forked from OSchip/llvm-project
837 lines
31 KiB
C++
837 lines
31 KiB
C++
//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Loop Distribution Pass. Its main focus is to
|
|
// distribute loops that cannot be vectorized due to dependence cycles. It
|
|
// tries to isolate the offending dependences into a new loop allowing
|
|
// vectorization of the remaining parts.
|
|
//
|
|
// For dependence analysis, the pass uses the LoopVectorizer's
|
|
// LoopAccessAnalysis. Because this analysis presumes no change in the order of
|
|
// memory operations, special care is taken to preserve the lexical order of
|
|
// these operations.
|
|
//
|
|
// Similarly to the Vectorizer, the pass also supports loop versioning to
|
|
// run-time disambiguate potentially overlapping arrays.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopVersioning.h"
|
|
#include <list>
|
|
|
|
#define LDIST_NAME "loop-distribute"
|
|
#define DEBUG_TYPE LDIST_NAME
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
LDistVerify("loop-distribute-verify", cl::Hidden,
|
|
cl::desc("Turn on DominatorTree and LoopInfo verification "
|
|
"after Loop Distribution"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> DistributeNonIfConvertible(
|
|
"loop-distribute-non-if-convertible", cl::Hidden,
|
|
cl::desc("Whether to distribute into a loop that may not be "
|
|
"if-convertible by the loop vectorizer"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned> DistributeSCEVCheckThreshold(
|
|
"loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
|
|
cl::desc("The maximum number of SCEV checks allowed for Loop "
|
|
"Distribution"));
|
|
|
|
STATISTIC(NumLoopsDistributed, "Number of loops distributed");
|
|
|
|
namespace {
|
|
/// \brief Maintains the set of instructions of the loop for a partition before
|
|
/// cloning. After cloning, it hosts the new loop.
|
|
class InstPartition {
|
|
typedef SmallPtrSet<Instruction *, 8> InstructionSet;
|
|
|
|
public:
|
|
InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
|
|
: DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) {
|
|
Set.insert(I);
|
|
}
|
|
|
|
/// \brief Returns whether this partition contains a dependence cycle.
|
|
bool hasDepCycle() const { return DepCycle; }
|
|
|
|
/// \brief Adds an instruction to this partition.
|
|
void add(Instruction *I) { Set.insert(I); }
|
|
|
|
/// \brief Collection accessors.
|
|
InstructionSet::iterator begin() { return Set.begin(); }
|
|
InstructionSet::iterator end() { return Set.end(); }
|
|
InstructionSet::const_iterator begin() const { return Set.begin(); }
|
|
InstructionSet::const_iterator end() const { return Set.end(); }
|
|
bool empty() const { return Set.empty(); }
|
|
|
|
/// \brief Moves this partition into \p Other. This partition becomes empty
|
|
/// after this.
|
|
void moveTo(InstPartition &Other) {
|
|
Other.Set.insert(Set.begin(), Set.end());
|
|
Set.clear();
|
|
Other.DepCycle |= DepCycle;
|
|
}
|
|
|
|
/// \brief Populates the partition with a transitive closure of all the
|
|
/// instructions that the seeded instructions dependent on.
|
|
void populateUsedSet() {
|
|
// FIXME: We currently don't use control-dependence but simply include all
|
|
// blocks (possibly empty at the end) and let simplifycfg mostly clean this
|
|
// up.
|
|
for (auto *B : OrigLoop->getBlocks())
|
|
Set.insert(B->getTerminator());
|
|
|
|
// Follow the use-def chains to form a transitive closure of all the
|
|
// instructions that the originally seeded instructions depend on.
|
|
SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
|
|
while (!Worklist.empty()) {
|
|
Instruction *I = Worklist.pop_back_val();
|
|
// Insert instructions from the loop that we depend on.
|
|
for (Value *V : I->operand_values()) {
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
|
|
Worklist.push_back(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Clones the original loop.
