forked from OSchip/llvm-project
588 lines
20 KiB
C++
588 lines
20 KiB
C++
//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Define several functions to decode x86 specific shuffle semantics into a
|
|
// generic vector mask.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86ShuffleDecode.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector Mask Decoding
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
|
|
void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
// Defaults the copying the dest value.
|
|
ShuffleMask.push_back(0);
|
|
ShuffleMask.push_back(1);
|
|
ShuffleMask.push_back(2);
|
|
ShuffleMask.push_back(3);
|
|
|
|
// Decode the immediate.
|
|
unsigned ZMask = Imm & 15;
|
|
unsigned CountD = (Imm >> 4) & 3;
|
|
unsigned CountS = (Imm >> 6) & 3;
|
|
|
|
// CountS selects which input element to use.
|
|
unsigned InVal = 4 + CountS;
|
|
// CountD specifies which element of destination to update.
|
|
ShuffleMask[CountD] = InVal;
|
|
// ZMask zaps values, potentially overriding the CountD elt.
|
|
if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
|
|
if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
|
|
if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
|
|
if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
|
|
}
|
|
|
|
// <3,1> or <6,7,2,3>
|
|
void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned i = NElts / 2; i != NElts; ++i)
|
|
ShuffleMask.push_back(NElts + i);
|
|
|
|
for (unsigned i = NElts / 2; i != NElts; ++i)
|
|
ShuffleMask.push_back(i);
|
|
}
|
|
|
|
// <0,2> or <0,1,4,5>
|
|
void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned i = 0; i != NElts / 2; ++i)
|
|
ShuffleMask.push_back(i);
|
|
|
|
for (unsigned i = 0; i != NElts / 2; ++i)
|
|
ShuffleMask.push_back(NElts + i);
|
|
}
|
|
|
|
void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
for (int i = 0, e = NumElts / 2; i < e; ++i) {
|
|
ShuffleMask.push_back(2 * i);
|
|
ShuffleMask.push_back(2 * i);
|
|
}
|
|
}
|
|
|
|
void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
for (int i = 0, e = NumElts / 2; i < e; ++i) {
|
|
ShuffleMask.push_back(2 * i + 1);
|
|
ShuffleMask.push_back(2 * i + 1);
|
|
}
|
|
}
|
|
|
|
void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned VectorSizeInBits = VT.getSizeInBits();
|
|
unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumLanes = VectorSizeInBits / 128;
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
unsigned NumLaneSubElts = 64 / ScalarSizeInBits;
|
|
|
|
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
|
|
for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts)
|
|
for (unsigned s = 0; s != NumLaneSubElts; s++)
|
|
ShuffleMask.push_back(l + s);
|
|
}
|
|
|
|
void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned VectorSizeInBits = VT.getSizeInBits();
|
|
unsigned NumElts = VectorSizeInBits / 8;
|
|
unsigned NumLanes = VectorSizeInBits / 128;
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
|
|
for (unsigned i = 0; i < NumLaneElts; ++i) {
|
|
int M = SM_SentinelZero;
|
|
if (i >= Imm) M = i - Imm + l;
|
|
ShuffleMask.push_back(M);
|
|
}
|
|
}
|
|
|
|
void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned VectorSizeInBits = VT.getSizeInBits();
|
|
unsigned NumElts = VectorSizeInBits / 8;
|
|
unsigned NumLanes = VectorSizeInBits / 128;
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
|
|
for (unsigned i = 0; i < NumLaneElts; ++i) {
|
|
unsigned Base = i + Imm;
|
|
int M = Base + l;
|
|
if (Base >= NumLaneElts) M = SM_SentinelZero;
|
|
ShuffleMask.push_back(M);
|
|
}
|
|
}
|
|
|
|
void DecodePALIGNRMask(MVT VT, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8);
|
|
|
|
unsigned NumLanes = VT.getSizeInBits() / 128;
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0; i != NumLaneElts; ++i) {
|
|
unsigned Base = i + Offset;
|
|
// if i+offset is out of this lane then we actually need the other source
|
|
if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
|
|
ShuffleMask.push_back(Base + l);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*.
|
|
/// VT indicates the type of the vector allowing it to handle different
|
|
/// datatypes and vector widths.
