forked from OSchip/llvm-project
450 lines
15 KiB
C++
450 lines
15 KiB
C++
//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This transform is designed to eliminate unreachable internal globals from the
|
|
// program. It uses an aggressive algorithm, searching out globals that are
|
|
// known to be alive. After it finds all of the globals which are needed, it
|
|
// deletes whatever is left over. This allows it to delete recursive chunks of
|
|
// the program which are unreachable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/GlobalDCE.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/TypeMetadataUtils.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Utils/CtorUtils.h"
|
|
#include "llvm/Transforms/Utils/GlobalStatus.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "globaldce"
|
|
|
|
static cl::opt<bool>
|
|
ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
|
|
cl::desc("Enable virtual function elimination"));
|
|
|
|
STATISTIC(NumAliases , "Number of global aliases removed");
|
|
STATISTIC(NumFunctions, "Number of functions removed");
|
|
STATISTIC(NumIFuncs, "Number of indirect functions removed");
|
|
STATISTIC(NumVariables, "Number of global variables removed");
|
|
STATISTIC(NumVFuncs, "Number of virtual functions removed");
|
|
|
|
namespace {
|
|
class GlobalDCELegacyPass : public ModulePass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
GlobalDCELegacyPass() : ModulePass(ID) {
|
|
initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// run - Do the GlobalDCE pass on the specified module, optionally updating
|
|
// the specified callgraph to reflect the changes.
|
|
//
|
|
bool runOnModule(Module &M) override {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
// We need a minimally functional dummy module analysis manager. It needs
|
|
// to at least know about the possibility of proxying a function analysis
|
|
// manager.
|
|
FunctionAnalysisManager DummyFAM;
|
|
ModuleAnalysisManager DummyMAM;
|
|
DummyMAM.registerPass(
|
|
[&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });
|
|
|
|
auto PA = Impl.run(M, DummyMAM);
|
|
return !PA.areAllPreserved();
|
|
}
|
|
|
|
private:
|
|
GlobalDCEPass Impl;
|
|
};
|
|
}
|
|
|
|
char GlobalDCELegacyPass::ID = 0;
|
|
INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
|
|
"Dead Global Elimination", false, false)
|
|
|
|
// Public interface to the GlobalDCEPass.
|
|
ModulePass *llvm::createGlobalDCEPass() {
|
|
return new GlobalDCELegacyPass();
|
|
}
|
|
|
|
/// Returns true if F is effectively empty.
|
|
static bool isEmptyFunction(Function *F) {
|
|
BasicBlock &Entry = F->getEntryBlock();
|
|
for (auto &I : Entry) {
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
if (auto *RI = dyn_cast<ReturnInst>(&I))
|
|
return !RI->getReturnValue();
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Compute the set of GlobalValue that depends from V.
|
|
/// The recursion stops as soon as a GlobalValue is met.
|
|
void GlobalDCEPass::ComputeDependencies(Value *V,
|
|
SmallPtrSetImpl<GlobalValue *> &Deps) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
Function *Parent = I->getParent()->getParent();
|
|
Deps.insert(Parent);
|
|
} else if (auto *GV = dyn_cast<GlobalValue>(V)) {
|
|
Deps.insert(GV);
|
|
} else if (auto *CE = dyn_cast<Constant>(V)) {
|
|
// Avoid walking the whole tree of a big ConstantExprs multiple times.
|
|
auto Where = ConstantDependenciesCache.find(CE);
|
|
if (Where != ConstantDependenciesCache.end()) {
|
|
auto const &K = Where->second;
|
|
Deps.insert(K.begin(), K.end());
|
|
} else {
|
|
SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
|
|
for (User *CEUser : CE->users())
|
|
ComputeDependencies(CEUser, LocalDeps);
|
|
Deps.insert(LocalDeps.begin(), LocalDeps.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
|
|
SmallPtrSet<GlobalValue *, 8> Deps;
|
|
for (User *User : GV.users())
|
|
ComputeDependencies(User, Deps);
|
|
Deps.erase(&GV); // Remove self-reference.
