llvm-project/clang/lib/Sema/SemaExpr.cpp

9970 lines
375 KiB
C++

//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Designator.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/SemaFixItUtils.h"
#include "clang/Sema/Template.h"
using namespace clang;
using namespace sema;
/// \brief Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// If IgnoreDeprecated is set to true, this should not warn about deprecated
/// decls.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
///
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass) {
if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
// If there were any diagnostics suppressed by template argument deduction,
// emit them now.
llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
if (Pos != SuppressedDiagnostics.end()) {
SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
Diag(Suppressed[I].first, Suppressed[I].second);
// Clear out the list of suppressed diagnostics, so that we don't emit
// them again for this specialization. However, we don't obsolete this
// entry from the table, because we want to avoid ever emitting these
// diagnostics again.
Suppressed.clear();
}
}
// See if this is an auto-typed variable whose initializer we are parsing.
if (ParsingInitForAutoVars.count(D)) {
Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
<< D->getDeclName();
return true;
}
// See if this is a deleted function.
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isDeleted()) {
Diag(Loc, diag::err_deleted_function_use);
Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true;
return true;
}
}
// See if this declaration is unavailable or deprecated.
std::string Message;
switch (D->getAvailability(&Message)) {
case AR_Available:
case AR_NotYetIntroduced:
break;
case AR_Deprecated:
EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
break;
case AR_Unavailable:
if (cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) {
if (Message.empty()) {
if (!UnknownObjCClass)
Diag(Loc, diag::err_unavailable) << D->getDeclName();
else
Diag(Loc, diag::warn_unavailable_fwdclass_message)
<< D->getDeclName();
}
else
Diag(Loc, diag::err_unavailable_message)
<< D->getDeclName() << Message;
Diag(D->getLocation(), diag::note_unavailable_here)
<< isa<FunctionDecl>(D) << false;
}
break;
}
// Warn if this is used but marked unused.
if (D->hasAttr<UnusedAttr>())
Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
return false;
}
/// \brief Retrieve the message suffix that should be added to a
/// diagnostic complaining about the given function being deleted or
/// unavailable.
std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
// FIXME: C++0x implicitly-deleted special member functions could be
// detected here so that we could improve diagnostics to say, e.g.,
// "base class 'A' had a deleted copy constructor".
if (FD->isDeleted())
return std::string();
std::string Message;
if (FD->getAvailability(&Message))
return ": " + Message;
return std::string();
}
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
/// (and other functions in future), which have been declared with sentinel
/// attribute. It warns if call does not have the sentinel argument.
///
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
Expr **Args, unsigned NumArgs) {
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
if (!attr)
return;
int sentinelPos = attr->getSentinel();
int nullPos = attr->getNullPos();
unsigned int i = 0;
bool warnNotEnoughArgs = false;
int isMethod = 0;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = MD->param_end();
for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
isMethod = 1;
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = FD->param_end();
for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
} else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
// block or function pointer call.
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned k;
for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
}
if (Ty->isBlockPointerType())
isMethod = 2;
} else
return;
} else
return;
if (warnNotEnoughArgs) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
int sentinel = i;
while (sentinelPos > 0 && i < NumArgs-1) {
--sentinelPos;
++i;
}
if (sentinelPos > 0) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
while (i < NumArgs-1) {
++i;
++sentinel;
}
Expr *sentinelExpr = Args[sentinel];
if (!sentinelExpr) return;
if (sentinelExpr->isTypeDependent()) return;
if (sentinelExpr->isValueDependent()) return;
// nullptr_t is always treated as null.
if (sentinelExpr->getType()->isNullPtrType()) return;
if (sentinelExpr->getType()->isAnyPointerType() &&
sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull))
return;
// Unfortunately, __null has type 'int'.
if (isa<GNUNullExpr>(sentinelExpr)) return;
SourceLocation MissingNilLoc
= PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
std::string NullValue;
if (isMethod && PP.getIdentifierInfo("nil")->hasMacroDefinition())
NullValue = "nil";
else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
NullValue = "NULL";
else if (Context.getTypeSize(Context.IntTy)
== Context.getTypeSize(Context.getSizeType()))
NullValue = "0";
else
NullValue = "0L";
Diag(MissingNilLoc, diag::warn_missing_sentinel)
<< isMethod
<< FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
}
SourceRange Sema::getExprRange(ExprTy *E) const {
Expr *Ex = (Expr *)E;
return Ex? Ex->getSourceRange() : SourceRange();
}
//===----------------------------------------------------------------------===//
// Standard Promotions and Conversions
//===----------------------------------------------------------------------===//
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
if (Ty->isFunctionType())
E = ImpCastExprToType(E, Context.getPointerType(Ty),
CK_FunctionToPointerDecay).take();
else if (Ty->isArrayType()) {
// In C90 mode, arrays only promote to pointers if the array expression is
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
// type 'array of type' is converted to an expression that has type 'pointer
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
// that has type 'array of type' ...". The relevant change is "an lvalue"
// (C90) to "an expression" (C99).
//
// C++ 4.2p1:
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
// T" can be converted to an rvalue of type "pointer to T".
//
if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
CK_ArrayToPointerDecay).take();
}
return Owned(E);
}
static void CheckForNullPointerDereference(Sema &S, Expr *E) {
// Check to see if we are dereferencing a null pointer. If so,
// and if not volatile-qualified, this is undefined behavior that the
// optimizer will delete, so warn about it. People sometimes try to use this
// to get a deterministic trap and are surprised by clang's behavior. This
// only handles the pattern "*null", which is a very syntactic check.
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
if (UO->getOpcode() == UO_Deref &&
UO->getSubExpr()->IgnoreParenCasts()->
isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
!UO->getType().isVolatileQualified()) {
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
S.PDiag(diag::warn_indirection_through_null)
<< UO->getSubExpr()->getSourceRange());
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
S.PDiag(diag::note_indirection_through_null));
}
}
ExprResult Sema::DefaultLvalueConversion(Expr *E) {
// C++ [conv.lval]p1:
// A glvalue of a non-function, non-array type T can be
// converted to a prvalue.
if (!E->isGLValue()) return Owned(E);
QualType T = E->getType();
assert(!T.isNull() && "r-value conversion on typeless expression?");
// Create a load out of an ObjCProperty l-value, if necessary.
if (E->getObjectKind() == OK_ObjCProperty) {
ExprResult Res = ConvertPropertyForRValue(E);
if (Res.isInvalid())
return Owned(E);
E = Res.take();
if (!E->isGLValue())
return Owned(E);
}
// We don't want to throw lvalue-to-rvalue casts on top of
// expressions of certain types in C++.
if (getLangOptions().CPlusPlus &&
(E->getType() == Context.OverloadTy ||
T->isDependentType() ||
T->isRecordType()))
return Owned(E);
// The C standard is actually really unclear on this point, and
// DR106 tells us what the result should be but not why. It's
// generally best to say that void types just doesn't undergo
// lvalue-to-rvalue at all. Note that expressions of unqualified
// 'void' type are never l-values, but qualified void can be.
if (T->isVoidType())
return Owned(E);
CheckForNullPointerDereference(*this, E);
// C++ [conv.lval]p1:
// [...] If T is a non-class type, the type of the prvalue is the
// cv-unqualified version of T. Otherwise, the type of the
// rvalue is T.
//
// C99 6.3.2.1p2:
// If the lvalue has qualified type, the value has the unqualified
// version of the type of the lvalue; otherwise, the value has the
// type of the lvalue.
if (T.hasQualifiers())
T = T.getUnqualifiedType();
return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
E, 0, VK_RValue));
}
ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
ExprResult Res = DefaultFunctionArrayConversion(E);
if (Res.isInvalid())
return ExprError();
Res = DefaultLvalueConversion(Res.take());
if (Res.isInvalid())
return ExprError();
return move(Res);
}
/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes suppressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
ExprResult Sema::UsualUnaryConversions(Expr *E) {
// First, convert to an r-value.
ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
if (Res.isInvalid())
return Owned(E);
E = Res.take();
QualType Ty = E->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
// Try to perform integral promotions if the object has a theoretically
// promotable type.
if (Ty->isIntegralOrUnscopedEnumerationType()) {
// C99 6.3.1.1p2:
//
// The following may be used in an expression wherever an int or
// unsigned int may be used:
// - an object or expression with an integer type whose integer
// conversion rank is less than or equal to the rank of int
// and unsigned int.
// - A bit-field of type _Bool, int, signed int, or unsigned int.
//
// If an int can represent all values of the original type, the
// value is converted to an int; otherwise, it is converted to an
// unsigned int. These are called the integer promotions. All
// other types are unchanged by the integer promotions.
QualType PTy = Context.isPromotableBitField(E);
if (!PTy.isNull()) {
E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
return Owned(E);
}
if (Ty->isPromotableIntegerType()) {
QualType PT = Context.getPromotedIntegerType(Ty);
E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
return Owned(E);
}
}
return Owned(E);
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to
/// double. All other argument types are converted by UsualUnaryConversions().
ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
ExprResult Res = UsualUnaryConversions(E);
if (Res.isInvalid())
return Owned(E);
E = Res.take();
// If this is a 'float' (CVR qualified or typedef) promote to double.
if (Ty->isSpecificBuiltinType(BuiltinType::Float))
E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
return Owned(E);
}
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will warn if the resulting type is not a POD type, and rejects ObjC
/// interfaces passed by value.
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl) {
ExprResult ExprRes = CheckPlaceholderExpr(E);
if (ExprRes.isInvalid())
return ExprError();
ExprRes = DefaultArgumentPromotion(E);
if (ExprRes.isInvalid())
return ExprError();
E = ExprRes.take();
// __builtin_va_start takes the second argument as a "varargs" argument, but
// it doesn't actually do anything with it. It doesn't need to be non-pod
// etc.
if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
return Owned(E);
// Don't allow one to pass an Objective-C interface to a vararg.
if (E->getType()->isObjCObjectType() &&
DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
<< E->getType() << CT))
return ExprError();
if (!E->getType().isPODType(Context)) {
// C++0x [expr.call]p7:
// Passing a potentially-evaluated argument of class type (Clause 9)
// having a non-trivial copy constructor, a non-trivial move constructor,
// or a non-trivial destructor, with no corresponding parameter,
// is conditionally-supported with implementation-defined semantics.
bool TrivialEnough = false;
if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType()) {
if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
if (Record->hasTrivialCopyConstructor() &&
Record->hasTrivialMoveConstructor() &&
Record->hasTrivialDestructor())
TrivialEnough = true;
}
}
if (!TrivialEnough &&
getLangOptions().ObjCAutoRefCount &&
E->getType()->isObjCLifetimeType())
TrivialEnough = true;
if (TrivialEnough) {
// Nothing to diagnose. This is okay.
} else if (DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
<< getLangOptions().CPlusPlus0x << E->getType()
<< CT)) {
// Turn this into a trap.
CXXScopeSpec SS;
UnqualifiedId Name;
Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
E->getLocStart());
ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false);
if (TrapFn.isInvalid())
return ExprError();
ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
MultiExprArg(), E->getLocEnd());
if (Call.isInvalid())
return ExprError();
ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
Call.get(), E);
if (Comma.isInvalid())
return ExprError();
E = Comma.get();
}
}
return Owned(E);
}
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with
/// GCC.
QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr,
ExprResult &rhsExpr,
bool isCompAssign) {
if (!isCompAssign) {
lhsExpr = UsualUnaryConversions(lhsExpr.take());
if (lhsExpr.isInvalid())
return QualType();
}
rhsExpr = UsualUnaryConversions(rhsExpr.take());
if (rhsExpr.isInvalid())
return QualType();
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhs =
Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType();
QualType rhs =
Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// Apply unary and bitfield promotions to the LHS's type.
QualType lhs_unpromoted = lhs;
if (lhs->isPromotableIntegerType())
lhs = Context.getPromotedIntegerType(lhs);
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get());
if (!LHSBitfieldPromoteTy.isNull())
lhs = LHSBitfieldPromoteTy;
if (lhs != lhs_unpromoted && !isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast);
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
bool LHSComplexFloat = lhs->isComplexType();
bool RHSComplexFloat = rhs->isComplexType();
if (LHSComplexFloat || RHSComplexFloat) {
// if we have an integer operand, the result is the complex type.
if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
if (rhs->isIntegerType()) {
QualType fp = cast<ComplexType>(lhs)->getElementType();
rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating);
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs,
CK_FloatingRealToComplex);
} else {
assert(rhs->isComplexIntegerType());
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs,
CK_IntegralComplexToFloatingComplex);
}
return lhs;
}
if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
if (!isCompAssign) {
// int -> float -> _Complex float
if (lhs->isIntegerType()) {
QualType fp = cast<ComplexType>(rhs)->getElementType();
lhsExpr = ImpCastExprToType(lhsExpr.take(), fp,
CK_IntegralToFloating);
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs,
CK_FloatingRealToComplex);
} else {
assert(lhs->isComplexIntegerType());
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs,
CK_IntegralComplexToFloatingComplex);
}
}
return rhs;
}
// This handles complex/complex, complex/float, or float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
int order = Context.getFloatingTypeOrder(lhs, rhs);
// If both are complex, just cast to the more precise type.
if (LHSComplexFloat && RHSComplexFloat) {
if (order > 0) {
// _Complex float -> _Complex double
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs,
CK_FloatingComplexCast);
return lhs;
} else if (order < 0) {
// _Complex float -> _Complex double
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs,
CK_FloatingComplexCast);
return rhs;
}
return lhs;
}
// If just the LHS is complex, the RHS needs to be converted,
// and the LHS might need to be promoted.
if (LHSComplexFloat) {
if (order > 0) { // LHS is wider
// float -> _Complex double
QualType fp = cast<ComplexType>(lhs)->getElementType();
rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast);
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs,
CK_FloatingRealToComplex);
return lhs;
}
// RHS is at least as wide. Find its corresponding complex type.
QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
// double -> _Complex double
rhsExpr = ImpCastExprToType(rhsExpr.take(), result,
CK_FloatingRealToComplex);
// _Complex float -> _Complex double
if (!isCompAssign && order < 0)
lhsExpr = ImpCastExprToType(lhsExpr.take(), result,
CK_FloatingComplexCast);
return result;
}
// Just the RHS is complex, so the LHS needs to be converted
// and the RHS might need to be promoted.
assert(RHSComplexFloat);
if (order < 0) { // RHS is wider
// float -> _Complex double
if (!isCompAssign) {
QualType fp = cast<ComplexType>(rhs)->getElementType();
lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast);
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs,
CK_FloatingRealToComplex);
}
return rhs;
}
// LHS is at least as wide. Find its corresponding complex type.
QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
// double -> _Complex double
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), result,
CK_FloatingRealToComplex);
// _Complex float -> _Complex double
if (order > 0)
rhsExpr = ImpCastExprToType(rhsExpr.take(), result,
CK_FloatingComplexCast);
return result;
}
// Now handle "real" floating types (i.e. float, double, long double).
bool LHSFloat = lhs->isRealFloatingType();
bool RHSFloat = rhs->isRealFloatingType();
if (LHSFloat || RHSFloat) {
// If we have two real floating types, convert the smaller operand
// to the bigger result.
if (LHSFloat && RHSFloat) {
int order = Context.getFloatingTypeOrder(lhs, rhs);
if (order > 0) {
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast);
return lhs;
}
assert(order < 0 && "illegal float comparison");
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast);
return rhs;
}
// If we have an integer operand, the result is the real floating type.
if (LHSFloat) {
if (rhs->isIntegerType()) {
// Convert rhs to the lhs floating point type.
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating);
return lhs;
}
// Convert both sides to the appropriate complex float.
assert(rhs->isComplexIntegerType());
QualType result = Context.getComplexType(lhs);
// _Complex int -> _Complex float
rhsExpr = ImpCastExprToType(rhsExpr.take(), result,
CK_IntegralComplexToFloatingComplex);
// float -> _Complex float
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), result,
CK_FloatingRealToComplex);
return result;
}
assert(RHSFloat);
if (lhs->isIntegerType()) {
// Convert lhs to the rhs floating point type.
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating);
return rhs;
}
// Convert both sides to the appropriate complex float.
assert(lhs->isComplexIntegerType());
QualType result = Context.getComplexType(rhs);
// _Complex int -> _Complex float
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), result,
CK_IntegralComplexToFloatingComplex);
// float -> _Complex float
rhsExpr = ImpCastExprToType(rhsExpr.take(), result,
CK_FloatingRealToComplex);
return result;
}
// Handle GCC complex int extension.
// FIXME: if the operands are (int, _Complex long), we currently
// don't promote the complex. Also, signedness?
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
if (lhsComplexInt && rhsComplexInt) {
int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
rhsComplexInt->getElementType());
assert(order && "inequal types with equal element ordering");
if (order > 0) {
// _Complex int -> _Complex long
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast);
return lhs;
}
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast);
return rhs;
} else if (lhsComplexInt) {
// int -> _Complex int
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex);
return lhs;
} else if (rhsComplexInt) {
// int -> _Complex int
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs,
CK_IntegralRealToComplex);
return rhs;
}
// Finally, we have two differing integer types.
// The rules for this case are in C99 6.3.1.8
int compare = Context.getIntegerTypeOrder(lhs, rhs);
bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
rhsSigned = rhs->hasSignedIntegerRepresentation();
if (lhsSigned == rhsSigned) {
// Same signedness; use the higher-ranked type
if (compare >= 0) {
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
return lhs;
} else if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
return rhs;
} else if (compare != (lhsSigned ? 1 : -1)) {
// The unsigned type has greater than or equal rank to the
// signed type, so use the unsigned type
if (rhsSigned) {
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
return lhs;
} else if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
return rhs;
} else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
// The two types are different widths; if we are here, that
// means the signed type is larger than the unsigned type, so
// use the signed type.
if (lhsSigned) {
rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
return lhs;
} else if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
return rhs;
} else {
// The signed type is higher-ranked than the unsigned type,
// but isn't actually any bigger (like unsigned int and long
// on most 32-bit systems). Use the unsigned type corresponding
// to the signed type.
QualType result =
Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast);
if (!isCompAssign)
lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast);
return result;
}
}
//===----------------------------------------------------------------------===//
// Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//
ExprResult
Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
MultiTypeArg types,
MultiExprArg exprs) {
unsigned NumAssocs = types.size();
assert(NumAssocs == exprs.size());
ParsedType *ParsedTypes = types.release();
Expr **Exprs = exprs.release();
TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
for (unsigned i = 0; i < NumAssocs; ++i) {
if (ParsedTypes[i])
(void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
else
Types[i] = 0;
}
ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
ControllingExpr, Types, Exprs,
NumAssocs);
delete [] Types;
return ER;
}
ExprResult
Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
TypeSourceInfo **Types,
Expr **Exprs,
unsigned NumAssocs) {
bool TypeErrorFound = false,
IsResultDependent = ControllingExpr->isTypeDependent(),
ContainsUnexpandedParameterPack
= ControllingExpr->containsUnexpandedParameterPack();
for (unsigned i = 0; i < NumAssocs; ++i) {
if (Exprs[i]->containsUnexpandedParameterPack())
ContainsUnexpandedParameterPack = true;
if (Types[i]) {
if (Types[i]->getType()->containsUnexpandedParameterPack())
ContainsUnexpandedParameterPack = true;
if (Types[i]->getType()->isDependentType()) {
IsResultDependent = true;
} else {
// C1X 6.5.1.1p2 "The type name in a generic association shall specify a
// complete object type other than a variably modified type."
unsigned D = 0;
if (Types[i]->getType()->isIncompleteType())
D = diag::err_assoc_type_incomplete;
else if (!Types[i]->getType()->isObjectType())
D = diag::err_assoc_type_nonobject;
else if (Types[i]->getType()->isVariablyModifiedType())
D = diag::err_assoc_type_variably_modified;
if (D != 0) {
Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
<< Types[i]->getTypeLoc().getSourceRange()
<< Types[i]->getType();
TypeErrorFound = true;
}
// C1X 6.5.1.1p2 "No two generic associations in the same generic
// selection shall specify compatible types."
for (unsigned j = i+1; j < NumAssocs; ++j)
if (Types[j] && !Types[j]->getType()->isDependentType() &&
Context.typesAreCompatible(Types[i]->getType(),
Types[j]->getType())) {
Diag(Types[j]->getTypeLoc().getBeginLoc(),
diag::err_assoc_compatible_types)
<< Types[j]->getTypeLoc().getSourceRange()
<< Types[j]->getType()
<< Types[i]->getType();
Diag(Types[i]->getTypeLoc().getBeginLoc(),
diag::note_compat_assoc)
<< Types[i]->getTypeLoc().getSourceRange()
<< Types[i]->getType();
TypeErrorFound = true;
}
}
}
}
if (TypeErrorFound)
return ExprError();
// If we determined that the generic selection is result-dependent, don't
// try to compute the result expression.
if (IsResultDependent)
return Owned(new (Context) GenericSelectionExpr(
Context, KeyLoc, ControllingExpr,
Types, Exprs, NumAssocs, DefaultLoc,
RParenLoc, ContainsUnexpandedParameterPack));
SmallVector<unsigned, 1> CompatIndices;
unsigned DefaultIndex = -1U;
for (unsigned i = 0; i < NumAssocs; ++i) {
if (!Types[i])
DefaultIndex = i;
else if (Context.typesAreCompatible(ControllingExpr->getType(),
Types[i]->getType()))
CompatIndices.push_back(i);
}
// C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
// type compatible with at most one of the types named in its generic
// association list."
if (CompatIndices.size() > 1) {
// We strip parens here because the controlling expression is typically
// parenthesized in macro definitions.
ControllingExpr = ControllingExpr->IgnoreParens();
Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
<< ControllingExpr->getSourceRange() << ControllingExpr->getType()
<< (unsigned) CompatIndices.size();
for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
E = CompatIndices.end(); I != E; ++I) {
Diag(Types[*I]->getTypeLoc().getBeginLoc(),
diag::note_compat_assoc)
<< Types[*I]->getTypeLoc().getSourceRange()
<< Types[*I]->getType();
}
return ExprError();
}
// C1X 6.5.1.1p2 "If a generic selection has no default generic association,
// its controlling expression shall have type compatible with exactly one of
// the types named in its generic association list."
if (DefaultIndex == -1U && CompatIndices.size() == 0) {
// We strip parens here because the controlling expression is typically
// parenthesized in macro definitions.
ControllingExpr = ControllingExpr->IgnoreParens();
Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
<< ControllingExpr->getSourceRange() << ControllingExpr->getType();
return ExprError();
}
// C1X 6.5.1.1p3 "If a generic selection has a generic association with a
// type name that is compatible with the type of the controlling expression,
// then the result expression of the generic selection is the expression
// in that generic association. Otherwise, the result expression of the
// generic selection is the expression in the default generic association."
unsigned ResultIndex =
CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
return Owned(new (Context) GenericSelectionExpr(
Context, KeyLoc, ControllingExpr,
Types, Exprs, NumAssocs, DefaultLoc,
RParenLoc, ContainsUnexpandedParameterPack,
ResultIndex));
}
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens. However, the common case is that StringToks points to one
/// string.
///
ExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
assert(NumStringToks && "Must have at least one string!");
StringLiteralParser Literal(StringToks, NumStringToks, PP);
if (Literal.hadError)
return ExprError();
SmallVector<SourceLocation, 4> StringTokLocs;
for (unsigned i = 0; i != NumStringToks; ++i)
StringTokLocs.push_back(StringToks[i].getLocation());
QualType StrTy = Context.CharTy;
if (Literal.isWide())
StrTy = Context.getWCharType();
else if (Literal.isUTF16())
StrTy = Context.Char16Ty;
else if (Literal.isUTF32())
StrTy = Context.Char32Ty;
else if (Literal.Pascal)
StrTy = Context.UnsignedCharTy;
StringLiteral::StringKind Kind = StringLiteral::Ascii;
if (Literal.isWide())
Kind = StringLiteral::Wide;
else if (Literal.isUTF8())
Kind = StringLiteral::UTF8;
else if (Literal.isUTF16())
Kind = StringLiteral::UTF16;
else if (Literal.isUTF32())
Kind = StringLiteral::UTF32;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
StrTy.addConst();
// Get an array type for the string, according to C99 6.4.5. This includes
// the nul terminator character as well as the string length for pascal
// strings.