|
|
///
|
|
/// Updates LoopInfo and DominatorTree using the information that block \p
|
|
/// LoopDomBB dominates the loop.
|
|
Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
|
|
unsigned Index, LoopInfo *LI,
|
|
DominatorTree *DT) {
|
|
ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
|
|
VMap, Twine(".ldist") + Twine(Index),
|
|
LI, DT, ClonedLoopBlocks);
|
|
return ClonedLoop;
|
|
}
|
|
|
|
/// \brief The cloned loop. If this partition is mapped to the original loop,
|
|
/// this is null.
|
|
const Loop *getClonedLoop() const { return ClonedLoop; }
|
|
|
|
/// \brief Returns the loop where this partition ends up after distribution.
|
|
/// If this partition is mapped to the original loop then use the block from
|
|
/// the loop.
|
|
const Loop *getDistributedLoop() const {
|
|
return ClonedLoop ? ClonedLoop : OrigLoop;
|
|
}
|
|
|
|
/// \brief The VMap that is populated by cloning and then used in
|
|
/// remapinstruction to remap the cloned instructions.
|
|
ValueToValueMapTy &getVMap() { return VMap; }
|
|
|
|
/// \brief Remaps the cloned instructions using VMap.
|
|
void remapInstructions() {
|
|
remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
|
|
}
|
|
|
|
/// \brief Based on the set of instructions selected for this partition,
|
|
/// removes the unnecessary ones.
|
|
void removeUnusedInsts() {
|
|
SmallVector<Instruction *, 8> Unused;
|
|
|
|
for (auto *Block : OrigLoop->getBlocks())
|
|
for (auto &Inst : *Block)
|
|
if (!Set.count(&Inst)) {
|
|
Instruction *NewInst = &Inst;
|
|
if (!VMap.empty())
|
|
NewInst = cast<Instruction>(VMap[NewInst]);
|
|
|
|
assert(!isa<BranchInst>(NewInst) &&
|
|
"Branches are marked used early on");
|
|
Unused.push_back(NewInst);
|
|
}
|
|
|
|
// Delete the instructions backwards, as it has a reduced likelihood of
|
|
// having to update as many def-use and use-def chains.
|
|
for (auto *Inst : make_range(Unused.rbegin(), Unused.rend())) {
|
|
if (!Inst->use_empty())
|
|
Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
|
|
Inst->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void print() const {
|
|
if (DepCycle)
|
|
dbgs() << " (cycle)\n";
|
|
for (auto *I : Set)
|
|
// Prefix with the block name.
|
|
dbgs() << " " << I->getParent()->getName() << ":" << *I << "\n";
|
|
}
|
|
|
|
void printBlocks() const {
|
|
for (auto *BB : getDistributedLoop()->getBlocks())
|
|
dbgs() << *BB;
|
|
}
|
|
|
|
private:
|
|
/// \brief Instructions from OrigLoop selected for this partition.
|
|
InstructionSet Set;
|
|
|
|
/// \brief Whether this partition contains a dependence cycle.
|
|
bool DepCycle;
|
|
|
|
/// \brief The original loop.
|
|
Loop *OrigLoop;
|
|
|
|
/// \brief The cloned loop. If this partition is mapped to the original loop,
|
|
/// this is null.
|
|
Loop *ClonedLoop;
|
|
|
|
/// \brief The blocks of ClonedLoop including the preheader. If this
|
|
/// partition is mapped to the original loop, this is empty.
|
|
SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
|
|
|
|
/// \brief These gets populated once the set of instructions have been
|
|
/// finalized. If this partition is mapped to the original loop, these are not
|
|
/// set.
|
|
ValueToValueMapTy VMap;
|
|
};
|
|
|
|
/// \brief Holds the set of Partitions. It populates them, merges them and then
|
|
/// clones the loops.
|
|
class InstPartitionContainer {
|
|
typedef DenseMap<Instruction *, int> InstToPartitionIdT;
|
|
|
|
public:
|
|
InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
|
|
: L(L), LI(LI), DT(DT) {}
|
|
|
|
/// \brief Returns the number of partitions.