|
|
for (GlobalValue *GVU : Deps) {
|
|
// If this is a dep from a vtable to a virtual function, and we have
|
|
// complete information about all virtual call sites which could call
|
|
// though this vtable, then skip it, because the call site information will
|
|
// be more precise.
|
|
if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
|
|
LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
|
|
<< GV.getName() << "\n");
|
|
continue;
|
|
}
|
|
GVDependencies[GVU].insert(&GV);
|
|
}
|
|
}
|
|
|
|
/// Mark Global value as Live
|
|
void GlobalDCEPass::MarkLive(GlobalValue &GV,
|
|
SmallVectorImpl<GlobalValue *> *Updates) {
|
|
auto const Ret = AliveGlobals.insert(&GV);
|
|
if (!Ret.second)
|
|
return;
|
|
|
|
if (Updates)
|
|
Updates->push_back(&GV);
|
|
if (Comdat *C = GV.getComdat()) {
|
|
for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
|
|
MarkLive(*CM.second, Updates); // Recursion depth is only two because only
|
|
// globals in the same comdat are visited.
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::ScanVTables(Module &M) {
|
|
SmallVector<MDNode *, 2> Types;
|
|
LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
|
|
|
|
auto *LTOPostLinkMD =
|
|
cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
|
|
bool LTOPostLink =
|
|
LTOPostLinkMD &&
|
|
(cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);
|
|
|
|
for (GlobalVariable &GV : M.globals()) {
|
|
Types.clear();
|
|
GV.getMetadata(LLVMContext::MD_type, Types);
|
|
if (GV.isDeclaration() || Types.empty())
|
|
continue;
|
|
|
|
// Use the typeid metadata on the vtable to build a mapping from typeids to
|
|
// the list of (GV, offset) pairs which are the possible vtables for that
|
|
// typeid.
|
|
for (MDNode *Type : Types) {
|
|
Metadata *TypeID = Type->getOperand(1).get();
|
|
|
|
uint64_t Offset =
|
|
cast<ConstantInt>(
|
|
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
|
|
->getZExtValue();
|
|
|
|
TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
|
|
}
|
|
|
|
// If the type corresponding to the vtable is private to this translation
|
|
// unit, we know that we can see all virtual functions which might use it,
|
|
// so VFE is safe.
|
|
if (auto GO = dyn_cast<GlobalObject>(&GV)) {
|
|
GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
|
|
if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
|
|
(LTOPostLink &&
|
|
TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
|
|
LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
|
|
VFESafeVTables.insert(&GV);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
|
|
uint64_t CallOffset) {
|
|
for (auto &VTableInfo : TypeIdMap[TypeId]) {
|
|
GlobalVariable *VTable = VTableInfo.first;
|
|
uint64_t VTableOffset = VTableInfo.second;
|
|
|
|
Constant *Ptr =
|
|
getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
|
|
*Caller->getParent());
|
|
if (!Ptr) {
|
|
LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
|
|
VFESafeVTables.erase(VTable);
|
|
return;
|
|
}
|
|
|
|
auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
|
|
if (!Callee) {
|
|
LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
|
|
VFESafeVTables.erase(VTable);
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
|
|
<< Callee->getName() << "\n");
|
|
GVDependencies[Caller].insert(Callee);
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
|
|
LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
|
|
Function *TypeCheckedLoadFunc =
|
|
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
|
|
|
|
if (!TypeCheckedLoadFunc)
|
|
return;
|
|
|
|
for (auto U : TypeCheckedLoadFunc->users()) {
|
|
auto CI = dyn_cast<CallInst>(U);
|
|
if (!CI)
|
|
continue;
|
|
|
|
auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
|
|
Value *TypeIdValue = CI->getArgOperand(2);
|
|
auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
|
|
|
|
if (Offset) {
|
|
ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
|
|
} else {
|
|
// type.checked.load with a non-constant offset, so assume every entry in
|
|
// every matching vtable is used.