StrTy = Context.getConstantArrayType(StrTy,
llvm::APInt(32, Literal.GetNumStringChars()+1),
ArrayType::Normal, 0);
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
return Owned(StringLiteral::Create(Context, Literal.GetString(),
Kind, Literal.Pascal, StrTy,
&StringTokLocs[0],
StringTokLocs.size()));
}
enum CaptureResult {
/// No capture is required.
CR_NoCapture,
/// A capture is required.
CR_Capture,
/// A by-ref capture is required.
CR_CaptureByRef,
/// An error occurred when trying to capture the given variable.
CR_Error
};
/// Diagnose an uncapturable value reference.
///
/// \param var - the variable referenced
/// \param DC - the context which we couldn't capture through
static CaptureResult
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
VarDecl *var, DeclContext *DC) {
switch (S.ExprEvalContexts.back().Context) {
case Sema::Unevaluated:
// The argument will never be evaluated, so don't complain.
return CR_NoCapture;
case Sema::PotentiallyEvaluated:
case Sema::PotentiallyEvaluatedIfUsed:
break;
case Sema::PotentiallyPotentiallyEvaluated:
// FIXME: delay these!
break;
}
// Don't diagnose about capture if we're not actually in code right
// now; in general, there are more appropriate places that will
// diagnose this.
if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
// Certain madnesses can happen with parameter declarations, which
// we want to ignore.
if (isa<ParmVarDecl>(var)) {
// - If the parameter still belongs to the translation unit, then
// we're actually just using one parameter in the declaration of
// the next. This is useful in e.g. VLAs.
if (isa<TranslationUnitDecl>(var->getDeclContext()))
return CR_NoCapture;
// - This particular madness can happen in ill-formed default
// arguments; claim it's okay and let downstream code handle it.
if (S.CurContext == var->getDeclContext()->getParent())
return CR_NoCapture;
}
DeclarationName functionName;
if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
functionName = fn->getDeclName();
// FIXME: variable from enclosing block that we couldn't capture from!
S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
<< var->getIdentifier() << functionName;
S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
<< var->getIdentifier();
return CR_Error;
}
/// There is a well-formed capture at a particular scope level;
/// propagate it through all the nested blocks.
static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
const BlockDecl::Capture &capture) {
VarDecl *var = capture.getVariable();
// Update all the inner blocks with the capture information.
for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
i != e; ++i) {
BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
innerBlock->Captures.push_back(
BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
/*nested*/ true, capture.getCopyExpr()));
innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
}
return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
}
/// shouldCaptureValueReference - Determine if a reference to the
/// given value in the current context requires a variable capture.
///
/// This also keeps the captures set in the BlockScopeInfo records
/// up-to-date.
static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
ValueDecl *value) {
// Only variables ever require capture.
VarDecl *var = dyn_cast<VarDecl>(value);
if (!var) return CR_NoCapture;
// Fast path: variables from the current context never require capture.
DeclContext *DC = S.CurContext;
if (var->getDeclContext() == DC) return CR_NoCapture;
// Only variables with local storage require capture.
// FIXME: What about 'const' variables in C++?
if (!var->hasLocalStorage()) return CR_NoCapture;
// Otherwise, we need to capture.
unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
do {
// Only blocks (and eventually C++0x closures) can capture; other
// scopes don't work.
if (!isa<BlockDecl>(DC))
return diagnoseUncapturableValueReference(S, loc, var, DC);
BlockScopeInfo *blockScope =
cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
// Check whether we've already captured it in this block. If so,
// we're done.
if (unsigned indexPlus1 = blockScope->CaptureMap[var])
return propagateCapture(S, functionScopesIndex,
blockScope->Captures[indexPlus1 - 1]);
functionScopesIndex--;
DC = cast<BlockDecl>(DC)->getDeclContext();
} while (var->getDeclContext() != DC);
// Okay, we descended all the way to the block that defines the variable.
// Actually try to capture it.
QualType type = var->getType();
// Prohibit variably-modified types.
if (type->isVariablyModifiedType()) {
S.Diag(loc, diag::err_ref_vm_type);
S.Diag(var->getLocation(), diag::note_declared_at);
return CR_Error;
}
// Prohibit arrays, even in __block variables, but not references to
// them.
if (type->isArrayType()) {
S.Diag(loc, diag::err_ref_array_type);
S.Diag(var->getLocation(), diag::note_declared_at);
return CR_Error;
}
S.MarkDeclarationReferenced(loc, var);
// The BlocksAttr indicates the variable is bound by-reference.
bool byRef = var->hasAttr<BlocksAttr>();
// Build a copy expression.
Expr *copyExpr = 0;
const RecordType *rtype;
if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
(rtype = type->getAs<RecordType>())) {
// The capture logic needs the destructor, so make sure we mark it.
// Usually this is unnecessary because most local variables have
// their destructors marked at declaration time, but parameters are
// an exception because it's technically only the call site that
// actually requires the destructor.
if (isa<ParmVarDecl>(var))
S.FinalizeVarWithDestructor(var, rtype);
// According to the blocks spec, the capture of a variable from
// the stack requires a const copy constructor. This is not true
// of the copy/move done to move a __block variable to the heap.
type.addConst();
Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
ExprResult result =
S.PerformCopyInitialization(
InitializedEntity::InitializeBlock(var->getLocation(),
type, false),
loc, S.Owned(declRef));
// Build a full-expression copy expression if initialization
// succeeded and used a non-trivial constructor. Recover from
// errors by pretending that the copy isn't necessary.
if (!result.isInvalid() &&
!cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
result = S.MaybeCreateExprWithCleanups(result);
copyExpr = result.take();
}
}
// We're currently at the declarer; go back to the closure.
functionScopesIndex++;
BlockScopeInfo *blockScope =
cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
// Build a valid capture in this scope.
blockScope->Captures.push_back(
BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
// Propagate that to inner captures if necessary.
return propagateCapture(S, functionScopesIndex,
blockScope->Captures.back());
}
static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
const DeclarationNameInfo &NameInfo,
bool byRef) {
assert(isa<VarDecl>(vd) && "capturing non-variable");
VarDecl *var = cast<VarDecl>(vd);
assert(var->hasLocalStorage() && "capturing non-local");
assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
QualType exprType = var->getType().getNonReferenceType();
BlockDeclRefExpr *BDRE;
if (!byRef) {
// The variable will be bound by copy; make it const within the
// closure, but record that this was done in the expression.
bool constAdded = !exprType.isConstQualified();
exprType.addConst();
BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
NameInfo.getLoc(), false,
constAdded);
} else {
BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
NameInfo.getLoc(), true);
}
return S.Owned(BDRE);
}
ExprResult
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
SourceLocation Loc,
const CXXScopeSpec *SS) {
DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
}
/// BuildDeclRefExpr - Build an expression that references a
/// declaration that does not require a closure capture.
ExprResult
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS) {
MarkDeclarationReferenced(NameInfo.getLoc(), D);
Expr *E = DeclRefExpr::Create(Context,
SS? SS->getWithLocInContext(Context)
: NestedNameSpecifierLoc(),
D, NameInfo, Ty, VK);
// Just in case we're building an illegal pointer-to-member.
if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
E->setObjectKind(OK_BitField);
return Owned(E);
}
/// Decomposes the given name into a DeclarationNameInfo, its location, and
/// possibly a list of template arguments.
///
/// If this produces template arguments, it is permitted to call
/// DecomposeTemplateName.
///
/// This actually loses a lot of source location information for
/// non-standard name kinds; we should consider preserving that in
/// some way.
void
Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
TemplateArgumentListInfo &Buffer,
DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *&TemplateArgs) {
if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
ASTTemplateArgsPtr TemplateArgsPtr(*this,
Id.TemplateId->getTemplateArgs(),
Id.TemplateId->NumArgs);
translateTemplateArguments(TemplateArgsPtr, Buffer);
TemplateArgsPtr.release();
TemplateName TName = Id.TemplateId->Template.get();
SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
NameInfo = Context.getNameForTemplate(TName, TNameLoc);
TemplateArgs = &Buffer;
} else {
NameInfo = GetNameFromUnqualifiedId(Id);
TemplateArgs = 0;
}
}
/// Diagnose an empty lookup.
///
/// \return false if new lookup candidates were found
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CorrectTypoContext CTC,
TemplateArgumentListInfo *ExplicitTemplateArgs,
Expr **Args, unsigned NumArgs) {
DeclarationName Name = R.getLookupName();
unsigned diagnostic = diag::err_undeclared_var_use;
unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
diagnostic = diag::err_undeclared_use;
diagnostic_suggest = diag::err_undeclared_use_suggest;
}
// If the original lookup was an unqualified lookup, fake an
// unqualified lookup. This is useful when (for example) the
// original lookup would not have found something because it was a
// dependent name.
for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
DC; DC = DC->getParent()) {
if (isa<CXXRecordDecl>(DC)) {
LookupQualifiedName(R, DC);
if (!R.empty()) {
// Don't give errors about ambiguities in this lookup.
R.suppressDiagnostics();
CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
bool isInstance = CurMethod &&
CurMethod->isInstance() &&
DC == CurMethod->getParent();
// Give a code modification hint to insert 'this->'.
// TODO: fixit for inserting 'Base<T>::' in the other cases.
// Actually quite difficult!
if (isInstance) {
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
CallsUndergoingInstantiation.back()->getCallee());
CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
CurMethod->getInstantiatedFromMemberFunction());
if (DepMethod) {
Diag(R.getNameLoc(), diagnostic) << Name
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->");
QualType DepThisType = DepMethod->getThisType(Context);
CXXThisExpr *DepThis = new (Context) CXXThisExpr(
R.getNameLoc(), DepThisType, false);
TemplateArgumentListInfo TList;
if (ULE->hasExplicitTemplateArgs())
ULE->copyTemplateArgumentsInto(TList);
CXXScopeSpec SS;
SS.Adopt(ULE->getQualifierLoc());
CXXDependentScopeMemberExpr *DepExpr =
CXXDependentScopeMemberExpr::Create(
Context, DepThis, DepThisType, true, SourceLocation(),
SS.getWithLocInContext(Context), NULL,
R.getLookupNameInfo(), &TList);
CallsUndergoingInstantiation.back()->setCallee(DepExpr);
} else {
// FIXME: we should be able to handle this case too. It is correct
// to add this-> here. This is a workaround for PR7947.
Diag(R.getNameLoc(), diagnostic) << Name;
}
} else {
Diag(R.getNameLoc(), diagnostic) << Name;
}
// Do we really want to note all of these?
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
Diag((*I)->getLocation(), diag::note_dependent_var_use);
// Tell the callee to try to recover.
return false;
}
R.clear();
}
}
// We didn't find anything, so try to correct for a typo.
TypoCorrection Corrected;
if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
S, &SS, NULL, false, CTC))) {
std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
R.setLookupName(Corrected.getCorrection());
if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
if (Corrected.isOverloaded()) {
OverloadCandidateSet OCS(R.getNameLoc());
OverloadCandidateSet::iterator Best;
for (TypoCorrection::decl_iterator CD = Corrected.begin(),
CDEnd = Corrected.end();
CD != CDEnd; ++CD) {
if (FunctionTemplateDecl *FTD =
dyn_cast<FunctionTemplateDecl>(*CD))
AddTemplateOverloadCandidate(
FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
Args, NumArgs, OCS);
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
Args, NumArgs, OCS);
}
switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
case OR_Success:
ND = Best->Function;
break;
default:
break;
}
}
R.addDecl(ND);
if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
if (SS.isEmpty())
Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
<< FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
else
Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false) << CorrectedQuotedStr
<< SS.getRange()
<< FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
if (ND)
Diag(ND->getLocation(), diag::note_previous_decl)
<< CorrectedQuotedStr;
// Tell the callee to try to recover.
return false;
}
if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
// FIXME: If we ended up with a typo for a type name or
// Objective-C class name, we're in trouble because the parser
// is in the wrong place to recover. Suggest the typo
// correction, but don't make it a fix-it since we're not going
// to recover well anyway.
if (SS.isEmpty())
Diag(R.getNameLoc(), diagnostic_suggest)
<< Name << CorrectedQuotedStr;
else
Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false) << CorrectedQuotedStr
<< SS.getRange();
// Don't try to recover; it won't work.
return true;
}
} else {
// FIXME: We found a keyword. Suggest it, but don't provide a fix-it
// because we aren't able to recover.
if (SS.isEmpty())
Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
else
Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false) << CorrectedQuotedStr
<< SS.getRange();
return true;
}
}
R.clear();
// Emit a special diagnostic for failed member lookups.
// FIXME: computing the declaration context might fail here (?)
if (!SS.isEmpty()) {
Diag(R.getNameLoc(), diag::err_no_member)
<< Name << computeDeclContext(SS, false)
<< SS.getRange();
return true;
}
// Give up, we can't recover.
Diag(R.getNameLoc(), diagnostic) << Name;
return true;
}
ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
ObjCMethodDecl *CurMeth = getCurMethodDecl();
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
if (!IDecl)
return 0;
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
if (!ClassImpDecl)
return 0;
ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
if (!property)
return 0;
if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
PIDecl->getPropertyIvarDecl())
return 0;
return property;
}
bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
ObjCMethodDecl *CurMeth = getCurMethodDecl();
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
if (!IDecl)
return false;
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
if (!ClassImpDecl)
return false;
if (ObjCPropertyImplDecl *PIDecl
= ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
PIDecl->getPropertyIvarDecl())
return false;
return true;
}
ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup,
IdentifierInfo *II,
SourceLocation NameLoc) {
ObjCMethodDecl *CurMeth = getCurMethodDecl();
bool LookForIvars;
if (Lookup.empty())
LookForIvars = true;
else if (CurMeth->isClassMethod())
LookForIvars = false;
else
LookForIvars = (Lookup.isSingleResult() &&
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
(Lookup.getAsSingle<VarDecl>() != 0));
if (!LookForIvars)
return 0;
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
if (!IDecl)
return 0;
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
if (!ClassImpDecl)
return 0;
bool DynamicImplSeen = false;
ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
if (!property)
return 0;
if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
DynamicImplSeen =
(PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
// property implementation has a designated ivar. No need to assume a new
// one.
if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
return 0;
}
if (!DynamicImplSeen) {
QualType PropType = Context.getCanonicalType(property->getType());
ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
NameLoc, NameLoc,
II, PropType, /*Dinfo=*/0,
ObjCIvarDecl::Private,
(Expr *)0, true);
ClassImpDecl->addDecl(Ivar);
IDecl->makeDeclVisibleInContext(Ivar, false);
property->setPropertyIvarDecl(Ivar);
return Ivar;
}
return 0;
}
ExprResult Sema::ActOnIdExpression(Scope *S,
CXXScopeSpec &SS,
UnqualifiedId &Id,
bool HasTrailingLParen,
bool isAddressOfOperand) {
assert(!(isAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen");
if (SS.isInvalid())
return ExprError();
TemplateArgumentListInfo TemplateArgsBuffer;
// Decompose the UnqualifiedId into the following data.
DeclarationNameInfo NameInfo;
const TemplateArgumentListInfo *TemplateArgs;
DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
DeclarationName Name = NameInfo.getName();
IdentifierInfo *II = Name.getAsIdentifierInfo();
SourceLocation NameLoc = NameInfo.getLoc();
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// -- an identifier that was declared with a dependent type,
// (note: handled after lookup)
// -- a template-id that is dependent,
// (note: handled in BuildTemplateIdExpr)
// -- a conversion-function-id that specifies a dependent type,
// -- a nested-name-specifier that contains a class-name that
// names a dependent type.
// Determine whether this is a member of an unknown specialization;
// we need to handle these differently.
bool DependentID = false;
if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
Name.getCXXNameType()->isDependentType()) {
DependentID = true;
} else if (SS.isSet()) {
if (DeclContext *DC = computeDeclContext(SS, false)) {
if (RequireCompleteDeclContext(SS, DC))
return ExprError();
} else {
DependentID = true;
}
}
if (DependentID)
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
TemplateArgs);
bool IvarLookupFollowUp = false;
// Perform the required lookup.
LookupResult R(*this, NameInfo,
(Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
? LookupObjCImplicitSelfParam : LookupOrdinaryName);
if (TemplateArgs) {
// Lookup the template name again to correctly establish the context in
// which it was found. This is really unfortunate as we already did the
// lookup to determine that it was a template name in the first place. If
// this becomes a performance hit, we can work harder to preserve those
// results until we get here but it's likely not worth it.
bool MemberOfUnknownSpecialization;
LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
MemberOfUnknownSpecialization);
if (MemberOfUnknownSpecialization ||
(R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
TemplateArgs);
} else {
IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
// If the result might be in a dependent base class, this is a dependent
// id-expression.
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
TemplateArgs);
// If this reference is in an Objective-C method, then we need to do
// some special Objective-C lookup, too.
if (IvarLookupFollowUp) {
ExprResult E(LookupInObjCMethod(R, S, II, true));
if (E.isInvalid())
return ExprError();
if (Expr *Ex = E.takeAs<Expr>())
return Owned(Ex);
// Synthesize ivars lazily.
if (getLangOptions().ObjCDefaultSynthProperties &&
getLangOptions().ObjCNonFragileABI2) {
if (SynthesizeProvisionalIvar(R, II, NameLoc)) {
if (const ObjCPropertyDecl *Property =
canSynthesizeProvisionalIvar(II)) {
Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
Diag(Property->getLocation(), diag::note_property_declare);
}
return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
isAddressOfOperand);
}
}
// for further use, this must be set to false if in class method.
IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
}
}
if (R.isAmbiguous())
return ExprError();
// Determine whether this name might be a candidate for
// argument-dependent lookup.
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
if (R.empty() && !ADL) {
// Otherwise, this could be an implicitly declared function reference (legal
// in C90, extension in C99, forbidden in C++).
if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
if (D) R.addDecl(D);
}
// If this name wasn't predeclared and if this is not a function
// call, diagnose the problem.
if (R.empty()) {
if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
return ExprError();
assert(!R.empty() &&
"DiagnoseEmptyLookup returned false but added no results");
// If we found an Objective-C instance variable, let
// LookupInObjCMethod build the appropriate expression to
// reference the ivar.
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
R.clear();
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
assert(E.isInvalid() || E.get());
return move(E);
}
}
}
// This is guaranteed from this point on.
assert(!R.empty() || ADL);
// Check whether this might be a C++ implicit instance member access.
// C++ [class.mfct.non-static]p3:
// When an id-expression that is not part of a class member access
// syntax and not used to form a pointer to member is used in the
// body of a non-static member function of class X, if name lookup
// resolves the name in the id-expression to a non-static non-type
// member of some class C, the id-expression is transformed into a
// class member access expression using (*this) as the
// postfix-expression to the left of the . operator.
//
// But we don't actually need to do this for '&' operands if R
// resolved to a function or overloaded function set, because the
// expression is ill-formed if it actually works out to be a
// non-static member function:
//
// C++ [expr.ref]p4:
// Otherwise, if E1.E2 refers to a non-static member function. . .
// [t]he expression can be used only as the left-hand operand of a
// member function call.
//
// There are other safeguards against such uses, but it's important
// to get this right here so that we don't end up making a
// spuriously dependent expression if we're inside a dependent
// instance method.
if (!R.empty() && (*R.begin())->isCXXClassMember()) {
bool MightBeImplicitMember;
if (!isAddressOfOperand)
MightBeImplicitMember = true;
else if (!SS.isEmpty())
MightBeImplicitMember = false;
else if (R.isOverloadedResult())
MightBeImplicitMember = false;
else if (R.isUnresolvableResult())
MightBeImplicitMember = true;
else
MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
isa<IndirectFieldDecl>(R.getFoundDecl());
if (MightBeImplicitMember)
return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
}
if (TemplateArgs)
return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
return BuildDeclarationNameExpr(SS, R, ADL);
}
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
/// declaration name, generally during template instantiation.
/// There's a large number of things which don't need to be done along
/// this path.
ExprResult
Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo) {
DeclContext *DC;
if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
return BuildDependentDeclRefExpr(SS, NameInfo, 0);
if (RequireCompleteDeclContext(SS, DC))
return ExprError();
LookupResult R(*this, NameInfo, LookupOrdinaryName);
LookupQualifiedName(R, DC);
if (R.isAmbiguous())
return ExprError();
if (R.empty()) {
Diag(NameInfo.getLoc(), diag::err_no_member)
<< NameInfo.getName() << DC << SS.getRange();
return ExprError();
}
return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
}
/// LookupInObjCMethod - The parser has read a name in, and Sema has
/// detected that we're currently inside an ObjC method. Perform some
/// additional lookup.
///
/// Ideally, most of this would be done by lookup, but there's
/// actually quite a lot of extra work involved.
///
/// Returns a null sentinel to indicate trivial success.
ExprResult
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
IdentifierInfo *II, bool AllowBuiltinCreation) {
SourceLocation Loc = Lookup.getNameLoc();
ObjCMethodDecl *CurMethod = getCurMethodDecl();
// There are two cases to handle here. 1) scoped lookup could have failed,
// in which case we should look for an ivar. 2) scoped lookup could have
// found a decl, but that decl is outside the current instance method (i.e.
// a global variable). In these two cases, we do a lookup for an ivar with
// this name, if the lookup sucedes, we replace it our current decl.
// If we're in a class method, we don't normally want to look for
// ivars. But if we don't find anything else, and there's an
// ivar, that's an error.
bool IsClassMethod = CurMethod->isClassMethod();
bool LookForIvars;
if (Lookup.empty())
LookForIvars = true;
else if (IsClassMethod)
LookForIvars = false;
else
LookForIvars = (Lookup.isSingleResult() &&
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
ObjCInterfaceDecl *IFace = 0;
if (LookForIvars) {
IFace = CurMethod->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
// Diagnose using an ivar in a class method.
if (IsClassMethod)
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
<< IV->getDeclName());
// If we're referencing an invalid decl, just return this as a silent
// error node. The error diagnostic was already emitted on the decl.
if (IV->isInvalidDecl())
return ExprError();
// Check if referencing a field with __attribute__((deprecated)).
if (DiagnoseUseOfDecl(IV, Loc))
return ExprError();
// Diagnose the use of an ivar outside of the declaring class.
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
ClassDeclared != IFace)
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
// FIXME: This should use a new expr for a direct reference, don't
// turn this into Self->ivar, just return a BareIVarExpr or something.
IdentifierInfo &II = Context.Idents.get("self");
UnqualifiedId SelfName;
SelfName.setIdentifier(&II, SourceLocation());
SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
CXXScopeSpec SelfScopeSpec;
ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
SelfName, false, false);
if (SelfExpr.isInvalid())
return ExprError();
SelfExpr = DefaultLvalueConversion(SelfExpr.take());
if (SelfExpr.isInvalid())
return ExprError();
MarkDeclarationReferenced(Loc, IV);
return Owned(new (Context)
ObjCIvarRefExpr(IV, IV->getType(), Loc,
SelfExpr.take(), true, true));
}
} else if (CurMethod->isInstanceMethod()) {
// We should warn if a local variable hides an ivar.
ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
IFace == ClassDeclared)
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
}
}
if (Lookup.empty() && II && AllowBuiltinCreation) {
// FIXME. Consolidate this with similar code in LookupName.
if (unsigned BuiltinID = II->getBuiltinID()) {
if (!(getLangOptions().CPlusPlus &&
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
S, Lookup.isForRedeclaration(),
Lookup.getNameLoc());
if (D) Lookup.addDecl(D);
}
}
}
// Sentinel value saying that we didn't do anything special.
return Owned((Expr*) 0);
}
/// \brief Cast a base object to a member's actual type.
///
/// Logically this happens in three phases:
///
/// * First we cast from the base type to the naming class.
/// The naming class is the class into which we were looking
/// when we found the member; it's the qualifier type if a
/// qualifier was provided, and otherwise it's the base type.
///
/// * Next we cast from the naming class to the declaring class.
/// If the member we found was brought into a class's scope by
/// a using declaration, this is that class; otherwise it's
/// the class declaring the member.
///
/// * Finally we cast from the declaring class to the "true"
/// declaring class of the member. This conversion does not
/// obey access control.