|
|
unsigned getSize() const { return PartitionContainer.size(); }
|
|
|
|
/// \brief Adds \p Inst into the current partition if that is marked to
|
|
/// contain cycles. Otherwise start a new partition for it.
|
|
void addToCyclicPartition(Instruction *Inst) {
|
|
// If the current partition is non-cyclic. Start a new one.
|
|
if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
|
|
PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
|
|
else
|
|
PartitionContainer.back().add(Inst);
|
|
}
|
|
|
|
/// \brief Adds \p Inst into a partition that is not marked to contain
|
|
/// dependence cycles.
|
|
///
|
|
// Initially we isolate memory instructions into as many partitions as
|
|
// possible, then later we may merge them back together.
|
|
void addToNewNonCyclicPartition(Instruction *Inst) {
|
|
PartitionContainer.emplace_back(Inst, L);
|
|
}
|
|
|
|
/// \brief Merges adjacent non-cyclic partitions.
|
|
///
|
|
/// The idea is that we currently only want to isolate the non-vectorizable
|
|
/// partition. We could later allow more distribution among these partition
|
|
/// too.
|
|
void mergeAdjacentNonCyclic() {
|
|
mergeAdjacentPartitionsIf(
|
|
[](const InstPartition *P) { return !P->hasDepCycle(); });
|
|
}
|
|
|
|
/// \brief If a partition contains only conditional stores, we won't vectorize
|
|
/// it. Try to merge it with a previous cyclic partition.
|
|
void mergeNonIfConvertible() {
|
|
mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
|
|
if (Partition->hasDepCycle())
|
|
return true;
|
|
|
|
// Now, check if all stores are conditional in this partition.
|
|
bool seenStore = false;
|
|
|
|
for (auto *Inst : *Partition)
|
|
if (isa<StoreInst>(Inst)) {
|
|
seenStore = true;
|
|
if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
|
|
return false;
|
|
}
|
|
return seenStore;
|
|
});
|
|
}
|
|
|
|
/// \brief Merges the partitions according to various heuristics.
|
|
void mergeBeforePopulating() {
|
|
mergeAdjacentNonCyclic();
|
|
if (!DistributeNonIfConvertible)
|
|
mergeNonIfConvertible();
|
|
}
|
|
|
|
/// \brief Merges partitions in order to ensure that no loads are duplicated.
|
|
///
|
|
/// We can't duplicate loads because that could potentially reorder them.
|
|
/// LoopAccessAnalysis provides dependency information with the context that
|
|
/// the order of memory operation is preserved.
|
|
///
|
|
/// Return if any partitions were merged.
|
|
bool mergeToAvoidDuplicatedLoads() {
|
|
typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT;
|
|
typedef EquivalenceClasses<InstPartition *> ToBeMergedT;
|
|
|
|
LoadToPartitionT LoadToPartition;
|
|
ToBeMergedT ToBeMerged;
|
|
|
|
// Step through the partitions and create equivalence between partitions
|
|
// that contain the same load. Also put partitions in between them in the
|
|
// same equivalence class to avoid reordering of memory operations.
|
|
for (PartitionContainerT::iterator I = PartitionContainer.begin(),
|
|
E = PartitionContainer.end();
|
|
I != E; ++I) {
|
|
auto *PartI = &*I;
|
|
|
|
// If a load occurs in two partitions PartI and PartJ, merge all
|
|
// partitions (PartI, PartJ] into PartI.