|
|
for (auto &VTableInfo : TypeIdMap[TypeId]) {
|
|
VFESafeVTables.erase(VTableInfo.first);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
|
|
if (!ClEnableVFE)
|
|
return;
|
|
|
|
ScanVTables(M);
|
|
|
|
if (VFESafeVTables.empty())
|
|
return;
|
|
|
|
ScanTypeCheckedLoadIntrinsics(M);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "VFE safe vtables:\n";
|
|
for (auto *VTable : VFESafeVTables)
|
|
dbgs() << " " << VTable->getName() << "\n";
|
|
);
|
|
}
|
|
|
|
PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
|
|
bool Changed = false;
|
|
|
|
// The algorithm first computes the set L of global variables that are
|
|
// trivially live. Then it walks the initialization of these variables to
|
|
// compute the globals used to initialize them, which effectively builds a
|
|
// directed graph where nodes are global variables, and an edge from A to B
|
|
// means B is used to initialize A. Finally, it propagates the liveness
|
|
// information through the graph starting from the nodes in L. Nodes note
|
|
// marked as alive are discarded.
|
|
|
|
// Remove empty functions from the global ctors list.
|
|
Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);
|
|
|
|
// Collect the set of members for each comdat.
|
|
for (Function &F : M)
|
|
if (Comdat *C = F.getComdat())
|
|
ComdatMembers.insert(std::make_pair(C, &F));
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (Comdat *C = GV.getComdat())
|
|
ComdatMembers.insert(std::make_pair(C, &GV));
|
|
for (GlobalAlias &GA : M.aliases())
|
|
if (Comdat *C = GA.getComdat())
|
|
ComdatMembers.insert(std::make_pair(C, &GA));
|
|
|
|
// Add dependencies between virtual call sites and the virtual functions they
|
|
// might call, if we have that information.
|
|
AddVirtualFunctionDependencies(M);
|
|
|
|
// Loop over the module, adding globals which are obviously necessary.
|
|
for (GlobalObject &GO : M.global_objects()) {
|
|
Changed |= RemoveUnusedGlobalValue(GO);
|
|
// Functions with external linkage are needed if they have a body.
|
|
// Externally visible & appending globals are needed, if they have an
|
|
// initializer.
|
|
if (!GO.isDeclaration())
|
|
if (!GO.isDiscardableIfUnused())
|
|
MarkLive(GO);
|
|
|
|
UpdateGVDependencies(GO);
|
|
}
|
|
|
|
// Compute direct dependencies of aliases.
|
|
for (GlobalAlias &GA : M.aliases()) {
|
|
Changed |= RemoveUnusedGlobalValue(GA);
|
|
// Externally visible aliases are needed.
|
|
if (!GA.isDiscardableIfUnused())
|
|
MarkLive(GA);
|
|
|
|
UpdateGVDependencies(GA);
|
|
}
|
|
|
|
// Compute direct dependencies of ifuncs.
|
|
for (GlobalIFunc &GIF : M.ifuncs()) {
|
|
Changed |= RemoveUnusedGlobalValue(GIF);
|
|
// Externally visible ifuncs are needed.
|
|
if (!GIF.isDiscardableIfUnused())
|
|
MarkLive(GIF);
|
|
|
|
UpdateGVDependencies(GIF);
|
|
}
|
|
|
|
// Propagate liveness from collected Global Values through the computed
|
|
// dependencies.
|
|
SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
|
|
AliveGlobals.end()};
|
|
while (!NewLiveGVs.empty()) {
|
|
GlobalValue *LGV = NewLiveGVs.pop_back_val();
|
|
for (auto *GVD : GVDependencies[LGV])
|
|
MarkLive(*GVD, &NewLiveGVs);
|
|
}
|
|
|
|
// Now that all globals which are needed are in the AliveGlobals set, we loop
|
|
// through the program, deleting those which are not alive.