ExprResult
Sema::PerformObjectMemberConversion(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
NamedDecl *Member) {
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
if (!RD)
return Owned(From);
QualType DestRecordType;
QualType DestType;
QualType FromRecordType;
QualType FromType = From->getType();
bool PointerConversions = false;
if (isa<FieldDecl>(Member)) {
DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
if (FromType->getAs<PointerType>()) {
DestType = Context.getPointerType(DestRecordType);
FromRecordType = FromType->getPointeeType();
PointerConversions = true;
} else {
DestType = DestRecordType;
FromRecordType = FromType;
}
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
if (Method->isStatic())
return Owned(From);
DestType = Method->getThisType(Context);
DestRecordType = DestType->getPointeeType();
if (FromType->getAs<PointerType>()) {
FromRecordType = FromType->getPointeeType();
PointerConversions = true;
} else {
FromRecordType = FromType;
DestType = DestRecordType;
}
} else {
// No conversion necessary.
return Owned(From);
}
if (DestType->isDependentType() || FromType->isDependentType())
return Owned(From);
// If the unqualified types are the same, no conversion is necessary.
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
return Owned(From);
SourceRange FromRange = From->getSourceRange();
SourceLocation FromLoc = FromRange.getBegin();
ExprValueKind VK = CastCategory(From);
// C++ [class.member.lookup]p8:
// [...] Ambiguities can often be resolved by qualifying a name with its
// class name.
//
// If the member was a qualified name and the qualified referred to a
// specific base subobject type, we'll cast to that intermediate type
// first and then to the object in which the member is declared. That allows
// one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
//
// class Base { public: int x; };
// class Derived1 : public Base { };
// class Derived2 : public Base { };
// class VeryDerived : public Derived1, public Derived2 { void f(); };
//
// void VeryDerived::f() {
// x = 17; // error: ambiguous base subobjects
// Derived1::x = 17; // okay, pick the Base subobject of Derived1
// }
if (Qualifier) {
QualType QType = QualType(Qualifier->getAsType(), 0);
assert(!QType.isNull() && "lookup done with dependent qualifier?");
assert(QType->isRecordType() && "lookup done with non-record type");
QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
// In C++98, the qualifier type doesn't actually have to be a base
// type of the object type, in which case we just ignore it.
// Otherwise build the appropriate casts.
if (IsDerivedFrom(FromRecordType, QRecordType)) {
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
FromLoc, FromRange, &BasePath))
return ExprError();
if (PointerConversions)
QType = Context.getPointerType(QType);
From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
VK, &BasePath).take();
FromType = QType;
FromRecordType = QRecordType;
// If the qualifier type was the same as the destination type,
// we're done.
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
return Owned(From);
}
}
bool IgnoreAccess = false;
// If we actually found the member through a using declaration, cast
// down to the using declaration's type.
//
// Pointer equality is fine here because only one declaration of a
// class ever has member declarations.
if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
assert(isa<UsingShadowDecl>(FoundDecl));
QualType URecordType = Context.getTypeDeclType(
cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
// We only need to do this if the naming-class to declaring-class
// conversion is non-trivial.
if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
assert(IsDerivedFrom(FromRecordType, URecordType));
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
FromLoc, FromRange, &BasePath))
return ExprError();
QualType UType = URecordType;
if (PointerConversions)
UType = Context.getPointerType(UType);
From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
VK, &BasePath).take();
FromType = UType;
FromRecordType = URecordType;
}
// We don't do access control for the conversion from the
// declaring class to the true declaring class.
IgnoreAccess = true;
}
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
FromLoc, FromRange, &BasePath,
IgnoreAccess))
return ExprError();
return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
VK, &BasePath);
}
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
const LookupResult &R,
bool HasTrailingLParen) {
// Only when used directly as the postfix-expression of a call.
if (!HasTrailingLParen)
return false;
// Never if a scope specifier was provided.
if (SS.isSet())
return false;
// Only in C++ or ObjC++.
if (!getLangOptions().CPlusPlus)
return false;
// Turn off ADL when we find certain kinds of declarations during
// normal lookup:
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
NamedDecl *D = *I;
// C++0x [basic.lookup.argdep]p3:
// -- a declaration of a class member
// Since using decls preserve this property, we check this on the
// original decl.
if (D->isCXXClassMember())
return false;
// C++0x [basic.lookup.argdep]p3:
// -- a block-scope function declaration that is not a
// using-declaration
// NOTE: we also trigger this for function templates (in fact, we
// don't check the decl type at all, since all other decl types
// turn off ADL anyway).
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
else if (D->getDeclContext()->isFunctionOrMethod())
return false;
// C++0x [basic.lookup.argdep]p3:
// -- a declaration that is neither a function or a function
// template
// And also for builtin functions.
if (isa<FunctionDecl>(D)) {
FunctionDecl *FDecl = cast<FunctionDecl>(D);
// But also builtin functions.
if (FDecl->getBuiltinID() && FDecl->isImplicit())
return false;
} else if (!isa<FunctionTemplateDecl>(D))
return false;
}
return true;
}
/// Diagnoses obvious problems with the use of the given declaration
/// as an expression. This is only actually called for lookups that
/// were not overloaded, and it doesn't promise that the declaration
/// will in fact be used.
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
if (isa<TypedefNameDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
return true;
}
if (isa<ObjCInterfaceDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
return true;
}
if (isa<NamespaceDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
return true;
}
return false;
}
ExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool NeedsADL) {
// If this is a single, fully-resolved result and we don't need ADL,
// just build an ordinary singleton decl ref.
if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
R.getFoundDecl());
// We only need to check the declaration if there's exactly one
// result, because in the overloaded case the results can only be
// functions and function templates.
if (R.isSingleResult() &&
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
return ExprError();
// Otherwise, just build an unresolved lookup expression. Suppress
// any lookup-related diagnostics; we'll hash these out later, when
// we've picked a target.
R.suppressDiagnostics();
UnresolvedLookupExpr *ULE
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
SS.getWithLocInContext(Context),
R.getLookupNameInfo(),
NeedsADL, R.isOverloadedResult(),
R.begin(), R.end());
return Owned(ULE);
}
/// \brief Complete semantic analysis for a reference to the given declaration.
ExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
NamedDecl *D) {
assert(D && "Cannot refer to a NULL declaration");
assert(!isa<FunctionTemplateDecl>(D) &&
"Cannot refer unambiguously to a function template");
SourceLocation Loc = NameInfo.getLoc();
if (CheckDeclInExpr(*this, Loc, D))
return ExprError();
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
// Specifically diagnose references to class templates that are missing
// a template argument list.
Diag(Loc, diag::err_template_decl_ref)
<< Template << SS.getRange();
Diag(Template->getLocation(), diag::note_template_decl_here);
return ExprError();
}
// Make sure that we're referring to a value.
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD) {
Diag(Loc, diag::err_ref_non_value)
<< D << SS.getRange();
Diag(D->getLocation(), diag::note_declared_at);
return ExprError();
}
// Check whether this declaration can be used. Note that we suppress
// this check when we're going to perform argument-dependent lookup
// on this function name, because this might not be the function
// that overload resolution actually selects.
if (DiagnoseUseOfDecl(VD, Loc))
return ExprError();
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl())
return ExprError();
// Handle members of anonymous structs and unions. If we got here,
// and the reference is to a class member indirect field, then this
// must be the subject of a pointer-to-member expression.
if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
if (!indirectField->isCXXClassMember())
return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
indirectField);
// If the identifier reference is inside a block, and it refers to a value
// that is outside the block, create a BlockDeclRefExpr instead of a
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
// the block is formed.
//
// We do not do this for things like enum constants, global variables, etc,
// as they do not get snapshotted.
//
switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
case CR_Error:
return ExprError();
case CR_Capture:
assert(!SS.isSet() && "referenced local variable with scope specifier?");
return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
case CR_CaptureByRef:
assert(!SS.isSet() && "referenced local variable with scope specifier?");
return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
case CR_NoCapture: {
// If this reference is not in a block or if the referenced
// variable is within the block, create a normal DeclRefExpr.
QualType type = VD->getType();
ExprValueKind valueKind = VK_RValue;
switch (D->getKind()) {
// Ignore all the non-ValueDecl kinds.
#define ABSTRACT_DECL(kind)
#define VALUE(type, base)
#define DECL(type, base) \
case Decl::type:
#include "clang/AST/DeclNodes.inc"
llvm_unreachable("invalid value decl kind");
return ExprError();
// These shouldn't make it here.
case Decl::ObjCAtDefsField:
case Decl::ObjCIvar:
llvm_unreachable("forming non-member reference to ivar?");
return ExprError();
// Enum constants are always r-values and never references.
// Unresolved using declarations are dependent.
case Decl::EnumConstant:
case Decl::UnresolvedUsingValue:
valueKind = VK_RValue;
break;
// Fields and indirect fields that got here must be for
// pointer-to-member expressions; we just call them l-values for
// internal consistency, because this subexpression doesn't really
// exist in the high-level semantics.
case Decl::Field:
case Decl::IndirectField:
assert(getLangOptions().CPlusPlus &&
"building reference to field in C?");
// These can't have reference type in well-formed programs, but
// for internal consistency we do this anyway.
type = type.getNonReferenceType();
valueKind = VK_LValue;
break;
// Non-type template parameters are either l-values or r-values
// depending on the type.
case Decl::NonTypeTemplateParm: {
if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
type = reftype->getPointeeType();
valueKind = VK_LValue; // even if the parameter is an r-value reference
break;
}
// For non-references, we need to strip qualifiers just in case
// the template parameter was declared as 'const int' or whatever.
valueKind = VK_RValue;
type = type.getUnqualifiedType();
break;
}
case Decl::Var:
// In C, "extern void blah;" is valid and is an r-value.
if (!getLangOptions().CPlusPlus &&
!type.hasQualifiers() &&
type->isVoidType()) {
valueKind = VK_RValue;
break;
}
// fallthrough
case Decl::ImplicitParam:
case Decl::ParmVar:
// These are always l-values.
valueKind = VK_LValue;
type = type.getNonReferenceType();
break;
case Decl::Function: {
const FunctionType *fty = type->castAs<FunctionType>();
// If we're referring to a function with an __unknown_anytype
// result type, make the entire expression __unknown_anytype.
if (fty->getResultType() == Context.UnknownAnyTy) {
type = Context.UnknownAnyTy;
valueKind = VK_RValue;
break;
}
// Functions are l-values in C++.
if (getLangOptions().CPlusPlus) {
valueKind = VK_LValue;
break;
}
// C99 DR 316 says that, if a function type comes from a
// function definition (without a prototype), that type is only
// used for checking compatibility. Therefore, when referencing
// the function, we pretend that we don't have the full function
// type.
if (!cast<FunctionDecl>(VD)->hasPrototype() &&
isa<FunctionProtoType>(fty))
type = Context.getFunctionNoProtoType(fty->getResultType(),
fty->getExtInfo());
// Functions are r-values in C.
valueKind = VK_RValue;
break;
}
case Decl::CXXMethod:
// If we're referring to a method with an __unknown_anytype
// result type, make the entire expression __unknown_anytype.
// This should only be possible with a type written directly.
if (const FunctionProtoType *proto
= dyn_cast<FunctionProtoType>(VD->getType()))
if (proto->getResultType() == Context.UnknownAnyTy) {
type = Context.UnknownAnyTy;
valueKind = VK_RValue;
break;
}
// C++ methods are l-values if static, r-values if non-static.
if (cast<CXXMethodDecl>(VD)->isStatic()) {
valueKind = VK_LValue;
break;
}
// fallthrough
case Decl::CXXConversion:
case Decl::CXXDestructor:
case Decl::CXXConstructor:
valueKind = VK_RValue;
break;
}
return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
}
}
llvm_unreachable("unknown capture result");
return ExprError();
}
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
PredefinedExpr::IdentType IT;
switch (Kind) {
default: assert(0 && "Unknown simple primary expr!");
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
}
// Pre-defined identifiers are of type char[x], where x is the length of the
// string.
Decl *currentDecl = getCurFunctionOrMethodDecl();
if (!currentDecl && getCurBlock())
currentDecl = getCurBlock()->TheDecl;
if (!currentDecl) {
Diag(Loc, diag::ext_predef_outside_function);
currentDecl = Context.getTranslationUnitDecl();
}
QualType ResTy;
if (cast<DeclContext>(currentDecl)->isDependentContext()) {
ResTy = Context.DependentTy;
} else {
unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
llvm::APInt LengthI(32, Length + 1);
ResTy = Context.CharTy.withConst();
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
}
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
}
ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
llvm::SmallString<16> CharBuffer;
bool Invalid = false;
StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
if (Invalid)
return ExprError();
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
PP, Tok.getKind());
if (Literal.hadError())
return ExprError();
QualType Ty;
if (!getLangOptions().CPlusPlus)
Ty = Context.IntTy; // 'x' and L'x' -> int in C.
else if (Literal.isWide())
Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
else if (Literal.isUTF16())
Ty = Context.Char16Ty; // u'x' -> char16_t in C++0x.
else if (Literal.isUTF32())
Ty = Context.Char32Ty; // U'x' -> char32_t in C++0x.
else if (Literal.isMultiChar())
Ty = Context.IntTy; // 'wxyz' -> int in C++.
else
Ty = Context.CharTy; // 'x' -> char in C++
CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
if (Literal.isWide())
Kind = CharacterLiteral::Wide;
else if (Literal.isUTF16())
Kind = CharacterLiteral::UTF16;
else if (Literal.isUTF32())
Kind = CharacterLiteral::UTF32;
return Owned(new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
Tok.getLocation()));
}
ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// Fast path for a single digit (which is quite common). A single digit
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
if (Tok.getLength() == 1) {
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
unsigned IntSize = Context.Target.getIntWidth();
return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
Context.IntTy, Tok.getLocation()));
}
llvm::SmallString<512> IntegerBuffer;
// Add padding so that NumericLiteralParser can overread by one character.
IntegerBuffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &IntegerBuffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
bool Invalid = false;
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
if (Invalid)
return ExprError();
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError)
return ExprError();
Expr *Res;
if (Literal.isFloatingLiteral()) {
QualType Ty;
if (Literal.isFloat)
Ty = Context.FloatTy;
else if (!Literal.isLong)
Ty = Context.DoubleTy;
else
Ty = Context.LongDoubleTy;
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
using llvm::APFloat;
APFloat Val(Format);
APFloat::opStatus result = Literal.GetFloatValue(Val);
// Overflow is always an error, but underflow is only an error if
// we underflowed to zero (APFloat reports denormals as underflow).
if ((result & APFloat::opOverflow) ||
((result & APFloat::opUnderflow) && Val.isZero())) {
unsigned diagnostic;
llvm::SmallString<20> buffer;
if (result & APFloat::opOverflow) {
diagnostic = diag::warn_float_overflow;
APFloat::getLargest(Format).toString(buffer);
} else {
diagnostic = diag::warn_float_underflow;
APFloat::getSmallest(Format).toString(buffer);
}
Diag(Tok.getLocation(), diagnostic)
<< Ty
<< StringRef(buffer.data(), buffer.size());
}
bool isExact = (result == APFloat::opOK);
Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
if (Ty == Context.DoubleTy) {
if (getLangOptions().SinglePrecisionConstants) {
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
} else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
}
}
} else if (!Literal.isIntegerLiteral()) {
return ExprError();
} else {
QualType Ty;
// long long is a C99 feature.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
Literal.isLongLong)
Diag(Tok.getLocation(), diag::ext_longlong);
// Get the value in the widest-possible width.
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, warn and force to ull.
Diag(Tok.getLocation(), diag::warn_integer_too_large);
Ty = Context.UnsignedLongLongTy;
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?");
} else {
// If this value fits into a ULL, try to figure out what else it fits into
// according to the rules of C99 6.4.4.1p5.
// Octal, Hexadecimal, and integers with a U suffix are allowed to
// be an unsigned int.
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
// Check from smallest to largest, picking the smallest type we can.
unsigned Width = 0;
if (!Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
unsigned IntSize = Context.Target.getIntWidth();
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
// Does it fit in a signed int?
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
Ty = Context.IntTy;
else if (AllowUnsigned)
Ty = Context.UnsignedIntTy;
Width = IntSize;
}
}
// Are long/unsigned long possibilities?
if (Ty.isNull() && !Literal.isLongLong) {
unsigned LongSize = Context.Target.getLongWidth();
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
// Does it fit in a signed long?
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
Ty = Context.LongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongTy;
Width = LongSize;
}
}
// Finally, check long long if needed.
if (Ty.isNull()) {
unsigned LongLongSize = Context.Target.getLongLongWidth();
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
// To be compatible with MSVC, hex integer literals ending with the
// LL or i64 suffix are always signed in Microsoft mode.
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
(getLangOptions().Microsoft && Literal.isLongLong)))
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
Width = LongLongSize;
}
}
// If we still couldn't decide a type, we probably have something that
// does not fit in a signed long long, but has no U suffix.
if (Ty.isNull()) {
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
Ty = Context.UnsignedLongLongTy;
Width = Context.Target.getLongLongWidth();
}
if (ResultVal.getBitWidth() != Width)
ResultVal = ResultVal.trunc(Width);
}
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
}
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
if (Literal.isImaginary)
Res = new (Context) ImaginaryLiteral(Res,
Context.getComplexType(Res->getType()));
return Owned(Res);
}
ExprResult Sema::ActOnParenExpr(SourceLocation L,
SourceLocation R, Expr *E) {
assert((E != 0) && "ActOnParenExpr() missing expr");
return Owned(new (Context) ParenExpr(L, R, E));
}
static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
SourceLocation Loc,
SourceRange ArgRange) {
// [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
// scalar or vector data type argument..."
// Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
// type (C99 6.2.5p18) or void.
if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
<< T << ArgRange;
return true;
}
assert((T->isVoidType() || !T->isIncompleteType()) &&
"Scalar types should always be complete");
return false;
}
static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
SourceLocation Loc,
SourceRange ArgRange,
UnaryExprOrTypeTrait TraitKind) {
// C99 6.5.3.4p1:
if (T->isFunctionType()) {
// alignof(function) is allowed as an extension.
if (TraitKind == UETT_SizeOf)
S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
return false;
}
// Allow sizeof(void)/alignof(void) as an extension.
if (T->isVoidType()) {
S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
return false;
}
return true;
}
static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
SourceLocation Loc,
SourceRange ArgRange,
UnaryExprOrTypeTrait TraitKind) {
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
<< T << (TraitKind == UETT_SizeOf)
<< ArgRange;
return true;
}
return false;
}
/// \brief Check the constrains on expression operands to unary type expression
/// and type traits.
///
/// Completes any types necessary and validates the constraints on the operand
/// expression. The logic mostly mirrors the type-based overload, but may modify
/// the expression as it completes the type for that expression through template
/// instantiation, etc.
bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
UnaryExprOrTypeTrait ExprKind) {
QualType ExprTy = Op->getType();
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
// result shall be the alignment of the referenced type."
if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
ExprTy = Ref->getPointeeType();
if (ExprKind == UETT_VecStep)
return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(),
Op->getSourceRange());
// Whitelist some types as extensions
if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(),
Op->getSourceRange(), ExprKind))
return false;
if (RequireCompleteExprType(Op,
PDiag(diag::err_sizeof_alignof_incomplete_type)
<< ExprKind << Op->getSourceRange(),
std::make_pair(SourceLocation(), PDiag(0))))
return true;
// Completeing the expression's type may have changed it.
ExprTy = Op->getType();
if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
ExprTy = Ref->getPointeeType();
if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(),
Op->getSourceRange(), ExprKind))
return true;
if (ExprKind == UETT_SizeOf) {
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) {
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
QualType OType = PVD->getOriginalType();
QualType Type = PVD->getType();
if (Type->isPointerType() && OType->isArrayType()) {
Diag(Op->getExprLoc(), diag::warn_sizeof_array_param)
<< Type << OType;
Diag(PVD->getLocation(), diag::note_declared_at);
}
}
}
}
return false;
}
/// \brief Check the constraints on operands to unary expression and type
/// traits.
///
/// This will complete any types necessary, and validate the various constraints
/// on those operands.
///
/// The UsualUnaryConversions() function is *not* called by this routine.
/// C99 6.3.2.1p[2-4] all state:
/// Except when it is the operand of the sizeof operator ...
///
/// C++ [expr.sizeof]p4
/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
/// standard conversions are not applied to the operand of sizeof.
///
/// This policy is followed for all of the unary trait expressions.
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
SourceLocation OpLoc,
SourceRange ExprRange,
UnaryExprOrTypeTrait ExprKind) {
if (exprType->isDependentType())
return false;
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
// result shall be the alignment of the referenced type."
if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
exprType = Ref->getPointeeType();
if (ExprKind == UETT_VecStep)
return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange);
// Whitelist some types as extensions
if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange,
ExprKind))
return false;
if (RequireCompleteType(OpLoc, exprType,
PDiag(diag::err_sizeof_alignof_incomplete_type)
<< ExprKind << ExprRange))
return true;
if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange,
ExprKind))
return true;
return false;
}
static bool CheckAlignOfExpr(Sema &S, Expr *E) {
E = E->IgnoreParens();
// alignof decl is always ok.
if (isa<DeclRefExpr>(E))
return false;
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
if (E->getBitField()) {
S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
<< 1 << E->getSourceRange();
return true;
}
// Alignment of a field access is always okay, so long as it isn't a
// bit-field.
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
if (isa<FieldDecl>(ME->getMemberDecl()))
return false;
return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
}
bool Sema::CheckVecStepExpr(Expr *E) {
E = E->IgnoreParens();
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
}
/// \brief Build a sizeof or alignof expression given a type operand.
ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R) {
if (!TInfo)
return ExprError();
QualType T = TInfo->getType();
if (!T->isDependentType() &&
CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
Context.getSizeType(),
OpLoc, R.getEnd()));
}
/// \brief Build a sizeof or alignof expression given an expression
/// operand.
ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind) {
ExprResult PE = CheckPlaceholderExpr(E);
if (PE.isInvalid())
return ExprError();
E = PE.get();
// Verify that the operand is valid.
bool isInvalid = false;
if (E->isTypeDependent()) {
// Delay type-checking for type-dependent expressions.
} else if (ExprKind == UETT_AlignOf) {
isInvalid = CheckAlignOfExpr(*this, E);
} else if (ExprKind == UETT_VecStep) {
isInvalid = CheckVecStepExpr(E);
} else if (E->getBitField()) { // C99 6.5.3.4p1.
Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
isInvalid = true;
} else {
isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
}
if (isInvalid)
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) UnaryExprOrTypeTraitExpr(
ExprKind, E, Context.getSizeType(), OpLoc,
E->getSourceRange().getEnd()));
}
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
/// expr and the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
ExprResult
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
// If error parsing type, ignore.
if (TyOrEx == 0) return ExprError();
if (isType) {
TypeSourceInfo *TInfo;
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
}
Expr *ArgEx = (Expr *)TyOrEx;
ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
return move(Result);
}
static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
bool isReal) {
if (V.get()->isTypeDependent())
return S.Context.DependentTy;
// _Real and _Imag are only l-values for normal l-values.
if (V.get()->getObjectKind() != OK_Ordinary) {
V = S.DefaultLvalueConversion(V.take());
if (V.isInvalid())
return QualType();
}
// These operators return the element type of a complex type.
if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
if (V.get()->getType()->isArithmeticType())
return V.get()->getType();
// Test for placeholders.
ExprResult PR = S.CheckPlaceholderExpr(V.get());
if (PR.isInvalid()) return QualType();
if (PR.get() != V.get()) {
V = move(PR);
return CheckRealImagOperand(S, V, Loc, isReal);
}
// Reject anything else.