|
|
for (Instruction *Inst : *PartI)
|
|
if (isa<LoadInst>(Inst)) {
|
|
bool NewElt;
|
|
LoadToPartitionT::iterator LoadToPart;
|
|
|
|
std::tie(LoadToPart, NewElt) =
|
|
LoadToPartition.insert(std::make_pair(Inst, PartI));
|
|
if (!NewElt) {
|
|
DEBUG(dbgs() << "Merging partitions due to this load in multiple "
|
|
<< "partitions: " << PartI << ", "
|
|
<< LoadToPart->second << "\n" << *Inst << "\n");
|
|
|
|
auto PartJ = I;
|
|
do {
|
|
--PartJ;
|
|
ToBeMerged.unionSets(PartI, &*PartJ);
|
|
} while (&*PartJ != LoadToPart->second);
|
|
}
|
|
}
|
|
}
|
|
if (ToBeMerged.empty())
|
|
return false;
|
|
|
|
// Merge the member of an equivalence class into its class leader. This
|
|
// makes the members empty.
|
|
for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
|
|
I != E; ++I) {
|
|
if (!I->isLeader())
|
|
continue;
|
|
|
|
auto PartI = I->getData();
|
|
for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
|
|
ToBeMerged.member_end())) {
|
|
PartJ->moveTo(*PartI);
|
|
}
|
|
}
|
|
|
|
// Remove the empty partitions.
|
|
PartitionContainer.remove_if(
|
|
[](const InstPartition &P) { return P.empty(); });
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Sets up the mapping between instructions to partitions. If the
|
|
/// instruction is duplicated across multiple partitions, set the entry to -1.
|
|
void setupPartitionIdOnInstructions() {
|
|
int PartitionID = 0;
|
|
for (const auto &Partition : PartitionContainer) {
|
|
for (Instruction *Inst : Partition) {
|
|
bool NewElt;
|
|
InstToPartitionIdT::iterator Iter;
|
|
|
|
std::tie(Iter, NewElt) =
|
|
InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
|
|
if (!NewElt)
|
|
Iter->second = -1;
|
|
}
|
|
++PartitionID;
|
|
}
|
|
}
|
|
|
|
/// \brief Populates the partition with everything that the seeding
|
|
/// instructions require.
|
|
void populateUsedSet() {
|
|
for (auto &P : PartitionContainer)
|
|
P.populateUsedSet();
|
|
}
|
|
|
|
/// \brief This performs the main chunk of the work of cloning the loops for
|
|
/// the partitions.
|
|
void cloneLoops() {
|
|
BasicBlock *OrigPH = L->getLoopPreheader();
|
|
// At this point the predecessor of the preheader is either the memcheck
|
|
// block or the top part of the original preheader.
|
|
BasicBlock *Pred = OrigPH->getSinglePredecessor();
|
|
assert(Pred && "Preheader does not have a single predecessor");
|
|
BasicBlock *ExitBlock = L->getExitBlock();
|
|
assert(ExitBlock && "No single exit block");
|
|
Loop *NewLoop;
|
|
|
|
assert(!PartitionContainer.empty() && "at least two partitions expected");
|
|
// We're cloning the preheader along with the loop so we already made sure
|
|
// it was empty.
|
|
assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
|
|
"preheader not empty");
|
|
|
|
// Create a loop for each partition except the last. Clone the original
|
|
// loop before PH along with adding a preheader for the cloned loop. Then
|
|
// update PH to point to the newly added preheader.
|
|
BasicBlock *TopPH = OrigPH;
|
|
unsigned Index = getSize() - 1;
|
|
for (auto I = std::next(PartitionContainer.rbegin()),
|
|
E = PartitionContainer.rend();
|
|
I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
|
|
auto *Part = &*I;
|
|
|
|
NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
|
|
|
|
Part->getVMap()[ExitBlock] = TopPH;
|
|
Part->remapInstructions();
|
|
}
|
|
Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
|
|
|
|
// Now go in forward order and update the immediate dominator for the
|
|
// preheaders with the exiting block of the previous loop. Dominance
|
|
// within the loop is updated in cloneLoopWithPreheader.
