit diagnostics and return true. Otherwise, it will return
|
|
/// false. Either way, the type @p R will be updated to reflect a
|
|
/// well-formed type for the conversion operator.
|
|
void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
|
|
StorageClass& SC) {
|
|
// C++ [class.conv.fct]p1:
|
|
// Neither parameter types nor return type can be specified. The
|
|
// type of a conversion function (8.3.5) is "function taking no
|
|
// parameter returning conversion-type-id."
|
|
if (SC == SC_Static) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
|
|
<< SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
|
<< D.getName().getSourceRange();
|
|
D.setInvalidType();
|
|
SC = SC_None;
|
|
}
|
|
|
|
TypeSourceInfo *ConvTSI = nullptr;
|
|
QualType ConvType =
|
|
GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
|
|
|
|
if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
|
|
// Conversion functions don't have return types, but the parser will
|
|
// happily parse something like:
|
|
//
|
|
// class X {
|
|
// float operator bool();
|
|
// };
|
|
//
|
|
// The return type will be changed later anyway.
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
|
|
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
|
|
|
// Make sure we don't have any parameters.
|
|
if (Proto->getNumParams() > 0) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
|
|
|
|
// Delete the parameters.
|
|
D.getFunctionTypeInfo().freeParams();
|
|
D.setInvalidType();
|
|
} else if (Proto->isVariadic()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Diagnose "&operator bool()" and other such nonsense. This
|
|
// is actually a gcc extension which we don't support.
|
|
if (Proto->getReturnType() != ConvType) {
|
|
bool NeedsTypedef = false;
|
|
SourceRange Before, After;
|
|
|
|
// Walk the chunks and extract information on them for our diagnostic.
|
|
bool PastFunctionChunk = false;
|
|
for (auto &Chunk : D.type_objects()) {
|
|
switch (Chunk.Kind) {
|
|
case DeclaratorChunk::Function:
|
|
if (!PastFunctionChunk) {
|
|
if (Chunk.Fun.HasTrailingReturnType) {
|
|
TypeSourceInfo *TRT = nullptr;
|
|
GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
|
|
if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
|
|
}
|
|
PastFunctionChunk = true;
|
|
break;
|
|
}
|
|
// Fall through.
|
|
case DeclaratorChunk::Array:
|
|
NeedsTypedef = true;
|
|
extendRight(After, Chunk.getSourceRange());
|
|
break;
|
|
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
extendLeft(Before, Chunk.getSourceRange());
|
|
break;
|
|
|
|
case DeclaratorChunk::Paren:
|
|
extendLeft(Before, Chunk.Loc);
|
|
extendRight(After, Chunk.EndLoc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SourceLocation Loc = Before.isValid() ? Before.getBegin() :
|
|
After.isValid() ? After.getBegin() :
|
|
D.getIdentifierLoc();
|
|
auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
|
|
DB << Before << After;
|
|
|
|
if (!NeedsTypedef) {
|
|
DB << /*don't need a typedef*/0;
|
|
|
|
// If we can provide a correct fix-it hint, do so.
|
|
if (After.isInvalid() && ConvTSI) {
|
|
SourceLocation InsertLoc =
|
|
getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
|
|
DB << FixItHint::CreateInsertion(InsertLoc, " ")
|
|
<< FixItHint::CreateInsertionFromRange(
|
|
InsertLoc, CharSourceRange::getTokenRange(Before))
|
|
<< FixItHint::CreateRemoval(Before);
|
|
}
|
|
} else if (!Proto->getReturnType()->isDependentType()) {
|
|
DB << /*typedef*/1 << Proto->getReturnType();
|
|
} else if (getLangOpts().CPlusPlus11) {
|
|
DB << /*alias template*/2 << Proto->getReturnType();
|
|
} else {
|
|
DB << /*might not be fixable*/3;
|
|
}
|
|
|
|
// Recover by incorporating the other type chunks into the result type.
|
|
// Note, this does *not* change the name of the function. This is compatible
|
|
// with the GCC extension:
|
|
// struct S { &operator int(); } s;
|
|
// int &r = s.operator int(); // ok in GCC
|
|
// S::operator int&() {} // error in GCC, function name is 'operator int'.
|
|
ConvType = Proto->getReturnType();
|
|
}
|
|
|
|
// C++ [class.conv.fct]p4:
|
|
// The conversion-type-id shall not represent a function type nor
|
|
// an array type.
|
|
if (ConvType->isArrayType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
|
|
ConvType = Context.getPointerType(ConvType);
|
|
D.setInvalidType();
|
|
} else if (ConvType->isFunctionType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
|
|
ConvType = Context.getPointerType(ConvType);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Rebuild the function type "R" without any parameters (in case any
|
|
// of the errors above fired) and with the conversion type as the
|
|
// return type.
|
|
if (D.isInvalidType())
|
|
R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
|
|
|
|
// C++0x explicit conversion operators.
|
|
if (D.getDeclSpec().isExplicitSpecified())
|
|
Diag(D.getDeclSpec().getExplicitSpecLoc(),
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_explicit_conversion_functions :
|
|
diag::ext_explicit_conversion_functions)
|
|
<< SourceRange(D.getDeclSpec().getExplicitSpecLoc());
|
|
}
|
|
|
|
/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
|
|
/// the declaration of the given C++ conversion function. This routine
|
|
/// is responsible for recording the conversion function in the C++
|
|
/// class, if possible.
|
|
Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
|
|
assert(Conversion && "Expected to receive a conversion function declaration");
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
|
|
|
|
// Make sure we aren't redeclaring the conversion function.
|
|
QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
|
|
|
|
// C++ [class.conv.fct]p1:
|
|
// [...] A conversion function is never used to convert a
|
|
// (possibly cv-qualified) object to the (possibly cv-qualified)
|
|
// same object type (or a reference to it), to a (possibly
|
|
// cv-qualified) base class of that type (or a reference to it),
|
|
// or to (possibly cv-qualified) void.
|
|
// FIXME: Suppress this warning if the conversion function ends up being a
|
|
// virtual function that overrides a virtual function in a base class.
|
|
QualType ClassType
|
|
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
|
if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
|
|
ConvType = ConvTypeRef->getPointeeType();
|
|
if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
|
|
Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
|
|
/* Suppress diagnostics for instantiations. */;
|
|
else if (ConvType->isRecordType()) {
|
|
ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
|
|
if (ConvType == ClassType)
|
|
Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
|
|
<< ClassType;
|
|
else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
|
|
Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
|
|
<< ClassType << ConvType;
|
|
} else if (ConvType->isVoidType()) {
|
|
Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
|
|
<< ClassType << ConvType;
|
|
}
|
|
|
|
if (FunctionTemplateDecl *ConversionTemplate
|
|
= Conversion->getDescribedFunctionTemplate())
|
|
return ConversionTemplate;
|
|
|
|
return Conversion;
|
|
}
|
|
|
|
namespace {
|
|
/// Utility class to accumulate and print a diagnostic listing the invalid
|
|
/// specifier(s) on a declaration.
|
|
struct BadSpecifierDiagnoser {
|
|
BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
|
|
: S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
|
|
~BadSpecifierDiagnoser() {
|
|
Diagnostic << Specifiers;
|
|
}
|
|
|
|
template<typename T> void check(SourceLocation SpecLoc, T Spec) {
|
|
return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
|
|
}
|
|
void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
|
|
return check(SpecLoc,
|
|
DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
|
|
}
|
|
void check(SourceLocation SpecLoc, const char *Spec) {
|
|
if (SpecLoc.isInvalid()) return;
|
|
Diagnostic << SourceRange(SpecLoc, SpecLoc);
|
|
if (!Specifiers.empty()) Specifiers += " ";
|
|
Specifiers += Spec;
|
|
}
|
|
|
|
Sema &S;
|
|
Sema::SemaDiagnosticBuilder Diagnostic;
|
|
std::string Specifiers;
|
|
};
|
|
}
|
|
|
|
/// Check the validity of a declarator that we parsed for a deduction-guide.
|
|
/// These aren't actually declarators in the grammar, so we need to check that
|
|
/// the user didn't specify any pieces that are not part of the deduction-guide
|
|
/// grammar.
|
|
void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
|
|
StorageClass &SC) {
|
|
TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
|
|
TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
|
|
assert(GuidedTemplateDecl && "missing template decl for deduction guide");
|
|
|
|
// C++ [temp.deduct.guide]p3:
|
|
// A deduction-gide shall be declared in the same scope as the
|
|
// corresponding class template.
|
|
if (!CurContext->getRedeclContext()->Equals(
|
|
GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
|
|
Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
|
|
<< GuidedTemplateDecl;
|
|
Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
|
|
}
|
|
|
|
auto &DS = D.getMutableDeclSpec();
|
|
// We leave 'friend' and 'virtual' to be rejected in the normal way.
|
|
if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
|
|
DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
|
|
DS.isNoreturnSpecified() || DS.isConstexprSpecified() ||
|
|
DS.isConceptSpecified()) {
|
|
BadSpecifierDiagnoser Diagnoser(
|
|
*this, D.getIdentifierLoc(),
|
|
diag::err_deduction_guide_invalid_specifier);
|
|
|
|
Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
|
|
DS.ClearStorageClassSpecs();
|
|
SC = SC_None;
|
|
|
|
// 'explicit' is permitted.
|
|
Diagnoser.check(DS.getInlineSpecLoc(), "inline");
|
|
Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
|
|
Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
|
|
Diagnoser.check(DS.getConceptSpecLoc(), "concept");
|
|
DS.ClearConstexprSpec();
|
|
DS.ClearConceptSpec();
|
|
|
|
Diagnoser.check(DS.getConstSpecLoc(), "const");
|
|
Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
|
|
Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
|
|
Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
|
|
Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
|
|
DS.ClearTypeQualifiers();
|
|
|
|
Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
|
|
Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
|
|
Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
|
|
Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
|
|
DS.ClearTypeSpecType();
|
|
}
|
|
|
|
if (D.isInvalidType())
|
|
return;
|
|
|
|
// Check the declarator is simple enough.
|
|
bool FoundFunction = false;
|
|
for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
|
|
if (Chunk.Kind == DeclaratorChunk::Paren)
|
|
continue;
|
|
if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
|
|
Diag(D.getDeclSpec().getLocStart(),
|
|
diag::err_deduction_guide_with_complex_decl)
|
|
<< D.getSourceRange();
|
|
break;
|
|
}
|
|
if (!Chunk.Fun.hasTrailingReturnType()) {
|
|
Diag(D.getName().getLocStart(),
|
|
diag::err_deduction_guide_no_trailing_return_type);
|
|
break;
|
|
}
|
|
|
|
// Check that the return type is written as a specialization of
|
|
// the template specified as the deduction-guide's name.
|
|
ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
|
|
TypeSourceInfo *TSI = nullptr;
|
|
QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
|
|
assert(TSI && "deduction guide has valid type but invalid return type?");
|
|
bool AcceptableReturnType = false;
|
|
bool MightInstantiateToSpecialization = false;
|
|
if (auto RetTST =
|
|
TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
|
|
TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
|
|
bool TemplateMatches =
|
|
Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
|
|
if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
|
|
AcceptableReturnType = true;
|
|
else {
|
|
// This could still instantiate to the right type, unless we know it
|
|
// names the wrong class template.
|
|
auto *TD = SpecifiedName.getAsTemplateDecl();
|
|
MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
|
|
!TemplateMatches);
|
|
}
|
|
} else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
|
|
MightInstantiateToSpecialization = true;
|
|
}
|
|
|
|
if (!AcceptableReturnType) {
|
|
Diag(TSI->getTypeLoc().getLocStart(),
|
|
diag::err_deduction_guide_bad_trailing_return_type)
|
|
<< GuidedTemplate << TSI->getType() << MightInstantiateToSpecialization
|
|
<< TSI->getTypeLoc().getSourceRange();
|
|
}
|
|
|
|
// Keep going to check that we don't have any inner declarator pieces (we
|
|
// could still have a function returning a pointer to a function).
|
|
FoundFunction = true;
|
|
}
|
|
|
|
if (D.isFunctionDefinition())
|
|
Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Namespace Handling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
|
|
/// reopened.
|
|
static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
|
|
SourceLocation Loc,
|
|
IdentifierInfo *II, bool *IsInline,
|
|
NamespaceDecl *PrevNS) {
|
|
assert(*IsInline != PrevNS->isInline());
|
|
|
|
// HACK: Work around a bug in libstdc++4.6's <atomic>, where
|
|
// std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
|
|
// inline namespaces, with the intention of bringing names into namespace std.
|
|
//
|
|
// We support this just well enough to get that case working; this is not
|
|
// sufficient to support reopening namespaces as inline in general.
|
|
if (*IsInline && II && II->getName().startswith("__atomic") &&
|
|
S.getSourceManager().isInSystemHeader(Loc)) {
|
|
// Mark all prior declarations of the namespace as inline.
|
|
for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
|
|
NS = NS->getPreviousDecl())
|
|
NS->setInline(*IsInline);
|
|
// Patch up the lookup table for the containing namespace. This isn't really
|
|
// correct, but it's good enough for this particular case.
|
|
for (auto *I : PrevNS->decls())
|
|
if (auto *ND = dyn_cast<NamedDecl>(I))
|
|
PrevNS->getParent()->makeDeclVisibleInContext(ND);
|
|
return;
|
|
}
|
|
|
|
if (PrevNS->isInline())
|
|
// The user probably just forgot the 'inline', so suggest that it
|
|
// be added back.
|
|
S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
|
|
<< FixItHint::CreateInsertion(KeywordLoc, "inline ");
|
|
else
|
|
S.Diag(Loc, diag::err_inline_namespace_mismatch);
|
|
|
|
S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
|
|
*IsInline = PrevNS->isInline();
|
|
}
|
|
|
|
/// ActOnStartNamespaceDef - This is called at the start of a namespace
|
|
/// definition.
|
|
Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
|
|
SourceLocation InlineLoc,
|
|
SourceLocation NamespaceLoc,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *II,
|
|
SourceLocation LBrace,
|
|
AttributeList *AttrList,
|
|
UsingDirectiveDecl *&UD) {
|
|
SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
|
|
// For anonymous namespace, take the location of the left brace.
|
|
SourceLocation Loc = II ? IdentLoc : LBrace;
|
|
bool IsInline = InlineLoc.isValid();
|
|
bool IsInvalid = false;
|
|
bool IsStd = false;
|
|
bool AddToKnown = false;
|
|
Scope *DeclRegionScope = NamespcScope->getParent();
|
|
|
|
NamespaceDecl *PrevNS = nullptr;
|
|
if (II) {
|
|
// C++ [namespace.def]p2:
|
|
// The identifier in an original-namespace-definition shall not
|
|
// have been previously defined in the declarative region in
|
|
// which the original-namespace-definition appears. The
|
|
// identifier in an original-namespace-definition is the name of
|
|
// the namespace. Subsequently in that declarative region, it is
|
|
// treated as an original-namespace-name.
|
|
//
|
|
// Since namespace names are unique in their scope, and we don't
|
|
// look through using directives, just look for any ordinary names
|
|
// as if by qualified name lookup.
|
|
LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
|
|
ForExternalRedeclaration);
|
|
LookupQualifiedName(R, CurContext->getRedeclContext());
|
|
NamedDecl *PrevDecl =
|
|
R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
|
|
PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
|
|
|
|
if (PrevNS) {
|
|
// This is an extended namespace definition.
|
|
if (IsInline != PrevNS->isInline())
|
|
DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
|
|
&IsInline, PrevNS);
|
|
} else if (PrevDecl) {
|
|
// This is an invalid name redefinition.
|
|
Diag(Loc, diag::err_redefinition_different_kind)
|
|
<< II;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
IsInvalid = true;
|
|
// Continue on to push Namespc as current DeclContext and return it.
|
|
} else if (II->isStr("std") &&
|
|
CurContext->getRedeclContext()->isTranslationUnit()) {
|
|
// This is the first "real" definition of the namespace "std", so update
|
|
// our cache of the "std" namespace to point at this definition.
|
|
PrevNS = getStdNamespace();
|
|
IsStd = true;
|
|
AddToKnown = !IsInline;
|
|
} else {
|
|
// We've seen this namespace for the first time.
|
|
AddToKnown = !IsInline;
|
|
}
|
|
} else {
|
|
// Anonymous namespaces.
|
|
|
|
// Determine whether the parent already has an anonymous namespace.
|
|
DeclContext *Parent = CurContext->getRedeclContext();
|
|
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
|
|
PrevNS = TU->getAnonymousNamespace();
|
|
} else {
|
|
NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
|
|
PrevNS = ND->getAnonymousNamespace();
|
|
}
|
|
|
|
if (PrevNS && IsInline != PrevNS->isInline())
|
|
DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
|
|
&IsInline, PrevNS);
|
|
}
|
|
|
|
NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
|
|
StartLoc, Loc, II, PrevNS);
|
|
if (IsInvalid)
|
|
Namespc->setInvalidDecl();
|
|
|
|
ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
|
|
AddPragmaAttributes(DeclRegionScope, Namespc);
|
|
|
|
// FIXME: Should we be merging attributes?
|
|
if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
|
|
PushNamespaceVisibilityAttr(Attr, Loc);
|
|
|
|
if (IsStd)
|
|
StdNamespace = Namespc;
|
|
if (AddToKnown)
|
|
KnownNamespaces[Namespc] = false;
|
|
|
|
if (II) {
|
|
PushOnScopeChains(Namespc, DeclRegionScope);
|
|
} else {
|
|
// Link the anonymous namespace into its parent.
|
|
DeclContext *Parent = CurContext->getRedeclContext();
|
|
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
|
|
TU->setAnonymousNamespace(Namespc);
|
|
} else {
|
|
cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
|
|
}
|
|
|
|
CurContext->addDecl(Namespc);
|
|
|
|
// C++ [namespace.unnamed]p1. An unnamed-namespace-definition
|
|
// behaves as if it were replaced by
|
|
// namespace unique { /* empty body */ }
|
|
// using namespace unique;
|
|
// namespace unique { namespace-body }
|
|
// where all occurrences of 'unique' in a translation unit are
|
|
// replaced by the same identifier and this identifier differs
|
|
// from all other identifiers in the entire program.
|
|
|
|
// We just create the namespace with an empty name and then add an
|
|
// implicit using declaration, just like the standard suggests.
|
|
//
|
|
// CodeGen enforces the "universally unique" aspect by giving all
|
|
// declarations semantically contained within an anonymous
|
|
// namespace internal linkage.
|
|
|
|
if (!PrevNS) {
|
|
UD = UsingDirectiveDecl::Create(Context, Parent,
|
|
/* 'using' */ LBrace,
|
|
/* 'namespace' */ SourceLocation(),
|
|
/* qualifier */ NestedNameSpecifierLoc(),
|
|
/* identifier */ SourceLocation(),
|
|
Namespc,
|
|
/* Ancestor */ Parent);
|
|
UD->setImplicit();
|
|
Parent->addDecl(UD);
|
|
}
|
|
}
|
|
|
|
ActOnDocumentableDecl(Namespc);
|
|
|
|
// Although we could have an invalid decl (i.e. the namespace name is a
|
|
// redefinition), push it as current DeclContext and try to continue parsing.
|
|
// FIXME: We should be able to push Namespc here, so that the each DeclContext
|
|
// for the namespace has the declarations that showed up in that particular
|
|
// namespace definition.
|
|
PushDeclContext(NamespcScope, Namespc);
|
|
return Namespc;
|
|
}
|
|
|
|
/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
|
|
/// is a namespace alias, returns the namespace it points to.
|
|
static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
|
|
if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
|
|
return AD->getNamespace();
|
|
return dyn_cast_or_null<NamespaceDecl>(D);
|
|
}
|
|
|
|
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
|
|
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
|
|
void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
|
|
NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
|
|
assert(Namespc && "Invalid parameter, expected NamespaceDecl");
|
|
Namespc->setRBraceLoc(RBrace);
|
|
PopDeclContext();
|
|
if (Namespc->hasAttr<VisibilityAttr>())
|
|
PopPragmaVisibility(true, RBrace);
|
|
}
|
|
|
|
CXXRecordDecl *Sema::getStdBadAlloc() const {
|
|
return cast_or_null<CXXRecordDecl>(
|
|
StdBadAlloc.get(Context.getExternalSource()));
|
|
}
|
|
|
|
EnumDecl *Sema::getStdAlignValT() const {
|
|
return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
|
|
}
|
|
|
|
NamespaceDecl *Sema::getStdNamespace() const {
|
|
return cast_or_null<NamespaceDecl>(
|
|
StdNamespace.get(Context.getExternalSource()));
|
|
}
|
|
|
|
NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
|
|
if (!StdExperimentalNamespaceCache) {
|
|
if (auto Std = getStdNamespace()) {
|
|
LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
|
|
SourceLocation(), LookupNamespaceName);
|
|
if (!LookupQualifiedName(Result, Std) ||
|
|
!(StdExperimentalNamespaceCache =
|
|
Result.getAsSingle<NamespaceDecl>()))
|
|
Result.suppressDiagnostics();
|
|
}
|
|
}
|
|
return StdExperimentalNamespaceCache;
|
|
}
|
|
|
|
/// \brief Retrieve the special "std" namespace, which may require us to
|
|
/// implicitly define the namespace.
|
|
NamespaceDecl *Sema::getOrCreateStdNamespace() {
|
|
if (!StdNamespace) {
|
|
// The "std" namespace has not yet been defined, so build one implicitly.
|
|
StdNamespace = NamespaceDecl::Create(Context,
|
|
Context.getTranslationUnitDecl(),
|
|
/*Inline=*/false,
|
|
SourceLocation(), SourceLocation(),
|
|
&PP.getIdentifierTable().get("std"),
|
|
/*PrevDecl=*/nullptr);
|
|
getStdNamespace()->setImplicit(true);
|
|
}
|
|
|
|
return getStdNamespace();
|
|
}
|
|
|
|
bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
|
|
assert(getLangOpts().CPlusPlus &&
|
|
"Looking for std::initializer_list outside of C++.");
|
|
|
|
// We're looking for implicit instantiations of
|
|
// template <typename E> class std::initializer_list.
|
|
|
|
if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
|
|
return false;
|
|
|
|
ClassTemplateDecl *Template = nullptr;
|
|
const TemplateArgument *Arguments = nullptr;
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
|
|
ClassTemplateSpecializationDecl *Specialization =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
|
|
if (!Specialization)
|
|
return false;
|
|
|
|
Template = Specialization->getSpecializedTemplate();
|
|
Arguments = Specialization->getTemplateArgs().data();
|
|
} else if (const TemplateSpecializationType *TST =
|
|
Ty->getAs<TemplateSpecializationType>()) {
|
|
Template = dyn_cast_or_null<ClassTemplateDecl>(
|
|
TST->getTemplateName().getAsTemplateDecl());
|
|
Arguments = TST->getArgs();
|
|
}
|
|
if (!Template)
|
|
return false;
|
|
|
|
if (!StdInitializerList) {
|
|
// Haven't recognized std::initializer_list yet, maybe this is it.
|
|
CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
|
|
if (TemplateClass->getIdentifier() !=
|
|
&PP.getIdentifierTable().get("initializer_list") ||
|
|
!getStdNamespace()->InEnclosingNamespaceSetOf(
|
|
TemplateClass->getDeclContext()))
|
|
return false;
|
|
// This is a template called std::initializer_list, but is it the right
|
|
// template?
|
|
TemplateParameterList *Params = Template->getTemplateParameters();
|
|
if (Params->getMinRequiredArguments() != 1)
|
|
return false;
|
|
if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
|
|
return false;
|
|
|
|
// It's the right template.
|
|
StdInitializerList = Template;
|
|
}
|
|
|
|
if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
|
|
return false;
|
|
|
|
// This is an instance of std::initializer_list. Find the argument type.
|
|
if (Element)
|
|
*Element = Arguments[0].getAsType();
|
|
return true;
|
|
}
|
|
|
|
static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
|
|
NamespaceDecl *Std = S.getStdNamespace();
|
|
if (!Std) {
|
|
S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
|
|
return nullptr;
|
|
}
|
|
|
|
LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
|
|
Loc, Sema::LookupOrdinaryName);
|
|
if (!S.LookupQualifiedName(Result, Std)) {
|
|
S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
|
|
return nullptr;
|
|
}
|
|
ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
|
|
if (!Template) {
|
|
Result.suppressDiagnostics();
|
|
// We found something weird. Complain about the first thing we found.
|
|
NamedDecl *Found = *Result.begin();
|
|
S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
|
|
return nullptr;
|
|
}
|
|
|
|
// We found some template called std::initializer_list. Now verify that it's
|
|
// correct.
|
|
TemplateParameterList *Params = Template->getTemplateParameters();
|
|
if (Params->getMinRequiredArguments() != 1 ||
|
|
!isa<TemplateTypeParmDecl>(Params->getParam(0))) {
|
|
S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
|
|
return nullptr;
|
|
}
|
|
|
|
return Template;
|
|
}
|
|
|
|
QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
|
|
if (!StdInitializerList) {
|
|
StdInitializerList = LookupStdInitializerList(*this, Loc);
|
|
if (!StdInitializerList)
|
|
return QualType();
|
|
}
|
|
|
|
TemplateArgumentListInfo Args(Loc, Loc);
|
|
Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
|
|
Context.getTrivialTypeSourceInfo(Element,
|
|
Loc)));
|
|
return Context.getCanonicalType(
|
|
CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
|
|
}
|
|
|
|
bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
|
|
// C++ [dcl.init.list]p2:
|
|
// A constructor is an initializer-list constructor if its first parameter
|
|
// is of type std::initializer_list<E> or reference to possibly cv-qualified
|
|
// std::initializer_list<E> for some type E, and either there are no other
|
|
// parameters or else all other parameters have default arguments.
|
|
if (Ctor->getNumParams() < 1 ||
|
|
(Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
|
|
return false;
|
|
|
|
QualType ArgType = Ctor->getParamDecl(0)->getType();
|
|
if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
|
|
ArgType = RT->getPointeeType().getUnqualifiedType();
|
|
|
|
return isStdInitializerList(ArgType, nullptr);
|
|
}
|
|
|
|
/// \brief Determine whether a using statement is in a context where it will be
|
|
/// apply in all contexts.
|
|
static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
|
|
switch (CurContext->getDeclKind()) {
|
|
case Decl::TranslationUnit:
|
|
return true;
|
|
case Decl::LinkageSpec:
|
|
return IsUsingDirectiveInToplevelContext(CurContext->getParent());
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Callback to only accept typo corrections that are namespaces.
|
|
class NamespaceValidatorCCC : public CorrectionCandidateCallback {
|
|
public:
|
|
bool ValidateCandidate(const TypoCorrection &candidate) override {
|
|
if (NamedDecl *ND = candidate.getCorrectionDecl())
|
|
return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident) {
|
|
R.clear();
|
|
if (TypoCorrection Corrected =
|
|
S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
|
|
llvm::make_unique<NamespaceValidatorCCC>(),
|
|
Sema::CTK_ErrorRecovery)) {
|
|
if (DeclContext *DC = S.computeDeclContext(SS, false)) {
|
|
std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
|
|
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
|
|
Ident->getName().equals(CorrectedStr);
|
|
S.diagnoseTypo(Corrected,
|
|
S.PDiag(diag::err_using_directive_member_suggest)
|
|
<< Ident << DC << DroppedSpecifier << SS.getRange(),
|
|
S.PDiag(diag::note_namespace_defined_here));
|
|
} else {
|
|
S.diagnoseTypo(Corrected,
|
|
S.PDiag(diag::err_using_directive_suggest) << Ident,
|
|
S.PDiag(diag::note_namespace_defined_here));
|
|
}
|
|
R.addDecl(Corrected.getFoundDecl());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Decl *Sema::ActOnUsingDirective(Scope *S,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation NamespcLoc,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *NamespcName,
|
|
AttributeList *AttrList) {
|
|
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
|
|
assert(NamespcName && "Invalid NamespcName.");
|
|
assert(IdentLoc.isValid() && "Invalid NamespceName location.");
|
|
|
|
// This can only happen along a recovery path.
|
|
while (S->isTemplateParamScope())
|
|
S = S->getParent();
|
|
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
|
|
|
|
UsingDirectiveDecl *UDir = nullptr;
|
|
NestedNameSpecifier *Qualifier = nullptr;
|
|
if (SS.isSet())
|
|
Qualifier = SS.getScopeRep();
|
|
|
|
// Lookup namespace name.
|
|
LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
|
|
LookupParsedName(R, S, &SS);
|
|
if (R.isAmbiguous())
|
|
return nullptr;
|
|
|
|
if (R.empty()) {
|
|
R.clear();
|
|
// Allow "using namespace std;" or "using namespace ::std;" even if
|
|
// "std" hasn't been defined yet, for GCC compatibility.
|
|
if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
|
|
NamespcName->isStr("std")) {
|
|
Diag(IdentLoc, diag::ext_using_undefined_std);
|
|
R.addDecl(getOrCreateStdNamespace());
|
|
R.resolveKind();
|
|
}
|
|
// Otherwise, attempt typo correction.
|
|
else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
|
|
}
|
|
|
|
if (!R.empty()) {
|
|
NamedDecl *Named = R.getRepresentativeDecl();
|
|
NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
|
|
assert(NS && "expected namespace decl");
|
|
|
|
// The use of a nested name specifier may trigger deprecation warnings.
|
|
DiagnoseUseOfDecl(Named, IdentLoc);
|
|
|
|
// C++ [namespace.udir]p1:
|
|
// A using-directive specifies that the names in the nominated
|
|
// namespace can be used in the scope in which the
|
|
// using-directive appears after the using-directive. During
|
|
// unqualified name lookup (3.4.1), the names appear as if they
|
|
// were declared in the nearest enclosing namespace which
|
|
// contains both the using-directive and the nominated
|
|
// namespace. [Note: in this context, "contains" means "contains
|
|
// directly or indirectly". ]
|
|
|
|
// Find enclosing context containing both using-directive and
|
|
// nominated namespace.