|
|
void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
unsigned NumLanes = VT.getSizeInBits() / 128;
|
|
if (NumLanes == 0) NumLanes = 1; // Handle MMX
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
unsigned NewImm = Imm;
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0; i != NumLaneElts; ++i) {
|
|
ShuffleMask.push_back(NewImm % NumLaneElts + l);
|
|
NewImm /= NumLaneElts;
|
|
}
|
|
if (NumLaneElts == 4) NewImm = Imm; // reload imm
|
|
}
|
|
}
|
|
|
|
void DecodePSHUFHWMask(MVT VT, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
for (unsigned l = 0; l != NumElts; l += 8) {
|
|
unsigned NewImm = Imm;
|
|
for (unsigned i = 0, e = 4; i != e; ++i) {
|
|
ShuffleMask.push_back(l + i);
|
|
}
|
|
for (unsigned i = 4, e = 8; i != e; ++i) {
|
|
ShuffleMask.push_back(l + 4 + (NewImm & 3));
|
|
NewImm >>= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodePSHUFLWMask(MVT VT, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
for (unsigned l = 0; l != NumElts; l += 8) {
|
|
unsigned NewImm = Imm;
|
|
for (unsigned i = 0, e = 4; i != e; ++i) {
|
|
ShuffleMask.push_back(l + (NewImm & 3));
|
|
NewImm >>= 2;
|
|
}
|
|
for (unsigned i = 4, e = 8; i != e; ++i) {
|
|
ShuffleMask.push_back(l + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodePSWAPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumHalfElts = NumElts / 2;
|
|
|
|
for (unsigned l = 0; l != NumHalfElts; ++l)
|
|
ShuffleMask.push_back(l + NumHalfElts);
|
|
for (unsigned h = 0; h != NumHalfElts; ++h)
|
|
ShuffleMask.push_back(h);
|
|
}
|
|
|
|
/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
|
|
/// the type of the vector allowing it to handle different datatypes and vector
|
|
/// widths.
|
|
void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
unsigned NumLanes = VT.getSizeInBits() / 128;
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
unsigned NewImm = Imm;
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
// each half of a lane comes from different source
|
|
for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
|
|
for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
|
|
ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
|
|
NewImm /= NumLaneElts;
|
|
}
|
|
}
|
|
if (NumLaneElts == 4) NewImm = Imm; // reload imm
|
|
}
|
|
}
|
|
|
|
/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
|
|
/// and punpckh*. VT indicates the type of the vector allowing it to handle
|
|
/// different datatypes and vector widths.
|
|
void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
|
|
// independently on 128-bit lanes.
|
|
unsigned NumLanes = VT.getSizeInBits() / 128;
|
|
if (NumLanes == 0) NumLanes = 1; // Handle MMX
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
|
|
ShuffleMask.push_back(i); // Reads from dest/src1
|
|
ShuffleMask.push_back(i + NumElts); // Reads from src/src2
|
|
}
|
|
}
|
|
}
|
|
|
|
/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
|
|
/// and punpckl*. VT indicates the type of the vector allowing it to handle
|
|
/// different datatypes and vector widths.
|
|
void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
|
|
// independently on 128-bit lanes.
|
|
unsigned NumLanes = VT.getSizeInBits() / 128;
|
|
if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
|
|
ShuffleMask.push_back(i); // Reads from dest/src1
|
|
ShuffleMask.push_back(i + NumElts); // Reads from src/src2
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned HalfSize = VT.getVectorNumElements() / 2;
|
|
|
|
for (unsigned l = 0; l != 2; ++l) {
|
|
unsigned HalfMask = Imm >> (l * 4);
|
|
unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
|
|
for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
|
|
ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i);
|
|
}
|
|
}
|
|
|
|
void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
|
|
Type *MaskTy = C->getType();
|
|
// It is not an error for the PSHUFB mask to not be a vector of i8 because the
|
|
// constant pool uniques constants by their bit representation.
|
|
// e.g. the following take up the same space in the constant pool:
|
|
// i128 -170141183420855150465331762880109871104
|
|
//
|
|
// <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
|
|
//
|
|
// <4 x i32> <i32 -2147483648, i32 -2147483648,
|
|
// i32 -2147483648, i32 -2147483648>
|
|
|
|
unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
|
|
|
|
if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
|
|
return;
|
|
|
|
// This is a straightforward byte vector.
|
|
if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) {
|
|
int NumElements = MaskTy->getVectorNumElements();
|
|
ShuffleMask.reserve(NumElements);
|
|
|
|
for (int i = 0; i < NumElements; ++i) {
|
|
// For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
|
|
// lane of the vector we're inside.
|
|
int Base = i < 16 ? 0 : 16;
|
|
Constant *COp = C->getAggregateElement(i);
|
|
if (!COp) {
|
|
ShuffleMask.clear();
|
|
return;
|
|
} else if (isa<UndefValue>(COp)) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
|
|
// If the high bit (7) of the byte is set, the element is zeroed.
|
|
if (Element & (1 << 7))
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
else {
|
|
// Only the least significant 4 bits of the byte are used.
|
|
int Index = Base + (Element & 0xf);
|
|
ShuffleMask.push_back(Index);
|
|
}
|
|
}
|
|
}
|
|
// TODO: Handle funny-looking vectors too.