|
|
for (auto Curr = PartitionContainer.cbegin(),
|
|
Next = std::next(PartitionContainer.cbegin()),
|
|
E = PartitionContainer.cend();
|
|
Next != E; ++Curr, ++Next)
|
|
DT->changeImmediateDominator(
|
|
Next->getDistributedLoop()->getLoopPreheader(),
|
|
Curr->getDistributedLoop()->getExitingBlock());
|
|
}
|
|
|
|
/// \brief Removes the dead instructions from the cloned loops.
|
|
void removeUnusedInsts() {
|
|
for (auto &Partition : PartitionContainer)
|
|
Partition.removeUnusedInsts();
|
|
}
|
|
|
|
/// \brief For each memory pointer, it computes the partitionId the pointer is
|
|
/// used in.
|
|
///
|
|
/// This returns an array of int where the I-th entry corresponds to I-th
|
|
/// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple
|
|
/// partitions its entry is set to -1.
|
|
SmallVector<int, 8>
|
|
computePartitionSetForPointers(const LoopAccessInfo &LAI) {
|
|
const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
|
|
|
|
unsigned N = RtPtrCheck->Pointers.size();
|
|
SmallVector<int, 8> PtrToPartitions(N);
|
|
for (unsigned I = 0; I < N; ++I) {
|
|
Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
|
|
auto Instructions =
|
|
LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
|
|
|
|
int &Partition = PtrToPartitions[I];
|
|
// First set it to uninitialized.
|
|
Partition = -2;
|
|
for (Instruction *Inst : Instructions) {
|
|
// Note that this could be -1 if Inst is duplicated across multiple
|
|
// partitions.
|
|
int ThisPartition = this->InstToPartitionId[Inst];
|
|
if (Partition == -2)
|
|
Partition = ThisPartition;
|
|
// -1 means belonging to multiple partitions.
|
|
else if (Partition == -1)
|
|
break;
|
|
else if (Partition != (int)ThisPartition)
|
|
Partition = -1;
|
|
}
|
|
assert(Partition != -2 && "Pointer not belonging to any partition");
|
|
}
|
|
|
|
return PtrToPartitions;
|
|
}
|
|
|
|
void print(raw_ostream &OS) const {
|
|
unsigned Index = 0;
|
|
for (const auto &P : PartitionContainer) {
|
|
OS << "Partition " << Index++ << " (" << &P << "):\n";
|
|
P.print();
|
|
}
|
|
}
|
|
|
|
void dump() const { print(dbgs()); }
|
|
|
|
#ifndef NDEBUG
|
|
friend raw_ostream &operator<<(raw_ostream &OS,
|
|
const InstPartitionContainer &Partitions) {
|
|
Partitions.print(OS);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
void printBlocks() const {
|
|
unsigned Index = 0;
|
|
for (const auto &P : PartitionContainer) {
|
|
dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
|
|
P.printBlocks();
|
|
}
|
|
}
|
|
|
|
private:
|
|
typedef std::list<InstPartition> PartitionContainerT;
|
|
|
|
/// \brief List of partitions.
|
|
PartitionContainerT PartitionContainer;
|
|
|
|
/// \brief Mapping from Instruction to partition Id. If the instruction
|
|
/// belongs to multiple partitions the entry contains -1.
|
|
InstToPartitionIdT InstToPartitionId;
|
|
|
|
Loop *L;
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
|
|
/// \brief The control structure to merge adjacent partitions if both satisfy
|
|
/// the \p Predicate.
|
|
template <class UnaryPredicate>
|
|
void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
|
|
InstPartition *PrevMatch = nullptr;
|
|
for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
|
|
auto DoesMatch = Predicate(&*I);
|
|
if (PrevMatch == nullptr && DoesMatch) {
|
|
PrevMatch = &*I;
|
|
++I;
|
|
} else if (PrevMatch != nullptr && DoesMatch) {
|
|
I->moveTo(*PrevMatch);
|
|
I = PartitionContainer.erase(I);
|
|
} else {
|
|
PrevMatch = nullptr;
|
|
++I;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/// \brief For each memory instruction, this class maintains difference of the
|
|
/// number of unsafe dependences that start out from this instruction minus
|
|
/// those that end here.