|
|
DeclContext *CommonAncestor = cast<DeclContext>(NS);
|
|
while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
|
|
CommonAncestor = CommonAncestor->getParent();
|
|
|
|
UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
|
|
SS.getWithLocInContext(Context),
|
|
IdentLoc, Named, CommonAncestor);
|
|
|
|
if (IsUsingDirectiveInToplevelContext(CurContext) &&
|
|
!SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
|
|
Diag(IdentLoc, diag::warn_using_directive_in_header);
|
|
}
|
|
|
|
PushUsingDirective(S, UDir);
|
|
} else {
|
|
Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
|
|
}
|
|
|
|
if (UDir)
|
|
ProcessDeclAttributeList(S, UDir, AttrList);
|
|
|
|
return UDir;
|
|
}
|
|
|
|
void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
|
|
// If the scope has an associated entity and the using directive is at
|
|
// namespace or translation unit scope, add the UsingDirectiveDecl into
|
|
// its lookup structure so qualified name lookup can find it.
|
|
DeclContext *Ctx = S->getEntity();
|
|
if (Ctx && !Ctx->isFunctionOrMethod())
|
|
Ctx->addDecl(UDir);
|
|
else
|
|
// Otherwise, it is at block scope. The using-directives will affect lookup
|
|
// only to the end of the scope.
|
|
S->PushUsingDirective(UDir);
|
|
}
|
|
|
|
|
|
Decl *Sema::ActOnUsingDeclaration(Scope *S,
|
|
AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation TypenameLoc,
|
|
CXXScopeSpec &SS,
|
|
UnqualifiedId &Name,
|
|
SourceLocation EllipsisLoc,
|
|
AttributeList *AttrList) {
|
|
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
|
|
|
|
if (SS.isEmpty()) {
|
|
Diag(Name.getLocStart(), diag::err_using_requires_qualname);
|
|
return nullptr;
|
|
}
|
|
|
|
switch (Name.getKind()) {
|
|
case UnqualifiedId::IK_ImplicitSelfParam:
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
case UnqualifiedId::IK_ConversionFunctionId:
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConstructorName:
|
|
case UnqualifiedId::IK_ConstructorTemplateId:
|
|
// C++11 inheriting constructors.
|
|
Diag(Name.getLocStart(),
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_using_decl_constructor :
|
|
diag::err_using_decl_constructor)
|
|
<< SS.getRange();
|
|
|
|
if (getLangOpts().CPlusPlus11) break;
|
|
|
|
return nullptr;
|
|
|
|
case UnqualifiedId::IK_DestructorName:
|
|
Diag(Name.getLocStart(), diag::err_using_decl_destructor)
|
|
<< SS.getRange();
|
|
return nullptr;
|
|
|
|
case UnqualifiedId::IK_TemplateId:
|
|
Diag(Name.getLocStart(), diag::err_using_decl_template_id)
|
|
<< SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
|
|
return nullptr;
|
|
|
|
case UnqualifiedId::IK_DeductionGuideName:
|
|
llvm_unreachable("cannot parse qualified deduction guide name");
|
|
}
|
|
|
|
DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
|
|
DeclarationName TargetName = TargetNameInfo.getName();
|
|
if (!TargetName)
|
|
return nullptr;
|
|
|
|
// Warn about access declarations.
|
|
if (UsingLoc.isInvalid()) {
|
|
Diag(Name.getLocStart(),
|
|
getLangOpts().CPlusPlus11 ? diag::err_access_decl
|
|
: diag::warn_access_decl_deprecated)
|
|
<< FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
|
|
}
|
|
|
|
if (EllipsisLoc.isInvalid()) {
|
|
if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
|
|
DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
|
|
return nullptr;
|
|
} else {
|
|
if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
|
|
!TargetNameInfo.containsUnexpandedParameterPack()) {
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
|
|
<< SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
|
|
EllipsisLoc = SourceLocation();
|
|
}
|
|
}
|
|
|
|
NamedDecl *UD =
|
|
BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
|
|
SS, TargetNameInfo, EllipsisLoc, AttrList,
|
|
/*IsInstantiation*/false);
|
|
if (UD)
|
|
PushOnScopeChains(UD, S, /*AddToContext*/ false);
|
|
|
|
return UD;
|
|
}
|
|
|
|
/// \brief Determine whether a using declaration considers the given
|
|
/// declarations as "equivalent", e.g., if they are redeclarations of
|
|
/// the same entity or are both typedefs of the same type.
|
|
static bool
|
|
IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
|
|
if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
|
|
return true;
|
|
|
|
if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
|
|
if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
|
|
return Context.hasSameType(TD1->getUnderlyingType(),
|
|
TD2->getUnderlyingType());
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Determines whether to create a using shadow decl for a particular
|
|
/// decl, given the set of decls existing prior to this using lookup.
|
|
bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
|
|
const LookupResult &Previous,
|
|
UsingShadowDecl *&PrevShadow) {
|
|
// Diagnose finding a decl which is not from a base class of the
|
|
// current class. We do this now because there are cases where this
|
|
// function will silently decide not to build a shadow decl, which
|
|
// will pre-empt further diagnostics.
|
|
//
|
|
// We don't need to do this in C++11 because we do the check once on
|
|
// the qualifier.
|
|
//
|
|
// FIXME: diagnose the following if we care enough:
|
|
// struct A { int foo; };
|
|
// struct B : A { using A::foo; };
|
|
// template <class T> struct C : A {};
|
|
// template <class T> struct D : C<T> { using B::foo; } // <---
|
|
// This is invalid (during instantiation) in C++03 because B::foo
|
|
// resolves to the using decl in B, which is not a base class of D<T>.
|
|
// We can't diagnose it immediately because C<T> is an unknown
|
|
// specialization. The UsingShadowDecl in D<T> then points directly
|
|
// to A::foo, which will look well-formed when we instantiate.
|
|
// The right solution is to not collapse the shadow-decl chain.
|
|
if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
|
|
DeclContext *OrigDC = Orig->getDeclContext();
|
|
|
|
// Handle enums and anonymous structs.
|
|
if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
|
|
CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
|
|
while (OrigRec->isAnonymousStructOrUnion())
|
|
OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
|
|
|
|
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
|
|
if (OrigDC == CurContext) {
|
|
Diag(Using->getLocation(),
|
|
diag::err_using_decl_nested_name_specifier_is_current_class)
|
|
<< Using->getQualifierLoc().getSourceRange();
|
|
Diag(Orig->getLocation(), diag::note_using_decl_target);
|
|
Using->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
Diag(Using->getQualifierLoc().getBeginLoc(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
|
<< Using->getQualifier()
|
|
<< cast<CXXRecordDecl>(CurContext)
|
|
<< Using->getQualifierLoc().getSourceRange();
|
|
Diag(Orig->getLocation(), diag::note_using_decl_target);
|
|
Using->setInvalidDecl();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Previous.empty()) return false;
|
|
|
|
NamedDecl *Target = Orig;
|
|
if (isa<UsingShadowDecl>(Target))
|
|
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
|
|
|
|
// If the target happens to be one of the previous declarations, we
|
|
// don't have a conflict.
|
|
//
|
|
// FIXME: but we might be increasing its access, in which case we
|
|
// should redeclare it.
|
|
NamedDecl *NonTag = nullptr, *Tag = nullptr;
|
|
bool FoundEquivalentDecl = false;
|
|
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
|
I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
// We can have UsingDecls in our Previous results because we use the same
|
|
// LookupResult for checking whether the UsingDecl itself is a valid
|
|
// redeclaration.
|
|
if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
|
|
continue;
|
|
|
|
if (IsEquivalentForUsingDecl(Context, D, Target)) {
|
|
if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
|
|
PrevShadow = Shadow;
|
|
FoundEquivalentDecl = true;
|
|
} else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
|
|
// We don't conflict with an existing using shadow decl of an equivalent
|
|
// declaration, but we're not a redeclaration of it.
|
|
FoundEquivalentDecl = true;
|
|
}
|
|
|
|
if (isVisible(D))
|
|
(isa<TagDecl>(D) ? Tag : NonTag) = D;
|
|
}
|
|
|
|
if (FoundEquivalentDecl)
|
|
return false;
|
|
|
|
if (FunctionDecl *FD = Target->getAsFunction()) {
|
|
NamedDecl *OldDecl = nullptr;
|
|
switch (CheckOverload(nullptr, FD, Previous, OldDecl,
|
|
/*IsForUsingDecl*/ true)) {
|
|
case Ovl_Overload:
|
|
return false;
|
|
|
|
case Ovl_NonFunction:
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
break;
|
|
|
|
// We found a decl with the exact signature.
|
|
case Ovl_Match:
|
|
// If we're in a record, we want to hide the target, so we
|
|
// return true (without a diagnostic) to tell the caller not to
|
|
// build a shadow decl.
|
|
if (CurContext->isRecord())
|
|
return true;
|
|
|
|
// If we're not in a record, this is an error.
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
break;
|
|
}
|
|
|
|
Diag(Target->getLocation(), diag::note_using_decl_target);
|
|
Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
|
|
Using->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// Target is not a function.
|
|
|
|
if (isa<TagDecl>(Target)) {
|
|
// No conflict between a tag and a non-tag.
|
|
if (!Tag) return false;
|
|
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
Diag(Target->getLocation(), diag::note_using_decl_target);
|
|
Diag(Tag->getLocation(), diag::note_using_decl_conflict);
|
|
Using->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// No conflict between a tag and a non-tag.
|
|
if (!NonTag) return false;
|
|
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
Diag(Target->getLocation(), diag::note_using_decl_target);
|
|
Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
|
|
Using->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
/// Determine whether a direct base class is a virtual base class.
|
|
static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
|
|
if (!Derived->getNumVBases())
|
|
return false;
|
|
for (auto &B : Derived->bases())
|
|
if (B.getType()->getAsCXXRecordDecl() == Base)
|
|
return B.isVirtual();
|
|
llvm_unreachable("not a direct base class");
|
|
}
|
|
|
|
/// Builds a shadow declaration corresponding to a 'using' declaration.
|
|
UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
|
|
UsingDecl *UD,
|
|
NamedDecl *Orig,
|
|
UsingShadowDecl *PrevDecl) {
|
|
// If we resolved to another shadow declaration, just coalesce them.
|
|
NamedDecl *Target = Orig;
|
|
if (isa<UsingShadowDecl>(Target)) {
|
|
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
|
|
assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
|
|
}
|
|
|
|
NamedDecl *NonTemplateTarget = Target;
|
|
if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
|
|
NonTemplateTarget = TargetTD->getTemplatedDecl();
|
|
|
|
UsingShadowDecl *Shadow;
|
|
if (isa<CXXConstructorDecl>(NonTemplateTarget)) {
|
|
bool IsVirtualBase =
|
|
isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
|
|
UD->getQualifier()->getAsRecordDecl());
|
|
Shadow = ConstructorUsingShadowDecl::Create(
|
|
Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
|
|
} else {
|
|
Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
|
|
Target);
|
|
}
|
|
UD->addShadowDecl(Shadow);
|
|
|
|
Shadow->setAccess(UD->getAccess());
|
|
if (Orig->isInvalidDecl() || UD->isInvalidDecl())
|
|
Shadow->setInvalidDecl();
|
|
|
|
Shadow->setPreviousDecl(PrevDecl);
|
|
|
|
if (S)
|
|
PushOnScopeChains(Shadow, S);
|
|
else
|
|
CurContext->addDecl(Shadow);
|
|
|
|
|
|
return Shadow;
|
|
}
|
|
|
|
/// Hides a using shadow declaration. This is required by the current
|
|
/// using-decl implementation when a resolvable using declaration in a
|
|
/// class is followed by a declaration which would hide or override
|
|
/// one or more of the using decl's targets; for example:
|
|
///
|
|
/// struct Base { void foo(int); };
|
|
/// struct Derived : Base {
|
|
/// using Base::foo;
|
|
/// void foo(int);
|
|
/// };
|
|
///
|
|
/// The governing language is C++03 [namespace.udecl]p12:
|
|
///
|
|
/// When a using-declaration brings names from a base class into a
|
|
/// derived class scope, member functions in the derived class
|
|
/// override and/or hide member functions with the same name and
|
|
/// parameter types in a base class (rather than conflicting).
|
|
///
|
|
/// There are two ways to implement this:
|
|
/// (1) optimistically create shadow decls when they're not hidden
|
|
/// by existing declarations, or
|
|
/// (2) don't create any shadow decls (or at least don't make them
|
|
/// visible) until we've fully parsed/instantiated the class.
|
|
/// The problem with (1) is that we might have to retroactively remove
|
|
/// a shadow decl, which requires several O(n) operations because the
|
|
/// decl structures are (very reasonably) not designed for removal.
|
|
/// (2) avoids this but is very fiddly and phase-dependent.
|
|
void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
|
|
if (Shadow->getDeclName().getNameKind() ==
|
|
DeclarationName::CXXConversionFunctionName)
|
|
cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
|
|
|
|
// Remove it from the DeclContext...
|
|
Shadow->getDeclContext()->removeDecl(Shadow);
|
|
|
|
// ...and the scope, if applicable...
|
|
if (S) {
|
|
S->RemoveDecl(Shadow);
|
|
IdResolver.RemoveDecl(Shadow);
|
|
}
|
|
|
|
// ...and the using decl.
|
|
Shadow->getUsingDecl()->removeShadowDecl(Shadow);
|
|
|
|
// TODO: complain somehow if Shadow was used. It shouldn't
|
|
// be possible for this to happen, because...?
|
|
}
|
|
|
|
/// Find the base specifier for a base class with the given type.
|
|
static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
|
|
QualType DesiredBase,
|
|
bool &AnyDependentBases) {
|
|
// Check whether the named type is a direct base class.
|
|
CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
|
|
for (auto &Base : Derived->bases()) {
|
|
CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
|
|
if (CanonicalDesiredBase == BaseType)
|
|
return &Base;
|
|
if (BaseType->isDependentType())
|
|
AnyDependentBases = true;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
class UsingValidatorCCC : public CorrectionCandidateCallback {
|
|
public:
|
|
UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
|
|
NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
|
|
: HasTypenameKeyword(HasTypenameKeyword),
|
|
IsInstantiation(IsInstantiation), OldNNS(NNS),
|
|
RequireMemberOf(RequireMemberOf) {}
|
|
|
|
bool ValidateCandidate(const TypoCorrection &Candidate) override {
|
|
NamedDecl *ND = Candidate.getCorrectionDecl();
|
|
|
|
// Keywords are not valid here.
|
|
if (!ND || isa<NamespaceDecl>(ND))
|
|
return false;
|
|
|
|
// Completely unqualified names are invalid for a 'using' declaration.
|
|
if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
|
|
return false;
|
|
|
|
// FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
|
|
// reject.
|
|
|
|
if (RequireMemberOf) {
|
|
auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
|
|
if (FoundRecord && FoundRecord->isInjectedClassName()) {
|
|
// No-one ever wants a using-declaration to name an injected-class-name
|
|
// of a base class, unless they're declaring an inheriting constructor.
|
|
ASTContext &Ctx = ND->getASTContext();
|
|
if (!Ctx.getLangOpts().CPlusPlus11)
|
|
return false;
|
|
QualType FoundType = Ctx.getRecordType(FoundRecord);
|
|
|
|
// Check that the injected-class-name is named as a member of its own
|
|
// type; we don't want to suggest 'using Derived::Base;', since that
|
|
// means something else.
|
|
NestedNameSpecifier *Specifier =
|
|
Candidate.WillReplaceSpecifier()
|
|
? Candidate.getCorrectionSpecifier()
|
|
: OldNNS;
|
|
if (!Specifier->getAsType() ||
|
|
!Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
|
|
return false;
|
|
|
|
// Check that this inheriting constructor declaration actually names a
|
|
// direct base class of the current class.
|
|
bool AnyDependentBases = false;
|
|
if (!findDirectBaseWithType(RequireMemberOf,
|
|
Ctx.getRecordType(FoundRecord),
|
|
AnyDependentBases) &&
|
|
!AnyDependentBases)
|
|
return false;
|
|
} else {
|
|
auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
|
|
if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
|
|
return false;
|
|
|
|
// FIXME: Check that the base class member is accessible?
|
|
}
|
|
} else {
|
|
auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
|
|
if (FoundRecord && FoundRecord->isInjectedClassName())
|
|
return false;
|
|
}
|
|
|
|
if (isa<TypeDecl>(ND))
|
|
return HasTypenameKeyword || !IsInstantiation;
|
|
|
|
return !HasTypenameKeyword;
|
|
}
|
|
|
|
private:
|
|
bool HasTypenameKeyword;
|
|
bool IsInstantiation;
|
|
NestedNameSpecifier *OldNNS;
|
|
CXXRecordDecl *RequireMemberOf;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Builds a using declaration.
|
|
///
|
|
/// \param IsInstantiation - Whether this call arises from an
|
|
/// instantiation of an unresolved using declaration. We treat
|
|
/// the lookup differently for these declarations.
|
|
NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
bool HasTypenameKeyword,
|
|
SourceLocation TypenameLoc,
|
|
CXXScopeSpec &SS,
|
|
DeclarationNameInfo NameInfo,
|
|
SourceLocation EllipsisLoc,
|
|
AttributeList *AttrList,
|
|
bool IsInstantiation) {
|
|
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
|
|
SourceLocation IdentLoc = NameInfo.getLoc();
|
|
assert(IdentLoc.isValid() && "Invalid TargetName location.");
|
|
|
|
// FIXME: We ignore attributes for now.
|
|
|
|
// For an inheriting constructor declaration, the name of the using
|
|
// declaration is the name of a constructor in this class, not in the
|
|
// base class.
|
|
DeclarationNameInfo UsingName = NameInfo;
|
|
if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
|
|
if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
|
|
UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(Context.getRecordType(RD))));
|
|
|
|
// Do the redeclaration lookup in the current scope.
|
|
LookupResult Previous(*this, UsingName, LookupUsingDeclName,
|
|
ForVisibleRedeclaration);
|
|
Previous.setHideTags(false);
|
|
if (S) {
|
|
LookupName(Previous, S);
|
|
|
|
// It is really dumb that we have to do this.
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
if (!isDeclInScope(D, CurContext, S))
|
|
F.erase();
|
|
// If we found a local extern declaration that's not ordinarily visible,
|
|
// and this declaration is being added to a non-block scope, ignore it.
|
|
// We're only checking for scope conflicts here, not also for violations
|
|
// of the linkage rules.
|
|
else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
|
|
!(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
} else {
|
|
assert(IsInstantiation && "no scope in non-instantiation");
|
|
if (CurContext->isRecord())
|
|
LookupQualifiedName(Previous, CurContext);
|
|
else {
|
|
// No redeclaration check is needed here; in non-member contexts we
|
|
// diagnosed all possible conflicts with other using-declarations when
|
|
// building the template:
|
|
//
|
|
// For a dependent non-type using declaration, the only valid case is
|
|
// if we instantiate to a single enumerator. We check for conflicts
|
|
// between shadow declarations we introduce, and we check in the template
|
|
// definition for conflicts between a non-type using declaration and any
|
|
// other declaration, which together covers all cases.
|
|
//
|
|
// A dependent typename using declaration will never successfully
|
|
// instantiate, since it will always name a class member, so we reject
|
|
// that in the template definition.
|
|
}
|
|
}
|
|
|
|
// Check for invalid redeclarations.
|
|
if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
|
|
SS, IdentLoc, Previous))
|
|
return nullptr;
|
|
|
|
// Check for bad qualifiers.
|
|
if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
|
|
IdentLoc))
|
|
return nullptr;
|
|
|
|
DeclContext *LookupContext = computeDeclContext(SS);
|
|
NamedDecl *D;
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
if (!LookupContext || EllipsisLoc.isValid()) {
|
|
if (HasTypenameKeyword) {
|
|
// FIXME: not all declaration name kinds are legal here
|
|
D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
|
|
UsingLoc, TypenameLoc,
|
|
QualifierLoc,
|
|
IdentLoc, NameInfo.getName(),
|
|
EllipsisLoc);
|
|
} else {
|
|
D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
|
|
QualifierLoc, NameInfo, EllipsisLoc);
|
|
}
|
|
D->setAccess(AS);
|
|
CurContext->addDecl(D);
|
|
return D;
|
|
}
|
|
|
|
auto Build = [&](bool Invalid) {
|
|
UsingDecl *UD =
|
|
UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
|
|
UsingName, HasTypenameKeyword);
|
|
UD->setAccess(AS);
|
|
CurContext->addDecl(UD);
|
|
UD->setInvalidDecl(Invalid);
|
|
return UD;
|
|
};
|
|
auto BuildInvalid = [&]{ return Build(true); };
|
|
auto BuildValid = [&]{ return Build(false); };
|
|
|
|
if (RequireCompleteDeclContext(SS, LookupContext))
|
|
return BuildInvalid();
|
|
|
|
// Look up the target name.
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
|
|
// Unlike most lookups, we don't always want to hide tag
|
|
// declarations: tag names are visible through the using declaration
|
|
// even if hidden by ordinary names, *except* in a dependent context
|
|
// where it's important for the sanity of two-phase lookup.
|
|
if (!IsInstantiation)
|
|
R.setHideTags(false);
|
|
|
|
// For the purposes of this lookup, we have a base object type
|
|
// equal to that of the current context.
|
|
if (CurContext->isRecord()) {
|
|
R.setBaseObjectType(
|
|
Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
|
|
}
|
|
|
|
LookupQualifiedName(R, LookupContext);
|
|
|
|
// Try to correct typos if possible. If constructor name lookup finds no
|
|
// results, that means the named class has no explicit constructors, and we
|
|
// suppressed declaring implicit ones (probably because it's dependent or
|
|
// invalid).
|
|
if (R.empty() &&
|
|
NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
|
|
// HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
|
|
// it will believe that glibc provides a ::gets in cases where it does not,
|
|
// and will try to pull it into namespace std with a using-declaration.
|
|
// Just ignore the using-declaration in that case.
|
|
auto *II = NameInfo.getName().getAsIdentifierInfo();
|
|
if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
|
|
CurContext->isStdNamespace() &&
|
|
isa<TranslationUnitDecl>(LookupContext) &&
|
|
getSourceManager().isInSystemHeader(UsingLoc))
|
|
return nullptr;
|
|
if (TypoCorrection Corrected = CorrectTypo(
|
|
R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
|
|
llvm::make_unique<UsingValidatorCCC>(
|
|
HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
|
|
dyn_cast<CXXRecordDecl>(CurContext)),
|
|
CTK_ErrorRecovery)) {
|
|
// We reject candidates where DroppedSpecifier == true, hence the
|
|
// literal '0' below.
|
|
diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
|
|
<< NameInfo.getName() << LookupContext << 0
|
|
<< SS.getRange());
|
|
|
|
// If we picked a correction with no attached Decl we can't do anything
|
|
// useful with it, bail out.
|
|
NamedDecl *ND = Corrected.getCorrectionDecl();
|
|
if (!ND)
|
|
return BuildInvalid();
|
|
|
|
// If we corrected to an inheriting constructor, handle it as one.
|
|
auto *RD = dyn_cast<CXXRecordDecl>(ND);
|
|
if (RD && RD->isInjectedClassName()) {
|
|
// The parent of the injected class name is the class itself.
|
|
RD = cast<CXXRecordDecl>(RD->getParent());
|
|
|
|
// Fix up the information we'll use to build the using declaration.
|
|
if (Corrected.WillReplaceSpecifier()) {
|
|
NestedNameSpecifierLocBuilder Builder;
|
|
Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
|
|
QualifierLoc.getSourceRange());
|
|
QualifierLoc = Builder.getWithLocInContext(Context);
|
|
}
|
|
|
|
// In this case, the name we introduce is the name of a derived class
|
|
// constructor.
|
|
auto *CurClass = cast<CXXRecordDecl>(CurContext);
|
|
UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(Context.getRecordType(CurClass))));
|
|
UsingName.setNamedTypeInfo(nullptr);
|
|
for (auto *Ctor : LookupConstructors(RD))
|
|
R.addDecl(Ctor);
|
|
R.resolveKind();
|
|
} else {
|
|
// FIXME: Pick up all the declarations if we found an overloaded
|
|
// function.
|
|
UsingName.setName(ND->getDeclName());
|
|
R.addDecl(ND);
|
|
}
|
|
} else {
|
|
Diag(IdentLoc, diag::err_no_member)
|
|
<< NameInfo.getName() << LookupContext << SS.getRange();
|
|
return BuildInvalid();
|
|
}
|
|
}
|
|
|
|
if (R.isAmbiguous())
|
|
return BuildInvalid();
|
|
|
|
if (HasTypenameKeyword) {
|
|
// If we asked for a typename and got a non-type decl, error out.
|
|
if (!R.getAsSingle<TypeDecl>()) {
|
|
Diag(IdentLoc, diag::err_using_typename_non_type);
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
Diag((*I)->getUnderlyingDecl()->getLocation(),
|
|
diag::note_using_decl_target);
|
|
return BuildInvalid();
|
|
}
|
|
} else {
|
|
// If we asked for a non-typename and we got a type, error out,
|
|
// but only if this is an instantiation of an unresolved using
|
|
// decl. Otherwise just silently find the type name.
|
|
if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
|
|
Diag(IdentLoc, diag::err_using_dependent_value_is_type);
|
|
Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
|
|
return BuildInvalid();
|
|
}
|
|
}
|
|
|
|
// C++14 [namespace.udecl]p6:
|
|
// A using-declaration shall not name a namespace.
|
|
if (R.getAsSingle<NamespaceDecl>()) {
|
|
Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
|
|
<< SS.getRange();
|
|
return BuildInvalid();
|
|
}
|
|
|
|
// C++14 [namespace.udecl]p7:
|
|
// A using-declaration shall not name a scoped enumerator.
|
|
if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
|
|
if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
|
|
Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
|
|
<< SS.getRange();
|
|
return BuildInvalid();
|
|
}
|
|
}
|
|
|
|
UsingDecl *UD = BuildValid();
|
|
|
|
// Some additional rules apply to inheriting constructors.
|
|
if (UsingName.getName().getNameKind() ==
|
|
DeclarationName::CXXConstructorName) {
|
|
// Suppress access diagnostics; the access check is instead performed at the
|
|
// point of use for an inheriting constructor.
|
|
R.suppressDiagnostics();
|
|
if (CheckInheritingConstructorUsingDecl(UD))
|
|
return UD;
|
|
}
|
|
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
UsingShadowDecl *PrevDecl = nullptr;
|
|
if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
|
|
BuildUsingShadowDecl(S, UD, *I, PrevDecl);
|
|
}
|
|
|
|
return UD;
|
|
}
|
|
|
|
NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
|
|
ArrayRef<NamedDecl *> Expansions) {
|
|
assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
|
|
isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
|
|
isa<UsingPackDecl>(InstantiatedFrom));
|
|
|
|
auto *UPD =
|
|
UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
|
|
UPD->setAccess(InstantiatedFrom->getAccess());
|
|
CurContext->addDecl(UPD);
|
|
return UPD;
|
|
}
|
|
|
|
/// Additional checks for a using declaration referring to a constructor name.
|
|
bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
|
|
assert(!UD->hasTypename() && "expecting a constructor name");
|
|
|
|
const Type *SourceType = UD->getQualifier()->getAsType();
|
|
assert(SourceType &&
|
|
"Using decl naming constructor doesn't have type in scope spec.");
|
|
CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
|
|
|
|
// Check whether the named type is a direct base class.
|
|
bool AnyDependentBases = false;
|
|
auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
|
|
AnyDependentBases);
|
|
if (!Base && !AnyDependentBases) {
|
|
Diag(UD->getUsingLoc(),
|
|
diag::err_using_decl_constructor_not_in_direct_base)
|
|
<< UD->getNameInfo().getSourceRange()
|
|
<< QualType(SourceType, 0) << TargetClass;
|
|
UD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
if (Base)
|
|
Base->setInheritConstructors();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Checks that the given using declaration is not an invalid
|
|
/// redeclaration. Note that this is checking only for the using decl
|
|
/// itself, not for any ill-formedness among the UsingShadowDecls.
|
|
bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
|
|
bool HasTypenameKeyword,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
const LookupResult &Prev) {
|
|
NestedNameSpecifier *Qual = SS.getScopeRep();
|
|
|
|
// C++03 [namespace.udecl]p8:
|
|
// C++0x [namespace.udecl]p10:
|
|
// A using-declaration is a declaration and can therefore be used
|
|
// repeatedly where (and only where) multiple declarations are
|
|
// allowed.
|
|
//
|
|
// That's in non-member contexts.
|
|
if (!CurContext->getRedeclContext()->isRecord()) {
|
|
// A dependent qualifier outside a class can only ever resolve to an
|
|
// enumeration type. Therefore it conflicts with any other non-type
|
|
// declaration in the same scope.
|
|
// FIXME: How should we check for dependent type-type conflicts at block
|
|
// scope?
|
|
if (Qual->isDependent() && !HasTypenameKeyword) {
|
|
for (auto *D : Prev) {
|
|
if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
|
|
bool OldCouldBeEnumerator =
|
|
isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
|
|
Diag(NameLoc,
|
|
OldCouldBeEnumerator ? diag::err_redefinition
|
|
: diag::err_redefinition_different_kind)
|
|
<< Prev.getLookupName();
|
|
Diag(D->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
|
|
bool DTypename;
|
|
NestedNameSpecifier *DQual;
|
|
if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
|
|
DTypename = UD->hasTypename();
|
|
DQual = UD->getQualifier();
|
|
} else if (UnresolvedUsingValueDecl *UD
|
|
= dyn_cast<UnresolvedUsingValueDecl>(D)) {
|
|
DTypename = false;
|
|
DQual = UD->getQualifier();
|
|
} else if (UnresolvedUsingTypenameDecl *UD
|
|
= dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
|
|
DTypename = true;
|
|
DQual = UD->getQualifier();
|
|
} else continue;
|
|
|
|
// using decls differ if one says 'typename' and the other doesn't.
|
|
// FIXME: non-dependent using decls?
|
|
if (HasTypenameKeyword != DTypename) continue;
|
|
|
|
// using decls differ if they name different scopes (but note that
|
|
// template instantiation can cause this check to trigger when it
|
|
// didn't before instantiation).
|
|
if (Context.getCanonicalNestedNameSpecifier(Qual) !=
|
|
Context.getCanonicalNestedNameSpecifier(DQual))
|
|
continue;
|
|
|
|
Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
|
|
Diag(D->getLocation(), diag::note_using_decl) << 1;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Checks that the given nested-name qualifier used in a using decl
|
|
/// in the current context is appropriately related to the current
|
|
/// scope. If an error is found, diagnoses it and returns true.
|
|
bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
|
|
bool HasTypename,
|
|
const CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
SourceLocation NameLoc) {
|
|
DeclContext *NamedContext = computeDeclContext(SS);
|
|
|
|
if (!CurContext->isRecord()) {
|
|
// C++03 [namespace.udecl]p3:
|
|
// C++0x [namespace.udecl]p8:
|
|
// A using-declaration for a class member shall be a member-declaration.
|
|
|
|
// If we weren't able to compute a valid scope, it might validly be a
|
|
// dependent class scope or a dependent enumeration unscoped scope. If
|
|
// we have a 'typename' keyword, the scope must resolve to a class type.
|
|
if ((HasTypename && !NamedContext) ||
|
|
(NamedContext && NamedContext->getRedeclContext()->isRecord())) {
|
|
auto *RD = NamedContext
|
|
? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
|
|
: nullptr;
|
|
if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
|
|
RD = nullptr;
|
|
|
|
Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
|
|
<< SS.getRange();
|
|
|
|
// If we have a complete, non-dependent source type, try to suggest a
|
|
// way to get the same effect.
|
|
if (!RD)
|
|
return true;
|
|
|
|
// Find what this using-declaration was referring to.