S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
<< (isReal ? "__real" : "__imag");
return QualType();
}
ExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input) {
UnaryOperatorKind Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UO_PostInc; break;
case tok::minusminus: Opc = UO_PostDec; break;
}
return BuildUnaryOp(S, OpLoc, Opc, Input);
}
ExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc) {
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
if (Result.isInvalid()) return ExprError();
Base = Result.take();
Expr *LHSExp = Base, *RHSExp = Idx;
if (getLangOptions().CPlusPlus &&
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
Context.DependentTy,
VK_LValue, OK_Ordinary,
RLoc));
}
if (getLangOptions().CPlusPlus &&
(LHSExp->getType()->isRecordType() ||
LHSExp->getType()->isEnumeralType() ||
RHSExp->getType()->isRecordType() ||
RHSExp->getType()->isEnumeralType())) {
return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
}
return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
}
ExprResult
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc) {
Expr *LHSExp = Base;
Expr *RHSExp = Idx;
// Perform default conversions.
if (!LHSExp->getType()->getAs<VectorType>()) {
ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
if (Result.isInvalid())
return ExprError();
LHSExp = Result.take();
}
ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
if (Result.isInvalid())
return ExprError();
RHSExp = Result.take();
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
ExprValueKind VK = VK_LValue;
ExprObjectKind OK = OK_Ordinary;
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
// in the subscript position. As a result, we need to derive the array base
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = Context.DependentTy;
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
LHSTy->getAs<ObjCObjectPointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
RHSTy->getAs<ObjCObjectPointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
VK = LHSExp->getValueKind();
if (VK != VK_RValue)
OK = OK_VectorComponent;
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
} else if (LHSTy->isArrayType()) {
// If we see an array that wasn't promoted by
// DefaultFunctionArrayLvalueConversion, it must be an array that
// wasn't promoted because of the C90 rule that doesn't
// allow promoting non-lvalue arrays. Warn, then
// force the promotion here.
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
LHSExp->getSourceRange();
LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
CK_ArrayToPointerDecay).take();
LHSTy = LHSExp->getType();
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
} else if (RHSTy->isArrayType()) {
// Same as previous, except for 123[f().a] case
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
RHSExp->getSourceRange();
RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
CK_ArrayToPointerDecay).take();
RHSTy = RHSExp->getType();
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
} else {
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
<< IndexExpr->getSourceRange());
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
&& !IndexExpr->isTypeDependent())
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
// type. Note that Functions are not objects, and that (in C99 parlance)
// incomplete types are not object types.
if (ResultType->isFunctionType()) {
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
// GNU extension: subscripting on pointer to void
Diag(LLoc, diag::ext_gnu_subscript_void_type)
<< BaseExpr->getSourceRange();
// C forbids expressions of unqualified void type from being l-values.
// See IsCForbiddenLValueType.
if (!ResultType.hasQualifiers()) VK = VK_RValue;
} else if (!ResultType->isDependentType() &&
RequireCompleteType(LLoc, ResultType,
PDiag(diag::err_subscript_incomplete_type)
<< BaseExpr->getSourceRange()))
return ExprError();
// Diagnose bad cases where we step over interface counts.
if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
Diag(LLoc, diag::err_subscript_nonfragile_interface)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
assert(VK == VK_RValue || LangOpts.CPlusPlus ||
!ResultType.isCForbiddenLValueType());
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
ResultType, VK, OK, RLoc));
}
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
FunctionDecl *FD,
ParmVarDecl *Param) {
if (Param->hasUnparsedDefaultArg()) {
Diag(CallLoc,
diag::err_use_of_default_argument_to_function_declared_later) <<
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
Diag(UnparsedDefaultArgLocs[Param],
diag::note_default_argument_declared_here);
return ExprError();
}
if (Param->hasUninstantiatedDefaultArg()) {
Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
// Instantiate the expression.
MultiLevelTemplateArgumentList ArgList
= getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
std::pair<const TemplateArgument *, unsigned> Innermost
= ArgList.getInnermost();
InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
Innermost.second);
ExprResult Result;
{
// C++ [dcl.fct.default]p5:
// The names in the [default argument] expression are bound, and
// the semantic constraints are checked, at the point where the
// default argument expression appears.
ContextRAII SavedContext(*this, FD);
Result = SubstExpr(UninstExpr, ArgList);
}
if (Result.isInvalid())
return ExprError();
// Check the expression as an initializer for the parameter.
InitializedEntity Entity
= InitializedEntity::InitializeParameter(Context, Param);
InitializationKind Kind
= InitializationKind::CreateCopy(Param->getLocation(),
/*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
Expr *ResultE = Result.takeAs<Expr>();
InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
Result = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(*this, &ResultE, 1));
if (Result.isInvalid())
return ExprError();
// Build the default argument expression.
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
Result.takeAs<Expr>()));
}
// If the default expression creates temporaries, we need to
// push them to the current stack of expression temporaries so they'll
// be properly destroyed.
// FIXME: We should really be rebuilding the default argument with new
// bound temporaries; see the comment in PR5810.
for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
ExprTemporaries.push_back(Temporary);
ExprNeedsCleanups = true;
}
// We already type-checked the argument, so we know it works.
// Just mark all of the declarations in this potentially-evaluated expression
// as being "referenced".
MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
}
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc) {
// Bail out early if calling a builtin with custom typechecking.
// We don't need to do this in the
if (FDecl)
if (unsigned ID = FDecl->getBuiltinID())
if (Context.BuiltinInfo.hasCustomTypechecking(ID))
return false;
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
// assignment, to the types of the corresponding parameter, ...
unsigned NumArgsInProto = Proto->getNumArgs();
bool Invalid = false;
// If too few arguments are available (and we don't have default
// arguments for the remaining parameters), don't make the call.
if (NumArgs < NumArgsInProto) {
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) {
Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
<< Fn->getType()->isBlockPointerType()
<< NumArgsInProto << NumArgs << Fn->getSourceRange();
// Emit the location of the prototype.
if (FDecl && !FDecl->getBuiltinID())
Diag(FDecl->getLocStart(), diag::note_callee_decl)
<< FDecl;
return true;
}
Call->setNumArgs(Context, NumArgsInProto);
}
// If too many are passed and not variadic, error on the extras and drop
// them.
if (NumArgs > NumArgsInProto) {
if (!Proto->isVariadic()) {
Diag(Args[NumArgsInProto]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< Fn->getType()->isBlockPointerType()
<< NumArgsInProto << NumArgs << Fn->getSourceRange()
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
// Emit the location of the prototype.
if (FDecl && !FDecl->getBuiltinID())
Diag(FDecl->getLocStart(), diag::note_callee_decl)
<< FDecl;
// This deletes the extra arguments.
Call->setNumArgs(Context, NumArgsInProto);
return true;
}
}
SmallVector<Expr *, 8> AllArgs;
VariadicCallType CallType =
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
if (Fn->getType()->isBlockPointerType())
CallType = VariadicBlock; // Block
else if (isa<MemberExpr>(Fn))
CallType = VariadicMethod;
Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
Proto, 0, Args, NumArgs, AllArgs, CallType);
if (Invalid)
return true;
unsigned TotalNumArgs = AllArgs.size();
for (unsigned i = 0; i < TotalNumArgs; ++i)
Call->setArg(i, AllArgs[i]);
return false;
}
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
unsigned FirstProtoArg,
Expr **Args, unsigned NumArgs,
SmallVector<Expr *, 8> &AllArgs,
VariadicCallType CallType) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;
bool Invalid = false;
if (NumArgs != NumArgsInProto)
// Use default arguments for missing arguments
NumArgsToCheck = NumArgsInProto;
unsigned ArgIx = 0;
// Continue to check argument types (even if we have too few/many args).
for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
QualType ProtoArgType = Proto->getArgType(i);
Expr *Arg;
if (ArgIx < NumArgs) {
Arg = Args[ArgIx++];
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
ProtoArgType,
PDiag(diag::err_call_incomplete_argument)
<< Arg->getSourceRange()))
return true;
// Pass the argument
ParmVarDecl *Param = 0;
if (FDecl && i < FDecl->getNumParams())
Param = FDecl->getParamDecl(i);
InitializedEntity Entity =
Param? InitializedEntity::InitializeParameter(Context, Param)
: InitializedEntity::InitializeParameter(Context, ProtoArgType,
Proto->isArgConsumed(i));
ExprResult ArgE = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(Arg));
if (ArgE.isInvalid())
return true;
Arg = ArgE.takeAs<Expr>();
} else {
ParmVarDecl *Param = FDecl->getParamDecl(i);
ExprResult ArgExpr =
BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
if (ArgExpr.isInvalid())
return true;
Arg = ArgExpr.takeAs<Expr>();
}
// Check for array bounds violations for each argument to the call. This
// check only triggers warnings when the argument isn't a more complex Expr
// with its own checking, such as a BinaryOperator.
CheckArrayAccess(Arg);
AllArgs.push_back(Arg);
}
// If this is a variadic call, handle args passed through "...".
if (CallType != VariadicDoesNotApply) {
// Assume that extern "C" functions with variadic arguments that
// return __unknown_anytype aren't *really* variadic.
if (Proto->getResultType() == Context.UnknownAnyTy &&
FDecl && FDecl->isExternC()) {
for (unsigned i = ArgIx; i != NumArgs; ++i) {
ExprResult arg;
if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
arg = DefaultFunctionArrayLvalueConversion(Args[i]);
else
arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
Invalid |= arg.isInvalid();
AllArgs.push_back(arg.take());
}
// Otherwise do argument promotion, (C99 6.5.2.2p7).
} else {
for (unsigned i = ArgIx; i != NumArgs; ++i) {
ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
FDecl);
Invalid |= Arg.isInvalid();
AllArgs.push_back(Arg.take());
}
}
}
return Invalid;
}
/// Given a function expression of unknown-any type, try to rebuild it
/// to have a function type.
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult
Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg args, SourceLocation RParenLoc,
Expr *ExecConfig) {
unsigned NumArgs = args.size();
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
if (Result.isInvalid()) return ExprError();
Fn = Result.take();
Expr **Args = args.release();
if (getLangOptions().CPlusPlus) {
// If this is a pseudo-destructor expression, build the call immediately.
if (isa<CXXPseudoDestructorExpr>(Fn)) {
if (NumArgs > 0) {
// Pseudo-destructor calls should not have any arguments.
Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
<< FixItHint::CreateRemoval(
SourceRange(Args[0]->getLocStart(),
Args[NumArgs-1]->getLocEnd()));
NumArgs = 0;
}
return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
VK_RValue, RParenLoc));
}
// Determine whether this is a dependent call inside a C++ template,
// in which case we won't do any semantic analysis now.
// FIXME: Will need to cache the results of name lookup (including ADL) in
// Fn.
bool Dependent = false;
if (Fn->isTypeDependent())
Dependent = true;
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
Dependent = true;
if (Dependent) {
if (ExecConfig) {
return Owned(new (Context) CUDAKernelCallExpr(
Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
Context.DependentTy, VK_RValue, RParenLoc));
} else {
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
Context.DependentTy, VK_RValue,
RParenLoc));
}
}
// Determine whether this is a call to an object (C++ [over.call.object]).
if (Fn->getType()->isRecordType())
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
RParenLoc));
if (Fn->getType() == Context.UnknownAnyTy) {
ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
if (result.isInvalid()) return ExprError();
Fn = result.take();
}
if (Fn->getType() == Context.BoundMemberTy) {
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
RParenLoc);
}
}
// Check for overloaded calls. This can happen even in C due to extensions.
if (Fn->getType() == Context.OverloadTy) {
OverloadExpr::FindResult find = OverloadExpr::find(Fn);
// We aren't supposed to apply this logic if there's an '&' involved.
if (!find.IsAddressOfOperand) {
OverloadExpr *ovl = find.Expression;
if (isa<UnresolvedLookupExpr>(ovl)) {
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
RParenLoc, ExecConfig);
} else {
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
RParenLoc);
}
}
}
// If we're directly calling a function, get the appropriate declaration.
Expr *NakedFn = Fn->IgnoreParens();
NamedDecl *NDecl = 0;
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
if (UnOp->getOpcode() == UO_AddrOf)
NakedFn = UnOp->getSubExpr()->IgnoreParens();
if (isa<DeclRefExpr>(NakedFn))
NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
else if (isa<MemberExpr>(NakedFn))
NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
ExecConfig);
}
ExprResult
Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
MultiExprArg execConfig, SourceLocation GGGLoc) {
FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
if (!ConfigDecl)
return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
<< "cudaConfigureCall");
QualType ConfigQTy = ConfigDecl->getType();
DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
}
/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
///
/// __builtin_astype( value, dst type )
///
ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc) {
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType DstTy = GetTypeFromParser(destty);
QualType SrcTy = expr->getType();
if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
return ExprError(Diag(BuiltinLoc,
diag::err_invalid_astype_of_different_size)
<< DstTy
<< SrcTy
<< expr->getSourceRange());
return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc,
RParenLoc));
}
/// BuildResolvedCallExpr - Build a call to a resolved expression,
/// i.e. an expression not of \p OverloadTy. The expression should
/// unary-convert to an expression of function-pointer or
/// block-pointer type.
///
/// \param NDecl the declaration being called, if available
ExprResult
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc,
Expr *Config) {
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
// Promote the function operand.
ExprResult Result = UsualUnaryConversions(Fn);
if (Result.isInvalid())
return ExprError();
Fn = Result.take();
// Make the call expr early, before semantic checks. This guarantees cleanup
// of arguments and function on error.
CallExpr *TheCall;
if (Config) {
TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
cast<CallExpr>(Config),
Args, NumArgs,
Context.BoolTy,
VK_RValue,
RParenLoc);
} else {
TheCall = new (Context) CallExpr(Context, Fn,
Args, NumArgs,
Context.BoolTy,
VK_RValue,
RParenLoc);
}
unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
// Bail out early if calling a builtin with custom typechecking.
if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
retry:
const FunctionType *FuncT;
if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
// have type pointer to function".
FuncT = PT->getPointeeType()->getAs<FunctionType>();
if (FuncT == 0)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
} else if (const BlockPointerType *BPT =
Fn->getType()->getAs<BlockPointerType>()) {
FuncT = BPT->getPointeeType()->castAs<FunctionType>();
} else {
// Handle calls to expressions of unknown-any type.
if (Fn->getType() == Context.UnknownAnyTy) {
ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
if (rewrite.isInvalid()) return ExprError();
Fn = rewrite.take();
TheCall->setCallee(Fn);
goto retry;
}
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
}
if (getLangOptions().CUDA) {
if (Config) {
// CUDA: Kernel calls must be to global functions
if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
<< FDecl->getName() << Fn->getSourceRange());
// CUDA: Kernel function must have 'void' return type
if (!FuncT->getResultType()->isVoidType())
return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
<< Fn->getType() << Fn->getSourceRange());
}
}
// Check for a valid return type
if (CheckCallReturnType(FuncT->getResultType(),
Fn->getSourceRange().getBegin(), TheCall,
FDecl))
return ExprError();
// We know the result type of the call, set it.
TheCall->setType(FuncT->getCallResultType(Context));
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
RParenLoc))
return ExprError();
} else {
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
if (FDecl) {
// Check if we have too few/too many template arguments, based
// on our knowledge of the function definition.
const FunctionDecl *Def = 0;
if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
const FunctionProtoType *Proto
= Def->getType()->getAs<FunctionProtoType>();
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
}
// If the function we're calling isn't a function prototype, but we have
// a function prototype from a prior declaratiom, use that prototype.
if (!FDecl->hasPrototype())
Proto = FDecl->getType()->getAs<FunctionProtoType>();
}
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
Expr *Arg = Args[i];
if (Proto && i < Proto->getNumArgs()) {
InitializedEntity Entity
= InitializedEntity::InitializeParameter(Context,
Proto->getArgType(i),
Proto->isArgConsumed(i));
ExprResult ArgE = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(Arg));
if (ArgE.isInvalid())
return true;
Arg = ArgE.takeAs<Expr>();
} else {
ExprResult ArgE = DefaultArgumentPromotion(Arg);
if (ArgE.isInvalid())
return true;
Arg = ArgE.takeAs<Expr>();
}
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
Arg->getType(),
PDiag(diag::err_call_incomplete_argument)
<< Arg->getSourceRange()))
return ExprError();
TheCall->setArg(i, Arg);
}
}
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (!Method->isStatic())
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
<< Fn->getSourceRange());
// Check for sentinels
if (NDecl)
DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
// Do special checking on direct calls to functions.
if (FDecl) {
if (CheckFunctionCall(FDecl, TheCall))
return ExprError();
if (BuiltinID)
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
} else if (NDecl) {
if (CheckBlockCall(NDecl, TheCall))
return ExprError();
}
return MaybeBindToTemporary(TheCall);
}
ExprResult
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
SourceLocation RParenLoc, Expr *InitExpr) {
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
// FIXME: put back this assert when initializers are worked out.
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
TypeSourceInfo *TInfo;
QualType literalType = GetTypeFromParser(Ty, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(literalType);
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
}
ExprResult
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
SourceLocation RParenLoc, Expr *literalExpr) {
QualType literalType = TInfo->getType();
if (literalType->isArrayType()) {
if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
PDiag(diag::err_illegal_decl_array_incomplete_type)
<< SourceRange(LParenLoc,
literalExpr->getSourceRange().getEnd())))
return ExprError();
if (literalType->isVariableArrayType())
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
} else if (!literalType->isDependentType() &&
RequireCompleteType(LParenLoc, literalType,
PDiag(diag::err_typecheck_decl_incomplete_type)
<< SourceRange(LParenLoc,
literalExpr->getSourceRange().getEnd())))
return ExprError();
InitializedEntity Entity
= InitializedEntity::InitializeTemporary(literalType);
InitializationKind Kind
= InitializationKind::CreateCStyleCast(LParenLoc,
SourceRange(LParenLoc, RParenLoc));
InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(*this, &literalExpr, 1),
&literalType);
if (Result.isInvalid())
return ExprError();
literalExpr = Result.get();
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
if (isFileScope) { // 6.5.2.5p3
if (CheckForConstantInitializer(literalExpr, literalType))
return ExprError();
}
// In C, compound literals are l-values for some reason.
ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
return MaybeBindToTemporary(
new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
VK, literalExpr, isFileScope));
}
ExprResult
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
SourceLocation RBraceLoc) {
unsigned NumInit = initlist.size();
Expr **InitList = initlist.release();
// Semantic analysis for initializers is done by ActOnDeclarator() and
// CheckInitializer() - it requires knowledge of the object being intialized.
InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
NumInit, RBraceLoc);
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
return Owned(E);
}
/// Prepares for a scalar cast, performing all the necessary stages
/// except the final cast and returning the kind required.
static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
// Both Src and Dest are scalar types, i.e. arithmetic or pointer.
// Also, callers should have filtered out the invalid cases with
// pointers. Everything else should be possible.
QualType SrcTy = Src.get()->getType();
if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
return CK_NoOp;
switch (SrcTy->getScalarTypeKind()) {
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
case Type::STK_Pointer:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_Pointer:
return DestTy->isObjCObjectPointerType() ?
CK_AnyPointerToObjCPointerCast :
CK_BitCast;
case Type::STK_Bool:
return CK_PointerToBoolean;
case Type::STK_Integral:
return CK_PointerToIntegral;
case Type::STK_Floating:
case Type::STK_FloatingComplex:
case Type::STK_IntegralComplex:
case Type::STK_MemberPointer:
llvm_unreachable("illegal cast from pointer");
}
break;
case Type::STK_Bool: // casting from bool is like casting from an integer
case Type::STK_Integral:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_Pointer:
if (Src.get()->isNullPointerConstant(S.Context,
Expr::NPC_ValueDependentIsNull))
return CK_NullToPointer;
return CK_IntegralToPointer;
case Type::STK_Bool:
return CK_IntegralToBoolean;
case Type::STK_Integral:
return CK_IntegralCast;
case Type::STK_Floating:
return CK_IntegralToFloating;
case Type::STK_IntegralComplex:
Src = S.ImpCastExprToType(Src.take(),
DestTy->getAs<ComplexType>()->getElementType(),
CK_IntegralCast);
return CK_IntegralRealToComplex;
case Type::STK_FloatingComplex:
Src = S.ImpCastExprToType(Src.take(),
DestTy->getAs<ComplexType>()->getElementType(),
CK_IntegralToFloating);
return CK_FloatingRealToComplex;
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
case Type::STK_Floating:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_Floating:
return CK_FloatingCast;
case Type::STK_Bool:
return CK_FloatingToBoolean;
case Type::STK_Integral:
return CK_FloatingToIntegral;
case Type::STK_FloatingComplex:
Src = S.ImpCastExprToType(Src.take(),
DestTy->getAs<ComplexType>()->getElementType(),
CK_FloatingCast);
return CK_FloatingRealToComplex;
case Type::STK_IntegralComplex:
Src = S.ImpCastExprToType(Src.take(),
DestTy->getAs<ComplexType>()->getElementType(),
CK_FloatingToIntegral);
return CK_IntegralRealToComplex;
case Type::STK_Pointer:
llvm_unreachable("valid float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
case Type::STK_FloatingComplex:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_FloatingComplex:
return CK_FloatingComplexCast;
case Type::STK_IntegralComplex:
return CK_FloatingComplexToIntegralComplex;
case Type::STK_Floating: {
QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
if (S.Context.hasSameType(ET, DestTy))
return CK_FloatingComplexToReal;
Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
return CK_FloatingCast;
}
case Type::STK_Bool:
return CK_FloatingComplexToBoolean;
case Type::STK_Integral:
Src = S.ImpCastExprToType(Src.take(),
SrcTy->getAs<ComplexType>()->getElementType(),
CK_FloatingComplexToReal);
return CK_FloatingToIntegral;
case Type::STK_Pointer:
llvm_unreachable("valid complex float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
case Type::STK_IntegralComplex:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_FloatingComplex:
return CK_IntegralComplexToFloatingComplex;
case Type::STK_IntegralComplex:
return CK_IntegralComplexCast;
case Type::STK_Integral: {
QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
if (S.Context.hasSameType(ET, DestTy))
return CK_IntegralComplexToReal;
Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
return CK_IntegralCast;
}
case Type::STK_Bool:
return CK_IntegralComplexToBoolean;
case Type::STK_Floating:
Src = S.ImpCastExprToType(Src.take(),
SrcTy->getAs<ComplexType>()->getElementType(),
CK_IntegralComplexToReal);
return CK_IntegralToFloating;
case Type::STK_Pointer:
llvm_unreachable("valid complex int->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
}
llvm_unreachable("Unhandled scalar cast");
return CK_BitCast;
}
/// CheckCastTypes - Check type constraints for casting between types.
ExprResult Sema::CheckCastTypes(SourceLocation CastStartLoc, SourceRange TyR,
QualType castType, Expr *castExpr,
CastKind& Kind, ExprValueKind &VK,
CXXCastPath &BasePath, bool FunctionalStyle) {
if (castExpr->getType() == Context.UnknownAnyTy)
return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
if (getLangOptions().CPlusPlus)
return CXXCheckCStyleCast(SourceRange(CastStartLoc,
castExpr->getLocEnd()),
castType, VK, castExpr, Kind, BasePath,
FunctionalStyle);
assert(!castExpr->getType()->isPlaceholderType());
// We only support r-value casts in C.
VK = VK_RValue;
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
// type needs to be scalar.
if (castType->isVoidType()) {
// We don't necessarily do lvalue-to-rvalue conversions on this.
ExprResult castExprRes = IgnoredValueConversions(castExpr);
if (castExprRes.isInvalid())
return ExprError();
castExpr = castExprRes.take();
// Cast to void allows any expr type.
Kind = CK_ToVoid;
return Owned(castExpr);
}
ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
if (castExprRes.isInvalid())
return ExprError();
castExpr = castExprRes.take();
if (RequireCompleteType(TyR.getBegin(), castType,
diag::err_typecheck_cast_to_incomplete))
return ExprError();
if (!castType->isScalarType() && !castType->isVectorType()) {
if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
(castType->isStructureType() || castType->isUnionType())) {
// GCC struct/union extension: allow cast to self.
// FIXME: Check that the cast destination type is complete.
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
<< castType << castExpr->getSourceRange();
Kind = CK_NoOp;
return Owned(castExpr);
}
if (castType->isUnionType()) {
// GCC cast to union extension
RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
RecordDecl::field_iterator Field, FieldEnd;
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Context.hasSameUnqualifiedType(Field->getType(),
castExpr->getType()) &&
!Field->isUnnamedBitfield()) {
Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
<< castExpr->getSourceRange();
break;
}
}
if (Field == FieldEnd) {
Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
<< castExpr->getType() << castExpr->getSourceRange();
return ExprError();
}
Kind = CK_ToUnion;
return Owned(castExpr);
}
// Reject any other conversions to non-scalar types.
Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
<< castType << castExpr->getSourceRange();
return ExprError();
}
// The type we're casting to is known to be a scalar or vector.
// Require the operand to be a scalar or vector.
if (!castExpr->getType()->isScalarType() &&
!castExpr->getType()->isVectorType()) {
Diag(castExpr->getLocStart(),
diag::err_typecheck_expect_scalar_operand)
<< castExpr->getType() << castExpr->getSourceRange();
return ExprError();
}
if (castType->isExtVectorType())
return CheckExtVectorCast(TyR, castType, castExpr, Kind);
if (castType->isVectorType()) {
if (castType->getAs<VectorType>()->getVectorKind() ==
VectorType::AltiVecVector &&
(castExpr->getType()->isIntegerType() ||
castExpr->getType()->isFloatingType())) {
Kind = CK_VectorSplat;
return Owned(castExpr);
} else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
return ExprError();
} else
return Owned(castExpr);
}
if (castExpr->getType()->isVectorType()) {
if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
return ExprError();
else
return Owned(castExpr);
}
// The source and target types are both scalars, i.e.
// - arithmetic types (fundamental, enum, and complex)
// - all kinds of pointers
// Note that member pointers were filtered out with C++, above.
if (isa<ObjCSelectorExpr>(castExpr)) {
Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
return ExprError();
}
// If either type is a pointer, the other type has to be either an
// integer or a pointer.
QualType castExprType = castExpr->getType();
if (!castType->isArithmeticType()) {
if (!castExprType->isIntegralType(Context) &&
castExprType->isArithmeticType()) {
Diag(castExpr->getLocStart(),
diag::err_cast_pointer_from_non_pointer_int)
<< castExprType << castExpr->getSourceRange();
return ExprError();
}
} else if (!castExpr->getType()->isArithmeticType()) {
if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
<< castType << castExpr->getSourceRange();
return ExprError();
}
}
if (getLangOptions().ObjCAutoRefCount) {
// Diagnose problems with Objective-C casts involving lifetime qualifiers.
CheckObjCARCConversion(SourceRange(CastStartLoc, castExpr->getLocEnd()),
castType, castExpr, CCK_CStyleCast);
if (const PointerType *CastPtr = castType->getAs<PointerType>()) {
if (const PointerType *ExprPtr = castExprType->getAs<PointerType>()) {
Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
ExprPtr->getPointeeType()->isObjCLifetimeType() &&
!CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
Diag(castExpr->getLocStart(),
diag::err_typecheck_incompatible_ownership)
<< castExprType << castType << AA_Casting
<< castExpr->getSourceRange();
return ExprError();
}
}
}
else if (!CheckObjCARCUnavailableWeakConversion(castType, castExprType)) {
Diag(castExpr->getLocStart(),
diag::err_arc_convesion_of_weak_unavailable) << 1
<< castExprType << castType
<< castExpr->getSourceRange();
return ExprError();
}
}
castExprRes = Owned(castExpr);
Kind = PrepareScalarCast(*this, castExprRes, castType);
if (castExprRes.isInvalid())
return ExprError();
castExpr = castExprRes.take();
if (Kind == CK_BitCast)
CheckCastAlign(castExpr, castType, TyR);
return Owned(castExpr);
}
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
CastKind &Kind) {
assert(VectorTy->isVectorType() && "Not a vector type!");
if (Ty->isVectorType() || Ty->isIntegerType()) {
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
return Diag(R.getBegin(),
Ty->isVectorType() ?
diag::err_invalid_conversion_between_vectors :
diag::err_invalid_conversion_between_vector_and_integer)
<< VectorTy << Ty << R;
} else
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< VectorTy << Ty << R;
Kind = CK_BitCast;
return false;
}
ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
Expr *CastExpr, CastKind &Kind) {
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
QualType SrcTy = CastExpr->getType();
// If SrcTy is a VectorType, the total size must match to explicitly cast to
// an ExtVectorType.
if (SrcTy->isVectorType()) {
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
<< DestTy << SrcTy << R;
return ExprError();
}
Kind = CK_BitCast;
return Owned(CastExpr);
}
// All non-pointer scalars can be cast to ExtVector type. The appropriate
// conversion will take place first from scalar to elt type, and then
// splat from elt type to vector.
if (SrcTy->isPointerType())
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< DestTy << SrcTy << R;
QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
ExprResult CastExprRes = Owned(CastExpr);
CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
if (CastExprRes.isInvalid())
return ExprError();
CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
Kind = CK_VectorSplat;
return Owned(CastExpr);
}
ExprResult
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
Declarator &D, ParsedType &Ty,
SourceLocation RParenLoc, Expr *castExpr) {
assert(!D.isInvalidType() && (castExpr != 0) &&
"ActOnCastExpr(): missing type or expr");
TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, castExpr->getType());
if (D.isInvalidType())
return ExprError();
if (getLangOptions().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
}
QualType castType = castTInfo->getType();
Ty = CreateParsedType(castType, castTInfo);
bool isVectorLiteral = false;
// Check for an altivec or OpenCL literal,
// i.e. all the elements are integer constants.
ParenExpr *PE = dyn_cast<ParenExpr>(castExpr);
ParenListExpr *PLE = dyn_cast<ParenListExpr>(castExpr);
if (getLangOptions().AltiVec && castType->isVectorType() && (PE || PLE)) {
if (PLE && PLE->getNumExprs() == 0) {
Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
return ExprError();
}
if (PE || PLE->getNumExprs() == 1) {
Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
if (!E->getType()->isVectorType())
isVectorLiteral = true;
}
else
isVectorLiteral = true;
}
// If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
// then handle it as such.
if (isVectorLiteral)
return BuildVectorLiteral(LParenLoc, RParenLoc, castExpr, castTInfo);
// If the Expr being casted is a ParenListExpr, handle it specially.
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
// sequence of BinOp comma operators.
if (isa<ParenListExpr>(castExpr)) {
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, castExpr);
if (Result.isInvalid()) return ExprError();
castExpr = Result.take();
}
return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
}
ExprResult
Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
SourceLocation RParenLoc, Expr *castExpr) {
CastKind Kind = CK_Invalid;
ExprValueKind VK = VK_RValue;
CXXCastPath BasePath;
ExprResult CastResult =
CheckCastTypes(LParenLoc, SourceRange(LParenLoc, RParenLoc), Ty->getType(),
castExpr, Kind, VK, BasePath);
if (CastResult.isInvalid())
return ExprError();
castExpr = CastResult.take();
return Owned(CStyleCastExpr::Create(
Context, Ty->getType().getNonLValueExprType(Context), VK, Kind, castExpr,
&BasePath, Ty, LParenLoc, RParenLoc));
}
ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
SourceLocation RParenLoc, Expr *E,
TypeSourceInfo *TInfo) {
assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
"Expected paren or paren list expression");
Expr **exprs;
unsigned numExprs;
Expr *subExpr;
if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
exprs = PE->getExprs();
numExprs = PE->getNumExprs();
} else {
subExpr = cast<ParenExpr>(E)->getSubExpr();
exprs = &subExpr;
numExprs = 1;
}
QualType Ty = TInfo->getType();
assert(Ty->isVectorType() && "Expected vector type");
SmallVector<Expr *, 8> initExprs;
const VectorType *VTy = Ty->getAs<VectorType>();
unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
// '(...)' form of vector initialization in AltiVec: the number of
// initializers must be one or must match the size of the vector.
// If a single value is specified in the initializer then it will be
// replicated to all the components of the vector
if (VTy->getVectorKind() == VectorType::AltiVecVector) {
// The number of initializers must be one or must match the size of the
// vector. If a single value is specified in the initializer then it will
// be replicated to all the components of the vector
if (numExprs == 1) {
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
ExprResult Literal = Owned(exprs[0]);
Literal = ImpCastExprToType(Literal.take(), ElemTy,
PrepareScalarCast(*this, Literal, ElemTy));
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
}
else if (numExprs < numElems) {
Diag(E->getExprLoc(),
diag::err_incorrect_number_of_vector_initializers);
return ExprError();
}
else
for (unsigned i = 0, e = numExprs; i != e; ++i)
initExprs.push_back(exprs[i]);
}
else {
// For OpenCL, when the number of initializers is a single value,
// it will be replicated to all components of the vector.
if (getLangOptions().OpenCL &&
VTy->getVectorKind() == VectorType::GenericVector &&
numExprs == 1) {
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
ExprResult Literal = Owned(exprs[0]);
Literal = ImpCastExprToType(Literal.take(), ElemTy,
PrepareScalarCast(*this, Literal, ElemTy));
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
}
for (unsigned i = 0, e = numExprs; i != e; ++i)
initExprs.push_back(exprs[i]);
}
// FIXME: This means that pretty-printing the final AST will produce curly
// braces instead of the original commas.
InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
&initExprs[0],
initExprs.size(), RParenLoc);
initE->setType(Ty);
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
}
/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
/// of comma binary operators.
ExprResult
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
if (!E)
return Owned(expr);
ExprResult Result(E->getExpr(0));
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
E->getExpr(i));
if (Result.isInvalid()) return ExprError();
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
}
ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val) {
unsigned nexprs = Val.size();
Expr **exprs = reinterpret_cast<Expr**>(Val.release());
assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
Expr *expr;
if (nexprs == 1)
expr = new (Context) ParenExpr(L, R, exprs[0]);
else
expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R,
exprs[nexprs-1]->getType());
return Owned(expr);
}
/// \brief Emit a specialized diagnostic when one expression is a null pointer
/// constant and the other is not a pointer.
bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
SourceLocation QuestionLoc) {
Expr *NullExpr = LHS;
Expr *NonPointerExpr = RHS;
Expr::NullPointerConstantKind NullKind =
NullExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull);
if (NullKind == Expr::NPCK_NotNull) {
NullExpr = RHS;
NonPointerExpr = LHS;
NullKind =
NullExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull);
}
if (NullKind == Expr::NPCK_NotNull)
return false;
if (NullKind == Expr::NPCK_ZeroInteger) {
// In this case, check to make sure that we got here from a "NULL"
// string in the source code.
NullExpr = NullExpr->IgnoreParenImpCasts();
SourceLocation loc = NullExpr->getExprLoc();
if (!findMacroSpelling(loc, "NULL"))
return false;
}
int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
<< NonPointerExpr->getType() << DiagType
<< NonPointerExpr->getSourceRange();
return true;
}
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lhs = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
ExprResult &RHS, ExprValueKind &VK,
ExprObjectKind &OK,
SourceLocation QuestionLoc) {
ExprResult lhsResult = CheckPlaceholderExpr(LHS.get());
if (!lhsResult.isUsable()) return QualType();
LHS = move(lhsResult);
ExprResult rhsResult = CheckPlaceholderExpr(RHS.get());
if (!rhsResult.isUsable()) return QualType();
RHS = move(rhsResult);
// C++ is sufficiently different to merit its own checker.
if (getLangOptions().CPlusPlus)
return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
VK = VK_RValue;
OK = OK_Ordinary;
Cond = UsualUnaryConversions(Cond.take());
if (Cond.isInvalid())
return QualType();
LHS = UsualUnaryConversions(LHS.take());
if (LHS.isInvalid())
return QualType();
RHS = UsualUnaryConversions(RHS.take());
if (RHS.isInvalid())
return QualType();
QualType CondTy = Cond.get()->getType();
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
// first, check the condition.
if (!CondTy->isScalarType()) { // C99 6.5.15p2
// OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
// Throw an error if its not either.
if (getLangOptions().OpenCL) {
if (!CondTy->isVectorType()) {
Diag(Cond.get()->getLocStart(),
diag::err_typecheck_cond_expect_scalar_or_vector)
<< CondTy;
return QualType();
}
}
else {
Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
<< CondTy;
return QualType();
}
}
// Now check the two expressions.
if (LHSTy->isVectorType() || RHSTy->isVectorType())
return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
// OpenCL: If the condition is a vector, and both operands are scalar,
// attempt to implicity convert them to the vector type to act like the
// built in select.
if (getLangOptions().OpenCL && CondTy->isVectorType()) {
// Both operands should be of scalar type.
if (!LHSTy->isScalarType()) {
Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
<< CondTy;
return QualType();
}
if (!RHSTy->isScalarType()) {
Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
<< CondTy;
return QualType();
}
// Implicity convert these scalars to the type of the condition.
LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
}
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
UsualArithmeticConversions(LHS, RHS);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
return LHS.get()->getType();
}
// If both operands are the same structure or union type, the result is that
// type.
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
if (LHSRT->getDecl() == RHSRT->getDecl())
// "If both the operands have structure or union type, the result has
// that type." This implies that CV qualifiers are dropped.
return LHSTy.getUnqualifiedType();
// FIXME: Type of conditional expression must be complete in C mode.
}
// C99 6.5.15p5: "If both operands have void type, the result has void type."
// The following || allows only one side to be void (a GCC-ism).
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
if (!LHSTy->isVoidType())
Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
<< RHS.get()->getSourceRange();
if (!RHSTy->isVoidType())
Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
<< LHS.get()->getSourceRange();
LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid);
RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid);
return Context.VoidTy;
}
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
// the type of the other operand."
if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
RHS.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
// promote the null to a pointer.
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer);
return LHSTy;
}
if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
LHS.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer);
return RHSTy;
}
// All objective-c pointer type analysis is done here.
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
QuestionLoc);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
if (!compositeType.isNull())
return compositeType;
// Handle block pointer types.
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
QualType destType = Context.getPointerType(Context.VoidTy);
LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
return destType;
}
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return QualType();
}
// We have 2 block pointer types.
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical block pointer types are always compatible.
return LHSTy;
}
// The block pointer types aren't identical, continue checking.
QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy = Context.getPointerType(Context.VoidTy);
LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
return incompatTy;
}
// The block pointer types are compatible.
LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
return LHSTy;
}
// Check constraints for C object pointers types (C99 6.5.15p3,6).
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
// get the "pointed to" types
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
// Figure out necessary qualifiers (C99 6.5.15p6)
QualType destPointee
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
// Promote to void*.
RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
return destType;
}
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
QualType destPointee
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
// Promote to void*.
LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
return destType;
}
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical pointer types are always compatible.
return LHSTy;
}
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy = Context.getPointerType(Context.VoidTy);
LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
return incompatTy;
}
// The pointer types are compatible.
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
// differently qualified versions of compatible types, the result type is
// a pointer to an appropriately qualified version of the *composite*
// type.
// FIXME: Need to calculate the composite type.
// FIXME: Need to add qualifiers
LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
return LHSTy;
}
// GCC compatibility: soften pointer/integer mismatch. Note that
// null pointers have been filtered out by this point.
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer);
return RHSTy;
}
if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer);
return LHSTy;
}
// Emit a better diagnostic if one of the expressions is a null pointer
// constant and the other is not a pointer type. In this case, the user most
// likely forgot to take the address of the other expression.
if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
return QualType();
// Otherwise, the operands are not compatible.
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return QualType();
}
/// FindCompositeObjCPointerType - Helper method to find composite type of
/// two objective-c pointer types of the two input expressions.
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc) {
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
// Handle things like Class and struct objc_class*. Here we case the result
// to the pseudo-builtin, because that will be implicitly cast back to the
// redefinition type if an attempt is made to access its fields.
if (LHSTy->isObjCClassType() &&
(Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
return LHSTy;
}
if (RHSTy->isObjCClassType() &&
(Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
return RHSTy;
}
// And the same for struct objc_object* / id
if (LHSTy->isObjCIdType() &&
(Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
return LHSTy;
}
if (RHSTy->isObjCIdType() &&
(Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
return RHSTy;
}
// And the same for struct objc_selector* / SEL
if (Context.isObjCSelType(LHSTy) &&
(Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
return LHSTy;
}
if (Context.isObjCSelType(RHSTy) &&
(Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
return RHSTy;
}
// Check constraints for Objective-C object pointers types.
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical object pointer types are always compatible.
return LHSTy;
}
const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
QualType compositeType = LHSTy;
// If both operands are interfaces and either operand can be
// assigned to the other, use that type as the composite
// type. This allows
// xxx ? (A*) a : (B*) b
// where B is a subclass of A.
//
// Additionally, as for assignment, if either type is 'id'
// allow silent coercion. Finally, if the types are
// incompatible then make sure to use 'id' as the composite
// type so the result is acceptable for sending messages to.
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
// It could return the composite type.
if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
} else if ((LHSTy->isObjCQualifiedIdType() ||
RHSTy->isObjCQualifiedIdType()) &&
Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
// Need to handle "id<xx>" explicitly.
// GCC allows qualified id and any Objective-C type to devolve to
// id. Currently localizing to here until clear this should be
// part of ObjCQualifiedIdTypesAreCompatible.
compositeType = Context.getObjCIdType();
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
compositeType = Context.getObjCIdType();
} else if (!(compositeType =
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
;
else {
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
QualType incompatTy = Context.getObjCIdType();
LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
return incompatTy;
}
// The object pointer types are compatible.
LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
return compositeType;
}
// Check Objective-C object pointer types and 'void *'
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType destPointee
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
// Promote to void*.
RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
return destType;
}
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
QualType destPointee
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
// Promote to void*.
LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
return destType;
}
return QualType();
}
/// SuggestParentheses - Emit a note with a fixit hint that wraps
/// ParenRange in parentheses.
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
const PartialDiagnostic &Note,
SourceRange ParenRange) {
SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
EndLoc.isValid()) {
Self.Diag(Loc, Note)
<< FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
<< FixItHint::CreateInsertion(EndLoc, ")");
} else {
// We can't display the parentheses, so just show the bare note.
Self.Diag(Loc, Note) << ParenRange;
}
}
static bool IsArithmeticOp(BinaryOperatorKind Opc) {
return Opc >= BO_Mul && Opc <= BO_Shr;
}
/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
/// expression, either using a built-in or overloaded operator,
/// and sets *OpCode to the opcode and *RHS to the right-hand side expression.
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
Expr **RHS) {
E = E->IgnoreParenImpCasts();
E = E->IgnoreConversionOperator();
E = E->IgnoreParenImpCasts();
// Built-in binary operator.
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
if (IsArithmeticOp(OP->getOpcode())) {
*Opcode = OP->getOpcode();
*RHS = OP->getRHS();
return true;
}
}
// Overloaded operator.
if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
if (Call->getNumArgs() != 2)
return false;
// Make sure this is really a binary operator that is safe to pass into
// BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
OverloadedOperatorKind OO = Call->getOperator();
if (OO < OO_Plus || OO > OO_Arrow)
return false;
BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
if (IsArithmeticOp(OpKind)) {
*Opcode = OpKind;
*RHS = Call->getArg(1);
return true;
}
}
return false;
}
static bool IsLogicOp(BinaryOperatorKind Opc) {
return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
}
/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
/// or is a logical expression such as (x==y) which has int type, but is
/// commonly interpreted as boolean.
static bool ExprLooksBoolean(Expr *E) {
E = E->IgnoreParenImpCasts();
if (E->getType()->isBooleanType())
return true;
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
return IsLogicOp(OP->getOpcode());
if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
return OP->getOpcode() == UO_LNot;
return false;
}
/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
/// and binary operator are mixed in a way that suggests the programmer assumed
/// the conditional operator has higher precedence, for example:
/// "int x = a + someBinaryCondition ? 1 : 2".
static void DiagnoseConditionalPrecedence(Sema &Self,
SourceLocation OpLoc,
Expr *Condition,
Expr *LHS,
Expr *RHS) {
BinaryOperatorKind CondOpcode;
Expr *CondRHS;
if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
return;
if (!ExprLooksBoolean(CondRHS))
return;
// The condition is an arithmetic binary expression, with a right-
// hand side that looks boolean, so warn.
Self.Diag(OpLoc, diag::warn_precedence_conditional)
<< Condition->getSourceRange()
<< BinaryOperator::getOpcodeStr(CondOpcode);
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_conditional_silence)
<< BinaryOperator::getOpcodeStr(CondOpcode),
SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_conditional_first),
SourceRange(CondRHS->getLocStart(), RHS->getLocEnd()));
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
Expr *CondExpr, Expr *LHSExpr,
Expr *RHSExpr) {
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
// was the condition.
OpaqueValueExpr *opaqueValue = 0;
Expr *commonExpr = 0;
if (LHSExpr == 0) {
commonExpr = CondExpr;
// We usually want to apply unary conversions *before* saving, except
// in the special case of a C++ l-value conditional.
if (!(getLangOptions().CPlusPlus
&& !commonExpr->isTypeDependent()
&& commonExpr->getValueKind() == RHSExpr->getValueKind()
&& commonExpr->isGLValue()
&& commonExpr->isOrdinaryOrBitFieldObject()
&& RHSExpr->isOrdinaryOrBitFieldObject()
&& Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
ExprResult commonRes = UsualUnaryConversions(commonExpr);
if (commonRes.isInvalid())
return ExprError();
commonExpr = commonRes.take();
}
opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
commonExpr->getType(),
commonExpr->getValueKind(),
commonExpr->getObjectKind());
LHSExpr = CondExpr = opaqueValue;
}
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
QualType result = CheckConditionalOperands(Cond, LHS, RHS,
VK, OK, QuestionLoc);
if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
RHS.isInvalid())
return ExprError();
DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
RHS.get());
if (!commonExpr)
return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
LHS.take(), ColonLoc,
RHS.take(), result, VK, OK));
return Owned(new (Context)
BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
RHS.take(), QuestionLoc, ColonLoc, result, VK,
OK));
}
// checkPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
assert(lhsType.isCanonical() && "LHS not canonicalized!");
assert(rhsType.isCanonical() && "RHS not canonicalized!");
// get the "pointed to" type (ignoring qualifiers at the top level)
const Type *lhptee, *rhptee;
Qualifiers lhq, rhq;
llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
Sema::AssignConvertType ConvTy = Sema::Compatible;
// C99 6.5.16.1p1: This following citation is common to constraints
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
// qualifiers of the type *pointed to* by the right;
Qualifiers lq;
// As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
lhq.compatiblyIncludesObjCLifetime(rhq)) {
// Ignore lifetime for further calculation.
lhq.removeObjCLifetime();
rhq.removeObjCLifetime();
}
if (!lhq.compatiblyIncludes(rhq)) {
// Treat address-space mismatches as fatal. TODO: address subspaces
if (lhq.getAddressSpace() != rhq.getAddressSpace())
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
// It's okay to add or remove GC or lifetime qualifiers when converting to
// and from void*.
else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime()
.compatiblyIncludes(
rhq.withoutObjCGCAttr().withoutObjCGLifetime())
&& (lhptee->isVoidType() || rhptee->isVoidType()))
; // keep old
// Treat lifetime mismatches as fatal.
else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
// For GCC compatibility, other qualifier mismatches are treated
// as still compatible in C.
else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
}
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
// incomplete type and the other is a pointer to a qualified or unqualified
// version of void...
if (lhptee->isVoidType()) {
if (rhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(rhptee->isFunctionType());
return Sema::FunctionVoidPointer;
}
if (rhptee->isVoidType()) {
if (lhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(lhptee->isFunctionType());
return Sema::FunctionVoidPointer;
}
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
// unqualified versions of compatible types, ...
QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
// Check if the pointee types are compatible ignoring the sign.