|
|
///
|
|
/// By traversing the memory instructions in program order and accumulating this
|
|
/// number, we know whether any unsafe dependence crosses over a program point.
|
|
class MemoryInstructionDependences {
|
|
typedef MemoryDepChecker::Dependence Dependence;
|
|
|
|
public:
|
|
struct Entry {
|
|
Instruction *Inst;
|
|
unsigned NumUnsafeDependencesStartOrEnd;
|
|
|
|
Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {}
|
|
};
|
|
|
|
typedef SmallVector<Entry, 8> AccessesType;
|
|
|
|
AccessesType::const_iterator begin() const { return Accesses.begin(); }
|
|
AccessesType::const_iterator end() const { return Accesses.end(); }
|
|
|
|
MemoryInstructionDependences(
|
|
const SmallVectorImpl<Instruction *> &Instructions,
|
|
const SmallVectorImpl<Dependence> &Dependences) {
|
|
Accesses.append(Instructions.begin(), Instructions.end());
|
|
|
|
DEBUG(dbgs() << "Backward dependences:\n");
|
|
for (auto &Dep : Dependences)
|
|
if (Dep.isPossiblyBackward()) {
|
|
// Note that the designations source and destination follow the program
|
|
// order, i.e. source is always first. (The direction is given by the
|
|
// DepType.)
|
|
++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
|
|
--Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
|
|
|
|
DEBUG(Dep.print(dbgs(), 2, Instructions));
|
|
}
|
|
}
|
|
|
|
private:
|
|
AccessesType Accesses;
|
|
};
|
|
|
|
/// \brief The pass class.
|
|
class LoopDistribute : public FunctionPass {
|
|
public:
|
|
LoopDistribute() : FunctionPass(ID) {
|
|
initializeLoopDistributePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
LAA = &getAnalysis<LoopAccessAnalysis>();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
|
|
// Build up a worklist of inner-loops to vectorize. This is necessary as the
|
|
// act of distributing a loop creates new loops and can invalidate iterators
|
|
// across the loops.
|
|
SmallVector<Loop *, 8> Worklist;
|
|
|
|
for (Loop *TopLevelLoop : *LI)
|
|
for (Loop *L : depth_first(TopLevelLoop))
|
|
// We only handle inner-most loops.
|
|
if (L->empty())
|
|
Worklist.push_back(L);
|
|
|
|
// Now walk the identified inner loops.
|
|
bool Changed = false;
|
|
for (Loop *L : Worklist)
|
|
Changed |= processLoop(L);
|
|
|
|
// Process each loop nest in the function.
|
|
return Changed;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.addRequired<LoopAccessAnalysis>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
|
|
static char ID;
|
|
|
|
private:
|
|
/// \brief Filter out checks between pointers from the same partition.
|
|
///
|
|
/// \p PtrToPartition contains the partition number for pointers. Partition
|
|
/// number -1 means that the pointer is used in multiple partitions. In this
|
|
/// case we can't safely omit the check.
|
|
SmallVector<RuntimePointerChecking::PointerCheck, 4>
|
|
includeOnlyCrossPartitionChecks(
|
|
const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
|
|
const SmallVectorImpl<int> &PtrToPartition,
|
|
const RuntimePointerChecking *RtPtrChecking) {
|
|
SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
|
|
|
|
std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
|
|
[&](const RuntimePointerChecking::PointerCheck &Check) {
|
|
for (unsigned PtrIdx1 : Check.first->Members)
|
|
for (unsigned PtrIdx2 : Check.second->Members)
|
|
// Only include this check if there is a pair of pointers
|
|
// that require checking and the pointers fall into
|
|
// separate partitions.
|
|
//
|
|
// (Note that we already know at this point that the two
|
|
// pointer groups need checking but it doesn't follow
|
|
// that each pair of pointers within the two groups need
|
|
// checking as well.