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
R.setHideTags(false);
|
|
R.suppressDiagnostics();
|
|
LookupQualifiedName(R, RD);
|
|
|
|
if (R.getAsSingle<TypeDecl>()) {
|
|
if (getLangOpts().CPlusPlus11) {
|
|
// Convert 'using X::Y;' to 'using Y = X::Y;'.
|
|
Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
|
|
<< 0 // alias declaration
|
|
<< FixItHint::CreateInsertion(SS.getBeginLoc(),
|
|
NameInfo.getName().getAsString() +
|
|
" = ");
|
|
} else {
|
|
// Convert 'using X::Y;' to 'typedef X::Y Y;'.
|
|
SourceLocation InsertLoc =
|
|
getLocForEndOfToken(NameInfo.getLocEnd());
|
|
Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
|
|
<< 1 // typedef declaration
|
|
<< FixItHint::CreateReplacement(UsingLoc, "typedef")
|
|
<< FixItHint::CreateInsertion(
|
|
InsertLoc, " " + NameInfo.getName().getAsString());
|
|
}
|
|
} else if (R.getAsSingle<VarDecl>()) {
|
|
// Don't provide a fixit outside C++11 mode; we don't want to suggest
|
|
// repeating the type of the static data member here.
|
|
FixItHint FixIt;
|
|
if (getLangOpts().CPlusPlus11) {
|
|
// Convert 'using X::Y;' to 'auto &Y = X::Y;'.
|
|
FixIt = FixItHint::CreateReplacement(
|
|
UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
|
|
}
|
|
|
|
Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
|
|
<< 2 // reference declaration
|
|
<< FixIt;
|
|
} else if (R.getAsSingle<EnumConstantDecl>()) {
|
|
// Don't provide a fixit outside C++11 mode; we don't want to suggest
|
|
// repeating the type of the enumeration here, and we can't do so if
|
|
// the type is anonymous.
|
|
FixItHint FixIt;
|
|
if (getLangOpts().CPlusPlus11) {
|
|
// Convert 'using X::Y;' to 'auto &Y = X::Y;'.
|
|
FixIt = FixItHint::CreateReplacement(
|
|
UsingLoc,
|
|
"constexpr auto " + NameInfo.getName().getAsString() + " = ");
|
|
}
|
|
|
|
Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
|
|
<< (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
|
|
<< FixIt;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, this might be valid.
|
|
return false;
|
|
}
|
|
|
|
// The current scope is a record.
|
|
|
|
// If the named context is dependent, we can't decide much.
|
|
if (!NamedContext) {
|
|
// FIXME: in C++0x, we can diagnose if we can prove that the
|
|
// nested-name-specifier does not refer to a base class, which is
|
|
// still possible in some cases.
|
|
|
|
// Otherwise we have to conservatively report that things might be
|
|
// okay.
|
|
return false;
|
|
}
|
|
|
|
if (!NamedContext->isRecord()) {
|
|
// Ideally this would point at the last name in the specifier,
|
|
// but we don't have that level of source info.
|
|
Diag(SS.getRange().getBegin(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_class)
|
|
<< SS.getScopeRep() << SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
if (!NamedContext->isDependentContext() &&
|
|
RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
|
|
return true;
|
|
|
|
if (getLangOpts().CPlusPlus11) {
|
|
// C++11 [namespace.udecl]p3:
|
|
// In a using-declaration used as a member-declaration, the
|
|
// nested-name-specifier shall name a base class of the class
|
|
// being defined.
|
|
|
|
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
|
|
cast<CXXRecordDecl>(NamedContext))) {
|
|
if (CurContext == NamedContext) {
|
|
Diag(NameLoc,
|
|
diag::err_using_decl_nested_name_specifier_is_current_class)
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
|
|
Diag(SS.getRange().getBegin(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
|
<< SS.getScopeRep()
|
|
<< cast<CXXRecordDecl>(CurContext)
|
|
<< SS.getRange();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// C++03 [namespace.udecl]p4:
|
|
// A using-declaration used as a member-declaration shall refer
|
|
// to a member of a base class of the class being defined [etc.].
|
|
|
|
// Salient point: SS doesn't have to name a base class as long as
|
|
// lookup only finds members from base classes. Therefore we can
|
|
// diagnose here only if we can prove that that can't happen,
|
|
// i.e. if the class hierarchies provably don't intersect.
|
|
|
|
// TODO: it would be nice if "definitely valid" results were cached
|
|
// in the UsingDecl and UsingShadowDecl so that these checks didn't
|
|
// need to be repeated.
|
|
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
|
|
auto Collect = [&Bases](const CXXRecordDecl *Base) {
|
|
Bases.insert(Base);
|
|
return true;
|
|
};
|
|
|
|
// Collect all bases. Return false if we find a dependent base.
|
|
if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
|
|
return false;
|
|
|
|
// Returns true if the base is dependent or is one of the accumulated base
|
|
// classes.
|
|
auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
|
|
return !Bases.count(Base);
|
|
};
|
|
|
|
// Return false if the class has a dependent base or if it or one
|
|
// of its bases is present in the base set of the current context.
|
|
if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
|
|
!cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
|
|
return false;
|
|
|
|
Diag(SS.getRange().getBegin(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
|
<< SS.getScopeRep()
|
|
<< cast<CXXRecordDecl>(CurContext)
|
|
<< SS.getRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
Decl *Sema::ActOnAliasDeclaration(Scope *S,
|
|
AccessSpecifier AS,
|
|
MultiTemplateParamsArg TemplateParamLists,
|
|
SourceLocation UsingLoc,
|
|
UnqualifiedId &Name,
|
|
AttributeList *AttrList,
|
|
TypeResult Type,
|
|
Decl *DeclFromDeclSpec) {
|
|
// Skip up to the relevant declaration scope.
|
|
while (S->isTemplateParamScope())
|
|
S = S->getParent();
|
|
assert((S->getFlags() & Scope::DeclScope) &&
|
|
"got alias-declaration outside of declaration scope");
|
|
|
|
if (Type.isInvalid())
|
|
return nullptr;
|
|
|
|
bool Invalid = false;
|
|
DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
GetTypeFromParser(Type.get(), &TInfo);
|
|
|
|
if (DiagnoseClassNameShadow(CurContext, NameInfo))
|
|
return nullptr;
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
|
|
UPPC_DeclarationType)) {
|
|
Invalid = true;
|
|
TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
|
|
TInfo->getTypeLoc().getBeginLoc());
|
|
}
|
|
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
TemplateParamLists.size()
|
|
? forRedeclarationInCurContext()
|
|
: ForVisibleRedeclaration);
|
|
LookupName(Previous, S);
|
|
|
|
// Warn about shadowing the name of a template parameter.
|
|
if (Previous.isSingleResult() &&
|
|
Previous.getFoundDecl()->isTemplateParameter()) {
|
|
DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
|
|
Previous.clear();
|
|
}
|
|
|
|
assert(Name.Kind == UnqualifiedId::IK_Identifier &&
|
|
"name in alias declaration must be an identifier");
|
|
TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
|
|
Name.StartLocation,
|
|
Name.Identifier, TInfo);
|
|
|
|
NewTD->setAccess(AS);
|
|
|
|
if (Invalid)
|
|
NewTD->setInvalidDecl();
|
|
|
|
ProcessDeclAttributeList(S, NewTD, AttrList);
|
|
AddPragmaAttributes(S, NewTD);
|
|
|
|
CheckTypedefForVariablyModifiedType(S, NewTD);
|
|
Invalid |= NewTD->isInvalidDecl();
|
|
|
|
bool Redeclaration = false;
|
|
|
|
NamedDecl *NewND;
|
|
if (TemplateParamLists.size()) {
|
|
TypeAliasTemplateDecl *OldDecl = nullptr;
|
|
TemplateParameterList *OldTemplateParams = nullptr;
|
|
|
|
if (TemplateParamLists.size() != 1) {
|
|
Diag(UsingLoc, diag::err_alias_template_extra_headers)
|
|
<< SourceRange(TemplateParamLists[1]->getTemplateLoc(),
|
|
TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
|
|
}
|
|
TemplateParameterList *TemplateParams = TemplateParamLists[0];
|
|
|
|
// Check that we can declare a template here.
|
|
if (CheckTemplateDeclScope(S, TemplateParams))
|
|
return nullptr;
|
|
|
|
// Only consider previous declarations in the same scope.
|
|
FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
|
|
/*ExplicitInstantiationOrSpecialization*/false);
|
|
if (!Previous.empty()) {
|
|
Redeclaration = true;
|
|
|
|
OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
|
|
if (!OldDecl && !Invalid) {
|
|
Diag(UsingLoc, diag::err_redefinition_different_kind)
|
|
<< Name.Identifier;
|
|
|
|
NamedDecl *OldD = Previous.getRepresentativeDecl();
|
|
if (OldD->getLocation().isValid())
|
|
Diag(OldD->getLocation(), diag::note_previous_definition);
|
|
|
|
Invalid = true;
|
|
}
|
|
|
|
if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
|
|
if (TemplateParameterListsAreEqual(TemplateParams,
|
|
OldDecl->getTemplateParameters(),
|
|
/*Complain=*/true,
|
|
TPL_TemplateMatch))
|
|
OldTemplateParams = OldDecl->getTemplateParameters();
|
|
else
|
|
Invalid = true;
|
|
|
|
TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
|
|
if (!Invalid &&
|
|
!Context.hasSameType(OldTD->getUnderlyingType(),
|
|
NewTD->getUnderlyingType())) {
|
|
// FIXME: The C++0x standard does not clearly say this is ill-formed,
|
|
// but we can't reasonably accept it.
|
|
Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
|
|
<< 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
|
|
if (OldTD->getLocation().isValid())
|
|
Diag(OldTD->getLocation(), diag::note_previous_definition);
|
|
Invalid = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge any previous default template arguments into our parameters,
|
|
// and check the parameter list.
|
|
if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
|
|
TPC_TypeAliasTemplate))
|
|
return nullptr;
|
|
|
|
TypeAliasTemplateDecl *NewDecl =
|
|
TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
|
|
Name.Identifier, TemplateParams,
|
|
NewTD);
|
|
NewTD->setDescribedAliasTemplate(NewDecl);
|
|
|
|
NewDecl->setAccess(AS);
|
|
|
|
if (Invalid)
|
|
NewDecl->setInvalidDecl();
|
|
else if (OldDecl) {
|
|
NewDecl->setPreviousDecl(OldDecl);
|
|
CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
|
|
}
|
|
|
|
NewND = NewDecl;
|
|
} else {
|
|
if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
|
|
setTagNameForLinkagePurposes(TD, NewTD);
|
|
handleTagNumbering(TD, S);
|
|
}
|
|
ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
|
|
NewND = NewTD;
|
|
}
|
|
|
|
PushOnScopeChains(NewND, S);
|
|
ActOnDocumentableDecl(NewND);
|
|
return NewND;
|
|
}
|
|
|
|
Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
|
|
SourceLocation AliasLoc,
|
|
IdentifierInfo *Alias, CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident) {
|
|
|
|
// Lookup the namespace name.
|
|
LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
|
|
LookupParsedName(R, S, &SS);
|
|
|
|
if (R.isAmbiguous())
|
|
return nullptr;
|
|
|
|
if (R.empty()) {
|
|
if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
|
|
Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
|
|
return nullptr;
|
|
}
|
|
}
|
|
assert(!R.isAmbiguous() && !R.empty());
|
|
NamedDecl *ND = R.getRepresentativeDecl();
|
|
|
|
// Check if we have a previous declaration with the same name.
|
|
LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
|
|
ForVisibleRedeclaration);
|
|
LookupName(PrevR, S);
|
|
|
|
// Check we're not shadowing a template parameter.
|
|
if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
|
|
DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
|
|
PrevR.clear();
|
|
}
|
|
|
|
// Filter out any other lookup result from an enclosing scope.
|
|
FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
|
|
/*AllowInlineNamespace*/false);
|
|
|
|
// Find the previous declaration and check that we can redeclare it.
|
|
NamespaceAliasDecl *Prev = nullptr;
|
|
if (PrevR.isSingleResult()) {
|
|
NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
|
|
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
|
|
// We already have an alias with the same name that points to the same
|
|
// namespace; check that it matches.
|
|
if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
|
|
Prev = AD;
|
|
} else if (isVisible(PrevDecl)) {
|
|
Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
|
|
<< Alias;
|
|
Diag(AD->getLocation(), diag::note_previous_namespace_alias)
|
|
<< AD->getNamespace();
|
|
return nullptr;
|
|
}
|
|
} else if (isVisible(PrevDecl)) {
|
|
unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
|
|
? diag::err_redefinition
|
|
: diag::err_redefinition_different_kind;
|
|
Diag(AliasLoc, DiagID) << Alias;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// The use of a nested name specifier may trigger deprecation warnings.
|
|
DiagnoseUseOfDecl(ND, IdentLoc);
|
|
|
|
NamespaceAliasDecl *AliasDecl =
|
|
NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
|
|
Alias, SS.getWithLocInContext(Context),
|
|
IdentLoc, ND);
|
|
if (Prev)
|
|
AliasDecl->setPreviousDecl(Prev);
|
|
|
|
PushOnScopeChains(AliasDecl, S);
|
|
return AliasDecl;
|
|
}
|
|
|
|
namespace {
|
|
struct SpecialMemberExceptionSpecInfo
|
|
: SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
|
|
SourceLocation Loc;
|
|
Sema::ImplicitExceptionSpecification ExceptSpec;
|
|
|
|
SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
|
|
Sema::CXXSpecialMember CSM,
|
|
Sema::InheritedConstructorInfo *ICI,
|
|
SourceLocation Loc)
|
|
: SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
|
|
|
|
bool visitBase(CXXBaseSpecifier *Base);
|
|
bool visitField(FieldDecl *FD);
|
|
|
|
void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
|
|
unsigned Quals);
|
|
|
|
void visitSubobjectCall(Subobject Subobj,
|
|
Sema::SpecialMemberOverloadResult SMOR);
|
|
};
|
|
}
|
|
|
|
bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
|
|
auto *RT = Base->getType()->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
|
|
Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
|
|
if (auto *BaseCtor = SMOR.getMethod()) {
|
|
visitSubobjectCall(Base, BaseCtor);
|
|
return false;
|
|
}
|
|
|
|
visitClassSubobject(BaseClass, Base, 0);
|
|
return false;
|
|
}
|
|
|
|
bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
|
|
if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
|
|
Expr *E = FD->getInClassInitializer();
|
|
if (!E)
|
|
// FIXME: It's a little wasteful to build and throw away a
|
|
// CXXDefaultInitExpr here.
|
|
// FIXME: We should have a single context note pointing at Loc, and
|
|
// this location should be MD->getLocation() instead, since that's
|
|
// the location where we actually use the default init expression.
|
|
E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
|
|
if (E)
|
|
ExceptSpec.CalledExpr(E);
|
|
} else if (auto *RT = S.Context.getBaseElementType(FD->getType())
|
|
->getAs<RecordType>()) {
|
|
visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
|
|
FD->getType().getCVRQualifiers());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
|
|
Subobject Subobj,
|
|
unsigned Quals) {
|
|
FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
|
|
bool IsMutable = Field && Field->isMutable();
|
|
visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
|
|
}
|
|
|
|
void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
|
|
Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
|
|
// Note, if lookup fails, it doesn't matter what exception specification we
|
|
// choose because the special member will be deleted.
|
|
if (CXXMethodDecl *MD = SMOR.getMethod())
|
|
ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
|
|
}
|
|
|
|
static Sema::ImplicitExceptionSpecification
|
|
ComputeDefaultedSpecialMemberExceptionSpec(
|
|
Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
|
|
Sema::InheritedConstructorInfo *ICI) {
|
|
CXXRecordDecl *ClassDecl = MD->getParent();
|
|
|
|
// C++ [except.spec]p14:
|
|
// An implicitly declared special member function (Clause 12) shall have an
|
|
// exception-specification. [...]
|
|
SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, Loc);
|
|
if (ClassDecl->isInvalidDecl())
|
|
return Info.ExceptSpec;
|
|
|
|
// C++1z [except.spec]p7:
|
|
// [Look for exceptions thrown by] a constructor selected [...] to
|
|
// initialize a potentially constructed subobject,
|
|
// C++1z [except.spec]p8:
|
|
// The exception specification for an implicitly-declared destructor, or a
|
|
// destructor without a noexcept-specifier, is potentially-throwing if and
|
|
// only if any of the destructors for any of its potentially constructed
|
|
// subojects is potentially throwing.
|
|
// FIXME: We respect the first rule but ignore the "potentially constructed"
|
|
// in the second rule to resolve a core issue (no number yet) that would have
|
|
// us reject:
|
|
// struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
|
|
// struct B : A {};
|
|
// struct C : B { void f(); };
|
|
// ... due to giving B::~B() a non-throwing exception specification.
|
|
Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
|
|
: Info.VisitAllBases);
|
|
|
|
return Info.ExceptSpec;
|
|
}
|
|
|
|
namespace {
|
|
/// RAII object to register a special member as being currently declared.
|
|
struct DeclaringSpecialMember {
|
|
Sema &S;
|
|
Sema::SpecialMemberDecl D;
|
|
Sema::ContextRAII SavedContext;
|
|
bool WasAlreadyBeingDeclared;
|
|
|
|
DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
|
|
: S(S), D(RD, CSM), SavedContext(S, RD) {
|
|
WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
|
|
if (WasAlreadyBeingDeclared)
|
|
// This almost never happens, but if it does, ensure that our cache
|
|
// doesn't contain a stale result.
|
|
S.SpecialMemberCache.clear();
|
|
else {
|
|
// Register a note to be produced if we encounter an error while
|
|
// declaring the special member.
|
|
Sema::CodeSynthesisContext Ctx;
|
|
Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
|
|
// FIXME: We don't have a location to use here. Using the class's
|
|
// location maintains the fiction that we declare all special members
|
|
// with the class, but (1) it's not clear that lying about that helps our
|
|
// users understand what's going on, and (2) there may be outer contexts
|
|
// on the stack (some of which are relevant) and printing them exposes
|
|
// our lies.
|
|
Ctx.PointOfInstantiation = RD->getLocation();
|
|
Ctx.Entity = RD;
|
|
Ctx.SpecialMember = CSM;
|
|
S.pushCodeSynthesisContext(Ctx);
|
|
}
|
|
}
|
|
~DeclaringSpecialMember() {
|
|
if (!WasAlreadyBeingDeclared) {
|
|
S.SpecialMembersBeingDeclared.erase(D);
|
|
S.popCodeSynthesisContext();
|
|
}
|
|
}
|
|
|
|
/// \brief Are we already trying to declare this special member?
|
|
bool isAlreadyBeingDeclared() const {
|
|
return WasAlreadyBeingDeclared;
|
|
}
|
|
};
|
|
}
|
|
|
|
void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
|
|
// Look up any existing declarations, but don't trigger declaration of all
|
|
// implicit special members with this name.
|
|
DeclarationName Name = FD->getDeclName();
|
|
LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
|
|
ForExternalRedeclaration);
|
|
for (auto *D : FD->getParent()->lookup(Name))
|
|
if (auto *Acceptable = R.getAcceptableDecl(D))
|
|
R.addDecl(Acceptable);
|
|
R.resolveKind();
|
|
R.suppressDiagnostics();
|
|
|
|
CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
|
|
}
|
|
|
|
CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
|
|
CXXRecordDecl *ClassDecl) {
|
|
// C++ [class.ctor]p5:
|
|
// A default constructor for a class X is a constructor of class X
|
|
// that can be called without an argument. If there is no
|
|
// user-declared constructor for class X, a default constructor is
|
|
// implicitly declared. An implicitly-declared default constructor
|
|
// is an inline public member of its class.
|
|
assert(ClassDecl->needsImplicitDefaultConstructor() &&
|
|
"Should not build implicit default constructor!");
|
|
|
|
DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
|
|
if (DSM.isAlreadyBeingDeclared())
|
|
return nullptr;
|
|
|
|
bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
|
|
CXXDefaultConstructor,
|
|
false);
|
|
|
|
// Create the actual constructor declaration.
|
|
CanQualType ClassType
|
|
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXConstructorName(ClassType);
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
|
|
Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
|
|
/*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
|
|
/*isImplicitlyDeclared=*/true, Constexpr);
|
|
DefaultCon->setAccess(AS_public);
|
|
DefaultCon->setDefaulted();
|
|
|
|
if (getLangOpts().CUDA) {
|
|
inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
|
|
DefaultCon,
|
|
/* ConstRHS */ false,
|
|
/* Diagnose */ false);
|
|
}
|
|
|
|
// Build an exception specification pointing back at this constructor.
|
|
FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
|
|
DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
|
|
|
|
// We don't need to use SpecialMemberIsTrivial here; triviality for default
|
|
// constructors is easy to compute.
|
|
DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
|
|
|
|
// Note that we have declared this constructor.
|
|
++ASTContext::NumImplicitDefaultConstructorsDeclared;
|
|
|
|
Scope *S = getScopeForContext(ClassDecl);
|
|
CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
|
|
|
|
if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
|
|
SetDeclDeleted(DefaultCon, ClassLoc);
|
|
|
|
if (S)
|
|
PushOnScopeChains(DefaultCon, S, false);
|
|
ClassDecl->addDecl(DefaultCon);
|
|
|
|
return DefaultCon;
|
|
}
|
|
|
|
void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor) {
|
|
assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
|
|
!Constructor->doesThisDeclarationHaveABody() &&
|
|
!Constructor->isDeleted()) &&
|
|
"DefineImplicitDefaultConstructor - call it for implicit default ctor");
|
|
if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
|
|
|
|
SynthesizedFunctionScope Scope(*this, Constructor);
|
|
|
|
// The exception specification is needed because we are defining the
|
|
// function.
|
|
ResolveExceptionSpec(CurrentLocation,
|
|
Constructor->getType()->castAs<FunctionProtoType>());
|
|
MarkVTableUsed(CurrentLocation, ClassDecl);
|
|
|
|
// Add a context note for diagnostics produced after this point.
|
|
Scope.addContextNote(CurrentLocation);
|
|
|
|
if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
|
|
Constructor->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
SourceLocation Loc = Constructor->getLocEnd().isValid()
|
|
? Constructor->getLocEnd()
|
|
: Constructor->getLocation();
|
|
Constructor->setBody(new (Context) CompoundStmt(Loc));
|
|
Constructor->markUsed(Context);
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(Constructor);
|
|
}
|
|
|
|
DiagnoseUninitializedFields(*this, Constructor);
|
|
}
|
|
|
|
void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
|
|
// Perform any delayed checks on exception specifications.
|
|
CheckDelayedMemberExceptionSpecs();
|
|
}
|
|
|
|
/// Find or create the fake constructor we synthesize to model constructing an
|
|
/// object of a derived class via a constructor of a base class.
|
|
CXXConstructorDecl *
|
|
Sema::findInheritingConstructor(SourceLocation Loc,
|
|
CXXConstructorDecl *BaseCtor,
|
|
ConstructorUsingShadowDecl *Shadow) {
|
|
CXXRecordDecl *Derived = Shadow->getParent();
|
|
SourceLocation UsingLoc = Shadow->getLocation();
|
|
|
|
// FIXME: Add a new kind of DeclarationName for an inherited constructor.
|
|
// For now we use the name of the base class constructor as a member of the
|
|
// derived class to indicate a (fake) inherited constructor name.
|
|
DeclarationName Name = BaseCtor->getDeclName();
|
|
|
|
// Check to see if we already have a fake constructor for this inherited
|
|
// constructor call.
|
|
for (NamedDecl *Ctor : Derived->lookup(Name))
|
|
if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
|
|
->getInheritedConstructor()
|
|
.getConstructor(),
|
|
BaseCtor))
|
|
return cast<CXXConstructorDecl>(Ctor);
|
|
|
|
DeclarationNameInfo NameInfo(Name, UsingLoc);
|
|
TypeSourceInfo *TInfo =
|
|
Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
|
|
FunctionProtoTypeLoc ProtoLoc =
|
|
TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
|
|
|
|
// Check the inherited constructor is valid and find the list of base classes
|
|
// from which it was inherited.
|
|
InheritedConstructorInfo ICI(*this, Loc, Shadow);
|
|
|
|
bool Constexpr =
|
|
BaseCtor->isConstexpr() &&
|
|
defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
|
|
false, BaseCtor, &ICI);
|
|
|
|
CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
|
|
Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
|
|
BaseCtor->isExplicit(), /*Inline=*/true,
|
|
/*ImplicitlyDeclared=*/true, Constexpr,
|
|
InheritedConstructor(Shadow, BaseCtor));
|
|
if (Shadow->isInvalidDecl())
|
|
DerivedCtor->setInvalidDecl();
|
|
|
|
// Build an unevaluated exception specification for this fake constructor.
|
|
const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.ExceptionSpec.Type = EST_Unevaluated;
|
|
EPI.ExceptionSpec.SourceDecl = DerivedCtor;
|
|
DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
|
|
FPT->getParamTypes(), EPI));
|
|
|
|
// Build the parameter declarations.
|
|
SmallVector<ParmVarDecl *, 16> ParamDecls;
|
|
for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
|
|
TypeSourceInfo *TInfo =
|
|
Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
|
|
ParmVarDecl *PD = ParmVarDecl::Create(
|
|
Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
|
|
FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
|
|
PD->setScopeInfo(0, I);
|
|
PD->setImplicit();
|
|
// Ensure attributes are propagated onto parameters (this matters for
|
|
// format, pass_object_size, ...).
|
|
mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
|
|
ParamDecls.push_back(PD);
|
|
ProtoLoc.setParam(I, PD);
|
|
}
|
|
|
|
// Set up the new constructor.
|
|
assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
|
|
DerivedCtor->setAccess(BaseCtor->getAccess());
|
|
DerivedCtor->setParams(ParamDecls);
|
|
Derived->addDecl(DerivedCtor);
|
|
|
|
if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
|
|
SetDeclDeleted(DerivedCtor, UsingLoc);
|
|
|
|
return DerivedCtor;
|
|
}
|
|
|
|
void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
|
|
InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
|
|
Ctor->getInheritedConstructor().getShadowDecl());
|
|
ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
|
|
/*Diagnose*/true);
|
|
}
|
|
|
|
void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor) {
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
assert(Constructor->getInheritedConstructor() &&
|
|
!Constructor->doesThisDeclarationHaveABody() &&
|
|
!Constructor->isDeleted());
|
|
if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
|
|
return;
|
|
|
|
// Initializations are performed "as if by a defaulted default constructor",
|
|
// so enter the appropriate scope.
|
|
SynthesizedFunctionScope Scope(*this, Constructor);
|
|
|
|
// The exception specification is needed because we are defining the
|
|
// function.
|
|
ResolveExceptionSpec(CurrentLocation,
|
|
Constructor->getType()->castAs<FunctionProtoType>());
|
|
MarkVTableUsed(CurrentLocation, ClassDecl);
|
|
|
|
// Add a context note for diagnostics produced after this point.
|
|
Scope.addContextNote(CurrentLocation);
|
|
|
|
ConstructorUsingShadowDecl *Shadow =
|
|
Constructor->getInheritedConstructor().getShadowDecl();
|
|
CXXConstructorDecl *InheritedCtor =
|
|
Constructor->getInheritedConstructor().getConstructor();
|
|
|
|
// [class.inhctor.init]p1:
|
|
// initialization proceeds as if a defaulted default constructor is used to
|
|
// initialize the D object and each base class subobject from which the
|
|
// constructor was inherited
|
|
|
|
InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
|
|
CXXRecordDecl *RD = Shadow->getParent();
|
|
SourceLocation InitLoc = Shadow->getLocation();
|
|
|
|
// Build explicit initializers for all base classes from which the
|
|
// constructor was inherited.
|
|
SmallVector<CXXCtorInitializer*, 8> Inits;
|
|
for (bool VBase : {false, true}) {
|
|
for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
|
|
if (B.isVirtual() != VBase)
|
|
continue;
|
|
|
|
auto *BaseRD = B.getType()->getAsCXXRecordDecl();
|
|
if (!BaseRD)
|
|
continue;
|
|
|
|
auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
|
|
if (!BaseCtor.first)
|
|
continue;
|
|
|
|
MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
|
|
ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
|
|
InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
|
|
|
|
auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
|
|
Inits.push_back(new (Context) CXXCtorInitializer(
|
|
Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
|
|
SourceLocation()));
|
|
}
|
|
}
|
|
|
|
// We now proceed as if for a defaulted default constructor, with the relevant
|
|
// initializers replaced.
|
|
|
|
if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
|
|
Constructor->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
Constructor->setBody(new (Context) CompoundStmt(InitLoc));
|
|
Constructor->markUsed(Context);
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(Constructor);
|
|
}
|
|
|
|
DiagnoseUninitializedFields(*this, Constructor);
|
|
}
|
|
|
|
CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
|
|
// C++ [class.dtor]p2:
|
|
// If a class has no user-declared destructor, a destructor is
|
|
// declared implicitly. An implicitly-declared destructor is an
|
|
// inline public member of its class.
|
|
assert(ClassDecl->needsImplicitDestructor());
|
|
|
|
DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
|
|
if (DSM.isAlreadyBeingDeclared())
|
|
return nullptr;
|
|
|
|
// Create the actual destructor declaration.
|
|
CanQualType ClassType
|
|
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXDestructorName(ClassType);
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXDestructorDecl *Destructor
|
|
= CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
|
|
QualType(), nullptr, /*isInline=*/true,
|
|
/*isImplicitlyDeclared=*/true);
|
|
Destructor->setAccess(AS_public);
|
|
Destructor->setDefaulted();
|
|
|
|
if (getLangOpts().CUDA) {
|
|
inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
|
|
Destructor,
|
|
/* ConstRHS */ false,
|
|
/* Diagnose */ false);
|
|
}
|
|
|
|
// Build an exception specification pointing back at this destructor.
|
|
FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
|
|
Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
|
|
|
|
// We don't need to use SpecialMemberIsTrivial here; triviality for
|
|
// destructors is easy to compute.
|
|
Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
|
|
|
|
// Note that we have declared this destructor.
|
|
++ASTContext::NumImplicitDestructorsDeclared;
|
|
|
|
Scope *S = getScopeForContext(ClassDecl);
|
|
CheckImplicitSpecialMemberDeclaration(S, Destructor);
|
|
|
|
// We can't check whether an implicit destructor is deleted before we complete
|
|
// the definition of the class, because its validity depends on the alignment
|
|
// of the class. We'll check this from ActOnFields once the class is complete.
|
|
if (ClassDecl->isCompleteDefinition() &&
|
|
ShouldDeleteSpecialMember(Destructor, CXXDestructor))
|
|
SetDeclDeleted(Destructor, ClassLoc);
|
|
|
|
// Introduce this destructor into its scope.
|
|
if (S)
|
|
PushOnScopeChains(Destructor, S, false);
|
|
ClassDecl->addDecl(Destructor);
|
|
|
|
return Destructor;
|
|
}
|
|
|
|
void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
|
|
CXXDestructorDecl *Destructor) {
|
|
assert((Destructor->isDefaulted() &&
|
|
!Destructor->doesThisDeclarationHaveABody() &&
|
|
!Destructor->isDeleted()) &&
|
|
"DefineImplicitDestructor - call it for implicit default dtor");
|
|
if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = Destructor->getParent();
|
|
assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
|
|
|
|
SynthesizedFunctionScope Scope(*this, Destructor);
|
|
|
|
// The exception specification is needed because we are defining the
|
|
// function.
|
|
ResolveExceptionSpec(CurrentLocation,
|
|
Destructor->getType()->castAs<FunctionProtoType>());
|
|
MarkVTableUsed(CurrentLocation, ClassDecl);
|
|
|
|
// Add a context note for diagnostics produced after this point.
|
|
Scope.addContextNote(CurrentLocation);
|
|
|
|
MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
|
|
Destructor->getParent());
|
|
|
|
if (CheckDestructor(Destructor)) {
|
|
Destructor->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
SourceLocation Loc = Destructor->getLocEnd().isValid()
|
|
? Destructor->getLocEnd()
|
|
: Destructor->getLocation();
|
|
Destructor->setBody(new (Context) CompoundStmt(Loc));
|
|
Destructor->markUsed(Context);
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(Destructor);
|
|
}
|
|
}
|
|
|
|
/// \brief Perform any semantic analysis which needs to be delayed until all
|
|
/// pending class member declarations have been parsed.
|
|
void Sema::ActOnFinishCXXMemberDecls() {
|
|
// If the context is an invalid C++ class, just suppress these checks.