|
|
}
|
|
|
|
void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (int i = 0, e = RawMask.size(); i < e; ++i) {
|
|
uint64_t M = RawMask[i];
|
|
if (M == (uint64_t)SM_SentinelUndef) {
|
|
ShuffleMask.push_back(M);
|
|
continue;
|
|
}
|
|
// For AVX vectors with 32 bytes the base of the shuffle is the half of
|
|
// the vector we're inside.
|
|
int Base = i < 16 ? 0 : 16;
|
|
// If the high bit (7) of the byte is set, the element is zeroed.
|
|
if (M & (1 << 7))
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
else {
|
|
// Only the least significant 4 bits of the byte are used.
|
|
int Index = Base + (M & 0xf);
|
|
ShuffleMask.push_back(Index);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
int ElementBits = VT.getScalarSizeInBits();
|
|
int NumElements = VT.getVectorNumElements();
|
|
for (int i = 0; i < NumElements; ++i) {
|
|
// If there are more than 8 elements in the vector, then any immediate blend
|
|
// mask applies to each 128-bit lane. There can never be more than
|
|
// 8 elements in a 128-bit lane with an immediate blend.
|
|
int Bit = NumElements > 8 ? i % (128 / ElementBits) : i;
|
|
assert(Bit < 8 &&
|
|
"Immediate blends only operate over 8 elements at a time!");
|
|
ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i);
|
|
}
|
|
}
|
|
|
|
/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
|
|
/// No VT provided since it only works on 256-bit, 4 element vectors.
|
|
void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
ShuffleMask.push_back((Imm >> (2 * i)) & 3);
|
|
}
|
|
}
|
|
|
|
void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
|
|
Type *MaskTy = C->getType();
|
|
assert(MaskTy->isVectorTy() && "Expected a vector constant mask!");
|
|
assert(MaskTy->getVectorElementType()->isIntegerTy() &&
|
|
"Expected integer constant mask elements!");
|
|
int ElementBits = MaskTy->getScalarSizeInBits();
|
|
int NumElements = MaskTy->getVectorNumElements();
|
|
assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
|
|
"Unexpected number of vector elements.");
|
|
ShuffleMask.reserve(NumElements);
|
|
if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
|
|
assert((unsigned)NumElements == CDS->getNumElements() &&
|
|
"Constant mask has a different number of elements!");
|
|
|
|
for (int i = 0; i < NumElements; ++i) {
|
|
int Base = (i * ElementBits / 128) * (128 / ElementBits);
|
|
uint64_t Element = CDS->getElementAsInteger(i);
|
|
// Only the least significant 2 bits of the integer are used.
|
|
int Index = Base + (Element & 0x3);
|
|
ShuffleMask.push_back(Index);
|
|
}
|
|
} else if (auto *CV = dyn_cast<ConstantVector>(C)) {
|
|
assert((unsigned)NumElements == C->getNumOperands() &&
|
|
"Constant mask has a different number of elements!");
|
|
|
|
for (int i = 0; i < NumElements; ++i) {
|
|
int Base = (i * ElementBits / 128) * (128 / ElementBits);
|
|
Constant *COp = CV->getOperand(i);
|
|
if (isa<UndefValue>(COp)) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
|
|
// Only the least significant 2 bits of the integer are used.
|
|
int Index = Base + (Element & 0x3);
|
|
ShuffleMask.push_back(Index);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) {
|
|
unsigned NumDstElts = DstVT.getVectorNumElements();
|
|
unsigned SrcScalarBits = SrcVT.getScalarSizeInBits();
|
|
unsigned DstScalarBits = DstVT.getScalarSizeInBits();
|
|
unsigned Scale = DstScalarBits / SrcScalarBits;
|
|
assert(SrcScalarBits < DstScalarBits &&
|
|
"Expected zero extension mask to increase scalar size");
|
|
assert(SrcVT.getVectorNumElements() >= NumDstElts &&
|
|
"Too many zero extension lanes");
|
|
|
|
for (unsigned i = 0; i != NumDstElts; i++) {
|
|
Mask.push_back(i);
|
|
for (unsigned j = 1; j != Scale; j++)
|
|
Mask.push_back(SM_SentinelZero);
|
|
}
|
|
}
|
|
|
|
void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
ShuffleMask.push_back(0);
|
|
for (unsigned i = 1; i < NumElts; i++)
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
}
|
|
|
|
void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) {
|
|
// First element comes from the first element of second source.
|
|
// Remaining elements: Load zero extends / Move copies from first source.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
Mask.push_back(NumElts);
|
|
for (unsigned i = 1; i < NumElts; i++)
|
|
Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
|
|
}
|
|
|
|
void DecodeEXTRQIMask(int Len, int Idx,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
// Only the bottom 6 bits are valid for each immediate.
|
|
Len &= 0x3F;
|
|
Idx &= 0x3F;
|
|
|
|
// We can only decode this bit extraction instruction as a shuffle if both the
|
|
// length and index work with whole bytes.