// We explicitly check for char so that we catch "char" vs
// "unsigned char" on systems where "char" is unsigned.
if (lhptee->isCharType())
ltrans = S.Context.UnsignedCharTy;
else if (lhptee->hasSignedIntegerRepresentation())
ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
if (rhptee->isCharType())
rtrans = S.Context.UnsignedCharTy;
else if (rhptee->hasSignedIntegerRepresentation())
rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
if (ltrans == rtrans) {
// Types are compatible ignoring the sign. Qualifier incompatibility
// takes priority over sign incompatibility because the sign
// warning can be disabled.
if (ConvTy != Sema::Compatible)
return ConvTy;
return Sema::IncompatiblePointerSign;
}
// If we are a multi-level pointer, it's possible that our issue is simply
// one of qualification - e.g. char ** -> const char ** is not allowed. If
// the eventual target type is the same and the pointers have the same
// level of indirection, this must be the issue.
if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
do {
lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
} while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
if (lhptee == rhptee)
return Sema::IncompatibleNestedPointerQualifiers;
}
// General pointer incompatibility takes priority over qualifiers.
return Sema::IncompatiblePointer;
}
return ConvTy;
}
/// checkBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
QualType rhsType) {
assert(lhsType.isCanonical() && "LHS not canonicalized!");
assert(rhsType.isCanonical() && "RHS not canonicalized!");
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
// In C++, the types have to match exactly.
if (S.getLangOptions().CPlusPlus)
return Sema::IncompatibleBlockPointer;
Sema::AssignConvertType ConvTy = Sema::Compatible;
// For blocks we enforce that qualifiers are identical.
if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
return Sema::IncompatibleBlockPointer;
return ConvTy;
}
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
/// for assignment compatibility.
static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType,
QualType rhsType) {
assert(lhsType.isCanonical() && "LHS was not canonicalized!");
assert(rhsType.isCanonical() && "RHS was not canonicalized!");
if (lhsType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
!rhsType->isObjCQualifiedClassType())
return Sema::IncompatiblePointer;
return Sema::Compatible;
}
if (rhsType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
!lhsType->isObjCQualifiedClassType())
return Sema::IncompatiblePointer;
return Sema::Compatible;
}
QualType lhptee =
lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee =
rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
return Sema::CompatiblePointerDiscardsQualifiers;
if (S.Context.typesAreCompatible(lhsType, rhsType))
return Sema::Compatible;
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
return Sema::IncompatibleObjCQualifiedId;
return Sema::IncompatiblePointer;
}
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(SourceLocation Loc,
QualType lhsType, QualType rhsType) {
// Fake up an opaque expression. We don't actually care about what
// cast operations are required, so if CheckAssignmentConstraints
// adds casts to this they'll be wasted, but fortunately that doesn't
// usually happen on valid code.
OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
ExprResult rhsPtr = &rhs;
CastKind K = CK_Invalid;
return CheckAssignmentConstraints(lhsType, rhsPtr, K);
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
/// int a, *pint;
/// short *pshort;
/// struct foo *pfoo;
///
/// pint = pshort; // warning: assignment from incompatible pointer type
/// a = pint; // warning: assignment makes integer from pointer without a cast
/// pint = a; // warning: assignment makes pointer from integer without a cast
/// pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
/// Sets 'Kind' for any result kind except Incompatible.
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
CastKind &Kind) {
QualType rhsType = rhs.get()->getType();
QualType origLhsType = lhsType;
// Get canonical types. We're not formatting these types, just comparing
// them.
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
// Common case: no conversion required.
if (lhsType == rhsType) {
Kind = CK_NoOp;
return Compatible;
}
// If the left-hand side is a reference type, then we are in a
// (rare!) case where we've allowed the use of references in C,
// e.g., as a parameter type in a built-in function. In this case,
// just make sure that the type referenced is compatible with the
// right-hand side type. The caller is responsible for adjusting
// lhsType so that the resulting expression does not have reference
// type.
if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
Kind = CK_LValueBitCast;
return Compatible;
}
return Incompatible;
}
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
// to the same ExtVector type.
if (lhsType->isExtVectorType()) {
if (rhsType->isExtVectorType())
return Incompatible;
if (rhsType->isArithmeticType()) {
// CK_VectorSplat does T -> vector T, so first cast to the
// element type.
QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
if (elType != rhsType) {
Kind = PrepareScalarCast(*this, rhs, elType);
rhs = ImpCastExprToType(rhs.take(), elType, Kind);
}
Kind = CK_VectorSplat;
return Compatible;
}
}
// Conversions to or from vector type.
if (lhsType->isVectorType() || rhsType->isVectorType()) {
if (lhsType->isVectorType() && rhsType->isVectorType()) {
// Allow assignments of an AltiVec vector type to an equivalent GCC
// vector type and vice versa
if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
Kind = CK_BitCast;
return Compatible;
}
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (getLangOptions().LaxVectorConversions &&
(Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
Kind = CK_BitCast;
return IncompatibleVectors;
}
}
return Incompatible;
}
// Arithmetic conversions.
if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
!(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
Kind = PrepareScalarCast(*this, rhs, lhsType);
return Compatible;
}
// Conversions to normal pointers.
if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
// U* -> T*
if (isa<PointerType>(rhsType)) {
Kind = CK_BitCast;
return checkPointerTypesForAssignment(*this, lhsType, rhsType);
}
// int -> T*
if (rhsType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null?
return IntToPointer;
}
// C pointers are not compatible with ObjC object pointers,
// with two exceptions:
if (isa<ObjCObjectPointerType>(rhsType)) {
// - conversions to void*
if (lhsPointer->getPointeeType()->isVoidType()) {
Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
}
// - conversions from 'Class' to the redefinition type
if (rhsType->isObjCClassType() &&
Context.hasSameType(lhsType,
Context.getObjCClassRedefinitionType())) {
Kind = CK_BitCast;
return Compatible;
}
Kind = CK_BitCast;
return IncompatiblePointer;
}
// U^ -> void*
if (rhsType->getAs<BlockPointerType>()) {
if (lhsPointer->getPointeeType()->isVoidType()) {
Kind = CK_BitCast;
return Compatible;
}
}
return Incompatible;
}
// Conversions to block pointers.
if (isa<BlockPointerType>(lhsType)) {
// U^ -> T^
if (rhsType->isBlockPointerType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
}
// int or null -> T^
if (rhsType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToBlockPointer;
}
// id -> T^
if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
// void* -> T^
if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
if (RHSPT->getPointeeType()->isVoidType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
return Incompatible;
}
// Conversions to Objective-C pointers.
if (isa<ObjCObjectPointerType>(lhsType)) {
// A* -> B*
if (rhsType->isObjCObjectPointerType()) {
Kind = CK_BitCast;
Sema::AssignConvertType result =
checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
if (getLangOptions().ObjCAutoRefCount &&
result == Compatible &&
!CheckObjCARCUnavailableWeakConversion(origLhsType, rhsType))
result = IncompatibleObjCWeakRef;
return result;
}
// int or null -> A*
if (rhsType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToPointer;
}
// In general, C pointers are not compatible with ObjC object pointers,
// with two exceptions:
if (isa<PointerType>(rhsType)) {
// - conversions from 'void*'
if (rhsType->isVoidPointerType()) {
Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
}
// - conversions to 'Class' from its redefinition type
if (lhsType->isObjCClassType() &&
Context.hasSameType(rhsType,
Context.getObjCClassRedefinitionType())) {
Kind = CK_BitCast;
return Compatible;
}
Kind = CK_AnyPointerToObjCPointerCast;
return IncompatiblePointer;
}
// T^ -> A*
if (rhsType->isBlockPointerType()) {
Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
}
return Incompatible;
}
// Conversions from pointers that are not covered by the above.
if (isa<PointerType>(rhsType)) {
// T* -> _Bool
if (lhsType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
if (lhsType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
return Incompatible;
}
// Conversions from Objective-C pointers that are not covered by the above.
if (isa<ObjCObjectPointerType>(rhsType)) {
// T* -> _Bool
if (lhsType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
if (lhsType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
return Incompatible;
}
// struct A -> struct B
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
if (Context.typesAreCompatible(lhsType, rhsType)) {
Kind = CK_NoOp;
return Compatible;
}
}
return Incompatible;
}
/// \brief Constructs a transparent union from an expression that is
/// used to initialize the transparent union.
static void ConstructTransparentUnion(Sema &S, ASTContext &C,
ExprResult &EResult, QualType UnionType,
FieldDecl *Field) {
// Build an initializer list that designates the appropriate member
// of the transparent union.
Expr *E = EResult.take();
InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
&E, 1,
SourceLocation());
Initializer->setType(UnionType);
Initializer->setInitializedFieldInUnion(Field);
// Build a compound literal constructing a value of the transparent
// union type from this initializer list.
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
EResult = S.Owned(
new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
VK_RValue, Initializer, false));
}
Sema::AssignConvertType
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
ExprResult &rExpr) {
QualType FromType = rExpr.get()->getType();
// If the ArgType is a Union type, we want to handle a potential
// transparent_union GCC extension.
const RecordType *UT = ArgType->getAsUnionType();
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
return Incompatible;
// The field to initialize within the transparent union.
RecordDecl *UD = UT->getDecl();
FieldDecl *InitField = 0;
// It's compatible if the expression matches any of the fields.
for (RecordDecl::field_iterator it = UD->field_begin(),
itend = UD->field_end();
it != itend; ++it) {
if (it->getType()->isPointerType()) {
// If the transparent union contains a pointer type, we allow:
// 1) void pointer
// 2) null pointer constant
if (FromType->isPointerType())
if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
InitField = *it;
break;
}
if (rExpr.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
rExpr = ImpCastExprToType(rExpr.take(), it->getType(),
CK_NullToPointer);
InitField = *it;
break;
}
}
CastKind Kind = CK_Invalid;
if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
== Compatible) {
rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
InitField = *it;
break;
}
}
if (!InitField)
return Incompatible;
ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
return Compatible;
}
Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
if (getLangOptions().CPlusPlus) {
if (!lhsType->isRecordType()) {
// C++ 5.17p3: If the left operand is not of class type, the
// expression is implicitly converted (C++ 4) to the
// cv-unqualified type of the left operand.
ExprResult Res = PerformImplicitConversion(rExpr.get(),
lhsType.getUnqualifiedType(),
AA_Assigning);
if (Res.isInvalid())
return Incompatible;
Sema::AssignConvertType result = Compatible;
if (getLangOptions().ObjCAutoRefCount &&
!CheckObjCARCUnavailableWeakConversion(lhsType,
rExpr.get()->getType()))
result = IncompatibleObjCWeakRef;
rExpr = move(Res);
return result;
}
// FIXME: Currently, we fall through and treat C++ classes like C
// structures.
}
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
if ((lhsType->isPointerType() ||
lhsType->isObjCObjectPointerType() ||
lhsType->isBlockPointerType())
&& rExpr.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
return Compatible;
}
// This check seems unnatural, however it is necessary to ensure the proper
// conversion of functions/arrays. If the conversion were done for all
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary
// expressions that suppress this implicit conversion (&, sizeof).
//
// Suppress this for references: C++ 8.5.3p5.
if (!lhsType->isReferenceType()) {
rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
if (rExpr.isInvalid())
return Incompatible;
}
CastKind Kind = CK_Invalid;
Sema::AssignConvertType result =
CheckAssignmentConstraints(lhsType, rExpr, Kind);
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
// CheckAssignmentConstraints allows the left-hand side to be a reference,
// so that we can use references in built-in functions even in C.
// The getNonReferenceType() call makes sure that the resulting expression
// does not have reference type.
if (result != Incompatible && rExpr.get()->getType() != lhsType)
rExpr = ImpCastExprToType(rExpr.take(),
lhsType.getNonLValueExprType(Context), Kind);
return result;
}
QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex,
ExprResult &rex) {
Diag(Loc, diag::err_typecheck_invalid_operands)
<< lex.get()->getType() << rex.get()->getType()
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
return QualType();
}
QualType Sema::CheckVectorOperands(ExprResult &lex, ExprResult &rex,
SourceLocation Loc, bool isCompAssign) {
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhsType =
Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
QualType rhsType =
Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
// If the vector types are identical, return.
if (lhsType == rhsType)
return lhsType;
// Handle the case of equivalent AltiVec and GCC vector types
if (lhsType->isVectorType() && rhsType->isVectorType() &&
Context.areCompatibleVectorTypes(lhsType, rhsType)) {
if (lhsType->isExtVectorType()) {
rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
return lhsType;
}
if (!isCompAssign)
lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
return rhsType;
}
if (getLangOptions().LaxVectorConversions &&
Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) {
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a
// bitcast; no bits are changed but the result type is different.
// FIXME: Should we really be allowing this?
rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
return lhsType;
}
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
// swap back (so that we don't reverse the inputs to a subtract, for instance.
bool swapped = false;
if (rhsType->isExtVectorType() && !isCompAssign) {
swapped = true;
std::swap(rex, lex);
std::swap(rhsType, lhsType);
}
// Handle the case of an ext vector and scalar.
if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
QualType EltTy = LV->getElementType();
if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
int order = Context.getIntegerTypeOrder(EltTy, rhsType);
if (order > 0)
rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
if (order >= 0) {
rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
if (swapped) std::swap(rex, lex);
return lhsType;
}
}
if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
rhsType->isRealFloatingType()) {
int order = Context.getFloatingTypeOrder(EltTy, rhsType);
if (order > 0)
rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
if (order >= 0) {
rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
if (swapped) std::swap(rex, lex);
return lhsType;
}
}
}
// Vectors of different size or scalar and non-ext-vector are errors.
if (swapped) std::swap(rex, lex);
Diag(Loc, diag::err_typecheck_vector_not_convertable)
<< lex.get()->getType() << rex.get()->getType()
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
return QualType();
}
QualType Sema::CheckMultiplyDivideOperands(ExprResult &lex, ExprResult &rex,
SourceLocation Loc,
bool isCompAssign, bool isDiv) {
if (lex.get()->getType()->isVectorType() ||
rex.get()->getType()->isVectorType())
return CheckVectorOperands(lex, rex, Loc, isCompAssign);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex.isInvalid() || rex.isInvalid())
return QualType();
if (!lex.get()->getType()->isArithmeticType() ||
!rex.get()->getType()->isArithmeticType())
return InvalidOperands(Loc, lex, rex);
// Check for division by zero.
if (isDiv &&
rex.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull))
DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
<< rex.get()->getSourceRange());
return compType;
}
QualType Sema::CheckRemainderOperands(
ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
if (lex.get()->getType()->isVectorType() ||
rex.get()->getType()->isVectorType()) {
if (lex.get()->getType()->hasIntegerRepresentation() &&
rex.get()->getType()->hasIntegerRepresentation())
return CheckVectorOperands(lex, rex, Loc, isCompAssign);
return InvalidOperands(Loc, lex, rex);
}
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex.isInvalid() || rex.isInvalid())
return QualType();
if (!lex.get()->getType()->isIntegerType() ||
!rex.get()->getType()->isIntegerType())
return InvalidOperands(Loc, lex, rex);
// Check for remainder by zero.
if (rex.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull))
DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
<< rex.get()->getSourceRange());
return compType;
}
/// \brief Diagnose invalid arithmetic on two void pointers.
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
Expr *LHS, Expr *RHS) {
S.Diag(Loc, S.getLangOptions().CPlusPlus
? diag::err_typecheck_pointer_arith_void_type
: diag::ext_gnu_void_ptr)
<< 1 /* two pointers */ << LHS->getSourceRange() << RHS->getSourceRange();
}
/// \brief Diagnose invalid arithmetic on a void pointer.
static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
Expr *Pointer) {
S.Diag(Loc, S.getLangOptions().CPlusPlus
? diag::err_typecheck_pointer_arith_void_type
: diag::ext_gnu_void_ptr)
<< 0 /* one pointer */ << Pointer->getSourceRange();
}
/// \brief Diagnose invalid arithmetic on two function pointers.
static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
Expr *LHS, Expr *RHS) {
assert(LHS->getType()->isAnyPointerType());
assert(RHS->getType()->isAnyPointerType());
S.Diag(Loc, S.getLangOptions().CPlusPlus
? diag::err_typecheck_pointer_arith_function_type
: diag::ext_gnu_ptr_func_arith)
<< 1 /* two pointers */ << LHS->getType()->getPointeeType()
// We only show the second type if it differs from the first.
<< (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
RHS->getType())
<< RHS->getType()->getPointeeType()
<< LHS->getSourceRange() << RHS->getSourceRange();
}
/// \brief Diagnose invalid arithmetic on a function pointer.
static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
Expr *Pointer) {
assert(Pointer->getType()->isAnyPointerType());
S.Diag(Loc, S.getLangOptions().CPlusPlus
? diag::err_typecheck_pointer_arith_function_type
: diag::ext_gnu_ptr_func_arith)
<< 0 /* one pointer */ << Pointer->getType()->getPointeeType()
<< 0 /* one pointer, so only one type */
<< Pointer->getSourceRange();
}
/// \brief Check the validity of an arithmetic pointer operand.
///
/// If the operand has pointer type, this code will check for pointer types
/// which are invalid in arithmetic operations. These will be diagnosed
/// appropriately, including whether or not the use is supported as an
/// extension.
///
/// \returns True when the operand is valid to use (even if as an extension).
static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
Expr *Operand) {
if (!Operand->getType()->isAnyPointerType()) return true;
QualType PointeeTy = Operand->getType()->getPointeeType();
if (PointeeTy->isVoidType()) {
diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
return !S.getLangOptions().CPlusPlus;
}
if (PointeeTy->isFunctionType()) {
diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
return !S.getLangOptions().CPlusPlus;
}
if ((Operand->getType()->isPointerType() &&
!Operand->getType()->isDependentType()) ||
Operand->getType()->isObjCObjectPointerType()) {
QualType PointeeTy = Operand->getType()->getPointeeType();
if (S.RequireCompleteType(
Loc, PointeeTy,
S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
<< PointeeTy << Operand->getSourceRange()))
return false;
}
return true;
}
/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
/// operands.
///
/// This routine will diagnose any invalid arithmetic on pointer operands much
/// like \see checkArithmeticOpPointerOperand. However, it has special logic
/// for emitting a single diagnostic even for operations where both LHS and RHS
/// are (potentially problematic) pointers.
///
/// \returns True when the operand is valid to use (even if as an extension).
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
Expr *LHS, Expr *RHS) {
bool isLHSPointer = LHS->getType()->isAnyPointerType();
bool isRHSPointer = RHS->getType()->isAnyPointerType();
if (!isLHSPointer && !isRHSPointer) return true;
QualType LHSPointeeTy, RHSPointeeTy;
if (isLHSPointer) LHSPointeeTy = LHS->getType()->getPointeeType();
if (isRHSPointer) RHSPointeeTy = RHS->getType()->getPointeeType();
// Check for arithmetic on pointers to incomplete types.
bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
if (isLHSVoidPtr || isRHSVoidPtr) {
if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHS);
else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHS);
else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHS, RHS);
return !S.getLangOptions().CPlusPlus;
}
bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
if (isLHSFuncPtr || isRHSFuncPtr) {
if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHS);
else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHS);
else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS, RHS);
return !S.getLangOptions().CPlusPlus;
}
Expr *Operands[] = { LHS, RHS };
for (unsigned i = 0; i < 2; ++i) {
Expr *Operand = Operands[i];
if ((Operand->getType()->isPointerType() &&
!Operand->getType()->isDependentType()) ||
Operand->getType()->isObjCObjectPointerType()) {
QualType PointeeTy = Operand->getType()->getPointeeType();
if (S.RequireCompleteType(
Loc, PointeeTy,
S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
<< PointeeTy << Operand->getSourceRange()))
return false;
}
}
return true;
}
QualType Sema::CheckAdditionOperands( // C99 6.5.6
ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
if (lex.get()->getType()->isVectorType() ||
rex.get()->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
if (lex.isInvalid() || rex.isInvalid())
return QualType();
// handle the common case first (both operands are arithmetic).
if (lex.get()->getType()->isArithmeticType() &&
rex.get()->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Put any potential pointer into PExp
Expr* PExp = lex.get(), *IExp = rex.get();
if (IExp->getType()->isAnyPointerType())
std::swap(PExp, IExp);
if (PExp->getType()->isAnyPointerType()) {
if (IExp->getType()->isIntegerType()) {
if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
return QualType();
QualType PointeeTy = PExp->getType()->getPointeeType();
// Diagnose bad cases where we step over interface counts.
if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
<< PointeeTy << PExp->getSourceRange();
return QualType();
}
// Check array bounds for pointer arithemtic
CheckArrayAccess(PExp, IExp);
if (CompLHSTy) {
QualType LHSTy = Context.isPromotableBitField(lex.get());
if (LHSTy.isNull()) {
LHSTy = lex.get()->getType();
if (LHSTy->isPromotableIntegerType())
LHSTy = Context.getPromotedIntegerType(LHSTy);
}
*CompLHSTy = LHSTy;
}
return PExp->getType();
}
}
return InvalidOperands(Loc, lex, rex);
}
// C99 6.5.6
QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
SourceLocation Loc,
QualType* CompLHSTy) {
if (lex.get()->getType()->isVectorType() ||
rex.get()->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
if (lex.isInvalid() || rex.isInvalid())
return QualType();
// Enforce type constraints: C99 6.5.6p3.
// Handle the common case first (both operands are arithmetic).
if (lex.get()->getType()->isArithmeticType() &&
rex.get()->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Either ptr - int or ptr - ptr.
if (lex.get()->getType()->isAnyPointerType()) {
QualType lpointee = lex.get()->getType()->getPointeeType();
// Diagnose bad cases where we step over interface counts.
if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
<< lpointee << lex.get()->getSourceRange();
return QualType();
}
// The result type of a pointer-int computation is the pointer type.
if (rex.get()->getType()->isIntegerType()) {
if (!checkArithmeticOpPointerOperand(*this, Loc, lex.get()))
return QualType();
Expr *IExpr = rex.get()->IgnoreParenCasts();
UnaryOperator negRex(IExpr, UO_Minus, IExpr->getType(), VK_RValue,
OK_Ordinary, IExpr->getExprLoc());
// Check array bounds for pointer arithemtic
CheckArrayAccess(lex.get()->IgnoreParenCasts(), &negRex);
if (CompLHSTy) *CompLHSTy = lex.get()->getType();
return lex.get()->getType();
}
// Handle pointer-pointer subtractions.
if (const PointerType *RHSPTy
= rex.get()->getType()->getAs<PointerType>()) {
QualType rpointee = RHSPTy->getPointeeType();
if (getLangOptions().CPlusPlus) {
// Pointee types must be the same: C++ [expr.add]
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< lex.get()->getType() << rex.get()->getType()
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
return QualType();
}
} else {
// Pointee types must be compatible C99 6.5.6p3
if (!Context.typesAreCompatible(
Context.getCanonicalType(lpointee).getUnqualifiedType(),
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< lex.get()->getType() << rex.get()->getType()
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
return QualType();
}
}
if (!checkArithmeticBinOpPointerOperands(*this, Loc,
lex.get(), rex.get()))
return QualType();
if (CompLHSTy) *CompLHSTy = lex.get()->getType();
return Context.getPointerDiffType();
}
}
return InvalidOperands(Loc, lex, rex);
}
static bool isScopedEnumerationType(QualType T) {
if (const EnumType *ET = dyn_cast<EnumType>(T))
return ET->getDecl()->isScoped();
return false;
}
static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
SourceLocation Loc, unsigned Opc,
QualType LHSTy) {
llvm::APSInt Right;
// Check right/shifter operand
if (rex.get()->isValueDependent() ||
!rex.get()->isIntegerConstantExpr(Right, S.Context))
return;
if (Right.isNegative()) {
S.DiagRuntimeBehavior(Loc, rex.get(),
S.PDiag(diag::warn_shift_negative)
<< rex.get()->getSourceRange());
return;
}
llvm::APInt LeftBits(Right.getBitWidth(),
S.Context.getTypeSize(lex.get()->getType()));
if (Right.uge(LeftBits)) {
S.DiagRuntimeBehavior(Loc, rex.get(),
S.PDiag(diag::warn_shift_gt_typewidth)
<< rex.get()->getSourceRange());
return;
}
if (Opc != BO_Shl)
return;
// When left shifting an ICE which is signed, we can check for overflow which
// according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
// integers have defined behavior modulo one more than the maximum value
// representable in the result type, so never warn for those.
llvm::APSInt Left;
if (lex.get()->isValueDependent() ||
!lex.get()->isIntegerConstantExpr(Left, S.Context) ||
LHSTy->hasUnsignedIntegerRepresentation())
return;
llvm::APInt ResultBits =
static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
if (LeftBits.uge(ResultBits))
return;
llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
Result = Result.shl(Right);
// Print the bit representation of the signed integer as an unsigned
// hexadecimal number.
llvm::SmallString<40> HexResult;
Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
// If we are only missing a sign bit, this is less likely to result in actual
// bugs -- if the result is cast back to an unsigned type, it will have the
// expected value. Thus we place this behind a different warning that can be
// turned off separately if needed.
if (LeftBits == ResultBits - 1) {
S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
<< HexResult.str() << LHSTy
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
return;
}
S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
<< HexResult.str() << Result.getMinSignedBits() << LHSTy
<< Left.getBitWidth() << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
}
// C99 6.5.7
QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex,
SourceLocation Loc, unsigned Opc,
bool isCompAssign) {
// C99 6.5.7p2: Each of the operands shall have integer type.
if (!lex.get()->getType()->hasIntegerRepresentation() ||
!rex.get()->getType()->hasIntegerRepresentation())
return InvalidOperands(Loc, lex, rex);
// C++0x: Don't allow scoped enums. FIXME: Use something better than
// hasIntegerRepresentation() above instead of this.
if (isScopedEnumerationType(lex.get()->getType()) ||
isScopedEnumerationType(rex.get()->getType())) {
return InvalidOperands(Loc, lex, rex);
}
// Vector shifts promote their scalar inputs to vector type.
if (lex.get()->getType()->isVectorType() ||
rex.get()->getType()->isVectorType())
return CheckVectorOperands(lex, rex, Loc, isCompAssign);
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
// For the LHS, do usual unary conversions, but then reset them away
// if this is a compound assignment.