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
|
|
if (Record->isInvalidDecl()) {
|
|
DelayedDefaultedMemberExceptionSpecs.clear();
|
|
DelayedExceptionSpecChecks.clear();
|
|
return;
|
|
}
|
|
checkForMultipleExportedDefaultConstructors(*this, Record);
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnFinishCXXNonNestedClass(Decl *D) {
|
|
referenceDLLExportedClassMethods();
|
|
}
|
|
|
|
void Sema::referenceDLLExportedClassMethods() {
|
|
if (!DelayedDllExportClasses.empty()) {
|
|
// Calling ReferenceDllExportedMethods might cause the current function to
|
|
// be called again, so use a local copy of DelayedDllExportClasses.
|
|
SmallVector<CXXRecordDecl *, 4> WorkList;
|
|
std::swap(DelayedDllExportClasses, WorkList);
|
|
for (CXXRecordDecl *Class : WorkList)
|
|
ReferenceDllExportedMethods(*this, Class);
|
|
}
|
|
}
|
|
|
|
void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
|
|
CXXDestructorDecl *Destructor) {
|
|
assert(getLangOpts().CPlusPlus11 &&
|
|
"adjusting dtor exception specs was introduced in c++11");
|
|
|
|
// C++11 [class.dtor]p3:
|
|
// A declaration of a destructor that does not have an exception-
|
|
// specification is implicitly considered to have the same exception-
|
|
// specification as an implicit declaration.
|
|
const FunctionProtoType *DtorType = Destructor->getType()->
|
|
getAs<FunctionProtoType>();
|
|
if (DtorType->hasExceptionSpec())
|
|
return;
|
|
|
|
// Replace the destructor's type, building off the existing one. Fortunately,
|
|
// the only thing of interest in the destructor type is its extended info.
|
|
// The return and arguments are fixed.
|
|
FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
|
|
EPI.ExceptionSpec.Type = EST_Unevaluated;
|
|
EPI.ExceptionSpec.SourceDecl = Destructor;
|
|
Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
|
|
|
|
// FIXME: If the destructor has a body that could throw, and the newly created
|
|
// spec doesn't allow exceptions, we should emit a warning, because this
|
|
// change in behavior can break conforming C++03 programs at runtime.
|
|
// However, we don't have a body or an exception specification yet, so it
|
|
// needs to be done somewhere else.
|
|
}
|
|
|
|
namespace {
|
|
/// \brief An abstract base class for all helper classes used in building the
|
|
// copy/move operators. These classes serve as factory functions and help us
|
|
// avoid using the same Expr* in the AST twice.
|
|
class ExprBuilder {
|
|
ExprBuilder(const ExprBuilder&) = delete;
|
|
ExprBuilder &operator=(const ExprBuilder&) = delete;
|
|
|
|
protected:
|
|
static Expr *assertNotNull(Expr *E) {
|
|
assert(E && "Expression construction must not fail.");
|
|
return E;
|
|
}
|
|
|
|
public:
|
|
ExprBuilder() {}
|
|
virtual ~ExprBuilder() {}
|
|
|
|
virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
|
|
};
|
|
|
|
class RefBuilder: public ExprBuilder {
|
|
VarDecl *Var;
|
|
QualType VarType;
|
|
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
|
|
}
|
|
|
|
RefBuilder(VarDecl *Var, QualType VarType)
|
|
: Var(Var), VarType(VarType) {}
|
|
};
|
|
|
|
class ThisBuilder: public ExprBuilder {
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
|
|
}
|
|
};
|
|
|
|
class CastBuilder: public ExprBuilder {
|
|
const ExprBuilder &Builder;
|
|
QualType Type;
|
|
ExprValueKind Kind;
|
|
const CXXCastPath &Path;
|
|
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
|
|
CK_UncheckedDerivedToBase, Kind,
|
|
&Path).get());
|
|
}
|
|
|
|
CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
|
|
const CXXCastPath &Path)
|
|
: Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
|
|
};
|
|
|
|
class DerefBuilder: public ExprBuilder {
|
|
const ExprBuilder &Builder;
|
|
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(
|
|
S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
|
|
}
|
|
|
|
DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
|
|
};
|
|
|
|
class MemberBuilder: public ExprBuilder {
|
|
const ExprBuilder &Builder;
|
|
QualType Type;
|
|
CXXScopeSpec SS;
|
|
bool IsArrow;
|
|
LookupResult &MemberLookup;
|
|
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(S.BuildMemberReferenceExpr(
|
|
Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
|
|
nullptr, MemberLookup, nullptr, nullptr).get());
|
|
}
|
|
|
|
MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
|
|
LookupResult &MemberLookup)
|
|
: Builder(Builder), Type(Type), IsArrow(IsArrow),
|
|
MemberLookup(MemberLookup) {}
|
|
};
|
|
|
|
class MoveCastBuilder: public ExprBuilder {
|
|
const ExprBuilder &Builder;
|
|
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
|
|
}
|
|
|
|
MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
|
|
};
|
|
|
|
class LvalueConvBuilder: public ExprBuilder {
|
|
const ExprBuilder &Builder;
|
|
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(
|
|
S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
|
|
}
|
|
|
|
LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
|
|
};
|
|
|
|
class SubscriptBuilder: public ExprBuilder {
|
|
const ExprBuilder &Base;
|
|
const ExprBuilder &Index;
|
|
|
|
public:
|
|
Expr *build(Sema &S, SourceLocation Loc) const override {
|
|
return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
|
|
Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
|
|
}
|
|
|
|
SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
|
|
: Base(Base), Index(Index) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// When generating a defaulted copy or move assignment operator, if a field
|
|
/// should be copied with __builtin_memcpy rather than via explicit assignments,
|
|
/// do so. This optimization only applies for arrays of scalars, and for arrays
|
|
/// of class type where the selected copy/move-assignment operator is trivial.
|
|
static StmtResult
|
|
buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
|
|
const ExprBuilder &ToB, const ExprBuilder &FromB) {
|
|
// Compute the size of the memory buffer to be copied.
|
|
QualType SizeType = S.Context.getSizeType();
|
|
llvm::APInt Size(S.Context.getTypeSize(SizeType),
|
|
S.Context.getTypeSizeInChars(T).getQuantity());
|
|
|
|
// Take the address of the field references for "from" and "to". We
|
|
// directly construct UnaryOperators here because semantic analysis
|
|
// does not permit us to take the address of an xvalue.
|
|
Expr *From = FromB.build(S, Loc);
|
|
From = new (S.Context) UnaryOperator(From, UO_AddrOf,
|
|
S.Context.getPointerType(From->getType()),
|
|
VK_RValue, OK_Ordinary, Loc);
|
|
Expr *To = ToB.build(S, Loc);
|
|
To = new (S.Context) UnaryOperator(To, UO_AddrOf,
|
|
S.Context.getPointerType(To->getType()),
|
|
VK_RValue, OK_Ordinary, Loc);
|
|
|
|
const Type *E = T->getBaseElementTypeUnsafe();
|
|
bool NeedsCollectableMemCpy =
|
|
E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
|
|
|
|
// Create a reference to the __builtin_objc_memmove_collectable function
|
|
StringRef MemCpyName = NeedsCollectableMemCpy ?
|
|
"__builtin_objc_memmove_collectable" :
|
|
"__builtin_memcpy";
|
|
LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
|
|
Sema::LookupOrdinaryName);
|
|
S.LookupName(R, S.TUScope, true);
|
|
|
|
FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
|
|
if (!MemCpy)
|
|
// Something went horribly wrong earlier, and we will have complained
|
|
// about it.
|
|
return StmtError();
|
|
|
|
ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
|
|
VK_RValue, Loc, nullptr);
|
|
assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
|
|
|
|
Expr *CallArgs[] = {
|
|
To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
|
|
};
|
|
ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
|
|
Loc, CallArgs, Loc);
|
|
|
|
assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
|
|
return Call.getAs<Stmt>();
|
|
}
|
|
|
|
/// \brief Builds a statement that copies/moves the given entity from \p From to
|
|
/// \c To.
|
|
///
|
|
/// This routine is used to copy/move the members of a class with an
|
|
/// implicitly-declared copy/move assignment operator. When the entities being
|
|
/// copied are arrays, this routine builds for loops to copy them.
|
|
///
|
|
/// \param S The Sema object used for type-checking.
|
|
///
|
|
/// \param Loc The location where the implicit copy/move is being generated.
|
|
///
|
|
/// \param T The type of the expressions being copied/moved. Both expressions
|
|
/// must have this type.
|
|
///
|
|
/// \param To The expression we are copying/moving to.
|
|
///
|
|
/// \param From The expression we are copying/moving from.
|
|
///
|
|
/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
|
|
/// Otherwise, it's a non-static member subobject.
|
|
///
|
|
/// \param Copying Whether we're copying or moving.
|
|
///
|
|
/// \param Depth Internal parameter recording the depth of the recursion.
|
|
///
|
|
/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
|
|
/// if a memcpy should be used instead.
|
|
static StmtResult
|
|
buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
|
|
const ExprBuilder &To, const ExprBuilder &From,
|
|
bool CopyingBaseSubobject, bool Copying,
|
|
unsigned Depth = 0) {
|
|
// C++11 [class.copy]p28:
|
|
// Each subobject is assigned in the manner appropriate to its type:
|
|
//
|
|
// - if the subobject is of class type, as if by a call to operator= with
|
|
// the subobject as the object expression and the corresponding
|
|
// subobject of x as a single function argument (as if by explicit
|
|
// qualification; that is, ignoring any possible virtual overriding
|
|
// functions in more derived classes);
|
|
//
|
|
// C++03 [class.copy]p13:
|
|
// - if the subobject is of class type, the copy assignment operator for
|
|
// the class is used (as if by explicit qualification; that is,
|
|
// ignoring any possible virtual overriding functions in more derived
|
|
// classes);
|
|
if (const RecordType *RecordTy = T->getAs<RecordType>()) {
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
|
|
// Look for operator=.
|
|
DeclarationName Name
|
|
= S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
|
|
S.LookupQualifiedName(OpLookup, ClassDecl, false);
|
|
|
|
// Prior to C++11, filter out any result that isn't a copy/move-assignment
|
|
// operator.
|
|
if (!S.getLangOpts().CPlusPlus11) {
|
|
LookupResult::Filter F = OpLookup.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
|
|
if (Method->isCopyAssignmentOperator() ||
|
|
(!Copying && Method->isMoveAssignmentOperator()))
|
|
continue;
|
|
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
}
|
|
|
|
// Suppress the protected check (C++ [class.protected]) for each of the
|
|
// assignment operators we found. This strange dance is required when
|
|
// we're assigning via a base classes's copy-assignment operator. To
|
|
// ensure that we're getting the right base class subobject (without
|
|
// ambiguities), we need to cast "this" to that subobject type; to
|
|
// ensure that we don't go through the virtual call mechanism, we need
|
|
// to qualify the operator= name with the base class (see below). However,
|
|
// this means that if the base class has a protected copy assignment
|
|
// operator, the protected member access check will fail. So, we
|
|
// rewrite "protected" access to "public" access in this case, since we
|
|
// know by construction that we're calling from a derived class.
|
|
if (CopyingBaseSubobject) {
|
|
for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
|
|
L != LEnd; ++L) {
|
|
if (L.getAccess() == AS_protected)
|
|
L.setAccess(AS_public);
|
|
}
|
|
}
|
|
|
|
// Create the nested-name-specifier that will be used to qualify the
|
|
// reference to operator=; this is required to suppress the virtual
|
|
// call mechanism.
|
|
CXXScopeSpec SS;
|
|
const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
|
|
SS.MakeTrivial(S.Context,
|
|
NestedNameSpecifier::Create(S.Context, nullptr, false,
|
|
CanonicalT),
|
|
Loc);
|
|
|
|
// Create the reference to operator=.
|
|
ExprResult OpEqualRef
|
|
= S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
|
|
SS, /*TemplateKWLoc=*/SourceLocation(),
|
|
/*FirstQualifierInScope=*/nullptr,
|
|
OpLookup,
|
|
/*TemplateArgs=*/nullptr, /*S*/nullptr,
|
|
/*SuppressQualifierCheck=*/true);
|
|
if (OpEqualRef.isInvalid())
|
|
return StmtError();
|
|
|
|
// Build the call to the assignment operator.
|
|
|
|
Expr *FromInst = From.build(S, Loc);
|
|
ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
|
|
OpEqualRef.getAs<Expr>(),
|
|
Loc, FromInst, Loc);
|
|
if (Call.isInvalid())
|
|
return StmtError();
|
|
|
|
// If we built a call to a trivial 'operator=' while copying an array,
|
|
// bail out. We'll replace the whole shebang with a memcpy.
|
|
CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
|
|
if (CE && CE->getMethodDecl()->isTrivial() && Depth)
|
|
return StmtResult((Stmt*)nullptr);
|
|
|
|
// Convert to an expression-statement, and clean up any produced
|
|
// temporaries.
|
|
return S.ActOnExprStmt(Call);
|
|
}
|
|
|
|
// - if the subobject is of scalar type, the built-in assignment
|
|
// operator is used.
|
|
const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
|
|
if (!ArrayTy) {
|
|
ExprResult Assignment = S.CreateBuiltinBinOp(
|
|
Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
|
|
if (Assignment.isInvalid())
|
|
return StmtError();
|
|
return S.ActOnExprStmt(Assignment);
|
|
}
|
|
|
|
// - if the subobject is an array, each element is assigned, in the
|
|
// manner appropriate to the element type;
|
|
|
|
// Construct a loop over the array bounds, e.g.,
|
|
//
|
|
// for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
|
|
//
|
|
// that will copy each of the array elements.
|
|
QualType SizeType = S.Context.getSizeType();
|
|
|
|
// Create the iteration variable.
|
|
IdentifierInfo *IterationVarName = nullptr;
|
|
{
|
|
SmallString<8> Str;
|
|
llvm::raw_svector_ostream OS(Str);
|
|
OS << "__i" << Depth;
|
|
IterationVarName = &S.Context.Idents.get(OS.str());
|
|
}
|
|
VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
|
|
IterationVarName, SizeType,
|
|
S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
|
|
SC_None);
|
|
|
|
// Initialize the iteration variable to zero.
|
|
llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
|
|
IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
|
|
|
|
// Creates a reference to the iteration variable.
|
|
RefBuilder IterationVarRef(IterationVar, SizeType);
|
|
LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
|
|
|
|
// Create the DeclStmt that holds the iteration variable.
|
|
Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
|
|
|
|
// Subscript the "from" and "to" expressions with the iteration variable.
|
|
SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
|
|
MoveCastBuilder FromIndexMove(FromIndexCopy);
|
|
const ExprBuilder *FromIndex;
|
|
if (Copying)
|
|
FromIndex = &FromIndexCopy;
|
|
else
|
|
FromIndex = &FromIndexMove;
|
|
|
|
SubscriptBuilder ToIndex(To, IterationVarRefRVal);
|
|
|
|
// Build the copy/move for an individual element of the array.
|
|
StmtResult Copy =
|
|
buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
|
|
ToIndex, *FromIndex, CopyingBaseSubobject,
|
|
Copying, Depth + 1);
|
|
// Bail out if copying fails or if we determined that we should use memcpy.
|
|
if (Copy.isInvalid() || !Copy.get())
|
|
return Copy;
|
|
|
|
// Create the comparison against the array bound.
|
|
llvm::APInt Upper
|
|
= ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
|
|
Expr *Comparison
|
|
= new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
|
|
IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
|
|
BO_NE, S.Context.BoolTy,
|
|
VK_RValue, OK_Ordinary, Loc, FPOptions());
|
|
|
|
// Create the pre-increment of the iteration variable.
|
|
Expr *Increment
|
|
= new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
|
|
SizeType, VK_LValue, OK_Ordinary, Loc);
|
|
|
|
// Construct the loop that copies all elements of this array.
|
|
return S.ActOnForStmt(
|
|
Loc, Loc, InitStmt,
|
|
S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
|
|
S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
|
|
}
|
|
|
|
static StmtResult
|
|
buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
|
|
const ExprBuilder &To, const ExprBuilder &From,
|
|
bool CopyingBaseSubobject, bool Copying) {
|
|
// Maybe we should use a memcpy?
|
|
if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
|
|
T.isTriviallyCopyableType(S.Context))
|
|
return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
|
|
|
|
StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
|
|
CopyingBaseSubobject,
|
|
Copying, 0));
|
|
|
|
// If we ended up picking a trivial assignment operator for an array of a
|
|
// non-trivially-copyable class type, just emit a memcpy.
|
|
if (!Result.isInvalid() && !Result.get())
|
|
return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
|
|
|
|
return Result;
|
|
}
|
|
|
|
CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
|
|
// Note: The following rules are largely analoguous to the copy
|
|
// constructor rules. Note that virtual bases are not taken into account
|
|
// for determining the argument type of the operator. Note also that
|
|
// operators taking an object instead of a reference are allowed.
|
|
assert(ClassDecl->needsImplicitCopyAssignment());
|
|
|
|
DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
|
|
if (DSM.isAlreadyBeingDeclared())
|
|
return nullptr;
|
|
|
|
QualType ArgType = Context.getTypeDeclType(ClassDecl);
|
|
QualType RetType = Context.getLValueReferenceType(ArgType);
|
|
bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
|
|
if (Const)
|
|
ArgType = ArgType.withConst();
|
|
ArgType = Context.getLValueReferenceType(ArgType);
|
|
|
|
bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
|
|
CXXCopyAssignment,
|
|
Const);
|
|
|
|
// An implicitly-declared copy assignment operator is an inline public
|
|
// member of its class.
|
|
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXMethodDecl *CopyAssignment =
|
|
CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
|
|
/*TInfo=*/nullptr, /*StorageClass=*/SC_None,
|
|
/*isInline=*/true, Constexpr, SourceLocation());
|
|
CopyAssignment->setAccess(AS_public);
|
|
CopyAssignment->setDefaulted();
|
|
CopyAssignment->setImplicit();
|
|
|
|
if (getLangOpts().CUDA) {
|
|
inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
|
|
CopyAssignment,
|
|
/* ConstRHS */ Const,
|
|
/* Diagnose */ false);
|
|
}
|
|
|
|
// Build an exception specification pointing back at this member.
|
|
FunctionProtoType::ExtProtoInfo EPI =
|
|
getImplicitMethodEPI(*this, CopyAssignment);
|
|
CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
|
|
|
|
// Add the parameter to the operator.
|
|
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
|
|
ClassLoc, ClassLoc,
|
|
/*Id=*/nullptr, ArgType,
|
|
/*TInfo=*/nullptr, SC_None,
|
|
nullptr);
|
|
CopyAssignment->setParams(FromParam);
|
|
|
|
CopyAssignment->setTrivial(
|
|
ClassDecl->needsOverloadResolutionForCopyAssignment()
|
|
? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
|
|
: ClassDecl->hasTrivialCopyAssignment());
|
|
|
|
// Note that we have added this copy-assignment operator.
|
|
++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
|
|
|
|
Scope *S = getScopeForContext(ClassDecl);
|
|
CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
|
|
|
|
if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
|
|
SetDeclDeleted(CopyAssignment, ClassLoc);
|
|
|
|
if (S)
|
|
PushOnScopeChains(CopyAssignment, S, false);
|
|
ClassDecl->addDecl(CopyAssignment);
|
|
|
|
return CopyAssignment;
|
|
}
|
|
|
|
/// Diagnose an implicit copy operation for a class which is odr-used, but
|
|
/// which is deprecated because the class has a user-declared copy constructor,
|
|
/// copy assignment operator, or destructor.
|
|
static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
|
|
assert(CopyOp->isImplicit());
|
|
|
|
CXXRecordDecl *RD = CopyOp->getParent();
|
|
CXXMethodDecl *UserDeclaredOperation = nullptr;
|
|
|
|
// In Microsoft mode, assignment operations don't affect constructors and
|
|
// vice versa.
|
|
if (RD->hasUserDeclaredDestructor()) {
|
|
UserDeclaredOperation = RD->getDestructor();
|
|
} else if (!isa<CXXConstructorDecl>(CopyOp) &&
|
|
RD->hasUserDeclaredCopyConstructor() &&
|
|
!S.getLangOpts().MSVCCompat) {
|
|
// Find any user-declared copy constructor.
|
|
for (auto *I : RD->ctors()) {
|
|
if (I->isCopyConstructor()) {
|
|
UserDeclaredOperation = I;
|
|
break;
|
|
}
|
|
}
|
|
assert(UserDeclaredOperation);
|
|
} else if (isa<CXXConstructorDecl>(CopyOp) &&
|
|
RD->hasUserDeclaredCopyAssignment() &&
|
|
!S.getLangOpts().MSVCCompat) {
|
|
// Find any user-declared move assignment operator.
|
|
for (auto *I : RD->methods()) {
|
|
if (I->isCopyAssignmentOperator()) {
|
|
UserDeclaredOperation = I;
|
|
break;
|
|
}
|
|
}
|
|
assert(UserDeclaredOperation);
|
|
}
|
|
|
|
if (UserDeclaredOperation) {
|
|
S.Diag(UserDeclaredOperation->getLocation(),
|
|
diag::warn_deprecated_copy_operation)
|
|
<< RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
|
|
<< /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
|
|
}
|
|
}
|
|
|
|
void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
|
|
CXXMethodDecl *CopyAssignOperator) {
|
|
assert((CopyAssignOperator->isDefaulted() &&
|
|
CopyAssignOperator->isOverloadedOperator() &&
|
|
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
|
|
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
|
|
!CopyAssignOperator->isDeleted()) &&
|
|
"DefineImplicitCopyAssignment called for wrong function");
|
|
if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
|
|
if (ClassDecl->isInvalidDecl()) {
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
|
|
|
|
// The exception specification is needed because we are defining the
|
|
// function.
|
|
ResolveExceptionSpec(CurrentLocation,
|
|
CopyAssignOperator->getType()->castAs<FunctionProtoType>());
|
|
|
|
// Add a context note for diagnostics produced after this point.
|
|
Scope.addContextNote(CurrentLocation);
|
|
|
|
// C++11 [class.copy]p18:
|
|
// The [definition of an implicitly declared copy assignment operator] is
|
|
// deprecated if the class has a user-declared copy constructor or a
|
|
// user-declared destructor.
|
|
if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
|
|
diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
|
|
|
|
// C++0x [class.copy]p30:
|
|
// The implicitly-defined or explicitly-defaulted copy assignment operator
|
|
// for a non-union class X performs memberwise copy assignment of its
|
|
// subobjects. The direct base classes of X are assigned first, in the
|
|
// order of their declaration in the base-specifier-list, and then the
|
|
// immediate non-static data members of X are assigned, in the order in
|
|
// which they were declared in the class definition.
|
|
|
|
// The statements that form the synthesized function body.
|
|
SmallVector<Stmt*, 8> Statements;
|
|
|
|
// The parameter for the "other" object, which we are copying from.
|
|
ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
|
|
Qualifiers OtherQuals = Other->getType().getQualifiers();
|
|
QualType OtherRefType = Other->getType();
|
|
if (const LValueReferenceType *OtherRef
|
|
= OtherRefType->getAs<LValueReferenceType>()) {
|
|
OtherRefType = OtherRef->getPointeeType();
|
|
OtherQuals = OtherRefType.getQualifiers();
|
|
}
|
|
|
|
// Our location for everything implicitly-generated.
|
|
SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
|
|
? CopyAssignOperator->getLocEnd()
|
|
: CopyAssignOperator->getLocation();
|
|
|
|
// Builds a DeclRefExpr for the "other" object.
|
|
RefBuilder OtherRef(Other, OtherRefType);
|
|
|
|
// Builds the "this" pointer.
|
|
ThisBuilder This;
|
|
|
|
// Assign base classes.
|
|
bool Invalid = false;
|
|
for (auto &Base : ClassDecl->bases()) {
|
|
// Form the assignment:
|
|
// static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
|
|
QualType BaseType = Base.getType().getUnqualifiedType();
|
|
if (!BaseType->isRecordType()) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
CXXCastPath BasePath;
|
|
BasePath.push_back(&Base);
|
|
|
|
// Construct the "from" expression, which is an implicit cast to the
|
|
// appropriately-qualified base type.
|
|
CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
|
|
VK_LValue, BasePath);
|
|
|
|
// Dereference "this".
|
|
DerefBuilder DerefThis(This);
|
|
CastBuilder To(DerefThis,
|
|
Context.getCVRQualifiedType(
|
|
BaseType, CopyAssignOperator->getTypeQualifiers()),
|
|
VK_LValue, BasePath);
|
|
|
|
// Build the copy.
|
|
StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
|
|
To, From,
|
|
/*CopyingBaseSubobject=*/true,
|
|
/*Copying=*/true);
|
|
if (Copy.isInvalid()) {
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Success! Record the copy.
|
|
Statements.push_back(Copy.getAs<Expr>());
|
|
}
|
|
|
|
// Assign non-static members.
|
|
for (auto *Field : ClassDecl->fields()) {
|
|
// FIXME: We should form some kind of AST representation for the implied
|
|
// memcpy in a union copy operation.
|
|
if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
|
|
continue;
|
|
|
|
if (Field->isInvalidDecl()) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check for members of reference type; we can't copy those.
|
|
if (Field->getType()->isReferenceType()) {
|
|
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
|
<< Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
|
|
Diag(Field->getLocation(), diag::note_declared_at);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check for members of const-qualified, non-class type.
|
|
QualType BaseType = Context.getBaseElementType(Field->getType());
|
|
if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
|
|
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
|
<< Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
|
|
Diag(Field->getLocation(), diag::note_declared_at);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Suppress assigning zero-width bitfields.
|
|
if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
|
|
continue;
|
|
|
|
QualType FieldType = Field->getType().getNonReferenceType();
|
|
if (FieldType->isIncompleteArrayType()) {
|
|
assert(ClassDecl->hasFlexibleArrayMember() &&
|
|
"Incomplete array type is not valid");
|
|
continue;
|
|
}
|
|
|
|
// Build references to the field in the object we're copying from and to.
|
|
CXXScopeSpec SS; // Intentionally empty
|
|
LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
|
|
LookupMemberName);
|
|
MemberLookup.addDecl(Field);
|
|
MemberLookup.resolveKind();
|
|
|
|
MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
|
|
|
|
MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
|
|
|
|
// Build the copy of this field.
|
|
StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
|
|
To, From,
|
|
/*CopyingBaseSubobject=*/false,
|
|
/*Copying=*/true);
|
|
if (Copy.isInvalid()) {
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Success! Record the copy.