|
|
//
|
|
// In other words we don't want to include a check just
|
|
// because there is a pair of pointers between the two
|
|
// pointer groups that require checks and a different
|
|
// pair whose pointers fall into different partitions.)
|
|
if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
|
|
!RuntimePointerChecking::arePointersInSamePartition(
|
|
PtrToPartition, PtrIdx1, PtrIdx2))
|
|
return true;
|
|
return false;
|
|
});
|
|
|
|
return Checks;
|
|
}
|
|
|
|
/// \brief Try to distribute an inner-most loop.
|
|
bool processLoop(Loop *L) {
|
|
assert(L->empty() && "Only process inner loops.");
|
|
|
|
DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
|
|
<< "\" checking " << *L << "\n");
|
|
|
|
BasicBlock *PH = L->getLoopPreheader();
|
|
if (!PH) {
|
|
DEBUG(dbgs() << "Skipping; no preheader");
|
|
return false;
|
|
}
|
|
if (!L->getExitBlock()) {
|
|
DEBUG(dbgs() << "Skipping; multiple exit blocks");
|
|
return false;
|
|
}
|
|
// LAA will check that we only have a single exiting block.
|
|
|
|
const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
|
|
|
|
// Currently, we only distribute to isolate the part of the loop with
|
|
// dependence cycles to enable partial vectorization.
|
|
if (LAI.canVectorizeMemory()) {
|
|
DEBUG(dbgs() << "Skipping; memory operations are safe for vectorization");
|
|
return false;
|
|
}
|
|
auto *Dependences = LAI.getDepChecker().getDependences();
|
|
if (!Dependences || Dependences->empty()) {
|
|
DEBUG(dbgs() << "Skipping; No unsafe dependences to isolate");
|
|
return false;
|
|
}
|
|
|
|
InstPartitionContainer Partitions(L, LI, DT);
|
|
|
|
// First, go through each memory operation and assign them to consecutive
|
|
// partitions (the order of partitions follows program order). Put those
|
|
// with unsafe dependences into "cyclic" partition otherwise put each store
|
|
// in its own "non-cyclic" partition (we'll merge these later).
|
|
//
|
|
// Note that a memory operation (e.g. Load2 below) at a program point that
|
|
// has an unsafe dependence (Store3->Load1) spanning over it must be
|
|
// included in the same cyclic partition as the dependent operations. This
|
|
// is to preserve the original program order after distribution. E.g.:
|
|
//
|
|
// NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive
|
|
// Load1 -. 1 0->1
|
|
// Load2 | /Unsafe/ 0 1
|
|
// Store3 -' -1 1->0
|
|
// Load4 0 0
|
|
//
|
|
// NumUnsafeDependencesActive > 0 indicates this situation and in this case
|
|
// we just keep assigning to the same cyclic partition until
|
|
// NumUnsafeDependencesActive reaches 0.
|
|
const MemoryDepChecker &DepChecker = LAI.getDepChecker();
|
|
MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
|
|
*Dependences);
|
|
|
|
int NumUnsafeDependencesActive = 0;
|
|
for (auto &InstDep : MID) {
|
|
Instruction *I = InstDep.Inst;
|
|
// We update NumUnsafeDependencesActive post-instruction, catch the
|
|
// start of a dependence directly via NumUnsafeDependencesStartOrEnd.
|
|
if (NumUnsafeDependencesActive ||
|
|
InstDep.NumUnsafeDependencesStartOrEnd > 0)
|
|
Partitions.addToCyclicPartition(I);
|
|
else
|
|
Partitions.addToNewNonCyclicPartition(I);
|
|
NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
|
|
assert(NumUnsafeDependencesActive >= 0 &&
|
|
"Negative number of dependences active");
|
|
}
|
|
|
|
// Add partitions for values used outside. These partitions can be out of
|
|
// order from the original program order. This is OK because if the
|
|
// partition uses a load we will merge this partition with the original
|
|
// partition of the load that we set up in the previous loop (see
|
|
// mergeToAvoidDuplicatedLoads).