|
|
if (0 != (Len % 8) || 0 != (Idx % 8))
|
|
return;
|
|
|
|
// A length of zero is equivalent to a bit length of 64.
|
|
if (Len == 0)
|
|
Len = 64;
|
|
|
|
// If the length + index exceeds the bottom 64 bits the result is undefined.
|
|
if ((Len + Idx) > 64) {
|
|
ShuffleMask.append(16, SM_SentinelUndef);
|
|
return;
|
|
}
|
|
|
|
// Convert index and index to work with bytes.
|
|
Len /= 8;
|
|
Idx /= 8;
|
|
|
|
// EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes
|
|
// of the lower 64-bits. The upper 64-bits are undefined.
|
|
for (int i = 0; i != Len; ++i)
|
|
ShuffleMask.push_back(i + Idx);
|
|
for (int i = Len; i != 8; ++i)
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
for (int i = 8; i != 16; ++i)
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
}
|
|
|
|
void DecodeINSERTQIMask(int Len, int Idx,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
// Only the bottom 6 bits are valid for each immediate.
|
|
Len &= 0x3F;
|
|
Idx &= 0x3F;
|
|
|
|
// We can only decode this bit insertion instruction as a shuffle if both the
|
|
// length and index work with whole bytes.
|
|
if (0 != (Len % 8) || 0 != (Idx % 8))
|
|
return;
|
|
|
|
// A length of zero is equivalent to a bit length of 64.
|
|
if (Len == 0)
|
|
Len = 64;
|
|
|
|
// If the length + index exceeds the bottom 64 bits the result is undefined.
|
|
if ((Len + Idx) > 64) {
|
|
ShuffleMask.append(16, SM_SentinelUndef);
|
|
return;
|
|
}
|
|
|
|
// Convert index and index to work with bytes.
|
|
Len /= 8;
|
|
Idx /= 8;
|
|
|
|
// INSERTQ: Extract lowest Len bytes from lower half of second source and
|
|
// insert over first source starting at Idx byte. The upper 64-bits are
|
|
// undefined.
|
|
for (int i = 0; i != Idx; ++i)
|
|
ShuffleMask.push_back(i);
|
|
for (int i = 0; i != Len; ++i)
|
|
ShuffleMask.push_back(i + 16);
|
|
for (int i = Idx + Len; i != 8; ++i)
|
|
ShuffleMask.push_back(i);
|
|
for (int i = 8; i != 16; ++i)
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
}
|
|
|
|
void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (int i = 0, e = RawMask.size(); i < e; ++i) {
|
|
uint64_t M = RawMask[i];
|
|
ShuffleMask.push_back((int)M);
|
|
}
|
|
}
|
|
|
|
void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (int i = 0, e = RawMask.size(); i < e; ++i) {
|
|
uint64_t M = RawMask[i];
|
|
ShuffleMask.push_back((int)M);
|
|
}
|
|
}
|
|
|
|
void DecodeVPERMVMask(const Constant *C, MVT VT,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
Type *MaskTy = C->getType();
|
|
if (MaskTy->isVectorTy()) {
|
|
unsigned NumElements = MaskTy->getVectorNumElements();
|
|
if (NumElements == VT.getVectorNumElements()) {
|
|
for (unsigned i = 0; i < NumElements; ++i) {
|
|
Constant *COp = C->getAggregateElement(i);
|
|
if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) {
|
|
ShuffleMask.clear();
|
|
return;
|
|
}
|
|
if (isa<UndefValue>(COp))
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
else {
|
|
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
|
|
Element &= (1 << NumElements) - 1;
|
|
ShuffleMask.push_back(Element);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// Scalar value; just broadcast it
|
|
if (!isa<ConstantInt>(C))
|
|
return;
|
|
uint64_t Element = cast<ConstantInt>(C)->getZExtValue();
|
|
int NumElements = VT.getVectorNumElements();
|
|
Element &= (1 << NumElements) - 1;
|
|
for (int i = 0; i < NumElements; ++i)
|
|
ShuffleMask.push_back(Element);
|
|
}
|
|
|
|
void DecodeVPERMV3Mask(const Constant *C, MVT VT,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
Type *MaskTy = C->getType();
|
|
unsigned NumElements = MaskTy->getVectorNumElements();
|
|
if (NumElements == VT.getVectorNumElements()) {
|
|
for (unsigned i = 0; i < NumElements; ++i) {
|
|
Constant *COp = C->getAggregateElement(i);
|
|
if (!COp) {
|
|
ShuffleMask.clear();
|
|
return;
|
|
}
|
|
if (isa<UndefValue>(COp))
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
else {
|
|
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
|
|
Element &= (1 << NumElements*2) - 1;
|
|
ShuffleMask.push_back(Element);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // llvm namespace
|