|
|
Statements.push_back(Copy.getAs<Stmt>());
|
|
}
|
|
|
|
if (!Invalid) {
|
|
// Add a "return *this;"
|
|
ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
|
|
|
|
StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
|
|
if (Return.isInvalid())
|
|
Invalid = true;
|
|
else
|
|
Statements.push_back(Return.getAs<Stmt>());
|
|
}
|
|
|
|
if (Invalid) {
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
StmtResult Body;
|
|
{
|
|
CompoundScopeRAII CompoundScope(*this);
|
|
Body = ActOnCompoundStmt(Loc, Loc, Statements,
|
|
/*isStmtExpr=*/false);
|
|
assert(!Body.isInvalid() && "Compound statement creation cannot fail");
|
|
}
|
|
CopyAssignOperator->setBody(Body.getAs<Stmt>());
|
|
CopyAssignOperator->markUsed(Context);
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(CopyAssignOperator);
|
|
}
|
|
}
|
|
|
|
CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
|
|
assert(ClassDecl->needsImplicitMoveAssignment());
|
|
|
|
DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
|
|
if (DSM.isAlreadyBeingDeclared())
|
|
return nullptr;
|
|
|
|
// Note: The following rules are largely analoguous to the move
|
|
// constructor rules.
|
|
|
|
QualType ArgType = Context.getTypeDeclType(ClassDecl);
|
|
QualType RetType = Context.getLValueReferenceType(ArgType);
|
|
ArgType = Context.getRValueReferenceType(ArgType);
|
|
|
|
bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
|
|
CXXMoveAssignment,
|
|
false);
|
|
|
|
// An implicitly-declared move assignment operator is an inline public
|
|
// member of its class.
|
|
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXMethodDecl *MoveAssignment =
|
|
CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
|
|
/*TInfo=*/nullptr, /*StorageClass=*/SC_None,
|
|
/*isInline=*/true, Constexpr, SourceLocation());
|
|
MoveAssignment->setAccess(AS_public);
|
|
MoveAssignment->setDefaulted();
|
|
MoveAssignment->setImplicit();
|
|
|
|
if (getLangOpts().CUDA) {
|
|
inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
|
|
MoveAssignment,
|
|
/* ConstRHS */ false,
|
|
/* Diagnose */ false);
|
|
}
|
|
|
|
// Build an exception specification pointing back at this member.
|
|
FunctionProtoType::ExtProtoInfo EPI =
|
|
getImplicitMethodEPI(*this, MoveAssignment);
|
|
MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
|
|
|
|
// Add the parameter to the operator.
|
|
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
|
|
ClassLoc, ClassLoc,
|
|
/*Id=*/nullptr, ArgType,
|
|
/*TInfo=*/nullptr, SC_None,
|
|
nullptr);
|
|
MoveAssignment->setParams(FromParam);
|
|
|
|
MoveAssignment->setTrivial(
|
|
ClassDecl->needsOverloadResolutionForMoveAssignment()
|
|
? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
|
|
: ClassDecl->hasTrivialMoveAssignment());
|
|
|
|
// Note that we have added this copy-assignment operator.
|
|
++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
|
|
|
|
Scope *S = getScopeForContext(ClassDecl);
|
|
CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
|
|
|
|
if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
|
|
ClassDecl->setImplicitMoveAssignmentIsDeleted();
|
|
SetDeclDeleted(MoveAssignment, ClassLoc);
|
|
}
|
|
|
|
if (S)
|
|
PushOnScopeChains(MoveAssignment, S, false);
|
|
ClassDecl->addDecl(MoveAssignment);
|
|
|
|
return MoveAssignment;
|
|
}
|
|
|
|
/// Check if we're implicitly defining a move assignment operator for a class
|
|
/// with virtual bases. Such a move assignment might move-assign the virtual
|
|
/// base multiple times.
|
|
static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
|
|
SourceLocation CurrentLocation) {
|
|
assert(!Class->isDependentContext() && "should not define dependent move");
|
|
|
|
// Only a virtual base could get implicitly move-assigned multiple times.
|
|
// Only a non-trivial move assignment can observe this. We only want to
|
|
// diagnose if we implicitly define an assignment operator that assigns
|
|
// two base classes, both of which move-assign the same virtual base.
|
|
if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
|
|
Class->getNumBases() < 2)
|
|
return;
|
|
|
|
llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
|
|
typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
|
|
VBaseMap VBases;
|
|
|
|
for (auto &BI : Class->bases()) {
|
|
Worklist.push_back(&BI);
|
|
while (!Worklist.empty()) {
|
|
CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
|
|
CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
|
|
|
|
// If the base has no non-trivial move assignment operators,
|
|
// we don't care about moves from it.
|
|
if (!Base->hasNonTrivialMoveAssignment())
|
|
continue;
|
|
|
|
// If there's nothing virtual here, skip it.
|
|
if (!BaseSpec->isVirtual() && !Base->getNumVBases())
|
|
continue;
|
|
|
|
// If we're not actually going to call a move assignment for this base,
|
|
// or the selected move assignment is trivial, skip it.
|
|
Sema::SpecialMemberOverloadResult SMOR =
|
|
S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
|
|
/*ConstArg*/false, /*VolatileArg*/false,
|
|
/*RValueThis*/true, /*ConstThis*/false,
|
|
/*VolatileThis*/false);
|
|
if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
|
|
!SMOR.getMethod()->isMoveAssignmentOperator())
|
|
continue;
|
|
|
|
if (BaseSpec->isVirtual()) {
|
|
// We're going to move-assign this virtual base, and its move
|
|
// assignment operator is not trivial. If this can happen for
|
|
// multiple distinct direct bases of Class, diagnose it. (If it
|
|
// only happens in one base, we'll diagnose it when synthesizing
|
|
// that base class's move assignment operator.)
|
|
CXXBaseSpecifier *&Existing =
|
|
VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
|
|
.first->second;
|
|
if (Existing && Existing != &BI) {
|
|
S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
|
|
<< Class << Base;
|
|
S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
|
|
<< (Base->getCanonicalDecl() ==
|
|
Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
|
|
<< Base << Existing->getType() << Existing->getSourceRange();
|
|
S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
|
|
<< (Base->getCanonicalDecl() ==
|
|
BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
|
|
<< Base << BI.getType() << BaseSpec->getSourceRange();
|
|
|
|
// Only diagnose each vbase once.
|
|
Existing = nullptr;
|
|
}
|
|
} else {
|
|
// Only walk over bases that have defaulted move assignment operators.
|
|
// We assume that any user-provided move assignment operator handles
|
|
// the multiple-moves-of-vbase case itself somehow.
|
|
if (!SMOR.getMethod()->isDefaulted())
|
|
continue;
|
|
|
|
// We're going to move the base classes of Base. Add them to the list.
|
|
for (auto &BI : Base->bases())
|
|
Worklist.push_back(&BI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
|
|
CXXMethodDecl *MoveAssignOperator) {
|
|
assert((MoveAssignOperator->isDefaulted() &&
|
|
MoveAssignOperator->isOverloadedOperator() &&
|
|
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
|
|
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
|
|
!MoveAssignOperator->isDeleted()) &&
|
|
"DefineImplicitMoveAssignment called for wrong function");
|
|
if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
|
|
if (ClassDecl->isInvalidDecl()) {
|
|
MoveAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++0x [class.copy]p28:
|
|
// The implicitly-defined or move assignment operator for a non-union class
|
|
// X performs memberwise move assignment of its subobjects. The direct base
|
|
// classes of X are assigned first, in the order of their declaration in the
|
|
// base-specifier-list, and then the immediate non-static data members of X
|
|
// are assigned, in the order in which they were declared in the class
|
|
// definition.
|
|
|
|
// Issue a warning if our implicit move assignment operator will move
|
|
// from a virtual base more than once.
|
|
checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
|
|
|
|
SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
|
|
|
|
// The exception specification is needed because we are defining the
|
|
// function.
|
|
ResolveExceptionSpec(CurrentLocation,
|
|
MoveAssignOperator->getType()->castAs<FunctionProtoType>());
|
|
|
|
// Add a context note for diagnostics produced after this point.
|
|
Scope.addContextNote(CurrentLocation);
|
|
|
|
// The statements that form the synthesized function body.
|
|
SmallVector<Stmt*, 8> Statements;
|
|
|
|
// The parameter for the "other" object, which we are move from.
|
|
ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
|
|
QualType OtherRefType = Other->getType()->
|
|
getAs<RValueReferenceType>()->getPointeeType();
|
|
assert(!OtherRefType.getQualifiers() &&
|
|
"Bad argument type of defaulted move assignment");
|
|
|
|
// Our location for everything implicitly-generated.
|
|
SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
|
|
? MoveAssignOperator->getLocEnd()
|
|
: MoveAssignOperator->getLocation();
|
|
|
|
// Builds a reference to the "other" object.
|
|
RefBuilder OtherRef(Other, OtherRefType);
|
|
// Cast to rvalue.
|
|
MoveCastBuilder MoveOther(OtherRef);
|
|
|
|
// Builds the "this" pointer.
|
|
ThisBuilder This;
|
|
|
|
// Assign base classes.
|
|
bool Invalid = false;
|
|
for (auto &Base : ClassDecl->bases()) {
|
|
// C++11 [class.copy]p28:
|
|
// It is unspecified whether subobjects representing virtual base classes
|
|
// are assigned more than once by the implicitly-defined copy assignment
|
|
// operator.
|
|
// FIXME: Do not assign to a vbase that will be assigned by some other base
|
|
// class. For a move-assignment, this can result in the vbase being moved
|
|
// multiple times.
|
|
|
|
// Form the assignment:
|
|
// static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
|
|
QualType BaseType = Base.getType().getUnqualifiedType();
|
|
if (!BaseType->isRecordType()) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
CXXCastPath BasePath;
|
|
BasePath.push_back(&Base);
|
|
|
|
// Construct the "from" expression, which is an implicit cast to the
|
|
// appropriately-qualified base type.
|
|
CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
|
|
|
|
// Dereference "this".
|
|
DerefBuilder DerefThis(This);
|
|
|
|
// Implicitly cast "this" to the appropriately-qualified base type.
|
|
CastBuilder To(DerefThis,
|
|
Context.getCVRQualifiedType(
|
|
BaseType, MoveAssignOperator->getTypeQualifiers()),
|
|
VK_LValue, BasePath);
|
|
|
|
// Build the move.
|
|
StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
|
|
To, From,
|
|
/*CopyingBaseSubobject=*/true,
|
|
/*Copying=*/false);
|
|
if (Move.isInvalid()) {
|
|
MoveAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Success! Record the move.
|
|
Statements.push_back(Move.getAs<Expr>());
|
|
}
|
|
|
|
// Assign non-static members.
|
|
for (auto *Field : ClassDecl->fields()) {
|
|
// FIXME: We should form some kind of AST representation for the implied
|
|
// memcpy in a union copy operation.
|
|
if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
|
|
continue;
|
|
|
|
if (Field->isInvalidDecl()) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check for members of reference type; we can't move those.
|
|
if (Field->getType()->isReferenceType()) {
|
|
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
|
<< Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
|
|
Diag(Field->getLocation(), diag::note_declared_at);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check for members of const-qualified, non-class type.
|
|
QualType BaseType = Context.getBaseElementType(Field->getType());
|
|
if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
|
|
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
|
<< Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
|
|
Diag(Field->getLocation(), diag::note_declared_at);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Suppress assigning zero-width bitfields.
|
|
if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
|
|
continue;
|
|
|
|
QualType FieldType = Field->getType().getNonReferenceType();
|
|
if (FieldType->isIncompleteArrayType()) {
|
|
assert(ClassDecl->hasFlexibleArrayMember() &&
|
|
"Incomplete array type is not valid");
|
|
continue;
|
|
}
|
|
|
|
// Build references to the field in the object we're copying from and to.
|
|
LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
|
|
LookupMemberName);
|
|
MemberLookup.addDecl(Field);
|
|
MemberLookup.resolveKind();
|
|
MemberBuilder From(MoveOther, OtherRefType,
|
|
/*IsArrow=*/false, MemberLookup);
|
|
MemberBuilder To(This, getCurrentThisType(),
|
|
/*IsArrow=*/true, MemberLookup);
|
|
|
|
assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
|
|
"Member reference with rvalue base must be rvalue except for reference "
|
|
"members, which aren't allowed for move assignment.");
|
|
|
|
// Build the move of this field.
|
|
StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
|
|
To, From,
|
|
/*CopyingBaseSubobject=*/false,
|
|
/*Copying=*/false);
|
|
if (Move.isInvalid()) {
|
|
MoveAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Success! Record the copy.
|
|
Statements.push_back(Move.getAs<Stmt>());
|
|
}
|
|
|
|
if (!Invalid) {
|
|
// Add a "return *this;"
|
|
ExprResult ThisObj =
|
|
CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
|
|
|
|
StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
|
|
if (Return.isInvalid())
|
|
Invalid = true;
|
|
else
|
|
Statements.push_back(Return.getAs<Stmt>());
|
|
}
|
|
|
|
if (Invalid) {
|
|
MoveAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
StmtResult Body;
|
|
{
|
|
CompoundScopeRAII CompoundScope(*this);
|
|
Body = ActOnCompoundStmt(Loc, Loc, Statements,
|
|
/*isStmtExpr=*/false);
|
|
assert(!Body.isInvalid() && "Compound statement creation cannot fail");
|
|
}
|
|
MoveAssignOperator->setBody(Body.getAs<Stmt>());
|
|
MoveAssignOperator->markUsed(Context);
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(MoveAssignOperator);
|
|
}
|
|
}
|
|
|
|
CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
|
|
CXXRecordDecl *ClassDecl) {
|
|
// C++ [class.copy]p4:
|
|
// If the class definition does not explicitly declare a copy
|
|
// constructor, one is declared implicitly.
|
|
assert(ClassDecl->needsImplicitCopyConstructor());
|
|
|
|
DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
|
|
if (DSM.isAlreadyBeingDeclared())
|
|
return nullptr;
|
|
|
|
QualType ClassType = Context.getTypeDeclType(ClassDecl);
|
|
QualType ArgType = ClassType;
|
|
bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
|
|
if (Const)
|
|
ArgType = ArgType.withConst();
|
|
ArgType = Context.getLValueReferenceType(ArgType);
|
|
|
|
bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
|
|
CXXCopyConstructor,
|
|
Const);
|
|
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
|
|
// An implicitly-declared copy constructor is an inline public
|
|
// member of its class.
|
|
CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
|
|
Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
|
|
/*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
|
|
Constexpr);
|
|
CopyConstructor->setAccess(AS_public);
|
|
CopyConstructor->setDefaulted();
|
|
|
|
if (getLangOpts().CUDA) {
|
|
inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
|
|
CopyConstructor,
|
|
/* ConstRHS */ Const,
|
|
/* Diagnose */ false);
|
|
}
|
|
|
|
// Build an exception specification pointing back at this member.
|
|
FunctionProtoType::ExtProtoInfo EPI =
|
|
getImplicitMethodEPI(*this, CopyConstructor);
|
|
CopyConstructor->setType(
|
|
Context.getFunctionType(Context.VoidTy, ArgType, EPI));
|
|
|
|
// Add the parameter to the constructor.
|
|
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
|
|
ClassLoc, ClassLoc,
|
|
/*IdentifierInfo=*/nullptr,
|
|
ArgType, /*TInfo=*/nullptr,
|
|
SC_None, nullptr);
|
|
CopyConstructor->setParams(FromParam);
|
|
|
|
CopyConstructor->setTrivial(
|
|
ClassDecl->needsOverloadResolutionForCopyConstructor()
|
|
? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
|
|
: ClassDecl->hasTrivialCopyConstructor());
|
|
|
|
// Note that we have declared this constructor.
|
|
++ASTContext::NumImplicitCopyConstructorsDeclared;
|
|
|
|
Scope *S = getScopeForContext(ClassDecl);
|
|
CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
|
|
|
|
if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
|
|
ClassDecl->setImplicitCopyConstructorIsDeleted();
|
|
SetDeclDeleted(CopyConstructor, ClassLoc);
|
|
}
|
|
|
|
if (S)
|
|
PushOnScopeChains(CopyConstructor, S, false);
|
|
ClassDecl->addDecl(CopyConstructor);
|
|
|
|
return CopyConstructor;
|
|
}
|
|
|
|
void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *CopyConstructor) {
|
|
assert((CopyConstructor->isDefaulted() &&
|
|
CopyConstructor->isCopyConstructor() &&
|
|
!CopyConstructor->doesThisDeclarationHaveABody() &&
|
|
!CopyConstructor->isDeleted()) &&
|
|
"DefineImplicitCopyConstructor - call it for implicit copy ctor");
|
|
if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
|
|
assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
|
|
|
|
SynthesizedFunctionScope Scope(*this, CopyConstructor);
|
|
|
|
// The exception specification is needed because we are defining the
|
|
// function.
|
|
ResolveExceptionSpec(CurrentLocation,
|
|
CopyConstructor->getType()->castAs<FunctionProtoType>());
|
|
MarkVTableUsed(CurrentLocation, ClassDecl);
|
|
|
|
// Add a context note for diagnostics produced after this point.
|
|
Scope.addContextNote(CurrentLocation);
|
|
|
|
// C++11 [class.copy]p7:
|
|
// The [definition of an implicitly declared copy constructor] is
|
|
// deprecated if the class has a user-declared copy assignment operator
|
|
// or a user-declared destructor.
|
|
if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
|
|
diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
|
|
|
|
if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
|
|
CopyConstructor->setInvalidDecl();
|
|
} else {
|
|
SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
|
|
? CopyConstructor->getLocEnd()
|
|
: CopyConstructor->getLocation();
|
|
Sema::CompoundScopeRAII CompoundScope(*this);
|
|
CopyConstructor->setBody(
|
|
ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
|
|
CopyConstructor->markUsed(Context);
|
|
}
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(CopyConstructor);
|
|
}
|
|
}
|
|
|
|
CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
|
|
CXXRecordDecl *ClassDecl) {
|
|
assert(ClassDecl->needsImplicitMoveConstructor());
|
|
|
|
DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
|
|
if (DSM.isAlreadyBeingDeclared())
|
|
return nullptr;
|
|
|
|
QualType ClassType = Context.getTypeDeclType(ClassDecl);
|
|
QualType ArgType = Context.getRValueReferenceType(ClassType);
|
|
|
|
bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
|
|
CXXMoveConstructor,
|
|
false);
|
|
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
|
|
// C++11 [class.copy]p11:
|
|
// An implicitly-declared copy/move constructor is an inline public
|
|
// member of its class.
|
|
CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
|
|
Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
|
|
/*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
|
|
Constexpr);
|
|
MoveConstructor->setAccess(AS_public);
|
|
MoveConstructor->setDefaulted();
|
|
|
|
if (getLangOpts().CUDA) {
|
|
inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
|
|
MoveConstructor,
|
|
/* ConstRHS */ false,
|
|
/* Diagnose */ false);
|
|
}
|
|
|
|
// Build an exception specification pointing back at this member.
|
|
FunctionProtoType::ExtProtoInfo EPI =
|
|
getImplicitMethodEPI(*this, MoveConstructor);
|
|
MoveConstructor->setType(
|
|
Context.getFunctionType(Context.VoidTy, ArgType, EPI));
|
|
|
|
// Add the parameter to the constructor.
|
|
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
|
|
ClassLoc, ClassLoc,
|
|
/*IdentifierInfo=*/nullptr,
|
|
ArgType, /*TInfo=*/nullptr,
|
|
SC_None, nullptr);
|
|
MoveConstructor->setParams(FromParam);
|
|
|
|
MoveConstructor->setTrivial(
|
|
ClassDecl->needsOverloadResolutionForMoveConstructor()
|
|
? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
|
|
: ClassDecl->hasTrivialMoveConstructor());
|
|
|
|
// Note that we have declared this constructor.
|
|
++ASTContext::NumImplicitMoveConstructorsDeclared;
|
|
|
|
Scope *S = getScopeForContext(ClassDecl);
|
|
CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
|
|
|
|
if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
|
|
ClassDecl->setImplicitMoveConstructorIsDeleted();
|
|
SetDeclDeleted(MoveConstructor, ClassLoc);
|
|
}
|
|
|
|
if (S)
|
|
PushOnScopeChains(MoveConstructor, S, false);
|
|
ClassDecl->addDecl(MoveConstructor);
|
|
|
|
return MoveConstructor;
|
|
}
|
|
|
|
void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *MoveConstructor) {
|
|
assert((MoveConstructor->isDefaulted() &&
|
|
MoveConstructor->isMoveConstructor() &&
|
|
!MoveConstructor->doesThisDeclarationHaveABody() &&
|
|
!MoveConstructor->isDeleted()) &&
|
|
"DefineImplicitMoveConstructor - call it for implicit move ctor");
|
|
if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
|
|
assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
|
|
|
|
SynthesizedFunctionScope Scope(*this, MoveConstructor);
|
|
|
|
// The exception specification is needed because we are defining the
|
|
// function.
|
|
ResolveExceptionSpec(CurrentLocation,
|
|
MoveConstructor->getType()->castAs<FunctionProtoType>());
|
|
MarkVTableUsed(CurrentLocation, ClassDecl);
|
|
|
|
// Add a context note for diagnostics produced after this point.
|
|
Scope.addContextNote(CurrentLocation);
|
|
|
|
if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
|
|
MoveConstructor->setInvalidDecl();
|
|
} else {
|
|
SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
|
|
? MoveConstructor->getLocEnd()
|
|
: MoveConstructor->getLocation();
|
|
Sema::CompoundScopeRAII CompoundScope(*this);
|
|
MoveConstructor->setBody(ActOnCompoundStmt(
|
|
Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
|
|
MoveConstructor->markUsed(Context);
|
|
}
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(MoveConstructor);
|
|
}
|
|
}
|
|
|
|
bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
|
|
return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
|
|
}
|
|
|
|
void Sema::DefineImplicitLambdaToFunctionPointerConversion(
|
|
SourceLocation CurrentLocation,
|
|
CXXConversionDecl *Conv) {
|
|
SynthesizedFunctionScope Scope(*this, Conv);
|
|
|
|
CXXRecordDecl *Lambda = Conv->getParent();
|
|
CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
// If we are defining a specialization of a conversion to function-ptr
|
|
// cache the deduced template arguments for this specialization
|
|
// so that we can use them to retrieve the corresponding call-operator
|
|
// and static-invoker.
|
|
const TemplateArgumentList *DeducedTemplateArgs = nullptr;
|
|
|
|
// Retrieve the corresponding call-operator specialization.
|
|
if (Lambda->isGenericLambda()) {
|
|
assert(Conv->isFunctionTemplateSpecialization());
|
|
FunctionTemplateDecl *CallOpTemplate =
|
|
CallOp->getDescribedFunctionTemplate();
|
|
DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
|
|
void *InsertPos = nullptr;
|
|
FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
|
|
DeducedTemplateArgs->asArray(),
|
|
InsertPos);
|
|
assert(CallOpSpec &&
|
|
"Conversion operator must have a corresponding call operator");
|
|
CallOp = cast<CXXMethodDecl>(CallOpSpec);
|
|
}
|
|
|
|
// Mark the call operator referenced (and add to pending instantiations
|
|
// if necessary).
|
|
// For both the conversion and static-invoker template specializations
|
|
// we construct their body's in this function, so no need to add them
|
|
// to the PendingInstantiations.
|
|
MarkFunctionReferenced(CurrentLocation, CallOp);
|
|
|
|
// Retrieve the static invoker...
|
|
CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
|
|
// ... and get the corresponding specialization for a generic lambda.
|
|
if (Lambda->isGenericLambda()) {
|
|
assert(DeducedTemplateArgs &&
|
|
"Must have deduced template arguments from Conversion Operator");
|
|
FunctionTemplateDecl *InvokeTemplate =
|
|
Invoker->getDescribedFunctionTemplate();
|
|
void *InsertPos = nullptr;
|
|
FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
|
|
DeducedTemplateArgs->asArray(),
|
|
InsertPos);
|
|
assert(InvokeSpec &&
|
|
"Must have a corresponding static invoker specialization");
|
|
Invoker = cast<CXXMethodDecl>(InvokeSpec);
|
|
}
|
|
// Construct the body of the conversion function { return __invoke; }.
|
|
Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
|
|
VK_LValue, Conv->getLocation()).get();
|
|
assert(FunctionRef && "Can't refer to __invoke function?");
|
|
Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
|
|
Conv->setBody(new (Context) CompoundStmt(Context, Return,
|
|
Conv->getLocation(),
|
|
Conv->getLocation()));
|
|
|
|
Conv->markUsed(Context);
|
|
Conv->setReferenced();
|
|
|
|
// Fill in the __invoke function with a dummy implementation. IR generation
|
|
// will fill in the actual details.
|
|
Invoker->markUsed(Context);
|
|
Invoker->setReferenced();
|
|
Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(Conv);
|
|
L->CompletedImplicitDefinition(Invoker);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Sema::DefineImplicitLambdaToBlockPointerConversion(
|
|
SourceLocation CurrentLocation,
|
|
CXXConversionDecl *Conv)
|
|
{
|
|
assert(!Conv->getParent()->isGenericLambda());
|
|
|
|
SynthesizedFunctionScope Scope(*this, Conv);
|
|
|
|
// Copy-initialize the lambda object as needed to capture it.
|
|
Expr *This = ActOnCXXThis(CurrentLocation).get();
|
|
Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
|
|
|
|
ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
|
|
Conv->getLocation(),
|
|
Conv, DerefThis);
|
|
|
|
// If we're not under ARC, make sure we still get the _Block_copy/autorelease
|
|
// behavior. Note that only the general conversion function does this
|
|
// (since it's unusable otherwise); in the case where we inline the
|
|
// block literal, it has block literal lifetime semantics.
|
|
if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
|
|
BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
|
|
CK_CopyAndAutoreleaseBlockObject,
|
|
BuildBlock.get(), nullptr, VK_RValue);
|
|
|
|
if (BuildBlock.isInvalid()) {
|
|
Diag(CurrentLocation, diag::note_lambda_to_block_conv);
|
|
Conv->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Create the return statement that returns the block from the conversion
|
|
// function.
|
|
StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
|
|
if (Return.isInvalid()) {
|
|
Diag(CurrentLocation, diag::note_lambda_to_block_conv);
|
|
Conv->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Set the body of the conversion function.
|
|
Stmt *ReturnS = Return.get();
|
|
Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
|
|
Conv->getLocation(),
|
|
Conv->getLocation()));
|
|
Conv->markUsed(Context);
|
|
|
|
// We're done; notify the mutation listener, if any.