|
|
auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
|
|
for (auto *Inst : DefsUsedOutside)
|
|
Partitions.addToNewNonCyclicPartition(Inst);
|
|
|
|
DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
|
|
if (Partitions.getSize() < 2)
|
|
return false;
|
|
|
|
// Run the merge heuristics: Merge non-cyclic adjacent partitions since we
|
|
// should be able to vectorize these together.
|
|
Partitions.mergeBeforePopulating();
|
|
DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
|
|
if (Partitions.getSize() < 2)
|
|
return false;
|
|
|
|
// Now, populate the partitions with non-memory operations.
|
|
Partitions.populateUsedSet();
|
|
DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
|
|
|
|
// In order to preserve original lexical order for loads, keep them in the
|
|
// partition that we set up in the MemoryInstructionDependences loop.
|
|
if (Partitions.mergeToAvoidDuplicatedLoads()) {
|
|
DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
|
|
<< Partitions);
|
|
if (Partitions.getSize() < 2)
|
|
return false;
|
|
}
|
|
|
|
// Don't distribute the loop if we need too many SCEV run-time checks.
|
|
const SCEVUnionPredicate &Pred = LAI.PSE.getUnionPredicate();
|
|
if (Pred.getComplexity() > DistributeSCEVCheckThreshold) {
|
|
DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
|
|
// We're done forming the partitions set up the reverse mapping from
|
|
// instructions to partitions.
|
|
Partitions.setupPartitionIdOnInstructions();
|
|
|
|
// To keep things simple have an empty preheader before we version or clone
|
|
// the loop. (Also split if this has no predecessor, i.e. entry, because we
|
|
// rely on PH having a predecessor.)
|
|
if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
|
|
SplitBlock(PH, PH->getTerminator(), DT, LI);
|
|
|
|
// If we need run-time checks, version the loop now.
|
|
auto PtrToPartition = Partitions.computePartitionSetForPointers(LAI);
|
|
const auto *RtPtrChecking = LAI.getRuntimePointerChecking();
|
|
const auto &AllChecks = RtPtrChecking->getChecks();
|
|
auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
|
|
RtPtrChecking);
|
|
|
|
if (!Pred.isAlwaysTrue() || !Checks.empty()) {
|
|
DEBUG(dbgs() << "\nPointers:\n");
|
|
DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
|
|
LoopVersioning LVer(LAI, L, LI, DT, SE, false);
|
|
LVer.setAliasChecks(std::move(Checks));
|
|
LVer.setSCEVChecks(LAI.PSE.getUnionPredicate());
|
|
LVer.versionLoop(DefsUsedOutside);
|
|
}
|
|
|
|
// Create identical copies of the original loop for each partition and hook
|
|
// them up sequentially.
|
|
Partitions.cloneLoops();
|
|
|
|
// Now, we remove the instruction from each loop that don't belong to that
|
|
// partition.
|
|
Partitions.removeUnusedInsts();
|
|
DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
|
|
DEBUG(Partitions.printBlocks());
|
|
|
|
if (LDistVerify) {
|
|
LI->verify();
|
|
DT->verifyDomTree();
|
|
}
|
|
|
|
++NumLoopsDistributed;
|
|
return true;
|
|
}
|
|
|
|
// Analyses used.
|
|
LoopInfo *LI;
|
|
LoopAccessAnalysis *LAA;
|
|
DominatorTree *DT;
|
|
ScalarEvolution *SE;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char LoopDistribute::ID;
|
|
static const char ldist_name[] = "Loop Distribition";
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopDistribute, LDIST_NAME, ldist_name, false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_END(LoopDistribute, LDIST_NAME, ldist_name, false, false)
|
|
|
|
namespace llvm {
|
|
FunctionPass *createLoopDistributePass() { return new LoopDistribute(); }
|
|
}
|