|
|
//
|
|
|
|
// The first pass is to drop initializers of global variables which are dead.
|
|
std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (!AliveGlobals.count(&GV)) {
|
|
DeadGlobalVars.push_back(&GV); // Keep track of dead globals
|
|
if (GV.hasInitializer()) {
|
|
Constant *Init = GV.getInitializer();
|
|
GV.setInitializer(nullptr);
|
|
if (isSafeToDestroyConstant(Init))
|
|
Init->destroyConstant();
|
|
}
|
|
}
|
|
|
|
// The second pass drops the bodies of functions which are dead...
|
|
std::vector<Function *> DeadFunctions;
|
|
for (Function &F : M)
|
|
if (!AliveGlobals.count(&F)) {
|
|
DeadFunctions.push_back(&F); // Keep track of dead globals
|
|
if (!F.isDeclaration())
|
|
F.deleteBody();
|
|
}
|
|
|
|
// The third pass drops targets of aliases which are dead...
|
|
std::vector<GlobalAlias*> DeadAliases;
|
|
for (GlobalAlias &GA : M.aliases())
|
|
if (!AliveGlobals.count(&GA)) {
|
|
DeadAliases.push_back(&GA);
|
|
GA.setAliasee(nullptr);
|
|
}
|
|
|
|
// The fourth pass drops targets of ifuncs which are dead...
|
|
std::vector<GlobalIFunc*> DeadIFuncs;
|
|
for (GlobalIFunc &GIF : M.ifuncs())
|
|
if (!AliveGlobals.count(&GIF)) {
|
|
DeadIFuncs.push_back(&GIF);
|
|
GIF.setResolver(nullptr);
|
|
}
|
|
|
|
// Now that all interferences have been dropped, delete the actual objects
|
|
// themselves.
|
|
auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
|
|
RemoveUnusedGlobalValue(*GV);
|
|
GV->eraseFromParent();
|
|
Changed = true;
|
|
};
|
|
|
|
NumFunctions += DeadFunctions.size();
|
|
for (Function *F : DeadFunctions) {
|
|
if (!F->use_empty()) {
|
|
// Virtual functions might still be referenced by one or more vtables,
|
|
// but if we've proven them to be unused then it's safe to replace the
|
|
// virtual function pointers with null, allowing us to remove the
|
|
// function itself.
|
|
++NumVFuncs;
|
|
F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
|
|
}
|
|
EraseUnusedGlobalValue(F);
|
|
}
|
|
|
|
NumVariables += DeadGlobalVars.size();
|
|
for (GlobalVariable *GV : DeadGlobalVars)
|
|
EraseUnusedGlobalValue(GV);
|
|
|
|
NumAliases += DeadAliases.size();
|
|
for (GlobalAlias *GA : DeadAliases)
|
|
EraseUnusedGlobalValue(GA);
|
|
|
|
NumIFuncs += DeadIFuncs.size();
|
|
for (GlobalIFunc *GIF : DeadIFuncs)
|
|
EraseUnusedGlobalValue(GIF);
|
|
|
|
// Make sure that all memory is released
|
|
AliveGlobals.clear();
|
|
ConstantDependenciesCache.clear();
|
|
GVDependencies.clear();
|
|
ComdatMembers.clear();
|
|
TypeIdMap.clear();
|
|
VFESafeVTables.clear();
|
|
|
|
if (Changed)
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
|
|
// GlobalValue, looking for the constant pointer ref that may be pointing to it.
|
|
// If found, check to see if the constant pointer ref is safe to destroy, and if
|
|
// so, nuke it. This will reduce the reference count on the global value, which
|
|
// might make it deader.
|
|
//
|
|
bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
|
|
if (GV.use_empty())
|
|
return false;
|
|
GV.removeDeadConstantUsers();
|
|
return GV.use_empty();
|
|
}
|