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(Conv);
|
|
}
|
|
}
|
|
|
|
/// \brief Determine whether the given list arguments contains exactly one
|
|
/// "real" (non-default) argument.
|
|
static bool hasOneRealArgument(MultiExprArg Args) {
|
|
switch (Args.size()) {
|
|
case 0:
|
|
return false;
|
|
|
|
default:
|
|
if (!Args[1]->isDefaultArgument())
|
|
return false;
|
|
|
|
// fall through
|
|
case 1:
|
|
return !Args[0]->isDefaultArgument();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
NamedDecl *FoundDecl,
|
|
CXXConstructorDecl *Constructor,
|
|
MultiExprArg ExprArgs,
|
|
bool HadMultipleCandidates,
|
|
bool IsListInitialization,
|
|
bool IsStdInitListInitialization,
|
|
bool RequiresZeroInit,
|
|
unsigned ConstructKind,
|
|
SourceRange ParenRange) {
|
|
bool Elidable = false;
|
|
|
|
// C++0x [class.copy]p34:
|
|
// When certain criteria are met, an implementation is allowed to
|
|
// omit the copy/move construction of a class object, even if the
|
|
// copy/move constructor and/or destructor for the object have
|
|
// side effects. [...]
|
|
// - when a temporary class object that has not been bound to a
|
|
// reference (12.2) would be copied/moved to a class object
|
|
// with the same cv-unqualified type, the copy/move operation
|
|
// can be omitted by constructing the temporary object
|
|
// directly into the target of the omitted copy/move
|
|
if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
|
|
Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
|
|
Expr *SubExpr = ExprArgs[0];
|
|
Elidable = SubExpr->isTemporaryObject(
|
|
Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
|
|
}
|
|
|
|
return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
|
|
FoundDecl, Constructor,
|
|
Elidable, ExprArgs, HadMultipleCandidates,
|
|
IsListInitialization,
|
|
IsStdInitListInitialization, RequiresZeroInit,
|
|
ConstructKind, ParenRange);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
NamedDecl *FoundDecl,
|
|
CXXConstructorDecl *Constructor,
|
|
bool Elidable,
|
|
MultiExprArg ExprArgs,
|
|
bool HadMultipleCandidates,
|
|
bool IsListInitialization,
|
|
bool IsStdInitListInitialization,
|
|
bool RequiresZeroInit,
|
|
unsigned ConstructKind,
|
|
SourceRange ParenRange) {
|
|
if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
|
|
Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
|
|
if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
|
|
return ExprError();
|
|
}
|
|
|
|
return BuildCXXConstructExpr(
|
|
ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
|
|
HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
|
|
RequiresZeroInit, ConstructKind, ParenRange);
|
|
}
|
|
|
|
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
|
|
/// including handling of its default argument expressions.
|
|
ExprResult
|
|
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
CXXConstructorDecl *Constructor,
|
|
bool Elidable,
|
|
MultiExprArg ExprArgs,
|
|
bool HadMultipleCandidates,
|
|
bool IsListInitialization,
|
|
bool IsStdInitListInitialization,
|
|
bool RequiresZeroInit,
|
|
unsigned ConstructKind,
|
|
SourceRange ParenRange) {
|
|
assert(declaresSameEntity(
|
|
Constructor->getParent(),
|
|
DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
|
|
"given constructor for wrong type");
|
|
MarkFunctionReferenced(ConstructLoc, Constructor);
|
|
if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
|
|
return ExprError();
|
|
|
|
return CXXConstructExpr::Create(
|
|
Context, DeclInitType, ConstructLoc, Constructor, Elidable,
|
|
ExprArgs, HadMultipleCandidates, IsListInitialization,
|
|
IsStdInitListInitialization, RequiresZeroInit,
|
|
static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
|
|
ParenRange);
|
|
}
|
|
|
|
ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
|
|
assert(Field->hasInClassInitializer());
|
|
|
|
// If we already have the in-class initializer nothing needs to be done.
|
|
if (Field->getInClassInitializer())
|
|
return CXXDefaultInitExpr::Create(Context, Loc, Field);
|
|
|
|
// If we might have already tried and failed to instantiate, don't try again.
|
|
if (Field->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Maybe we haven't instantiated the in-class initializer. Go check the
|
|
// pattern FieldDecl to see if it has one.
|
|
CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
|
|
|
|
if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
|
|
CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
|
|
DeclContext::lookup_result Lookup =
|
|
ClassPattern->lookup(Field->getDeclName());
|
|
|
|
// Lookup can return at most two results: the pattern for the field, or the
|
|
// injected class name of the parent record. No other member can have the
|
|
// same name as the field.
|
|
// In modules mode, lookup can return multiple results (coming from
|
|
// different modules).
|
|
assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) &&
|
|
"more than two lookup results for field name");
|
|
FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]);
|
|
if (!Pattern) {
|
|
assert(isa<CXXRecordDecl>(Lookup[0]) &&
|
|
"cannot have other non-field member with same name");
|
|
for (auto L : Lookup)
|
|
if (isa<FieldDecl>(L)) {
|
|
Pattern = cast<FieldDecl>(L);
|
|
break;
|
|
}
|
|
assert(Pattern && "We must have set the Pattern!");
|
|
}
|
|
|
|
if (!Pattern->hasInClassInitializer() ||
|
|
InstantiateInClassInitializer(Loc, Field, Pattern,
|
|
getTemplateInstantiationArgs(Field))) {
|
|
// Don't diagnose this again.
|
|
Field->setInvalidDecl();
|
|
return ExprError();
|
|
}
|
|
return CXXDefaultInitExpr::Create(Context, Loc, Field);
|
|
}
|
|
|
|
// DR1351:
|
|
// If the brace-or-equal-initializer of a non-static data member
|
|
// invokes a defaulted default constructor of its class or of an
|
|
// enclosing class in a potentially evaluated subexpression, the
|
|
// program is ill-formed.
|
|
//
|
|
// This resolution is unworkable: the exception specification of the
|
|
// default constructor can be needed in an unevaluated context, in
|
|
// particular, in the operand of a noexcept-expression, and we can be
|
|
// unable to compute an exception specification for an enclosed class.
|
|
//
|
|
// Any attempt to resolve the exception specification of a defaulted default
|
|
// constructor before the initializer is lexically complete will ultimately
|
|
// come here at which point we can diagnose it.
|
|
RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
|
|
Diag(Loc, diag::err_in_class_initializer_not_yet_parsed)
|
|
<< OutermostClass << Field;
|
|
Diag(Field->getLocEnd(), diag::note_in_class_initializer_not_yet_parsed);
|
|
// Recover by marking the field invalid, unless we're in a SFINAE context.
|
|
if (!isSFINAEContext())
|
|
Field->setInvalidDecl();
|
|
return ExprError();
|
|
}
|
|
|
|
void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
|
|
if (VD->isInvalidDecl()) return;
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
|
|
if (ClassDecl->isInvalidDecl()) return;
|
|
if (ClassDecl->hasIrrelevantDestructor()) return;
|
|
if (ClassDecl->isDependentContext()) return;
|
|
|
|
CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
|
|
MarkFunctionReferenced(VD->getLocation(), Destructor);
|
|
CheckDestructorAccess(VD->getLocation(), Destructor,
|
|
PDiag(diag::err_access_dtor_var)
|
|
<< VD->getDeclName()
|
|
<< VD->getType());
|
|
DiagnoseUseOfDecl(Destructor, VD->getLocation());
|
|
|
|
if (Destructor->isTrivial()) return;
|
|
if (!VD->hasGlobalStorage()) return;
|
|
|
|
// Emit warning for non-trivial dtor in global scope (a real global,
|
|
// class-static, function-static).
|
|
Diag(VD->getLocation(), diag::warn_exit_time_destructor);
|
|
|
|
// TODO: this should be re-enabled for static locals by !CXAAtExit
|
|
if (!VD->isStaticLocal())
|
|
Diag(VD->getLocation(), diag::warn_global_destructor);
|
|
}
|
|
|
|
/// \brief Given a constructor and the set of arguments provided for the
|
|
/// constructor, convert the arguments and add any required default arguments
|
|
/// to form a proper call to this constructor.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool
|
|
Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
|
|
MultiExprArg ArgsPtr,
|
|
SourceLocation Loc,
|
|
SmallVectorImpl<Expr*> &ConvertedArgs,
|
|
bool AllowExplicit,
|
|
bool IsListInitialization) {
|
|
// FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
|
|
unsigned NumArgs = ArgsPtr.size();
|
|
Expr **Args = ArgsPtr.data();
|
|
|
|
const FunctionProtoType *Proto
|
|
= Constructor->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto && "Constructor without a prototype?");
|
|
unsigned NumParams = Proto->getNumParams();
|
|
|
|
// If too few arguments are available, we'll fill in the rest with defaults.
|
|
if (NumArgs < NumParams)
|
|
ConvertedArgs.reserve(NumParams);
|
|
else
|
|
ConvertedArgs.reserve(NumArgs);
|
|
|
|
VariadicCallType CallType =
|
|
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
|
|
SmallVector<Expr *, 8> AllArgs;
|
|
bool Invalid = GatherArgumentsForCall(Loc, Constructor,
|
|
Proto, 0,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
AllArgs,
|
|
CallType, AllowExplicit,
|
|
IsListInitialization);
|
|
ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
|
|
|
|
DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
|
|
|
|
CheckConstructorCall(Constructor,
|
|
llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
|
|
Proto, Loc);
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
static inline bool
|
|
CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
|
|
const FunctionDecl *FnDecl) {
|
|
const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
|
|
if (isa<NamespaceDecl>(DC)) {
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_declared_in_namespace)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
if (isa<TranslationUnitDecl>(DC) &&
|
|
FnDecl->getStorageClass() == SC_Static) {
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_declared_static)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
|
|
CanQualType ExpectedResultType,
|
|
CanQualType ExpectedFirstParamType,
|
|
unsigned DependentParamTypeDiag,
|
|
unsigned InvalidParamTypeDiag) {
|
|
QualType ResultType =
|
|
FnDecl->getType()->getAs<FunctionType>()->getReturnType();
|
|
|
|
// Check that the result type is not dependent.
|
|
if (ResultType->isDependentType())
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_dependent_result_type)
|
|
<< FnDecl->getDeclName() << ExpectedResultType;
|
|
|
|
// Check that the result type is what we expect.
|
|
if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_invalid_result_type)
|
|
<< FnDecl->getDeclName() << ExpectedResultType;
|
|
|
|
// A function template must have at least 2 parameters.
|
|
if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_template_too_few_parameters)
|
|
<< FnDecl->getDeclName();
|
|
|
|
// The function decl must have at least 1 parameter.
|
|
if (FnDecl->getNumParams() == 0)
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_too_few_parameters)
|
|
<< FnDecl->getDeclName();
|
|
|
|
// Check the first parameter type is not dependent.
|
|
QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
|
|
if (FirstParamType->isDependentType())
|
|
return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
|
|
<< FnDecl->getDeclName() << ExpectedFirstParamType;
|
|
|
|
// Check that the first parameter type is what we expect.
|
|
if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
|
|
ExpectedFirstParamType)
|
|
return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
|
|
<< FnDecl->getDeclName() << ExpectedFirstParamType;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
|
|
// C++ [basic.stc.dynamic.allocation]p1:
|
|
// A program is ill-formed if an allocation function is declared in a
|
|
// namespace scope other than global scope or declared static in global
|
|
// scope.
|
|
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
|
|
return true;
|
|
|
|
CanQualType SizeTy =
|
|
SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
|
|
|
|
// C++ [basic.stc.dynamic.allocation]p1:
|
|
// The return type shall be void*. The first parameter shall have type
|
|
// std::size_t.
|
|
if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
|
|
SizeTy,
|
|
diag::err_operator_new_dependent_param_type,
|
|
diag::err_operator_new_param_type))
|
|
return true;
|
|
|
|
// C++ [basic.stc.dynamic.allocation]p1:
|
|
// The first parameter shall not have an associated default argument.
|
|
if (FnDecl->getParamDecl(0)->hasDefaultArg())
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_default_arg)
|
|
<< FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
|
|
// C++ [basic.stc.dynamic.deallocation]p1:
|
|
// A program is ill-formed if deallocation functions are declared in a
|
|
// namespace scope other than global scope or declared static in global
|
|
// scope.
|
|
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
|
|
return true;
|
|
|
|
auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
|
|
|
|
// C++ P0722:
|
|
// Within a class C, the first parameter of a destroying operator delete
|
|
// shall be of type C *. The first parameter of any other deallocation
|
|
// function shall be of type void *.
|
|
CanQualType ExpectedFirstParamType =
|
|
MD && MD->isDestroyingOperatorDelete()
|
|
? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
|
|
SemaRef.Context.getRecordType(MD->getParent())))
|
|
: SemaRef.Context.VoidPtrTy;
|
|
|
|
// C++ [basic.stc.dynamic.deallocation]p2:
|
|
// Each deallocation function shall return void
|
|
if (CheckOperatorNewDeleteTypes(
|
|
SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
|
|
diag::err_operator_delete_dependent_param_type,
|
|
diag::err_operator_delete_param_type))
|
|
return true;
|
|
|
|
// C++ P0722:
|
|
// A destroying operator delete shall be a usual deallocation function.
|
|
if (MD && !MD->getParent()->isDependentContext() &&
|
|
MD->isDestroyingOperatorDelete() && !MD->isUsualDeallocationFunction()) {
|
|
SemaRef.Diag(MD->getLocation(),
|
|
diag::err_destroying_operator_delete_not_usual);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckOverloadedOperatorDeclaration - Check whether the declaration
|
|
/// of this overloaded operator is well-formed. If so, returns false;
|
|
/// otherwise, emits appropriate diagnostics and returns true.
|
|
bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
|
|
assert(FnDecl && FnDecl->isOverloadedOperator() &&
|
|
"Expected an overloaded operator declaration");
|
|
|
|
OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
|
|
|
|
// C++ [over.oper]p5:
|
|
// The allocation and deallocation functions, operator new,
|
|
// operator new[], operator delete and operator delete[], are
|
|
// described completely in 3.7.3. The attributes and restrictions
|
|
// found in the rest of this subclause do not apply to them unless
|
|
// explicitly stated in 3.7.3.
|
|
if (Op == OO_Delete || Op == OO_Array_Delete)
|
|
return CheckOperatorDeleteDeclaration(*this, FnDecl);
|
|
|
|
if (Op == OO_New || Op == OO_Array_New)
|
|
return CheckOperatorNewDeclaration(*this, FnDecl);
|
|
|
|
// C++ [over.oper]p6:
|
|
// An operator function shall either be a non-static member
|
|
// function or be a non-member function and have at least one
|
|
// parameter whose type is a class, a reference to a class, an
|
|
// enumeration, or a reference to an enumeration.
|
|
if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (MethodDecl->isStatic())
|
|
return Diag(FnDecl->getLocation(),
|
|
diag::err_operator_overload_static) << FnDecl->getDeclName();
|
|
} else {
|
|
bool ClassOrEnumParam = false;
|
|
for (auto Param : FnDecl->parameters()) {
|
|
QualType ParamType = Param->getType().getNonReferenceType();
|
|
if (ParamType->isDependentType() || ParamType->isRecordType() ||
|
|
ParamType->isEnumeralType()) {
|
|
ClassOrEnumParam = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ClassOrEnumParam)
|
|
return Diag(FnDecl->getLocation(),
|
|
diag::err_operator_overload_needs_class_or_enum)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
// C++ [over.oper]p8:
|
|
// An operator function cannot have default arguments (8.3.6),
|
|
// except where explicitly stated below.
|
|
//
|
|
// Only the function-call operator allows default arguments
|
|
// (C++ [over.call]p1).
|
|
if (Op != OO_Call) {
|
|
for (auto Param : FnDecl->parameters()) {
|
|
if (Param->hasDefaultArg())
|
|
return Diag(Param->getLocation(),
|
|
diag::err_operator_overload_default_arg)
|
|
<< FnDecl->getDeclName() << Param->getDefaultArgRange();
|
|
}
|
|
}
|
|
|
|
static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
|
|
{ false, false, false }
|
|
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
|
, { Unary, Binary, MemberOnly }
|
|
#include "clang/Basic/OperatorKinds.def"
|
|
};
|
|
|
|
bool CanBeUnaryOperator = OperatorUses[Op][0];
|
|
bool CanBeBinaryOperator = OperatorUses[Op][1];
|
|
bool MustBeMemberOperator = OperatorUses[Op][2];
|
|
|
|
// C++ [over.oper]p8:
|
|
// [...] Operator functions cannot have more or fewer parameters
|
|
// than the number required for the corresponding operator, as
|
|
// described in the rest of this subclause.
|
|
unsigned NumParams = FnDecl->getNumParams()
|
|
+ (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
|
|
if (Op != OO_Call &&
|
|
((NumParams == 1 && !CanBeUnaryOperator) ||
|
|
(NumParams == 2 && !CanBeBinaryOperator) ||
|
|
(NumParams < 1) || (NumParams > 2))) {
|
|
// We have the wrong number of parameters.
|
|
unsigned ErrorKind;
|
|
if (CanBeUnaryOperator && CanBeBinaryOperator) {
|
|
ErrorKind = 2; // 2 -> unary or binary.
|
|
} else if (CanBeUnaryOperator) {
|
|
ErrorKind = 0; // 0 -> unary
|
|
} else {
|
|
assert(CanBeBinaryOperator &&
|
|
"All non-call overloaded operators are unary or binary!");
|
|
ErrorKind = 1; // 1 -> binary
|
|
}
|
|
|
|
return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
|
|
<< FnDecl->getDeclName() << NumParams << ErrorKind;
|
|
}
|
|
|
|
// Overloaded operators other than operator() cannot be variadic.
|
|
if (Op != OO_Call &&
|
|
FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
|
|
return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
// Some operators must be non-static member functions.
|
|
if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
|
|
return Diag(FnDecl->getLocation(),
|
|
diag::err_operator_overload_must_be_member)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
// C++ [over.inc]p1:
|
|
// The user-defined function called operator++ implements the
|
|
// prefix and postfix ++ operator. If this function is a member
|
|
// function with no parameters, or a non-member function with one
|
|
// parameter of class or enumeration type, it defines the prefix
|
|
// increment operator ++ for objects of that type. If the function
|
|
// is a member function with one parameter (which shall be of type
|
|
// int) or a non-member function with two parameters (the second
|
|
// of which shall be of type int), it defines the postfix
|
|
// increment operator ++ for objects of that type.
|
|
if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
|
|
ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
|
|
QualType ParamType = LastParam->getType();
|
|
|
|
if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
|
|
!ParamType->isDependentType())
|
|
return Diag(LastParam->getLocation(),
|
|
diag::err_operator_overload_post_incdec_must_be_int)
|
|
<< LastParam->getType() << (Op == OO_MinusMinus);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
|
|
FunctionTemplateDecl *TpDecl) {
|
|
TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
|
|
|
|
// Must have one or two template parameters.
|
|
if (TemplateParams->size() == 1) {
|
|
NonTypeTemplateParmDecl *PmDecl =
|
|
dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
|
|
|
|
// The template parameter must be a char parameter pack.
|
|
if (PmDecl && PmDecl->isTemplateParameterPack() &&
|
|
SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
|
|
return false;
|
|
|
|
} else if (TemplateParams->size() == 2) {
|
|
TemplateTypeParmDecl *PmType =
|
|
dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
|
|
NonTypeTemplateParmDecl *PmArgs =
|
|
dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
|
|
|
|
// The second template parameter must be a parameter pack with the
|
|
// first template parameter as its type.
|
|
if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
|
|
PmArgs->isTemplateParameterPack()) {
|
|
const TemplateTypeParmType *TArgs =
|
|
PmArgs->getType()->getAs<TemplateTypeParmType>();
|
|
if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
|
|
TArgs->getIndex() == PmType->getIndex()) {
|
|
if (!SemaRef.inTemplateInstantiation())
|
|
SemaRef.Diag(TpDecl->getLocation(),
|
|
diag::ext_string_literal_operator_template);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
|
|
diag::err_literal_operator_template)
|
|
<< TpDecl->getTemplateParameters()->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// CheckLiteralOperatorDeclaration - Check whether the declaration
|
|
/// of this literal operator function is well-formed. If so, returns
|
|
/// false; otherwise, emits appropriate diagnostics and returns true.
|
|
bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
|
|
if (isa<CXXMethodDecl>(FnDecl)) {
|
|
Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
|
|
<< FnDecl->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
if (FnDecl->isExternC()) {
|
|
Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
|
|
if (const LinkageSpecDecl *LSD =
|
|
FnDecl->getDeclContext()->getExternCContext())
|
|
Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
|
|
return true;
|
|
}
|
|
|
|
// This might be the definition of a literal operator template.
|
|
FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
|
|
|
|
// This might be a specialization of a literal operator template.
|
|
if (!TpDecl)
|
|
TpDecl = FnDecl->getPrimaryTemplate();
|
|
|
|
// template <char...> type operator "" name() and
|
|
// template <class T, T...> type operator "" name() are the only valid
|
|
// template signatures, and the only valid signatures with no parameters.
|
|
if (TpDecl) {
|
|
if (FnDecl->param_size() != 0) {
|
|
Diag(FnDecl->getLocation(),
|
|
diag::err_literal_operator_template_with_params);
|
|
return true;
|
|
}
|
|
|
|
if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
|
|
return true;
|
|
|
|
} else if (FnDecl->param_size() == 1) {
|
|
const ParmVarDecl *Param = FnDecl->getParamDecl(0);
|
|
|
|
QualType ParamType = Param->getType().getUnqualifiedType();
|
|
|
|
// Only unsigned long long int, long double, any character type, and const
|
|
// char * are allowed as the only parameters.
|
|
if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
|
|
ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
|
|
Context.hasSameType(ParamType, Context.CharTy) ||
|
|
Context.hasSameType(ParamType, Context.WideCharTy) ||
|
|
Context.hasSameType(ParamType, Context.Char16Ty) ||
|
|
Context.hasSameType(ParamType, Context.Char32Ty)) {
|
|
} else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
|
|
QualType InnerType = Ptr->getPointeeType();
|
|
|
|
// Pointer parameter must be a const char *.
|
|
if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
|
|
Context.CharTy) &&
|
|
InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
|
|
Diag(Param->getSourceRange().getBegin(),
|
|
diag::err_literal_operator_param)
|
|
<< ParamType << "'const char *'" << Param->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
} else if (ParamType->isRealFloatingType()) {
|
|
Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
|
|
<< ParamType << Context.LongDoubleTy << Param->getSourceRange();
|
|
return true;
|
|
|
|
} else if (ParamType->isIntegerType()) {
|
|
Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
|
|
<< ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
|
|
return true;
|
|
|
|
} else {
|
|
Diag(Param->getSourceRange().getBegin(),
|
|
diag::err_literal_operator_invalid_param)
|
|
<< ParamType << Param->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
} else if (FnDecl->param_size() == 2) {
|
|
FunctionDecl::param_iterator Param = FnDecl->param_begin();
|
|
|
|
// First, verify that the first parameter is correct.
|
|
|
|
QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
|
|
|
|
// Two parameter function must have a pointer to const as a
|
|
// first parameter; let's strip those qualifiers.
|
|
const PointerType *PT = FirstParamType->getAs<PointerType>();
|
|
|
|
if (!PT) {
|
|
Diag((*Param)->getSourceRange().getBegin(),
|
|
diag::err_literal_operator_param)
|
|
<< FirstParamType << "'const char *'" << (*Param)->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
QualType PointeeType = PT->getPointeeType();
|
|
// First parameter must be const
|
|
if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
|
|
Diag((*Param)->getSourceRange().getBegin(),
|
|
diag::err_literal_operator_param)
|
|
<< FirstParamType << "'const char *'" << (*Param)->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
QualType InnerType = PointeeType.getUnqualifiedType();
|
|
// Only const char *, const wchar_t*, const char16_t*, and const char32_t*
|
|
// are allowed as the first parameter to a two-parameter function
|
|
if (!(Context.hasSameType(InnerType, Context.CharTy) ||
|
|
Context.hasSameType(InnerType, Context.WideCharTy) ||
|
|
Context.hasSameType(InnerType, Context.Char16Ty) ||
|
|
Context.hasSameType(InnerType, Context.Char32Ty))) {
|
|
Diag((*Param)->getSourceRange().getBegin(),
|
|
diag::err_literal_operator_param)
|
|
<< FirstParamType << "'const char *'" << (*Param)->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Move on to the second and final parameter.
|
|
++Param;
|
|
|
|
// The second parameter must be a std::size_t.
|
|
QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
|
|
if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
|
|
Diag((*Param)->getSourceRange().getBegin(),
|
|
diag::err_literal_operator_param)
|
|
<< SecondParamType << Context.getSizeType()
|
|
<< (*Param)->getSourceRange();
|
|
return true;
|
|
}
|
|
} else {
|
|
Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
|
|
return true;
|
|
}
|
|
|
|
// Parameters are good.
|
|
|
|
// A parameter-declaration-clause containing a default argument is not
|
|
// equivalent to any of the permitted forms.
|
|
for (auto Param : FnDecl->parameters()) {
|
|
if (Param->hasDefaultArg()) {
|
|
Diag(Param->getDefaultArgRange().getBegin(),
|
|
diag::err_literal_operator_default_argument)
|
|
<< Param->getDefaultArgRange();
|
|
break;
|
|
}
|
|
}
|
|
|
|
StringRef LiteralName
|
|
= FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
|
|
if (LiteralName[0] != '_') {
|
|
// C++11 [usrlit.suffix]p1:
|
|
// Literal suffix identifiers that do not start with an underscore
|
|
// are reserved for future standardization.
|
|
Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
|
|
<< StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
|
|
/// linkage specification, including the language and (if present)
|
|
/// the '{'. ExternLoc is the location of the 'extern', Lang is the
|
|
/// language string literal. LBraceLoc, if valid, provides the location of
|
|
/// the '{' brace. Otherwise, this linkage specification does not
|
|
/// have any braces.
|
|
Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
|
|
Expr *LangStr,
|
|
SourceLocation LBraceLoc) {
|
|
StringLiteral *Lit = cast<StringLiteral>(LangStr);
|
|
if (!Lit->isAscii()) {
|
|
Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
|
|
<< LangStr->getSourceRange();
|
|
return nullptr;
|
|
}
|
|
|
|
StringRef Lang = Lit->getString();
|
|
LinkageSpecDecl::LanguageIDs Language;
|
|
if (Lang == "C")
|
|
Language = LinkageSpecDecl::lang_c;
|
|
else if (Lang == "C++")
|
|
Language = LinkageSpecDecl::lang_cxx;
|
|
else {
|
|
Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
|
|
<< LangStr->getSourceRange();
|
|
return nullptr;
|
|
}
|
|
|
|
// FIXME: Add all the various semantics of linkage specifications
|
|
|
|
LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
|
|
LangStr->getExprLoc(), Language,
|
|
LBraceLoc.isValid());
|
|
CurContext->addDecl(D);
|
|
PushDeclContext(S, D);
|
|
return D;
|
|
}
|
|
|
|
/// ActOnFinishLinkageSpecification - Complete the definition of
|
|
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
|
|
/// valid, it's the position of the closing '}' brace in a linkage
|
|
/// specification that uses braces.
|
|
Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
|
|
Decl *LinkageSpec,
|
|
SourceLocation RBraceLoc) {
|
|
if (RBraceLoc.isValid()) {
|
|
LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
|
|
LSDecl->setRBraceLoc(RBraceLoc);
|
|
}
|
|
PopDeclContext();
|
|
return LinkageSpec;
|
|
}
|
|
|
|
Decl *Sema::ActOnEmptyDeclaration(Scope *S,
|
|
AttributeList *AttrList,
|
|
SourceLocation SemiLoc) {
|
|
Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
|
|
// Attribute declarations appertain to empty declaration so we handle
|
|
// them here.
|
|
if (AttrList)
|
|
ProcessDeclAttributeList(S, ED, AttrList);
|
|
|
|
CurContext->addDecl(ED);
|
|
return ED;
|
|
}
|
|
|
|
/// \brief Perform semantic analysis for the variable declaration that
|
|
/// occurs within a C++ catch clause, returning the newly-created
|
|
/// variable.
|
|
VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation StartLoc,
|
|
SourceLocation Loc,
|
|
IdentifierInfo *Name) {
|
|
bool Invalid = false;
|
|
QualType ExDeclType = TInfo->getType();
|
|
|
|
// Arrays and functions decay.
|
|
if (ExDeclType->isArrayType())
|
|
ExDeclType = Context.getArrayDecayedType(ExDeclType);
|
|
else if (ExDeclType->isFunctionType())
|
|
ExDeclType = Context.getPointerType(ExDeclType);
|
|
|
|
// C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
|
|
// The exception-declaration shall not denote a pointer or reference to an
|
|
// incomplete type, other than [cv] void*.
|
|
// N2844 forbids rvalue references.
|
|
if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
|
|
Diag(Loc, diag::err_catch_rvalue_ref);
|
|
Invalid = true;
|
|
}
|
|
|
|
if (ExDeclType->isVariablyModifiedType()) {
|
|
Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
|
|
Invalid = true;
|
|
}
|
|
|
|
QualType BaseType = ExDeclType;
|
|
int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
|
|
unsigned DK = diag::err_catch_incomplete;
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
|
|
BaseType = Ptr->getPointeeType();
|
|
Mode = 1;
|
|
DK = diag::err_catch_incomplete_ptr;
|
|
} else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
|
|
// For the purpose of error recovery, we treat rvalue refs like lvalue refs.
|
|
BaseType = Ref->getPointeeType();
|
|
Mode = 2;
|
|
DK = diag::err_catch_incomplete_ref;
|
|
}
|
|
if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
|
|
!BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
|
|
Invalid = true;
|
|
|
|
if (!Invalid && !ExDeclType->isDependentType() &&
|
|
RequireNonAbstractType(Loc, ExDeclType,
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractVariableType))
|
|
Invalid = true;
|
|
|
|
// Only the non-fragile NeXT runtime currently supports C++ catches
|
|
// of ObjC types, and no runtime supports catching ObjC types by value.
|
|
if (!Invalid && getLangOpts().ObjC1) {
|
|
QualType T = ExDeclType;
|
|
if (const ReferenceType *RT = T->getAs<ReferenceType>())
|
|
T = RT->getPointeeType();
|
|
|
|
if (T->isObjCObjectType()) {
|
|
Diag(Loc, diag::err_objc_object_catch);
|
|
Invalid = true;
|
|
} else if (T->isObjCObjectPointerType()) {
|
|
// FIXME: should this be a test for macosx-fragile specifically?
|
|
if (getLangOpts().ObjCRuntime.isFragile())
|
|
Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
|
|
}
|
|
}
|
|
|
|
VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
|
|
ExDeclType, TInfo, SC_None);
|
|
ExDecl->setExceptionVariable(true);
|
|
|
|
// In ARC, infer 'retaining' for variables of retainable type.
|
|
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
|
|
Invalid = true;
|
|
|
|
if (!Invalid && !ExDeclType->isDependentType()) {
|
|
if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
|
|
// Insulate this from anything else we might currently be parsing.
|
|
EnterExpressionEvaluationContext scope(
|
|
*this, ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
|
|
// C++ [except.handle]p16:
|
|
// The object declared in an exception-declaration or, if the
|
|
// exception-declaration does not specify a name, a temporary (12.2) is
|
|
// copy-initialized (8.5) from the exception object. [...]
|
|
// The object is destroyed when the handler exits, after the destruction
|
|
// of any automatic objects initialized within the handler.
|
|
//
|
|
// We just pretend to initialize the object with itself, then make sure
|
|
// it can be destroyed later.
|
|
QualType initType = Context.getExceptionObjectType(ExDeclType);
|
|
|
|
InitializedEntity entity =
|
|
InitializedEntity::InitializeVariable(ExDecl);
|
|
InitializationKind initKind =
|
|
InitializationKind::CreateCopy(Loc, SourceLocation());
|
|
|
|
Expr *opaqueValue =
|
|
new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
|
|
InitializationSequence sequence(*this, entity, initKind, opaqueValue);
|
|
ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
|
|
if (result.isInvalid())
|
|
Invalid = true;
|
|
else {
|
|
// If the constructor used was non-trivial, set this as the
|
|
// "initializer".
|
|
CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
|
|
if (!construct->getConstructor()->isTrivial()) {
|
|
Expr *init = MaybeCreateExprWithCleanups(construct);
|
|
ExDecl->setInit(init);
|
|
}
|
|
|
|
// And make sure it's destructable.
|
|
FinalizeVarWithDestructor(ExDecl, recordType);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Invalid)
|
|
ExDecl->setInvalidDecl();
|
|
|
|
return ExDecl;
|
|
}
|
|
|
|
/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
|
|
/// handler.
|
|
Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
bool Invalid = D.isInvalidType();
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
|
|
UPPC_ExceptionType)) {
|
|
TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
|
|
D.getIdentifierLoc());
|
|
Invalid = true;
|
|
}
|
|
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
|
|
LookupOrdinaryName,
|
|
ForVisibleRedeclaration)) {
|
|
// The scope should be freshly made just for us. There is just no way
|
|
// it contains any previous declaration, except for function parameters in
|
|
// a function-try-block's catch statement.
|
|
assert(!S->isDeclScope(PrevDecl));
|
|
if (isDeclInScope(PrevDecl, CurContext, S)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_redefinition)
|
|
<< D.getIdentifier();
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
Invalid = true;
|
|
} else if (PrevDecl->isTemplateParameter())
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
|
}
|
|
|
|
if (D.getCXXScopeSpec().isSet() && !Invalid) {
|
|
Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
Invalid = true;
|
|
}
|
|
|
|
VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
|
|
D.getLocStart(),
|
|
D.getIdentifierLoc(),
|
|
D.getIdentifier());
|
|
if (Invalid)
|
|
ExDecl->setInvalidDecl();
|
|
|
|
// Add the exception declaration into this scope.
|
|
if (II)
|
|
PushOnScopeChains(ExDecl, S);
|
|
else
|
|
CurContext->addDecl(ExDecl);
|
|
|
|
ProcessDeclAttributes(S, ExDecl, D);
|
|
return ExDecl;
|
|
}
|
|
|
|
Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr,
|
|
Expr *AssertMessageExpr,
|
|
SourceLocation RParenLoc) {
|
|
StringLiteral *AssertMessage =
|
|
AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
|
|
|
|
if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
|
|
return nullptr;
|
|
|
|
return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
|
|
AssertMessage, RParenLoc, false);
|
|
}
|
|
|
|
Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr,
|
|
StringLiteral *AssertMessage,
|
|
SourceLocation RParenLoc,
|
|
bool Failed) {
|
|
assert(AssertExpr != nullptr && "Expected non-null condition");
|
|
if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
|
|
!Failed) {
|
|
// In a static_assert-declaration, the constant-expression shall be a
|
|
// constant expression that can be contextually converted to bool.
|
|
ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
|
|
if (Converted.isInvalid())
|
|
Failed = true;
|
|
|
|
llvm::APSInt Cond;
|
|
if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
|
|
diag::err_static_assert_expression_is_not_constant,
|
|
/*AllowFold=*/false).isInvalid())
|
|
Failed = true;
|
|
|
|
if (!Failed && !Cond) {
|
|
SmallString<256> MsgBuffer;
|
|
llvm::raw_svector_ostream Msg(MsgBuffer);
|
|
if (AssertMessage)
|
|
AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
|
|
|
|
Expr *InnerCond = nullptr;
|
|
std::string InnerCondDescription;
|
|
std::tie(InnerCond, InnerCondDescription) =
|
|
findFailedBooleanCondition(Converted.get(),
|
|
/*AllowTopLevelCond=*/false);
|
|
if (InnerCond) {
|
|
Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
|
|
<< InnerCondDescription << !AssertMessage
|
|
<< Msg.str() << InnerCond->getSourceRange();
|
|
} else {
|
|
Diag(StaticAssertLoc, diag::err_static_assert_failed)
|
|
<< !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
|
|
}
|
|
Failed = true;
|
|
}
|
|
}
|
|
|
|
ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
|
|
/*DiscardedValue*/false,
|
|
/*IsConstexpr*/true);
|
|
if (FullAssertExpr.isInvalid())
|
|
Failed = true;
|
|
else
|
|
AssertExpr = FullAssertExpr.get();
|
|
|
|
Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
|
|
AssertExpr, AssertMessage, RParenLoc,
|
|
Failed);
|
|
|
|
CurContext->addDecl(Decl);
|
|
return Decl;
|
|
}
|
|
|
|
/// \brief Perform semantic analysis of the given friend type declaration.
|
|
///
|
|
/// \returns A friend declaration that.
|
|
FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
|
|
SourceLocation FriendLoc,
|
|
TypeSourceInfo *TSInfo) {
|
|
assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
|
|
|
|
QualType T = TSInfo->getType();
|
|
SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
// C++03 [class.friend]p2:
|
|
// An elaborated-type-specifier shall be used in a friend declaration
|
|
// for a class.*
|
|
//
|
|
// * The class-key of the elaborated-type-specifier is required.
|
|
if (!CodeSynthesisContexts.empty()) {
|
|
// Do not complain about the form of friend template types during any kind
|
|
// of code synthesis. For template instantiation, we will have complained
|
|
// when the template was defined.
|
|
} else {
|
|
if (!T->isElaboratedTypeSpecifier()) {
|
|
// If we evaluated the type to a record type, suggest putting
|
|
// a tag in front.