ExprResult old_lex = lex;
lex = UsualUnaryConversions(lex.take());
if (lex.isInvalid())
return QualType();
QualType LHSTy = lex.get()->getType();
if (isCompAssign) lex = old_lex;
// The RHS is simpler.
rex = UsualUnaryConversions(rex.take());
if (rex.isInvalid())
return QualType();
// Sanity-check shift operands
DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
// "The type of the result is that of the promoted left operand."
return LHSTy;
}
static bool IsWithinTemplateSpecialization(Decl *D) {
if (DeclContext *DC = D->getDeclContext()) {
if (isa<ClassTemplateSpecializationDecl>(DC))
return true;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
return FD->isFunctionTemplateSpecialization();
}
return false;
}
// C99 6.5.8, C++ [expr.rel]
QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex,
SourceLocation Loc, unsigned OpaqueOpc,
bool isRelational) {
BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
// Handle vector comparisons separately.
if (lex.get()->getType()->isVectorType() ||
rex.get()->getType()->isVectorType())
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
QualType lType = lex.get()->getType();
QualType rType = rex.get()->getType();
Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
QualType LHSStrippedType = LHSStripped->getType();
QualType RHSStrippedType = RHSStripped->getType();
// Two different enums will raise a warning when compared.
if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
if (LHSEnumType->getDecl()->getIdentifier() &&
RHSEnumType->getDecl()->getIdentifier() &&
!Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
<< LHSStrippedType << RHSStrippedType
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
}
}
}
if (!lType->hasFloatingRepresentation() &&
!(lType->isBlockPointerType() && isRelational) &&
!lex.get()->getLocStart().isMacroID() &&
!rex.get()->getLocStart().isMacroID()) {
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
//
// NOTE: Don't warn about comparison expressions resulting from macro
// expansion. Also don't warn about comparisons which are only self
// comparisons within a template specialization. The warnings should catch
// obvious cases in the definition of the template anyways. The idea is to
// warn when the typed comparison operator will always evaluate to the same
// result.
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
if (DRL->getDecl() == DRR->getDecl() &&
!IsWithinTemplateSpecialization(DRL->getDecl())) {
DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
<< 0 // self-
<< (Opc == BO_EQ
|| Opc == BO_LE
|| Opc == BO_GE));
} else if (lType->isArrayType() && rType->isArrayType() &&
!DRL->getDecl()->getType()->isReferenceType() &&
!DRR->getDecl()->getType()->isReferenceType()) {
// what is it always going to eval to?
char always_evals_to;
switch(Opc) {
case BO_EQ: // e.g. array1 == array2
always_evals_to = 0; // false
break;
case BO_NE: // e.g. array1 != array2
always_evals_to = 1; // true
break;
default:
// best we can say is 'a constant'
always_evals_to = 2; // e.g. array1 <= array2
break;
}
DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
<< 1 // array
<< always_evals_to);
}
}
}
if (isa<CastExpr>(LHSStripped))
LHSStripped = LHSStripped->IgnoreParenCasts();
if (isa<CastExpr>(RHSStripped))
RHSStripped = RHSStripped->IgnoreParenCasts();
// Warn about comparisons against a string constant (unless the other
// operand is null), the user probably wants strcmp.
Expr *literalString = 0;
Expr *literalStringStripped = 0;
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
!RHSStripped->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
literalString = lex.get();
literalStringStripped = LHSStripped;
} else if ((isa<StringLiteral>(RHSStripped) ||
isa<ObjCEncodeExpr>(RHSStripped)) &&
!LHSStripped->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
literalString = rex.get();
literalStringStripped = RHSStripped;
}
if (literalString) {
std::string resultComparison;
switch (Opc) {
case BO_LT: resultComparison = ") < 0"; break;
case BO_GT: resultComparison = ") > 0"; break;
case BO_LE: resultComparison = ") <= 0"; break;
case BO_GE: resultComparison = ") >= 0"; break;
case BO_EQ: resultComparison = ") == 0"; break;
case BO_NE: resultComparison = ") != 0"; break;
default: assert(false && "Invalid comparison operator");
}
DiagRuntimeBehavior(Loc, 0,
PDiag(diag::warn_stringcompare)
<< isa<ObjCEncodeExpr>(literalStringStripped)
<< literalString->getSourceRange());
}
}
// C99 6.5.8p3 / C99 6.5.9p4
if (lex.get()->getType()->isArithmeticType() &&
rex.get()->getType()->isArithmeticType()) {
UsualArithmeticConversions(lex, rex);
if (lex.isInvalid() || rex.isInvalid())
return QualType();
}
else {
lex = UsualUnaryConversions(lex.take());
if (lex.isInvalid())
return QualType();
rex = UsualUnaryConversions(rex.take());
if (rex.isInvalid())
return QualType();
}
lType = lex.get()->getType();
rType = rex.get()->getType();
// The result of comparisons is 'bool' in C++, 'int' in C.
QualType ResultTy = Context.getLogicalOperationType();
if (isRelational) {
if (lType->isRealType() && rType->isRealType())
return ResultTy;
} else {
// Check for comparisons of floating point operands using != and ==.
if (lType->hasFloatingRepresentation())
CheckFloatComparison(Loc, lex.get(), rex.get());
if (lType->isArithmeticType() && rType->isArithmeticType())
return ResultTy;
}
bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
// All of the following pointer-related warnings are GCC extensions, except
// when handling null pointer constants.
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
QualType LCanPointeeTy =
Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
QualType RCanPointeeTy =
Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
if (getLangOptions().CPlusPlus) {
if (LCanPointeeTy == RCanPointeeTy)
return ResultTy;
if (!isRelational &&
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
// Valid unless comparison between non-null pointer and function pointer
// This is a gcc extension compatibility comparison.
// In a SFINAE context, we treat this as a hard error to maintain
// conformance with the C++ standard.
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
&& !LHSIsNull && !RHSIsNull) {
Diag(Loc,
isSFINAEContext()?
diag::err_typecheck_comparison_of_fptr_to_void
: diag::ext_typecheck_comparison_of_fptr_to_void)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
if (isSFINAEContext())
return QualType();
rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
return ResultTy;
}
}
// C++ [expr.rel]p2:
// [...] Pointer conversions (4.10) and qualification
// conversions (4.4) are performed on pointer operands (or on
// a pointer operand and a null pointer constant) to bring
// them to their composite pointer type. [...]
//
// C++ [expr.eq]p1 uses the same notion for (in)equality
// comparisons of pointers.
bool NonStandardCompositeType = false;
QualType T = FindCompositePointerType(Loc, lex, rex,
isSFINAEContext()? 0 : &NonStandardCompositeType);
if (T.isNull()) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
return QualType();
} else if (NonStandardCompositeType) {
Diag(Loc,
diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
<< lType << rType << T
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
}
lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
return ResultTy;
}
// C99 6.5.9p2 and C99 6.5.8p2
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
RCanPointeeTy.getUnqualifiedType())) {
// Valid unless a relational comparison of function pointers
if (isRelational && LCanPointeeTy->isFunctionType()) {
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
}
} else if (!isRelational &&
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
// Valid unless comparison between non-null pointer and function pointer
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
&& !LHSIsNull && !RHSIsNull) {
Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
}
} else {
// Invalid
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
}
if (LCanPointeeTy != RCanPointeeTy) {
if (LHSIsNull && !RHSIsNull)
lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
else
rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
}
return ResultTy;
}
if (getLangOptions().CPlusPlus) {
// Comparison of nullptr_t with itself.
if (lType->isNullPtrType() && rType->isNullPtrType())
return ResultTy;
// Comparison of pointers with null pointer constants and equality
// comparisons of member pointers to null pointer constants.
if (RHSIsNull &&
((lType->isAnyPointerType() || lType->isNullPtrType()) ||
(!isRelational &&
(lType->isMemberPointerType() || lType->isBlockPointerType())))) {
rex = ImpCastExprToType(rex.take(), lType,
lType->isMemberPointerType()
? CK_NullToMemberPointer
: CK_NullToPointer);
return ResultTy;
}
if (LHSIsNull &&
((rType->isAnyPointerType() || rType->isNullPtrType()) ||
(!isRelational &&
(rType->isMemberPointerType() || rType->isBlockPointerType())))) {
lex = ImpCastExprToType(lex.take(), rType,
rType->isMemberPointerType()
? CK_NullToMemberPointer
: CK_NullToPointer);
return ResultTy;
}
// Comparison of member pointers.
if (!isRelational &&
lType->isMemberPointerType() && rType->isMemberPointerType()) {
// C++ [expr.eq]p2:
// In addition, pointers to members can be compared, or a pointer to
// member and a null pointer constant. Pointer to member conversions
// (4.11) and qualification conversions (4.4) are performed to bring
// them to a common type. If one operand is a null pointer constant,
// the common type is the type of the other operand. Otherwise, the
// common type is a pointer to member type similar (4.4) to the type
// of one of the operands, with a cv-qualification signature (4.4)
// that is the union of the cv-qualification signatures of the operand
// types.
bool NonStandardCompositeType = false;
QualType T = FindCompositePointerType(Loc, lex, rex,
isSFINAEContext()? 0 : &NonStandardCompositeType);
if (T.isNull()) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
return QualType();
} else if (NonStandardCompositeType) {
Diag(Loc,
diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
<< lType << rType << T
<< lex.get()->getSourceRange() << rex.get()->getSourceRange();
}
lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
return ResultTy;
}
// Handle scoped enumeration types specifically, since they don't promote
// to integers.
if (lex.get()->getType()->isEnumeralType() &&
Context.hasSameUnqualifiedType(lex.get()->getType(),
rex.get()->getType()))
return ResultTy;
}
// Handle block pointer types.
if (!isRelational && lType->isBlockPointerType() &&
rType->isBlockPointerType()) {
QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
if (!LHSIsNull && !RHSIsNull &&
!Context.typesAreCompatible(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
}
rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
return ResultTy;
}
// Allow block pointers to be compared with null pointer constants.
if (!isRelational
&& ((lType->isBlockPointerType() && rType->isPointerType())
|| (lType->isPointerType() && rType->isBlockPointerType()))) {
if (!LHSIsNull && !RHSIsNull) {
if (!((rType->isPointerType() && rType->castAs<PointerType>()
->getPointeeType()->isVoidType())
|| (lType->isPointerType() && lType->castAs<PointerType>()
->getPointeeType()->isVoidType())))
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
}
if (LHSIsNull && !RHSIsNull)
lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
else
rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
return ResultTy;
}
if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
const PointerType *LPT = lType->getAs<PointerType>();
const PointerType *RPT = rType->getAs<PointerType>();
if (LPT || RPT) {
bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
if (!LPtrToVoid && !RPtrToVoid &&
!Context.typesAreCompatible(lType, rType)) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
}
if (LHSIsNull && !RHSIsNull)
lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
else
rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
return ResultTy;
}
if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
if (!Context.areComparableObjCPointerTypes(lType, rType))
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
if (LHSIsNull && !RHSIsNull)
lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
else
rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
return ResultTy;
}
}
if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
(lType->isIntegerType() && rType->isAnyPointerType())) {
unsigned DiagID = 0;
bool isError = false;
if ((LHSIsNull && lType->isIntegerType()) ||
(RHSIsNull && rType->isIntegerType())) {
if (isRelational && !getLangOptions().CPlusPlus)
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
} else if (isRelational && !getLangOptions().CPlusPlus)
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
else if (getLangOptions().CPlusPlus) {
DiagID = diag::err_typecheck_comparison_of_pointer_integer;
isError = true;
} else
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
if (DiagID) {
Diag(Loc, DiagID)
<< lType << rType << lex.get()->getSourceRange()
<< rex.get()->getSourceRange();
if (isError)
return QualType();
}
if (lType->isIntegerType())
lex = ImpCastExprToType(lex.take(), rType,
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
else
rex = ImpCastExprToType(rex.take(), lType,
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
return ResultTy;
}
// Handle block pointers.
if (!isRelational && RHSIsNull
&& lType->isBlockPointerType() && rType->isIntegerType()) {
rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
return ResultTy;
}
if (!isRelational && LHSIsNull
&& lType->isIntegerType() && rType->isBlockPointerType()) {
lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
return ResultTy;
}
return InvalidOperands(Loc, lex, rex);
}
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
SourceLocation Loc,
bool isRelational) {
// Check to make sure we're operating on vectors of the same type and width,
// Allowing one side to be a scalar of element type.
QualType vType = CheckVectorOperands(lex, rex, Loc, /*isCompAssign*/false);
if (vType.isNull())
return vType;
QualType lType = lex.get()->getType();
QualType rType = rex.get()->getType();
// If AltiVec, the comparison results in a numeric type, i.e.
// bool for C++, int for C
if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
return Context.getLogicalOperationType();
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
if (!lType->hasFloatingRepresentation()) {
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
if (DRL->getDecl() == DRR->getDecl())
DiagRuntimeBehavior(Loc, 0,
PDiag(diag::warn_comparison_always)
<< 0 // self-
<< 2 // "a constant"
);
}
// Check for comparisons of floating point operands using != and ==.
if (!isRelational && lType->hasFloatingRepresentation()) {
assert (rType->hasFloatingRepresentation());
CheckFloatComparison(Loc, lex.get(), rex.get());
}
// Return the type for the comparison, which is the same as vector type for
// integer vectors, or an integer type of identical size and number of
// elements for floating point vectors.
if (lType->hasIntegerRepresentation())
return lType;
const VectorType *VTy = lType->getAs<VectorType>();
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
if (TypeSize == Context.getTypeSize(Context.IntTy))
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
if (TypeSize == Context.getTypeSize(Context.LongTy))
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
"Unhandled vector element size in vector compare");
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
}
inline QualType Sema::CheckBitwiseOperands(
ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
if (lex.get()->getType()->isVectorType() ||
rex.get()->getType()->isVectorType()) {
if (lex.get()->getType()->hasIntegerRepresentation() &&
rex.get()->getType()->hasIntegerRepresentation())
return CheckVectorOperands(lex, rex, Loc, isCompAssign);
return InvalidOperands(Loc, lex, rex);
}
ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
QualType compType = UsualArithmeticConversions(lexResult, rexResult,
isCompAssign);
if (lexResult.isInvalid() || rexResult.isInvalid())
return QualType();
lex = lexResult.take();
rex = rexResult.take();
if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
// Diagnose cases where the user write a logical and/or but probably meant a
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
// is a constant.
if (lex.get()->getType()->isIntegerType() &&
!lex.get()->getType()->isBooleanType() &&
rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
// Don't warn in macros or template instantiations.
!Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
// If the RHS can be constant folded, and if it constant folds to something
// that isn't 0 or 1 (which indicate a potential logical operation that
// happened to fold to true/false) then warn.
// Parens on the RHS are ignored.
Expr::EvalResult Result;
if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) ||
(Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) {
Diag(Loc, diag::warn_logical_instead_of_bitwise)
<< rex.get()->getSourceRange()
<< (Opc == BO_LAnd ? "&&" : "||");
// Suggest replacing the logical operator with the bitwise version
Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
<< (Opc == BO_LAnd ? "&" : "|")
<< FixItHint::CreateReplacement(SourceRange(
Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
getLangOptions())),
Opc == BO_LAnd ? "&" : "|");
if (Opc == BO_LAnd)
// Suggest replacing "Foo() && kNonZero" with "Foo()"
Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
<< FixItHint::CreateRemoval(
SourceRange(
Lexer::getLocForEndOfToken(lex.get()->getLocEnd(),
0, getSourceManager(),
getLangOptions()),
rex.get()->getLocEnd()));
}
}
if (!Context.getLangOptions().CPlusPlus) {
lex = UsualUnaryConversions(lex.take());
if (lex.isInvalid())
return QualType();
rex = UsualUnaryConversions(rex.take());
if (rex.isInvalid())
return QualType();
if (!lex.get()->getType()->isScalarType() ||
!rex.get()->getType()->isScalarType())
return InvalidOperands(Loc, lex, rex);
return Context.IntTy;
}
// The following is safe because we only use this method for
// non-overloadable operands.
// C++ [expr.log.and]p1
// C++ [expr.log.or]p1
// The operands are both contextually converted to type bool.
ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
if (lexRes.isInvalid())
return InvalidOperands(Loc, lex, rex);
lex = move(lexRes);
ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
if (rexRes.isInvalid())
return InvalidOperands(Loc, lex, rex);
rex = move(rexRes);
// C++ [expr.log.and]p2
// C++ [expr.log.or]p2
// The result is a bool.
return Context.BoolTy;
}
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
/// is a read-only property; return true if so. A readonly property expression
/// depends on various declarations and thus must be treated specially.
///
static bool IsReadonlyProperty(Expr *E, Sema &S) {
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
if (PropExpr->isImplicitProperty()) return false;
ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
QualType BaseType = PropExpr->isSuperReceiver() ?
PropExpr->getSuperReceiverType() :
PropExpr->getBase()->getType();
if (const ObjCObjectPointerType *OPT =
BaseType->getAsObjCInterfacePointerType())
if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
if (S.isPropertyReadonly(PDecl, IFace))
return true;
}
return false;
}
static bool IsConstProperty(Expr *E, Sema &S) {
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
if (PropExpr->isImplicitProperty()) return false;
ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
QualType T = PDecl->getType();
if (T->isReferenceType())
T = T->getAs<ReferenceType>()->getPointeeType();
CanQualType CT = S.Context.getCanonicalType(T);
return CT.isConstQualified();
}
return false;
}
static bool IsReadonlyMessage(Expr *E, Sema &S) {
if (E->getStmtClass() != Expr::MemberExprClass)
return false;
const MemberExpr *ME = cast<MemberExpr>(E);
NamedDecl *Member = ME->getMemberDecl();
if (isa<FieldDecl>(Member)) {
Expr *Base = ME->getBase()->IgnoreParenImpCasts();
if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
return false;
return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
}
return false;
}
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
/// emit an error and return true. If so, return false.
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
SourceLocation OrigLoc = Loc;
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
&Loc);
if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
IsLV = Expr::MLV_ReadonlyProperty;
else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
IsLV = Expr::MLV_Valid;
else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
IsLV = Expr::MLV_InvalidMessageExpression;
if (IsLV == Expr::MLV_Valid)
return false;
unsigned Diag = 0;
bool NeedType = false;
switch (IsLV) { // C99 6.5.16p2
case Expr::MLV_ConstQualified:
Diag = diag::err_typecheck_assign_const;
// In ARC, use some specialized diagnostics for occasions where we
// infer 'const'. These are always pseudo-strong variables.
if (S.getLangOptions().ObjCAutoRefCount) {
DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
if (declRef && isa<VarDecl>(declRef->getDecl())) {
VarDecl *var = cast<VarDecl>(declRef->getDecl());
// Use the normal diagnostic if it's pseudo-__strong but the
// user actually wrote 'const'.
if (var->isARCPseudoStrong() &&
(!var->getTypeSourceInfo() ||
!var->getTypeSourceInfo()->getType().isConstQualified())) {
// There are two pseudo-strong cases:
// - self
ObjCMethodDecl *method = S.getCurMethodDecl();
if (method && var == method->getSelfDecl())
Diag = diag::err_typecheck_arr_assign_self;
// - fast enumeration variables
else
Diag = diag::err_typecheck_arr_assign_enumeration;
SourceRange Assign;
if (Loc != OrigLoc)
Assign = SourceRange(OrigLoc, OrigLoc);
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
// We need to preserve the AST regardless, so migration tool
// can do its job.
return false;
}
}
}
break;
case Expr::MLV_ArrayType:
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_NotObjectType:
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_LValueCast:
Diag = diag::err_typecheck_lvalue_casts_not_supported;
break;
case Expr::MLV_Valid:
llvm_unreachable("did not take early return for MLV_Valid");
case Expr::MLV_InvalidExpression:
case Expr::MLV_MemberFunction:
case Expr::MLV_ClassTemporary:
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
break;
case Expr::MLV_IncompleteType:
case Expr::MLV_IncompleteVoidType:
return S.RequireCompleteType(Loc, E->getType(),
S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
<< E->getSourceRange());
case Expr::MLV_DuplicateVectorComponents:
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
break;
case Expr::MLV_NotBlockQualified:
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
break;
case Expr::MLV_ReadonlyProperty:
Diag = diag::error_readonly_property_assignment;
break;
case Expr::MLV_NoSetterProperty:
Diag = diag::error_nosetter_property_assignment;
break;
case Expr::MLV_InvalidMessageExpression:
Diag = diag::error_readonly_message_assignment;
break;
case Expr::MLV_SubObjCPropertySetting:
Diag = diag::error_no_subobject_property_setting;
break;
}
SourceRange Assign;
if (Loc != OrigLoc)
Assign = SourceRange(OrigLoc, OrigLoc);
if (NeedType)
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
else
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
return true;
}
// C99 6.5.16.1
QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
SourceLocation Loc,
QualType CompoundType) {
// Verify that LHS is a modifiable lvalue, and emit error if not.
if (CheckForModifiableLvalue(LHS, Loc, *this))
return QualType();
QualType LHSType = LHS->getType();
QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
CompoundType;
AssignConvertType ConvTy;
if (CompoundType.isNull()) {
QualType LHSTy(LHSType);
// Simple assignment "x = y".
if (LHS->getObjectKind() == OK_ObjCProperty) {
ExprResult LHSResult = Owned(LHS);
ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
if (LHSResult.isInvalid())
return QualType();
LHS = LHSResult.take();
}
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
if (RHS.isInvalid())
return QualType();
// Special case of NSObject attributes on c-style pointer types.
if (ConvTy == IncompatiblePointer &&
((Context.isObjCNSObjectType(LHSType) &&
RHSType->isObjCObjectPointerType()) ||
(Context.isObjCNSObjectType(RHSType) &&
LHSType->isObjCObjectPointerType())))
ConvTy = Compatible;
if (ConvTy == Compatible &&
getLangOptions().ObjCNonFragileABI &&
LHSType->isObjCObjectType())
Diag(Loc, diag::err_assignment_requires_nonfragile_object)
<< LHSType;
// If the RHS is a unary plus or minus, check to see if they = and + are
// right next to each other. If so, the user may have typo'd "x =+ 4"
// instead of "x += 4".
Expr *RHSCheck = RHS.get();
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
RHSCheck = ICE->getSubExpr();
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
if ((UO->getOpcode() == UO_Plus ||
UO->getOpcode() == UO_Minus) &&
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
// Only if the two operators are exactly adjacent.
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
// And there is a space or other character before the subexpr of the
// unary +/-. We don't want to warn on "x=-1".
Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
UO->getSubExpr()->getLocStart().isFileID()) {
Diag(Loc, diag::warn_not_compound_assign)
<< (UO->getOpcode() == UO_Plus ? "+" : "-")
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
}
}
if (ConvTy == Compatible) {
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
checkRetainCycles(LHS, RHS.get());
else if (getLangOptions().ObjCAutoRefCount)
checkUnsafeExprAssigns(Loc, LHS, RHS.get());
}
} else {
// Compound assignment "x += y"
ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
}
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
RHS.get(), AA_Assigning))
return QualType();
CheckForNullPointerDereference(*this, LHS);
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
// is converted to the type of the assignment expression (above).