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
RecordDecl *RD = RT->getDecl();
|
|
|
|
SmallString<16> InsertionText(" ");
|
|
InsertionText += RD->getKindName();
|
|
|
|
Diag(TypeRange.getBegin(),
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_unelaborated_friend_type :
|
|
diag::ext_unelaborated_friend_type)
|
|
<< (unsigned) RD->getTagKind()
|
|
<< T
|
|
<< FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
|
|
InsertionText);
|
|
} else {
|
|
Diag(FriendLoc,
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_nonclass_type_friend :
|
|
diag::ext_nonclass_type_friend)
|
|
<< T
|
|
<< TypeRange;
|
|
}
|
|
} else if (T->getAs<EnumType>()) {
|
|
Diag(FriendLoc,
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_enum_friend :
|
|
diag::ext_enum_friend)
|
|
<< T
|
|
<< TypeRange;
|
|
}
|
|
|
|
// C++11 [class.friend]p3:
|
|
// A friend declaration that does not declare a function shall have one
|
|
// of the following forms:
|
|
// friend elaborated-type-specifier ;
|
|
// friend simple-type-specifier ;
|
|
// friend typename-specifier ;
|
|
if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
|
|
Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
|
|
}
|
|
|
|
// If the type specifier in a friend declaration designates a (possibly
|
|
// cv-qualified) class type, that class is declared as a friend; otherwise,
|
|
// the friend declaration is ignored.
|
|
return FriendDecl::Create(Context, CurContext,
|
|
TSInfo->getTypeLoc().getLocStart(), TSInfo,
|
|
FriendLoc);
|
|
}
|
|
|
|
/// Handle a friend tag declaration where the scope specifier was
|
|
/// templated.
|
|
Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
|
|
unsigned TagSpec, SourceLocation TagLoc,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
AttributeList *Attr,
|
|
MultiTemplateParamsArg TempParamLists) {
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
|
|
bool IsMemberSpecialization = false;
|
|
bool Invalid = false;
|
|
|
|
if (TemplateParameterList *TemplateParams =
|
|
MatchTemplateParametersToScopeSpecifier(
|
|
TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
|
|
IsMemberSpecialization, Invalid)) {
|
|
if (TemplateParams->size() > 0) {
|
|
// This is a declaration of a class template.
|
|
if (Invalid)
|
|
return nullptr;
|
|
|
|
return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
|
|
NameLoc, Attr, TemplateParams, AS_public,
|
|
/*ModulePrivateLoc=*/SourceLocation(),
|
|
FriendLoc, TempParamLists.size() - 1,
|
|
TempParamLists.data()).get();
|
|
} else {
|
|
// The "template<>" header is extraneous.
|
|
Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
|
|
<< TypeWithKeyword::getTagTypeKindName(Kind) << Name;
|
|
IsMemberSpecialization = true;
|
|
}
|
|
}
|
|
|
|
if (Invalid) return nullptr;
|
|
|
|
bool isAllExplicitSpecializations = true;
|
|
for (unsigned I = TempParamLists.size(); I-- > 0; ) {
|
|
if (TempParamLists[I]->size()) {
|
|
isAllExplicitSpecializations = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// FIXME: don't ignore attributes.
|
|
|
|
// If it's explicit specializations all the way down, just forget
|
|
// about the template header and build an appropriate non-templated
|
|
// friend. TODO: for source fidelity, remember the headers.
|
|
if (isAllExplicitSpecializations) {
|
|
if (SS.isEmpty()) {
|
|
bool Owned = false;
|
|
bool IsDependent = false;
|
|
return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
|
|
Attr, AS_public,
|
|
/*ModulePrivateLoc=*/SourceLocation(),
|
|
MultiTemplateParamsArg(), Owned, IsDependent,
|
|
/*ScopedEnumKWLoc=*/SourceLocation(),
|
|
/*ScopedEnumUsesClassTag=*/false,
|
|
/*UnderlyingType=*/TypeResult(),
|
|
/*IsTypeSpecifier=*/false,
|
|
/*IsTemplateParamOrArg=*/false);
|
|
}
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTagTypeKind(Kind);
|
|
QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
|
|
*Name, NameLoc);
|
|
if (T.isNull())
|
|
return nullptr;
|
|
|
|
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
|
|
if (isa<DependentNameType>(T)) {
|
|
DependentNameTypeLoc TL =
|
|
TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
|
|
TL.setElaboratedKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
TL.setNameLoc(NameLoc);
|
|
} else {
|
|
ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
|
|
TL.setElaboratedKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
|
|
}
|
|
|
|
FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
|
|
TSI, FriendLoc, TempParamLists);
|
|
Friend->setAccess(AS_public);
|
|
CurContext->addDecl(Friend);
|
|
return Friend;
|
|
}
|
|
|
|
assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
|
|
|
|
|
|
|
|
// Handle the case of a templated-scope friend class. e.g.
|
|
// template <class T> class A<T>::B;
|
|
// FIXME: we don't support these right now.
|
|
Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
|
|
<< SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
|
|
ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
|
|
QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
|
|
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
|
|
DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
|
|
TL.setElaboratedKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(NameLoc);
|
|
|
|
FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
|
|
TSI, FriendLoc, TempParamLists);
|
|
Friend->setAccess(AS_public);
|
|
Friend->setUnsupportedFriend(true);
|
|
CurContext->addDecl(Friend);
|
|
return Friend;
|
|
}
|
|
|
|
|
|
/// Handle a friend type declaration. This works in tandem with
|
|
/// ActOnTag.
|
|
///
|
|
/// Notes on friend class templates:
|
|
///
|
|
/// We generally treat friend class declarations as if they were
|
|
/// declaring a class. So, for example, the elaborated type specifier
|
|
/// in a friend declaration is required to obey the restrictions of a
|
|
/// class-head (i.e. no typedefs in the scope chain), template
|
|
/// parameters are required to match up with simple template-ids, &c.
|
|
/// However, unlike when declaring a template specialization, it's
|
|
/// okay to refer to a template specialization without an empty
|
|
/// template parameter declaration, e.g.
|
|
/// friend class A<T>::B<unsigned>;
|
|
/// We permit this as a special case; if there are any template
|
|
/// parameters present at all, require proper matching, i.e.
|
|
/// template <> template \<class T> friend class A<int>::B;
|
|
Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
|
|
MultiTemplateParamsArg TempParams) {
|
|
SourceLocation Loc = DS.getLocStart();
|
|
|
|
assert(DS.isFriendSpecified());
|
|
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
|
|
|
|
// Try to convert the decl specifier to a type. This works for
|
|
// friend templates because ActOnTag never produces a ClassTemplateDecl
|
|
// for a TUK_Friend.
|
|
Declarator TheDeclarator(DS, Declarator::MemberContext);
|
|
TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
|
|
QualType T = TSI->getType();
|
|
if (TheDeclarator.isInvalidType())
|
|
return nullptr;
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
|
|
return nullptr;
|
|
|
|
// This is definitely an error in C++98. It's probably meant to
|
|
// be forbidden in C++0x, too, but the specification is just
|
|
// poorly written.
|
|
//
|
|
// The problem is with declarations like the following:
|
|
// template <T> friend A<T>::foo;
|
|
// where deciding whether a class C is a friend or not now hinges
|
|
// on whether there exists an instantiation of A that causes
|
|
// 'foo' to equal C. There are restrictions on class-heads
|
|
// (which we declare (by fiat) elaborated friend declarations to
|
|
// be) that makes this tractable.
|
|
//
|
|
// FIXME: handle "template <> friend class A<T>;", which
|
|
// is possibly well-formed? Who even knows?
|
|
if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
|
|
Diag(Loc, diag::err_tagless_friend_type_template)
|
|
<< DS.getSourceRange();
|
|
return nullptr;
|
|
}
|
|
|
|
// C++98 [class.friend]p1: A friend of a class is a function
|
|
// or class that is not a member of the class . . .
|
|
// This is fixed in DR77, which just barely didn't make the C++03
|
|
// deadline. It's also a very silly restriction that seriously
|
|
// affects inner classes and which nobody else seems to implement;
|
|
// thus we never diagnose it, not even in -pedantic.
|
|
//
|
|
// But note that we could warn about it: it's always useless to
|
|
// friend one of your own members (it's not, however, worthless to
|
|
// friend a member of an arbitrary specialization of your template).
|
|
|
|
Decl *D;
|
|
if (!TempParams.empty())
|
|
D = FriendTemplateDecl::Create(Context, CurContext, Loc,
|
|
TempParams,
|
|
TSI,
|
|
DS.getFriendSpecLoc());
|
|
else
|
|
D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
|
|
|
|
if (!D)
|
|
return nullptr;
|
|
|
|
D->setAccess(AS_public);
|
|
CurContext->addDecl(D);
|
|
|
|
return D;
|
|
}
|
|
|
|
NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParams) {
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
|
|
assert(DS.isFriendSpecified());
|
|
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
|
|
|
|
SourceLocation Loc = D.getIdentifierLoc();
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
|
|
// C++ [class.friend]p1
|
|
// A friend of a class is a function or class....
|
|
// Note that this sees through typedefs, which is intended.
|
|
// It *doesn't* see through dependent types, which is correct
|
|
// according to [temp.arg.type]p3:
|
|
// If a declaration acquires a function type through a
|
|
// type dependent on a template-parameter and this causes
|
|
// a declaration that does not use the syntactic form of a
|
|
// function declarator to have a function type, the program
|
|
// is ill-formed.
|
|
if (!TInfo->getType()->isFunctionType()) {
|
|
Diag(Loc, diag::err_unexpected_friend);
|
|
|
|
// It might be worthwhile to try to recover by creating an
|
|
// appropriate declaration.
|
|
return nullptr;
|
|
}
|
|
|
|
// C++ [namespace.memdef]p3
|
|
// - If a friend declaration in a non-local class first declares a
|
|
// class or function, the friend class or function is a member
|
|
// of the innermost enclosing namespace.
|
|
// - The name of the friend is not found by simple name lookup
|
|
// until a matching declaration is provided in that namespace
|
|
// scope (either before or after the class declaration granting
|
|
// friendship).
|
|
// - If a friend function is called, its name may be found by the
|
|
// name lookup that considers functions from namespaces and
|
|
// classes associated with the types of the function arguments.
|
|
// - When looking for a prior declaration of a class or a function
|
|
// declared as a friend, scopes outside the innermost enclosing
|
|
// namespace scope are not considered.
|
|
|
|
CXXScopeSpec &SS = D.getCXXScopeSpec();
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
assert(Name);
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
|
|
DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
|
|
DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
|
|
return nullptr;
|
|
|
|
// The context we found the declaration in, or in which we should
|
|
// create the declaration.
|
|
DeclContext *DC;
|
|
Scope *DCScope = S;
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
ForExternalRedeclaration);
|
|
|
|
// There are five cases here.
|
|
// - There's no scope specifier and we're in a local class. Only look
|
|
// for functions declared in the immediately-enclosing block scope.
|
|
// We recover from invalid scope qualifiers as if they just weren't there.
|
|
FunctionDecl *FunctionContainingLocalClass = nullptr;
|
|
if ((SS.isInvalid() || !SS.isSet()) &&
|
|
(FunctionContainingLocalClass =
|
|
cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
|
|
// C++11 [class.friend]p11:
|
|
// If a friend declaration appears in a local class and the name
|
|
// specified is an unqualified name, a prior declaration is
|
|
// looked up without considering scopes that are outside the
|
|
// innermost enclosing non-class scope. For a friend function
|
|
// declaration, if there is no prior declaration, the program is
|
|
// ill-formed.
|
|
|
|
// Find the innermost enclosing non-class scope. This is the block
|
|
// scope containing the local class definition (or for a nested class,
|
|
// the outer local class).
|
|
DCScope = S->getFnParent();
|
|
|
|
// Look up the function name in the scope.
|
|
Previous.clear(LookupLocalFriendName);
|
|
LookupName(Previous, S, /*AllowBuiltinCreation*/false);
|
|
|
|
if (!Previous.empty()) {
|
|
// All possible previous declarations must have the same context:
|
|
// either they were declared at block scope or they are members of
|
|
// one of the enclosing local classes.
|
|
DC = Previous.getRepresentativeDecl()->getDeclContext();
|
|
} else {
|
|
// This is ill-formed, but provide the context that we would have
|
|
// declared the function in, if we were permitted to, for error recovery.
|
|
DC = FunctionContainingLocalClass;
|
|
}
|
|
adjustContextForLocalExternDecl(DC);
|
|
|
|
// C++ [class.friend]p6:
|
|
// A function can be defined in a friend declaration of a class if and
|
|
// only if the class is a non-local class (9.8), the function name is
|
|
// unqualified, and the function has namespace scope.
|
|
if (D.isFunctionDefinition()) {
|
|
Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
|
|
}
|
|
|
|
// - There's no scope specifier, in which case we just go to the
|
|
// appropriate scope and look for a function or function template
|
|
// there as appropriate.
|
|
} else if (SS.isInvalid() || !SS.isSet()) {
|
|
// C++11 [namespace.memdef]p3:
|
|
// If the name in a friend declaration is neither qualified nor
|
|
// a template-id and the declaration is a function or an
|
|
// elaborated-type-specifier, the lookup to determine whether
|
|
// the entity has been previously declared shall not consider
|
|
// any scopes outside the innermost enclosing namespace.
|
|
bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
|
|
|
|
// Find the appropriate context according to the above.
|
|
DC = CurContext;
|
|
|
|
// Skip class contexts. If someone can cite chapter and verse
|
|
// for this behavior, that would be nice --- it's what GCC and
|
|
// EDG do, and it seems like a reasonable intent, but the spec
|
|
// really only says that checks for unqualified existing
|
|
// declarations should stop at the nearest enclosing namespace,
|
|
// not that they should only consider the nearest enclosing
|
|
// namespace.
|
|
while (DC->isRecord())
|
|
DC = DC->getParent();
|
|
|
|
DeclContext *LookupDC = DC;
|
|
while (LookupDC->isTransparentContext())
|
|
LookupDC = LookupDC->getParent();
|
|
|
|
while (true) {
|
|
LookupQualifiedName(Previous, LookupDC);
|
|
|
|
if (!Previous.empty()) {
|
|
DC = LookupDC;
|
|
break;
|
|
}
|
|
|
|
if (isTemplateId) {
|
|
if (isa<TranslationUnitDecl>(LookupDC)) break;
|
|
} else {
|
|
if (LookupDC->isFileContext()) break;
|
|
}
|
|
LookupDC = LookupDC->getParent();
|
|
}
|
|
|
|
DCScope = getScopeForDeclContext(S, DC);
|
|
|
|
// - There's a non-dependent scope specifier, in which case we
|
|
// compute it and do a previous lookup there for a function
|
|
// or function template.
|
|
} else if (!SS.getScopeRep()->isDependent()) {
|
|
DC = computeDeclContext(SS);
|
|
if (!DC) return nullptr;
|
|
|
|
if (RequireCompleteDeclContext(SS, DC)) return nullptr;
|
|
|
|
LookupQualifiedName(Previous, DC);
|
|
|
|
// Ignore things found implicitly in the wrong scope.
|
|
// TODO: better diagnostics for this case. Suggesting the right
|
|
// qualified scope would be nice...
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
if (!DC->InEnclosingNamespaceSetOf(
|
|
D->getDeclContext()->getRedeclContext()))
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
|
|
if (Previous.empty()) {
|
|
D.setInvalidType();
|
|
Diag(Loc, diag::err_qualified_friend_not_found)
|
|
<< Name << TInfo->getType();
|
|
return nullptr;
|
|
}
|
|
|
|
// C++ [class.friend]p1: A friend of a class is a function or
|
|
// class that is not a member of the class . . .
|
|
if (DC->Equals(CurContext))
|
|
Diag(DS.getFriendSpecLoc(),
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_friend_is_member :
|
|
diag::err_friend_is_member);
|
|
|
|
if (D.isFunctionDefinition()) {
|
|
// C++ [class.friend]p6:
|
|
// A function can be defined in a friend declaration of a class if and
|
|
// only if the class is a non-local class (9.8), the function name is
|
|
// unqualified, and the function has namespace scope.
|
|
SemaDiagnosticBuilder DB
|
|
= Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
|
|
|
|
DB << SS.getScopeRep();
|
|
if (DC->isFileContext())
|
|
DB << FixItHint::CreateRemoval(SS.getRange());
|
|
SS.clear();
|
|
}
|
|
|
|
// - There's a scope specifier that does not match any template
|
|
// parameter lists, in which case we use some arbitrary context,
|
|
// create a method or method template, and wait for instantiation.
|
|
// - There's a scope specifier that does match some template
|
|
// parameter lists, which we don't handle right now.
|
|
} else {
|
|
if (D.isFunctionDefinition()) {
|
|
// C++ [class.friend]p6:
|
|
// A function can be defined in a friend declaration of a class if and
|
|
// only if the class is a non-local class (9.8), the function name is
|
|
// unqualified, and the function has namespace scope.
|
|
Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
|
|
<< SS.getScopeRep();
|
|
}
|
|
|
|
DC = CurContext;
|
|
assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
|
|
}
|
|
|
|
if (!DC->isRecord()) {
|
|
int DiagArg = -1;
|
|
switch (D.getName().getKind()) {
|
|
case UnqualifiedId::IK_ConstructorTemplateId:
|
|
case UnqualifiedId::IK_ConstructorName:
|
|
DiagArg = 0;
|
|
break;
|
|
case UnqualifiedId::IK_DestructorName:
|
|
DiagArg = 1;
|
|
break;
|
|
case UnqualifiedId::IK_ConversionFunctionId:
|
|
DiagArg = 2;
|
|
break;
|
|
case UnqualifiedId::IK_DeductionGuideName:
|
|
DiagArg = 3;
|
|
break;
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_ImplicitSelfParam:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
case UnqualifiedId::IK_TemplateId:
|
|
break;
|
|
}
|
|
// This implies that it has to be an operator or function.
|
|
if (DiagArg >= 0) {
|
|
Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// FIXME: This is an egregious hack to cope with cases where the scope stack
|
|
// does not contain the declaration context, i.e., in an out-of-line
|
|
// definition of a class.
|
|
Scope FakeDCScope(S, Scope::DeclScope, Diags);
|
|
if (!DCScope) {
|
|
FakeDCScope.setEntity(DC);
|
|
DCScope = &FakeDCScope;
|
|
}
|
|
|
|
bool AddToScope = true;
|
|
NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
|
|
TemplateParams, AddToScope);
|
|
if (!ND) return nullptr;
|
|
|
|
assert(ND->getLexicalDeclContext() == CurContext);
|
|
|
|
// If we performed typo correction, we might have added a scope specifier
|
|
// and changed the decl context.
|
|
DC = ND->getDeclContext();
|
|
|
|
// Add the function declaration to the appropriate lookup tables,
|
|
// adjusting the redeclarations list as necessary. We don't
|
|
// want to do this yet if the friending class is dependent.
|
|
//
|
|
// Also update the scope-based lookup if the target context's
|
|
// lookup context is in lexical scope.
|
|
if (!CurContext->isDependentContext()) {
|
|
DC = DC->getRedeclContext();
|
|
DC->makeDeclVisibleInContext(ND);
|
|
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
|
|
PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
|
|
}
|
|
|
|
FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
|
|
D.getIdentifierLoc(), ND,
|
|
DS.getFriendSpecLoc());
|
|
FrD->setAccess(AS_public);
|
|
CurContext->addDecl(FrD);
|
|
|
|
if (ND->isInvalidDecl()) {
|
|
FrD->setInvalidDecl();
|
|
} else {
|
|
if (DC->isRecord()) CheckFriendAccess(ND);
|
|
|
|
FunctionDecl *FD;
|
|
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
|
|
FD = FTD->getTemplatedDecl();
|
|
else
|
|
FD = cast<FunctionDecl>(ND);
|
|
|
|
// C++11 [dcl.fct.default]p4: If a friend declaration specifies a
|
|
// default argument expression, that declaration shall be a definition
|
|
// and shall be the only declaration of the function or function
|
|
// template in the translation unit.
|
|
if (functionDeclHasDefaultArgument(FD)) {
|
|
// We can't look at FD->getPreviousDecl() because it may not have been set
|
|
// if we're in a dependent context. If the function is known to be a
|
|
// redeclaration, we will have narrowed Previous down to the right decl.
|
|
if (D.isRedeclaration()) {
|
|
Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
|
|
Diag(Previous.getRepresentativeDecl()->getLocation(),
|
|
diag::note_previous_declaration);
|
|
} else if (!D.isFunctionDefinition())
|
|
Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
|
|
}
|
|
|
|
// Mark templated-scope function declarations as unsupported.
|
|
if (FD->getNumTemplateParameterLists() && SS.isValid()) {
|
|
Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
|
|
<< SS.getScopeRep() << SS.getRange()
|
|
<< cast<CXXRecordDecl>(CurContext);
|
|
FrD->setUnsupportedFriend(true);
|
|
}
|
|
}
|
|
|
|
return ND;
|
|
}
|
|
|
|
void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
|
|
AdjustDeclIfTemplate(Dcl);
|
|
|
|
FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
|
|
if (!Fn) {
|
|
Diag(DelLoc, diag::err_deleted_non_function);
|
|
return;
|
|
}
|
|
|
|
// Deleted function does not have a body.
|
|
Fn->setWillHaveBody(false);
|
|
|
|
if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
|
|
// Don't consider the implicit declaration we generate for explicit
|
|
// specializations. FIXME: Do not generate these implicit declarations.
|
|
if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
|
|
Prev->getPreviousDecl()) &&
|
|
!Prev->isDefined()) {
|
|
Diag(DelLoc, diag::err_deleted_decl_not_first);
|
|
Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
|
|
Prev->isImplicit() ? diag::note_previous_implicit_declaration
|
|
: diag::note_previous_declaration);
|
|
}
|
|
// If the declaration wasn't the first, we delete the function anyway for
|
|
// recovery.
|
|
Fn = Fn->getCanonicalDecl();
|
|
}
|
|
|
|
// dllimport/dllexport cannot be deleted.
|
|
if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
|
|
Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
|
|
Fn->setInvalidDecl();
|
|
}
|
|
|
|
if (Fn->isDeleted())
|
|
return;
|
|
|
|
// See if we're deleting a function which is already known to override a
|
|
// non-deleted virtual function.
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
bool IssuedDiagnostic = false;
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods();
|
|
I != E; ++I) {
|
|
if (!(*MD->begin_overridden_methods())->isDeleted()) {
|
|
if (!IssuedDiagnostic) {
|
|
Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
|
|
IssuedDiagnostic = true;
|
|
}
|
|
Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
|
|
}
|
|
}
|
|
// If this function was implicitly deleted because it was defaulted,
|
|
// explain why it was deleted.
|
|
if (IssuedDiagnostic && MD->isDefaulted())
|
|
ShouldDeleteSpecialMember(MD, getSpecialMember(MD), nullptr,
|
|
/*Diagnose*/true);
|
|
}
|
|
|
|
// C++11 [basic.start.main]p3:
|
|
// A program that defines main as deleted [...] is ill-formed.
|
|
if (Fn->isMain())
|
|
Diag(DelLoc, diag::err_deleted_main);
|
|
|
|
// C++11 [dcl.fct.def.delete]p4:
|
|
// A deleted function is implicitly inline.
|
|
Fn->setImplicitlyInline();
|
|
Fn->setDeletedAsWritten();
|
|
}
|
|
|
|
void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
|
|
CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
|
|
|
|
if (MD) {
|
|
if (MD->getParent()->isDependentType()) {
|
|
MD->setDefaulted();
|
|
MD->setExplicitlyDefaulted();
|
|
return;
|
|
}
|
|
|
|
CXXSpecialMember Member = getSpecialMember(MD);
|
|
if (Member == CXXInvalid) {
|
|
if (!MD->isInvalidDecl())
|
|
Diag(DefaultLoc, diag::err_default_special_members);
|
|
return;
|
|
}
|
|
|
|
MD->setDefaulted();
|
|
MD->setExplicitlyDefaulted();
|
|
|
|
// Unset that we will have a body for this function. We might not,
|
|
// if it turns out to be trivial, and we don't need this marking now
|
|
// that we've marked it as defaulted.
|
|
MD->setWillHaveBody(false);
|
|
|
|
// If this definition appears within the record, do the checking when
|
|
// the record is complete.
|
|
const FunctionDecl *Primary = MD;
|
|
if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
|
|
// Ask the template instantiation pattern that actually had the
|
|
// '= default' on it.
|
|
Primary = Pattern;
|
|
|
|
// If the method was defaulted on its first declaration, we will have
|
|
// already performed the checking in CheckCompletedCXXClass. Such a
|
|
// declaration doesn't trigger an implicit definition.
|
|
if (Primary->getCanonicalDecl()->isDefaulted())
|
|
return;
|
|
|
|
CheckExplicitlyDefaultedSpecialMember(MD);
|
|
|
|
if (!MD->isInvalidDecl())
|
|
DefineImplicitSpecialMember(*this, MD, DefaultLoc);
|
|
} else {
|
|
Diag(DefaultLoc, diag::err_default_special_members);
|
|
}
|
|
}
|
|
|
|
static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
|
|
for (Stmt *SubStmt : S->children()) {
|
|
if (!SubStmt)
|
|
continue;
|
|
if (isa<ReturnStmt>(SubStmt))
|
|
Self.Diag(SubStmt->getLocStart(),
|
|
diag::err_return_in_constructor_handler);
|
|
if (!isa<Expr>(SubStmt))
|
|
SearchForReturnInStmt(Self, SubStmt);
|
|
}
|
|
}
|
|
|
|
void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
|
|
for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
|
|
CXXCatchStmt *Handler = TryBlock->getHandler(I);
|
|
SearchForReturnInStmt(*this, Handler);
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old) {
|
|
const auto *NewFT = New->getType()->getAs<FunctionProtoType>();
|
|
const auto *OldFT = Old->getType()->getAs<FunctionProtoType>();
|
|
|
|
if (OldFT->hasExtParameterInfos()) {
|
|
for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
|
|
// A parameter of the overriding method should be annotated with noescape
|
|
// if the corresponding parameter of the overridden method is annotated.
|
|
if (OldFT->getExtParameterInfo(I).isNoEscape() &&
|
|
!NewFT->getExtParameterInfo(I).isNoEscape()) {
|
|
Diag(New->getParamDecl(I)->getLocation(),
|
|
diag::warn_overriding_method_missing_noescape);
|
|
Diag(Old->getParamDecl(I)->getLocation(),
|
|
diag::note_overridden_marked_noescape);
|
|
}
|
|
}
|
|
|
|
CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
|
|
|
|
// If the calling conventions match, everything is fine
|
|
if (NewCC == OldCC)
|
|
return false;
|
|
|
|
// If the calling conventions mismatch because the new function is static,
|
|
// suppress the calling convention mismatch error; the error about static
|
|
// function override (err_static_overrides_virtual from
|
|
// Sema::CheckFunctionDeclaration) is more clear.
|
|
if (New->getStorageClass() == SC_Static)
|
|
return false;
|
|
|
|
Diag(New->getLocation(),
|
|
diag::err_conflicting_overriding_cc_attributes)
|
|
<< New->getDeclName() << New->getType() << Old->getType();
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
return true;
|
|
}
|
|
|
|
bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old) {
|
|
QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
|
|
QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
|
|
|
|
if (Context.hasSameType(NewTy, OldTy) ||
|
|
NewTy->isDependentType() || OldTy->isDependentType())
|
|
return false;
|
|
|
|
// Check if the return types are covariant
|
|
QualType NewClassTy, OldClassTy;
|
|
|
|
/// Both types must be pointers or references to classes.
|
|
if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
|
|
if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
|
|
NewClassTy = NewPT->getPointeeType();
|
|
OldClassTy = OldPT->getPointeeType();
|
|
}
|
|
} else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
|
|
if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
|
|
if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
|
|
NewClassTy = NewRT->getPointeeType();
|
|
OldClassTy = OldRT->getPointeeType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// The return types aren't either both pointers or references to a class type.
|
|
if (NewClassTy.isNull()) {
|
|
Diag(New->getLocation(),
|
|
diag::err_different_return_type_for_overriding_virtual_function)
|
|
<< New->getDeclName() << NewTy << OldTy
|
|
<< New->getReturnTypeSourceRange();
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function)
|
|
<< Old->getReturnTypeSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
|
|
// C++14 [class.virtual]p8:
|
|
// If the class type in the covariant return type of D::f differs from
|
|
// that of B::f, the class type in the return type of D::f shall be
|
|
// complete at the point of declaration of D::f or shall be the class
|
|
// type D.
|
|
if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
|
|
if (!RT->isBeingDefined() &&
|
|
RequireCompleteType(New->getLocation(), NewClassTy,
|
|
diag::err_covariant_return_incomplete,
|
|
New->getDeclName()))
|
|
return true;
|
|
}
|
|
|
|
// Check if the new class derives from the old class.
|
|
if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
|
|
Diag(New->getLocation(), diag::err_covariant_return_not_derived)
|
|
<< New->getDeclName() << NewTy << OldTy
|
|
<< New->getReturnTypeSourceRange();
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function)
|
|
<< Old->getReturnTypeSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Check if we the conversion from derived to base is valid.
|
|
if (CheckDerivedToBaseConversion(
|
|
NewClassTy, OldClassTy,
|
|
diag::err_covariant_return_inaccessible_base,
|
|
diag::err_covariant_return_ambiguous_derived_to_base_conv,
|
|
New->getLocation(), New->getReturnTypeSourceRange(),
|
|
New->getDeclName(), nullptr)) {
|
|
// FIXME: this note won't trigger for delayed access control
|
|
// diagnostics, and it's impossible to get an undelayed error
|
|
// here from access control during the original parse because
|
|
// the ParsingDeclSpec/ParsingDeclarator are still in scope.
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function)
|
|
<< Old->getReturnTypeSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The qualifiers of the return types must be the same.
|
|
if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
|
|
Diag(New->getLocation(),
|
|
diag::err_covariant_return_type_different_qualifications)
|
|
<< New->getDeclName() << NewTy << OldTy
|
|
<< New->getReturnTypeSourceRange();
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function)
|
|
<< Old->getReturnTypeSourceRange();
|
|
return true;
|
|
}
|
|
|
|
|
|
// The new class type must have the same or less qualifiers as the old type.
|
|
if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
|
|
Diag(New->getLocation(),
|
|
diag::err_covariant_return_type_class_type_more_qualified)
|
|
<< New->getDeclName() << NewTy << OldTy
|
|
<< New->getReturnTypeSourceRange();
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function)
|
|
<< Old->getReturnTypeSourceRange();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Mark the given method pure.
|
|
///
|
|
/// \param Method the method to be marked pure.
|
|
///
|
|
/// \param InitRange the source range that covers the "0" initializer.
|
|
bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
|
|
SourceLocation EndLoc = InitRange.getEnd();
|
|
if (EndLoc.isValid())
|
|
Method->setRangeEnd(EndLoc);
|
|
|
|
if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
|
|
Method->setPure();
|
|
return false;
|
|
}
|
|
|
|
if (!Method->isInvalidDecl())
|
|
Diag(Method->getLocation(), diag::err_non_virtual_pure)
|
|
<< Method->getDeclName() << InitRange;
|
|
return true;
|
|
}
|
|
|
|
void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
|
|
if (D->getFriendObjectKind())
|
|
Diag(D->getLocation(), diag::err_pure_friend);
|
|
else if (auto *M = dyn_cast<CXXMethodDecl>(D))
|
|
CheckPureMethod(M, ZeroLoc);
|
|
else
|
|
Diag(D->getLocation(), diag::err_illegal_initializer);
|
|
}
|
|
|
|
/// \brief Determine whether the given declaration is a global variable or
|
|
/// static data member.
|
|
static bool isNonlocalVariable(const Decl *D) {
|
|
if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
|
|
return Var->hasGlobalStorage();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Invoked when we are about to parse an initializer for the declaration
|
|
/// 'Dcl'.
|
|
///
|
|
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
|
|
/// static data member of class X, names should be looked up in the scope of
|
|
/// class X. If the declaration had a scope specifier, a scope will have
|
|
/// been created and passed in for this purpose. Otherwise, S will be null.
|
|
void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
|
|
// If there is no declaration, there was an error parsing it.
|
|
if (!D || D->isInvalidDecl())
|
|
return;
|
|
|
|
// We will always have a nested name specifier here, but this declaration
|
|
// might not be out of line if the specifier names the current namespace:
|
|
// extern int n;
|
|
// int ::n = 0;
|
|
if (S && D->isOutOfLine())
|
|
EnterDeclaratorContext(S, D->getDeclContext());
|
|
|
|
// If we are parsing the initializer for a static data member, push a
|
|
// new expression evaluation context that is associated with this static
|
|
// data member.
|
|
if (isNonlocalVariable(D))
|
|
PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext::PotentiallyEvaluated, D);
|
|
}
|
|
|
|
/// Invoked after we are finished parsing an initializer for the declaration D.
|
|
void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
|
|
// If there is no declaration, there was an error parsing it.
|
|
if (!D || D->isInvalidDecl())
|
|
return;
|
|
|
|
if (isNonlocalVariable(D))
|
|
PopExpressionEvaluationContext();
|
|
|
|
if (S && D->isOutOfLine())
|
|
ExitDeclaratorContext(S);
|
|
}
|
|
|
|
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
|
|
/// C++ if/switch/while/for statement.
|
|
/// e.g: "if (int x = f()) {...}"
|
|
DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
|
|
// C++ 6.4p2:
|
|
// The declarator shall not specify a function or an array.
|
|
// The type-specifier-seq shall not contain typedef and shall not declare a
|
|
// new class or enumeration.
|
|
assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
|
|
"Parser allowed 'typedef' as storage class of condition decl.");
|
|
|
|
Decl *Dcl = ActOnDeclarator(S, D);
|
|
if (!Dcl)
|
|
return true;
|
|
|
|
if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
|
|
Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
|
|
<< D.getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
return Dcl;
|
|
}
|
|
|
|
void Sema::LoadExternalVTableUses() {
|
|
if (!ExternalSource)
|
|
return;
|
|
|
|
SmallVector<ExternalVTableUse, 4> VTables;
|
|
ExternalSource->ReadUsedVTables(VTables);
|
|
SmallVector<VTableUse, 4> NewUses;
|
|
for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
|
|
llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
|
|
= VTablesUsed.find(VTables[I].Record);
|
|
// Even if a definition wasn't required before, it may be required now.
|
|
if (Pos != VTablesUsed.end()) {
|
|
if (!Pos->second && VTables[I].DefinitionRequired)
|
|
Pos->second = true;
|
|
continue;
|
|
}
|
|
|
|
VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
|
|
NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
|
|
}
|
|
|
|
VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
|
|
}
|
|
|
|
void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
|
|
bool DefinitionRequired) {
|
|
// Ignore any vtable uses in unevaluated operands or for classes that do
|
|
// not have a vtable.
|
|
if (!Class->isDynamicClass() || Class->isDependentContext() ||
|
|
CurContext->isDependentContext() || isUnevaluatedContext())
|
|
return;
|
|
|
|
// Try to insert this class into the map.
|
|
LoadExternalVTableUses();
|
|
Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
|
|
std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
|
|
Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
|
|
if (!Pos.second) {
|
|
// If we already had an entry, check to see if we are promoting this vtable
|
|
// to require a definition. If so, we need to reappend to the VTableUses
|
|
// list, since we may have already processed the first entry.
|
|
if (DefinitionRequired && !Pos.first->second) {
|
|
Pos.first->second = true;
|
|
} else {
|
|
// Otherwise, we can early exit.
|
|
return;
|
|
}
|
|
} else {
|
|
// The Microsoft ABI requires that we perform the destructor body
|
|
// checks (i.e. operator delete() lookup) when the vtable is marked used, as
|
|
// the deleting destructor is emitted with the vtable, not with the
|
|
// destructor definition as in the Itanium ABI.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
CXXDestructorDecl *DD = Class->getDestructor();
|
|
if (DD && DD->isVirtual() && !DD->isDeleted()) {
|
|
if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
|
|
// If this is an out-of-line declaration, marking it referenced will
|
|
// not do anything. Manually call CheckDestructor to look up operator
|
|
// delete().
|
|
ContextRAII SavedContext(*this, DD);
|
|
CheckDestructor(DD);
|
|
} else {
|
|
MarkFunctionReferenced(Loc, Class->getDestructor());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Local classes need to have their virtual members marked
|
|
// immediately. For all other classes, we mark their virtual members
|
|
// at the end of the translation unit.
|
|
if (Class->isLocalClass())
|
|
MarkVirtualMembersReferenced(Loc, Class);
|
|
else
|
|
VTableUses.push_back(std::make_pair(Class, Loc));
|
|
}
|
|
|
|
bool Sema::DefineUsedVTables() {
|
|
LoadExternalVTableUses();
|
|
if (VTableUses.empty())
|
|
return false;
|
|
|
|
// Note: The VTableUses vector could grow as a result of marking
|
|
// the members of a class as "used", so we check the size each
|
|
// time through the loop and prefer indices (which are stable) to
|
|
// iterators (which are not).
|
|
bool DefinedAnything = false;
|
|
for (unsigned I = 0; I != VTableUses.size(); ++I) {
|
|
CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
|
|
if (!Class)
|
|
continue;
|
|
TemplateSpecializationKind ClassTSK =
|
|
Class->getTemplateSpecializationKind();
|
|
|
|
SourceLocation Loc = VTableUses[I].second;
|
|
|
|
bool DefineVTable = true;
|
|
|
|
// If this class has a key function, but that key function is
|
|
// defined in another translation unit, we don't need to emit the
|
|
// vtable even though we're using it.
|
|
const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
|
|
if (KeyFunction && !KeyFunction->hasBody()) {
|
|
// The key function is in another translation unit.
|
|
DefineVTable = false;
|
|
TemplateSpecializationKind TSK =
|
|
KeyFunction->getTemplateSpecializationKind();
|
|
assert(TSK != TSK_ExplicitInstantiationDefinition &&
|
|
TSK != TSK_ImplicitInstantiation &&
|
|
"Instantiations don't have key functions");
|
|
(void)TSK;
|
|
} else if (!KeyFunction) {
|
|
// If we have a class with no key function that is the subject
|
|
// of an explicit instantiation declaration, suppress the
|
|
// vtable; it will live with the explicit instantiation
|
|
// definition.
|
|
bool IsExplicitInstantiationDeclaration =
|
|
ClassTSK == TSK_ExplicitInstantiationDeclaration;
|
|
for (auto R : Class->redecls()) {
|
|
TemplateSpecializationKind TSK
|
|
= cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration)
|
|
IsExplicitInstantiationDeclaration = true;
|
|
else if (TSK == TSK_ExplicitInstantiationDefinition) {
|
|
IsExplicitInstantiationDeclaration = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IsExplicitInstantiationDeclaration)
|
|
DefineVTable = false;
|
|
}
|
|
|
|
// The exception specifications for all virtual members may be needed even
|
|
// if we are not providing an authoritative form of the vtable in this TU.
|
|
// We may choose to emit it available_externally anyway.
|
|
if (!DefineVTable) {
|
|
MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
|
|
continue;
|
|
}
|
|
|
|
// Mark all of the virtual members of this class as referenced, so
|
|
// that we can build a vtable. Then, tell the AST consumer that a
|
|
// vtable for this class is required.
|
|
DefinedAnything = true;
|
|
MarkVirtualMembersReferenced(Loc, Class);
|
|
CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
|
|
if (VTablesUsed[Canonical])
|
|
Consumer.HandleVTable(Class);
|
|
|
|
// Warn if we're emitting a weak vtable. The vtable will be weak if there is
|
|
// no key function or the key function is inlined. Don't warn in C++ ABIs
|
|
// that lack key functions, since the user won't be able to make one.
|
|
if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
|
|
Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
|
|
const FunctionDecl *KeyFunctionDef = nullptr;
|
|
if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
|
|
KeyFunctionDef->isInlined())) {
|
|
Diag(Class->getLocation(),
|
|
ClassTSK == TSK_ExplicitInstantiationDefinition
|
|
? diag::warn_weak_template_vtable
|
|
: diag::warn_weak_vtable)
|
|
<< Class;
|
|
}
|
|
}
|
|
}
|
|
VTableUses.clear();
|
|
|
|
return DefinedAnything;
|
|
}
|
|
|
|
void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
|
|
const CXXRecordDecl *RD) {
|
|
for (const auto *I : RD->methods())
|
|
if (I->isVirtual() && !I->isPure())
|
|
ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
|
|
}
|
|
|
|
void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
|
|
const CXXRecordDecl *RD) {
|
|
// Mark all functions which will appear in RD's vtable as used.
|
|
CXXFinalOverriderMap FinalOverriders;
|
|
RD->getFinalOverriders(FinalOverriders);
|
|
for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
|
|
E = FinalOverriders.end();
|
|
I != E; ++I) {
|
|
for (OverridingMethods::const_iterator OI = I->second.begin(),
|
|
OE = I->second.end();
|
|
OI != OE; ++OI) {
|
|
assert(OI->second.size() > 0 && "no final overrider");
|
|
CXXMethodDecl *Overrider = OI->second.front().Method;
|
|
|
|
// C++ [basic.def.odr]p2:
|
|
// [...] A virtual member function is used if it is not pure. [...]
|
|
if (!Overrider->isPure())
|
|
MarkFunctionReferenced(Loc, Overrider);
|
|
}
|
|
}
|
|
|
|
// Only classes that have virtual bases need a VTT.
|
|
if (RD->getNumVBases() == 0)
|
|
return;
|
|
|
|
for (const auto &I : RD->bases()) {
|
|
const CXXRecordDecl *Base =
|
|
cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
|
|
if (Base->getNumVBases() == 0)
|
|
continue;
|
|
MarkVirtualMembersReferenced(Loc, Base);
|
|
}
|
|
}
|
|
|
|
/// SetIvarInitializers - This routine builds initialization ASTs for the
|
|
/// Objective-C implementation whose ivars need be initialized.
|
|
void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return;
|
|
if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
|
|
SmallVector<ObjCIvarDecl*, 8> ivars;
|
|
CollectIvarsToConstructOrDestruct(OID, ivars);
|
|
if (ivars.empty())
|
|
return;
|
|
SmallVector<CXXCtorInitializer*, 32> AllToInit;
|
|
for (unsigned i = 0; i < ivars.size(); i++) {
|
|
FieldDecl *Field = ivars[i];
|
|
if (Field->isInvalidDecl())
|
|
continue;
|
|
|
|
CXXCtorInitializer *Member;
|
|
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
|
|
InitializationKind InitKind =
|
|
InitializationKind::CreateDefault(ObjCImplementation->getLocation());
|
|
|
|
InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
|
|
ExprResult MemberInit =
|
|
InitSeq.Perform(*this, InitEntity, InitKind, None);
|
|
MemberInit = MaybeCreateExprWithCleanups(MemberInit);
|
|
// Note, MemberInit could actually come back empty if no initialization
|
|
// is required (e.g., because it would call a trivial default constructor)
|
|
if (!MemberInit.get() || MemberInit.isInvalid())
|
|
continue;
|
|
|
|
Member =
|
|
new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
|
|
SourceLocation(),
|
|
MemberInit.getAs<Expr>(),
|
|
SourceLocation());
|
|
AllToInit.push_back(Member);
|
|
|
|
// Be sure that the destructor is accessible and is marked as referenced.
|
|
if (const RecordType *RecordTy =
|
|
Context.getBaseElementType(Field->getType())
|
|
->getAs<RecordType>()) {
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
|
|
MarkFunctionReferenced(Field->getLocation(), Destructor);
|
|
CheckDestructorAccess(Field->getLocation(), Destructor,
|
|
PDiag(diag::err_access_dtor_ivar)
|
|
<< Context.getBaseElementType(Field->getType()));
|
|
}
|
|
}
|
|
}
|
|
ObjCImplementation->setIvarInitializers(Context,
|
|
AllToInit.data(), AllToInit.size());
|
|
}
|
|
}
|
|
|
|
static
|
|
void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
|
|
llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
|
|
llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
|
|
llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
|
|
Sema &S) {
|
|
if (Ctor->isInvalidDecl())
|
|
return;
|
|
|
|
CXXConstructorDecl *Target = Ctor->getTargetConstructor();
|
|
|
|
// Target may not be determinable yet, for instance if this is a dependent
|
|
// call in an uninstantiated template.
|
|
if (Target) {
|
|
const FunctionDecl *FNTarget = nullptr;
|
|
(void)Target->hasBody(FNTarget);
|
|
Target = const_cast<CXXConstructorDecl*>(
|
|
cast_or_null<CXXConstructorDecl>(FNTarget));
|
|
}
|
|
|
|
CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
|
|
// Avoid dereferencing a null pointer here.
|
|
*TCanonical = Target? Target->getCanonicalDecl() : nullptr;
|
|
|
|
if (!Current.insert(Canonical).second)
|
|
return;
|
|
|
|
// We know that beyond here, we aren't chaining into a cycle.
|
|
if (!Target || !Target->isDelegatingConstructor() ||
|
|
Target->isInvalidDecl() || Valid.count(TCanonical)) {
|
|
Valid.insert(Current.begin(), Current.end());
|
|
Current.clear();
|
|
// We've hit a cycle.
|
|
} else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
|
|
Current.count(TCanonical)) {
|
|
// If we haven't diagnosed this cycle yet, do so now.
|
|
if (!Invalid.count(TCanonical)) {
|
|
S.Diag((*Ctor->init_begin())->getSourceLocation(),
|
|
diag::warn_delegating_ctor_cycle)
|
|
<< Ctor;
|
|
|
|
// Don't add a note for a function delegating directly to itself.
|
|
if (TCanonical != Canonical)
|
|
S.Diag(Target->getLocation(), diag::note_it_delegates_to);
|
|
|
|
CXXConstructorDecl *C = Target;
|
|
while (C->getCanonicalDecl() != Canonical) {
|
|
const FunctionDecl *FNTarget = nullptr;
|
|
(void)C->getTargetConstructor()->hasBody(FNTarget);
|
|
assert(FNTarget && "Ctor cycle through bodiless function");
|
|
|
|
C = const_cast<CXXConstructorDecl*>(
|
|
cast<CXXConstructorDecl>(FNTarget));
|
|
S.Diag(C->getLocation(), diag::note_which_delegates_to);
|
|
}
|
|
}
|
|
|
|
Invalid.insert(Current.begin(), Current.end());
|
|
Current.clear();
|
|
} else {
|
|
DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
|
|
}
|
|
}
|
|
|
|
|
|
void Sema::CheckDelegatingCtorCycles() {
|
|
llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
|
|
|
|
for (DelegatingCtorDeclsType::iterator
|
|
I = DelegatingCtorDecls.begin(ExternalSource),
|
|
E = DelegatingCtorDecls.end();
|
|
I != E; ++I)
|
|
DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
|
|
|
|
for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
|
|
CE = Invalid.end();
|
|
CI != CE; ++CI)
|
|
(*CI)->setInvalidDecl();
|
|
}
|
|
|
|
namespace {
|
|
/// \brief AST visitor that finds references to the 'this' expression.
|
|
class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
|
|
Sema &S;
|
|
|
|
public:
|
|
explicit FindCXXThisExpr(Sema &S) : S(S) { }
|
|
|
|
bool VisitCXXThisExpr(CXXThisExpr *E) {
|
|
S.Diag(E->getLocation(), diag::err_this_static_member_func)
|
|
<< E->isImplicit();
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
|
|
TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
|
|
if (!TSInfo)
|
|
return false;
|
|
|
|
TypeLoc TL = TSInfo->getTypeLoc();
|
|
FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
|
|
if (!ProtoTL)
|
|
return false;
|
|
|
|
// C++11 [expr.prim.general]p3:
|
|
// [The expression this] shall not appear before the optional
|
|
// cv-qualifier-seq and it shall not appear within the declaration of a
|
|
// static member function (although its type and value category are defined
|
|
// within a static member function as they are within a non-static member
|
|
// function). [ Note: this is because declaration matching does not occur
|
|
// until the complete declarator is known. - end note ]
|
|
const FunctionProtoType *Proto = ProtoTL.getTypePtr();
|
|
FindCXXThisExpr Finder(*this);
|
|
|
|
// If the return type came after the cv-qualifier-seq, check it now.
|
|
if (Proto->hasTrailingReturn() &&
|
|
!Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
|
|
return true;
|
|
|
|
// Check the exception specification.
|
|
if (checkThisInStaticMemberFunctionExceptionSpec(Method))
|
|
return true;
|
|
|
|
return checkThisInStaticMemberFunctionAttributes(Method);
|
|
}
|
|
|
|
bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
|
|
TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
|
|
if (!TSInfo)
|
|
return false;
|
|
|
|
TypeLoc TL = TSInfo->getTypeLoc();
|
|
FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
|
|
if (!ProtoTL)
|
|
return false;
|
|
|
|
const FunctionProtoType *Proto = ProtoTL.getTypePtr();
|
|
FindCXXThisExpr Finder(*this);
|
|
|
|
switch (Proto->getExceptionSpecType()) {
|
|
case EST_Unparsed:
|
|
case EST_Uninstantiated:
|
|
case EST_Unevaluated:
|
|
case EST_BasicNoexcept:
|
|
case EST_DynamicNone:
|
|
case EST_MSAny:
|
|
case EST_None:
|
|
break;
|
|
|
|
case EST_ComputedNoexcept:
|
|
if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
|
|
return true;
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case EST_Dynamic:
|
|
for (const auto &E : Proto->exceptions()) {
|
|
if (!Finder.TraverseType(E))
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
|
|
FindCXXThisExpr Finder(*this);
|
|
|
|
// Check attributes.
|
|
for (const auto *A : Method->attrs()) {
|
|
// FIXME: This should be emitted by tblgen.
|
|
Expr *Arg = nullptr;
|
|
ArrayRef<Expr *> Args;
|
|
if (const auto *G = dyn_cast<GuardedByAttr>(A))
|
|
Arg = G->getArg();
|
|
else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
|
|
Arg = G->getArg();
|
|
else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
|
|
Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
|
|
else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
|
|
Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
|
|
else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
|
|
Arg = ETLF->getSuccessValue();
|
|
Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
|
|
} else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
|
|
Arg = STLF->getSuccessValue();
|
|
Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
|
|
} else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
|
|
Arg = LR->getArg();
|
|
else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
|
|
Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
|
|
else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
|
|
Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
|
|
else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
|
|
Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
|
|
else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
|
|
Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
|
|
else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
|
|
Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
|
|
|
|
if (Arg && !Finder.TraverseStmt(Arg))
|
|
return true;
|
|
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
if (!Finder.TraverseStmt(Args[I]))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::checkExceptionSpecification(
|
|
bool IsTopLevel, ExceptionSpecificationType EST,
|
|
ArrayRef<ParsedType> DynamicExceptions,
|
|
ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
|
|
SmallVectorImpl<QualType> &Exceptions,
|
|
FunctionProtoType::ExceptionSpecInfo &ESI) {
|
|
Exceptions.clear();
|
|
ESI.Type = EST;
|
|
if (EST == EST_Dynamic) {
|
|
Exceptions.reserve(DynamicExceptions.size());
|
|
for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
|
|
// FIXME: Preserve type source info.
|
|
QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
|
|
|
|
if (IsTopLevel) {
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
collectUnexpandedParameterPacks(ET, Unexpanded);
|
|
if (!Unexpanded.empty()) {
|
|
DiagnoseUnexpandedParameterPacks(
|
|
DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
|
|
Unexpanded);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check that the type is valid for an exception spec, and
|
|
// drop it if not.
|
|
if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
|
|
Exceptions.push_back(ET);
|
|
}
|
|
ESI.Exceptions = Exceptions;
|
|
return;
|
|
}
|
|
|
|
if (EST == EST_ComputedNoexcept) {
|
|
// If an error occurred, there's no expression here.
|
|
if (NoexceptExpr) {
|
|
assert((NoexceptExpr->isTypeDependent() ||
|
|
NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
|
|
Context.BoolTy) &&
|
|
"Parser should have made sure that the expression is boolean");
|
|
if (IsTopLevel && NoexceptExpr &&
|
|
DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
|
|
ESI.Type = EST_BasicNoexcept;
|
|
return;
|
|
}
|
|
|
|
if (!NoexceptExpr->isValueDependent()) {
|
|
ExprResult Result = VerifyIntegerConstantExpression(
|
|
NoexceptExpr, nullptr, diag::err_noexcept_needs_constant_expression,
|
|
/*AllowFold*/ false);
|
|
if (Result.isInvalid()) {
|
|
ESI.Type = EST_BasicNoexcept;
|
|
return;
|
|
}
|
|
NoexceptExpr = Result.get();
|
|
}
|
|
ESI.NoexceptExpr = NoexceptExpr;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
|
|
ExceptionSpecificationType EST,
|
|
SourceRange SpecificationRange,
|
|
ArrayRef<ParsedType> DynamicExceptions,
|
|
ArrayRef<SourceRange> DynamicExceptionRanges,
|
|
Expr *NoexceptExpr) {
|
|
if (!MethodD)
|
|
return;
|
|
|
|
// Dig out the method we're referring to.
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
|
|
MethodD = FunTmpl->getTemplatedDecl();
|
|
|
|
CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
|
|
if (!Method)
|
|
return;
|
|
|
|
// Check the exception specification.
|
|
llvm::SmallVector<QualType, 4> Exceptions;
|
|
FunctionProtoType::ExceptionSpecInfo ESI;
|
|
checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
|
|
DynamicExceptionRanges, NoexceptExpr, Exceptions,
|
|
ESI);
|
|
|
|
// Update the exception specification on the function type.
|
|
Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
|
|
|
|
if (Method->isStatic())
|
|
checkThisInStaticMemberFunctionExceptionSpec(Method);
|
|
|
|
if (Method->isVirtual()) {
|
|
// Check overrides, which we previously had to delay.
|
|
for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
|
|
OEnd = Method->end_overridden_methods();
|
|
O != OEnd; ++O)
|
|
CheckOverridingFunctionExceptionSpec(Method, *O);
|
|
}
|
|
}
|
|
|
|
/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
|
|
///
|
|
MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
|
|
SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitWidth,
|
|
InClassInitStyle InitStyle,
|
|
AccessSpecifier AS,
|
|
AttributeList *MSPropertyAttr) {
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
if (!II) {
|
|
Diag(DeclStart, diag::err_anonymous_property);
|
|
return nullptr;
|
|
}
|
|
SourceLocation Loc = D.getIdentifierLoc();
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType T = TInfo->getType();
|
|
if (getLangOpts().CPlusPlus) {
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
|
|
UPPC_DataMemberType)) {
|
|
D.setInvalidType();
|
|
T = Context.IntTy;
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
|
|
}
|
|
}
|
|
|
|
DiagnoseFunctionSpecifiers(D.getDeclSpec());
|
|
|
|
if (D.getDeclSpec().isInlineSpecified())
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
|
|
<< getLangOpts().CPlusPlus1z;
|
|
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
|
|
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
|
|
diag::err_invalid_thread)
|
|
<< DeclSpec::getSpecifierName(TSCS);
|
|
|
|
// Check to see if this name was declared as a member previously
|
|
NamedDecl *PrevDecl = nullptr;
|
|
LookupResult Previous(*this, II, Loc, LookupMemberName,
|
|
ForVisibleRedeclaration);
|
|
LookupName(Previous, S);
|
|
switch (Previous.getResultKind()) {
|
|
case LookupResult::Found:
|
|
case LookupResult::FoundUnresolvedValue:
|
|
PrevDecl = Previous.getAsSingle<NamedDecl>();
|
|
break;
|
|
|
|
case LookupResult::FoundOverloaded:
|
|
PrevDecl = Previous.getRepresentativeDecl();
|
|
break;
|
|
|
|
case LookupResult::NotFound:
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
case LookupResult::Ambiguous:
|
|
break;
|
|
}
|
|
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = nullptr;
|
|
}
|
|
|
|
if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
|
|
PrevDecl = nullptr;
|
|
|
|
SourceLocation TSSL = D.getLocStart();
|
|
const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
|
|
MSPropertyDecl *NewPD = MSPropertyDecl::Create(
|
|
Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
|
|
ProcessDeclAttributes(TUScope, NewPD, D);
|
|
NewPD->setAccess(AS);
|
|
|
|
if (NewPD->isInvalidDecl())
|
|
Record->setInvalidDecl();
|
|
|
|
if (D.getDeclSpec().isModulePrivateSpecified())
|
|
NewPD->setModulePrivate();
|
|
|
|
if (NewPD->isInvalidDecl() && PrevDecl) {
|
|
// Don't introduce NewFD into scope; there's already something
|
|
// with the same name in the same scope.
|
|
} else if (II) {
|
|
PushOnScopeChains(NewPD, S);
|
|
} else
|
|
Record->addDecl(NewPD);
|
|
|
|
return NewPD;
|
|
}
|