// C++ 5.17p1: the type of the assignment expression is that of its left
// operand.
return (getLangOptions().CPlusPlus
? LHSType : LHSType.getUnqualifiedType());
}
// C99 6.5.17
static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc) {
S.DiagnoseUnusedExprResult(LHS.get());
LHS = S.CheckPlaceholderExpr(LHS.take());
RHS = S.CheckPlaceholderExpr(RHS.take());
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
// C's comma performs lvalue conversion (C99 6.3.2.1) on both its
// operands, but not unary promotions.
// C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
// So we treat the LHS as a ignored value, and in C++ we allow the
// containing site to determine what should be done with the RHS.
LHS = S.IgnoredValueConversions(LHS.take());
if (LHS.isInvalid())
return QualType();
if (!S.getLangOptions().CPlusPlus) {
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
if (RHS.isInvalid())
return QualType();
if (!RHS.get()->getType()->isVoidType())
S.RequireCompleteType(Loc, RHS.get()->getType(),
diag::err_incomplete_type);
}
return RHS.get()->getType();
}
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
ExprValueKind &VK,
SourceLocation OpLoc,
bool isInc, bool isPrefix) {
if (Op->isTypeDependent())
return S.Context.DependentTy;
QualType ResType = Op->getType();
assert(!ResType.isNull() && "no type for increment/decrement expression");
if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
// Decrement of bool is not allowed.
if (!isInc) {
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
return QualType();
}
// Increment of bool sets it to true, but is deprecated.
S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
} else if (ResType->isRealType()) {
// OK!
} else if (ResType->isAnyPointerType()) {
QualType PointeeTy = ResType->getPointeeType();
// C99 6.5.2.4p2, 6.5.6p2
if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
return QualType();
// Diagnose bad cases where we step over interface counts.
else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
<< PointeeTy << Op->getSourceRange();
return QualType();
}
} else if (ResType->isAnyComplexType()) {
// C99 does not support ++/-- on complex types, we allow as an extension.
S.Diag(OpLoc, diag::ext_integer_increment_complex)
<< ResType << Op->getSourceRange();
} else if (ResType->isPlaceholderType()) {
ExprResult PR = S.CheckPlaceholderExpr(Op);
if (PR.isInvalid()) return QualType();
return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
isInc, isPrefix);
} else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
// OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
} else {
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
<< ResType << int(isInc) << Op->getSourceRange();
return QualType();
}
// At this point, we know we have a real, complex or pointer type.
// Now make sure the operand is a modifiable lvalue.
if (CheckForModifiableLvalue(Op, OpLoc, S))
return QualType();
// In C++, a prefix increment is the same type as the operand. Otherwise
// (in C or with postfix), the increment is the unqualified type of the
// operand.
if (isPrefix && S.getLangOptions().CPlusPlus) {
VK = VK_LValue;
return ResType;
} else {
VK = VK_RValue;
return ResType.getUnqualifiedType();
}
}
ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
assert(E->getValueKind() == VK_LValue &&
E->getObjectKind() == OK_ObjCProperty);
const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
QualType T = E->getType();
QualType ReceiverType;
if (PRE->isObjectReceiver())
ReceiverType = PRE->getBase()->getType();
else if (PRE->isSuperReceiver())
ReceiverType = PRE->getSuperReceiverType();
else
ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver());
ExprValueKind VK = VK_RValue;
if (PRE->isImplicitProperty()) {
if (ObjCMethodDecl *GetterMethod =
PRE->getImplicitPropertyGetter()) {
T = getMessageSendResultType(ReceiverType, GetterMethod,
PRE->isClassReceiver(),
PRE->isSuperReceiver());
VK = Expr::getValueKindForType(GetterMethod->getResultType());
}
else {
Diag(PRE->getLocation(), diag::err_getter_not_found)
<< PRE->getBase()->getType();
}
}
E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty,
E, 0, VK);
ExprResult Result = MaybeBindToTemporary(E);
if (!Result.isInvalid())
E = Result.take();
return Owned(E);
}
void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS,
QualType &LHSTy) {
assert(LHS.get()->getValueKind() == VK_LValue &&
LHS.get()->getObjectKind() == OK_ObjCProperty);
const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
bool Consumed = false;
if (PropRef->isImplicitProperty()) {
// If using property-dot syntax notation for assignment, and there is a
// setter, RHS expression is being passed to the setter argument. So,
// type conversion (and comparison) is RHS to setter's argument type.
if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
LHSTy = (*P)->getType();
Consumed = (getLangOptions().ObjCAutoRefCount &&
(*P)->hasAttr<NSConsumedAttr>());
// Otherwise, if the getter returns an l-value, just call that.
} else {
QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
ExprValueKind VK = Expr::getValueKindForType(Result);
if (VK == VK_LValue) {
LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
CK_GetObjCProperty, LHS.take(), 0, VK);
return;
}
}
} else if (getLangOptions().ObjCAutoRefCount) {
const ObjCMethodDecl *setter
= PropRef->getExplicitProperty()->getSetterMethodDecl();
if (setter) {
ObjCMethodDecl::param_iterator P = setter->param_begin();
LHSTy = (*P)->getType();
Consumed = (*P)->hasAttr<NSConsumedAttr>();
}
}
if ((getLangOptions().CPlusPlus && LHSTy->isRecordType()) ||
getLangOptions().ObjCAutoRefCount) {
InitializedEntity Entity =
InitializedEntity::InitializeParameter(Context, LHSTy, Consumed);
ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
if (!ArgE.isInvalid()) {
RHS = ArgE;
if (getLangOptions().ObjCAutoRefCount && !PropRef->isSuperReceiver())
checkRetainCycles(const_cast<Expr*>(PropRef->getBase()), RHS.get());
}
}
}
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
/// - &(x) => x
/// - &*****f => f for f a function designator.
/// - &s.xx => s
/// - &s.zz[1].yy -> s, if zz is an array
/// - *(x + 1) -> x, if x is an array
/// - &"123"[2] -> 0
/// - & __real__ x -> x
static ValueDecl *getPrimaryDecl(Expr *E) {
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass:
return cast<DeclRefExpr>(E)->getDecl();
case Stmt::MemberExprClass:
// If this is an arrow operator, the address is an offset from
// the base's value, so the object the base refers to is
// irrelevant.
if (cast<MemberExpr>(E)->isArrow())
return 0;
// Otherwise, the expression refers to a part of the base
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
case Stmt::ArraySubscriptExprClass: {
// FIXME: This code shouldn't be necessary! We should catch the implicit
// promotion of register arrays earlier.
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
if (ICE->getSubExpr()->getType()->isArrayType())
return getPrimaryDecl(ICE->getSubExpr());
}
return 0;
}
case Stmt::UnaryOperatorClass: {
UnaryOperator *UO = cast<UnaryOperator>(E);
switch(UO->getOpcode()) {
case UO_Real:
case UO_Imag:
case UO_Extension:
return getPrimaryDecl(UO->getSubExpr());
default:
return 0;
}
}
case Stmt::ParenExprClass:
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
case Stmt::ImplicitCastExprClass:
// If the result of an implicit cast is an l-value, we care about
// the sub-expression; otherwise, the result here doesn't matter.
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
default:
return 0;
}
}
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
SourceLocation OpLoc) {
if (OrigOp->isTypeDependent())
return S.Context.DependentTy;
if (OrigOp->getType() == S.Context.OverloadTy)
return S.Context.OverloadTy;
if (OrigOp->getType() == S.Context.UnknownAnyTy)
return S.Context.UnknownAnyTy;
if (OrigOp->getType() == S.Context.BoundMemberTy) {
S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
<< OrigOp->getSourceRange();
return QualType();
}
assert(!OrigOp->getType()->isPlaceholderType());
// Make sure to ignore parentheses in subsequent checks
Expr *op = OrigOp->IgnoreParens();
if (S.getLangOptions().C99) {
// Implement C99-only parts of addressof rules.
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
if (uOp->getOpcode() == UO_Deref)
// Per C99 6.5.3.2, the address of a deref always returns a valid result
// (assuming the deref expression is valid).
return uOp->getSubExpr()->getType();
}
// Technically, there should be a check for array subscript
// expressions here, but the result of one is always an lvalue anyway.
}
ValueDecl *dcl = getPrimaryDecl(op);
Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
if (lval == Expr::LV_ClassTemporary) {
bool sfinae = S.isSFINAEContext();
S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
: diag::ext_typecheck_addrof_class_temporary)
<< op->getType() << op->getSourceRange();
if (sfinae)
return QualType();
} else if (isa<ObjCSelectorExpr>(op)) {
return S.Context.getPointerType(op->getType());
} else if (lval == Expr::LV_MemberFunction) {
// If it's an instance method, make a member pointer.
// The expression must have exactly the form &A::foo.
// If the underlying expression isn't a decl ref, give up.
if (!isa<DeclRefExpr>(op)) {
S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
<< OrigOp->getSourceRange();
return QualType();
}
DeclRefExpr *DRE = cast<DeclRefExpr>(op);
CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
// The id-expression was parenthesized.
if (OrigOp != DRE) {
S.Diag(OpLoc, diag::err_parens_pointer_member_function)
<< OrigOp->getSourceRange();
// The method was named without a qualifier.
} else if (!DRE->getQualifier()) {
S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
<< op->getSourceRange();
}
return S.Context.getMemberPointerType(op->getType(),
S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
// C99 6.5.3.2p1
// The operand must be either an l-value or a function designator
if (!op->getType()->isFunctionType()) {
// FIXME: emit more specific diag...
S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
<< op->getSourceRange();
return QualType();
}
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
// The operand cannot be a bit-field
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "bit-field" << op->getSourceRange();
return QualType();
} else if (op->getObjectKind() == OK_VectorComponent) {
// The operand cannot be an element of a vector
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "vector element" << op->getSourceRange();
return QualType();
} else if (op->getObjectKind() == OK_ObjCProperty) {
// cannot take address of a property expression.
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "property expression" << op->getSourceRange();
return QualType();
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
// in C++ it is not error to take address of a register
// variable (c++03 7.1.1P3)
if (vd->getStorageClass() == SC_Register &&
!S.getLangOptions().CPlusPlus) {
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "register variable" << op->getSourceRange();
return QualType();
}
} else if (isa<FunctionTemplateDecl>(dcl)) {
return S.Context.OverloadTy;
} else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
// Okay: we can take the address of a field.
// Could be a pointer to member, though, if there is an explicit
// scope qualifier for the class.
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
DeclContext *Ctx = dcl->getDeclContext();
if (Ctx && Ctx->isRecord()) {
if (dcl->getType()->isReferenceType()) {
S.Diag(OpLoc,
diag::err_cannot_form_pointer_to_member_of_reference_type)
<< dcl->getDeclName() << dcl->getType();
return QualType();
}
while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
Ctx = Ctx->getParent();
return S.Context.getMemberPointerType(op->getType(),
S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
}
}
} else if (!isa<FunctionDecl>(dcl))
assert(0 && "Unknown/unexpected decl type");
}
if (lval == Expr::LV_IncompleteVoidType) {
// Taking the address of a void variable is technically illegal, but we
// allow it in cases which are otherwise valid.
// Example: "extern void x; void* y = &x;".
S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
}
// If the operand has type "type", the result has type "pointer to type".
if (op->getType()->isObjCObjectType())
return S.Context.getObjCObjectPointerType(op->getType());
return S.Context.getPointerType(op->getType());
}
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
SourceLocation OpLoc) {
if (Op->isTypeDependent())
return S.Context.DependentTy;
ExprResult ConvResult = S.UsualUnaryConversions(Op);
if (ConvResult.isInvalid())
return QualType();
Op = ConvResult.take();
QualType OpTy = Op->getType();
QualType Result;
if (isa<CXXReinterpretCastExpr>(Op)) {
QualType OpOrigType = Op->IgnoreParenCasts()->getType();
S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
Op->getSourceRange());
}
// Note that per both C89 and C99, indirection is always legal, even if OpTy
// is an incomplete type or void. It would be possible to warn about
// dereferencing a void pointer, but it's completely well-defined, and such a
// warning is unlikely to catch any mistakes.
if (const PointerType *PT = OpTy->getAs<PointerType>())
Result = PT->getPointeeType();
else if (const ObjCObjectPointerType *OPT =
OpTy->getAs<ObjCObjectPointerType>())
Result = OPT->getPointeeType();
else {
ExprResult PR = S.CheckPlaceholderExpr(Op);
if (PR.isInvalid()) return QualType();
if (PR.take() != Op)
return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
}
if (Result.isNull()) {
S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
<< OpTy << Op->getSourceRange();
return QualType();
}
// Dereferences are usually l-values...
VK = VK_LValue;
// ...except that certain expressions are never l-values in C.
if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType())
VK = VK_RValue;
return Result;
}
static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
tok::TokenKind Kind) {
BinaryOperatorKind Opc;
switch (Kind) {
default: assert(0 && "Unknown binop!");
case tok::periodstar: Opc = BO_PtrMemD; break;
case tok::arrowstar: Opc = BO_PtrMemI; break;
case tok::star: Opc = BO_Mul; break;
case tok::slash: Opc = BO_Div; break;
case tok::percent: Opc = BO_Rem; break;
case tok::plus: Opc = BO_Add; break;
case tok::minus: Opc = BO_Sub; break;
case tok::lessless: Opc = BO_Shl; break;
case tok::greatergreater: Opc = BO_Shr; break;
case tok::lessequal: Opc = BO_LE; break;
case tok::less: Opc = BO_LT; break;
case tok::greaterequal: Opc = BO_GE; break;
case tok::greater: Opc = BO_GT; break;
case tok::exclaimequal: Opc = BO_NE; break;
case tok::equalequal: Opc = BO_EQ; break;
case tok::amp: Opc = BO_And; break;
case tok::caret: Opc = BO_Xor; break;
case tok::pipe: Opc = BO_Or; break;
case tok::ampamp: Opc = BO_LAnd; break;
case tok::pipepipe: Opc = BO_LOr; break;
case tok::equal: Opc = BO_Assign; break;
case tok::starequal: Opc = BO_MulAssign; break;
case tok::slashequal: Opc = BO_DivAssign; break;
case tok::percentequal: Opc = BO_RemAssign; break;
case tok::plusequal: Opc = BO_AddAssign; break;
case tok::minusequal: Opc = BO_SubAssign; break;
case tok::lesslessequal: Opc = BO_ShlAssign; break;
case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
case tok::ampequal: Opc = BO_AndAssign; break;
case tok::caretequal: Opc = BO_XorAssign; break;
case tok::pipeequal: Opc = BO_OrAssign; break;
case tok::comma: Opc = BO_Comma; break;
}
return Opc;
}
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
tok::TokenKind Kind) {
UnaryOperatorKind Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UO_PreInc; break;
case tok::minusminus: Opc = UO_PreDec; break;
case tok::amp: Opc = UO_AddrOf; break;
case tok::star: Opc = UO_Deref; break;
case tok::plus: Opc = UO_Plus; break;
case tok::minus: Opc = UO_Minus; break;
case tok::tilde: Opc = UO_Not; break;
case tok::exclaim: Opc = UO_LNot; break;
case tok::kw___real: Opc = UO_Real; break;
case tok::kw___imag: Opc = UO_Imag; break;
case tok::kw___extension__: Opc = UO_Extension; break;
}
return Opc;
}
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
/// This warning is only emitted for builtin assignment operations. It is also
/// suppressed in the event of macro expansions.
static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
SourceLocation OpLoc) {
if (!S.ActiveTemplateInstantiations.empty())
return;
if (OpLoc.isInvalid() || OpLoc.isMacroID())
return;
lhs = lhs->IgnoreParenImpCasts();
rhs = rhs->IgnoreParenImpCasts();
const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
if (!LeftDeclRef || !RightDeclRef ||
LeftDeclRef->getLocation().isMacroID() ||
RightDeclRef->getLocation().isMacroID())
return;
const ValueDecl *LeftDecl =
cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
const ValueDecl *RightDecl =
cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
if (LeftDecl != RightDecl)
return;
if (LeftDecl->getType().isVolatileQualified())
return;
if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
if (RefTy->getPointeeType().isVolatileQualified())
return;
S.Diag(OpLoc, diag::warn_self_assignment)
<< LeftDeclRef->getType()
<< lhs->getSourceRange() << rhs->getSourceRange();
}
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *lhsExpr, Expr *rhsExpr) {
ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
QualType ResultTy; // Result type of the binary operator.
// The following two variables are used for compound assignment operators
QualType CompLHSTy; // Type of LHS after promotions for computation
QualType CompResultTy; // Type of computation result
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
// Check if a 'foo<int>' involved in a binary op, identifies a single
// function unambiguously (i.e. an lvalue ala 13.4)
// But since an assignment can trigger target based overload, exclude it in
// our blind search. i.e:
// template<class T> void f(); template<class T, class U> void f(U);
// f<int> == 0; // resolve f<int> blindly
// void (*p)(int); p = f<int>; // resolve f<int> using target
if (Opc != BO_Assign) {
ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
if (!resolvedLHS.isUsable()) return ExprError();
lhs = move(resolvedLHS);
ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
if (!resolvedRHS.isUsable()) return ExprError();
rhs = move(resolvedRHS);
}
// The canonical way to check for a GNU null is with isNullPointerConstant,
// but we use a bit of a hack here for speed; this is a relatively
// hot path, and isNullPointerConstant is slow.
bool LeftNull = isa<GNUNullExpr>(lhs.get()->IgnoreParenImpCasts());
bool RightNull = isa<GNUNullExpr>(rhs.get()->IgnoreParenImpCasts());
// Detect when a NULL constant is used improperly in an expression. These
// are mainly cases where the null pointer is used as an integer instead
// of a pointer.
if (LeftNull || RightNull) {
// Avoid analyzing cases where the result will either be invalid (and
// diagnosed as such) or entirely valid and not something to warn about.
QualType LeftType = lhs.get()->getType();
QualType RightType = rhs.get()->getType();
if (!LeftType->isBlockPointerType() && !LeftType->isMemberPointerType() &&
!LeftType->isFunctionType() &&
!RightType->isBlockPointerType() &&
!RightType->isMemberPointerType() &&
!RightType->isFunctionType()) {
if (Opc == BO_Mul || Opc == BO_Div || Opc == BO_Rem || Opc == BO_Add ||
Opc == BO_Sub || Opc == BO_Shl || Opc == BO_Shr || Opc == BO_And ||
Opc == BO_Xor || Opc == BO_Or || Opc == BO_MulAssign ||
Opc == BO_DivAssign || Opc == BO_AddAssign || Opc == BO_SubAssign ||
Opc == BO_RemAssign || Opc == BO_ShlAssign || Opc == BO_ShrAssign ||
Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign) {
// These are the operations that would not make sense with a null pointer
// pointer no matter what the other expression is.
Diag(OpLoc, diag::warn_null_in_arithmetic_operation)
<< (LeftNull ? lhs.get()->getSourceRange() : SourceRange())
<< (RightNull ? rhs.get()->getSourceRange() : SourceRange());
} else if (Opc == BO_LE || Opc == BO_LT || Opc == BO_GE || Opc == BO_GT ||
Opc == BO_EQ || Opc == BO_NE) {
// These are the operations that would not make sense with a null pointer
// if the other expression the other expression is not a pointer.
if (LeftNull != RightNull &&
!LeftType->isAnyPointerType() &&
!LeftType->canDecayToPointerType() &&
!RightType->isAnyPointerType() &&
!RightType->canDecayToPointerType()) {
Diag(OpLoc, diag::warn_null_in_comparison_operation)
<< LeftNull /* LHS is NULL */
<< (LeftNull ? rhs.get()->getType() : lhs.get()->getType())
<< lhs.get()->getSourceRange() << rhs.get()->getSourceRange();
}
}
}
}
switch (Opc) {
case BO_Assign:
ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
if (getLangOptions().CPlusPlus &&
lhs.get()->getObjectKind() != OK_ObjCProperty) {
VK = lhs.get()->getValueKind();
OK = lhs.get()->getObjectKind();
}
if (!ResultTy.isNull())
DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
break;
case BO_PtrMemD:
case BO_PtrMemI:
ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
Opc == BO_PtrMemI);
break;
case BO_Mul:
case BO_Div:
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
Opc == BO_Div);
break;
case BO_Rem:
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
break;
case BO_Add:
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
break;
case BO_Sub:
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
break;
case BO_Shl:
case BO_Shr:
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
break;
case BO_LE:
case BO_LT:
case BO_GE:
case BO_GT:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
break;
case BO_EQ:
case BO_NE:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
break;
case BO_And:
case BO_Xor:
case BO_Or:
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
break;
case BO_LAnd:
case BO_LOr:
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
break;
case BO_MulAssign:
case BO_DivAssign:
CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
Opc == BO_DivAssign);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
break;
case BO_RemAssign:
CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
break;
case BO_AddAssign:
CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
break;
case BO_SubAssign:
CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
break;
case BO_ShlAssign:
case BO_ShrAssign:
CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
break;
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
break;
case BO_Comma:
ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
VK = rhs.get()->getValueKind();
OK = rhs.get()->getObjectKind();
}
break;
}
if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
return ExprError();
// Check for array bounds violations for both sides of the BinaryOperator
CheckArrayAccess(lhs.get());
CheckArrayAccess(rhs.get());
if (CompResultTy.isNull())
return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
ResultTy, VK, OK, OpLoc));
if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() !=
OK_ObjCProperty) {
VK = VK_LValue;
OK = lhs.get()->getObjectKind();
}
return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
ResultTy, VK, OK, CompLHSTy,
CompResultTy, OpLoc));
}
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
/// operators are mixed in a way that suggests that the programmer forgot that
/// comparison operators have higher precedence. The most typical example of
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
SourceLocation OpLoc,Expr *lhs,Expr *rhs){
typedef BinaryOperator BinOp;
BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
rhsopc = static_cast<BinOp::Opcode>(-1);
if (BinOp *BO = dyn_cast<BinOp>(lhs))
lhsopc = BO->getOpcode();
if (BinOp *BO = dyn_cast<BinOp>(rhs))
rhsopc = BO->getOpcode();
// Subs are not binary operators.
if (lhsopc == -1 && rhsopc == -1)
return;
// Bitwise operations are sometimes used as eager logical ops.
// Don't diagnose this.
if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
(BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
return;
bool isLeftComp = BinOp::isComparisonOp(lhsopc);
bool isRightComp = BinOp::isComparisonOp(rhsopc);
if (!isLeftComp && !isRightComp) return;
SourceRange DiagRange = isLeftComp ? SourceRange(lhs->getLocStart(), OpLoc)
: SourceRange(OpLoc, rhs->getLocEnd());
std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(lhsopc)
: BinOp::getOpcodeStr(rhsopc);
SourceRange ParensRange = isLeftComp ?
SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(),
rhs->getLocEnd())
: SourceRange(lhs->getLocStart(),
cast<BinOp>(rhs)->getLHS()->getLocStart());
Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
<< DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
rhs->getSourceRange());
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
ParensRange);
}
/// \brief It accepts a '&' expr that is inside a '|' one.
/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
/// in parentheses.
static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
BinaryOperator *Bop) {
assert(Bop->getOpcode() == BO_And);
Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
<< Bop->getSourceRange() << OpLoc;
SuggestParentheses(Self, Bop->getOperatorLoc(),
Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
Bop->getSourceRange());
}
/// \brief It accepts a '&&' expr that is inside a '||' one.
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
/// in parentheses.
static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
BinaryOperator *Bop) {
assert(Bop->getOpcode() == BO_LAnd);
Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
<< Bop->getSourceRange() << OpLoc;
SuggestParentheses(Self, Bop->getOperatorLoc(),
Self.PDiag(diag::note_logical_and_in_logical_or_silence),
Bop->getSourceRange());
}
/// \brief Returns true if the given expression can be evaluated as a constant
/// 'true'.
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
bool Res;
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
}
/// \brief Returns true if the given expression can be evaluated as a constant
/// 'false'.
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
bool Res;
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
}
/// \brief Look for '&&' in the left hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
Expr *OrLHS, Expr *OrRHS) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "a && b || 0" don't warn since the precedence doesn't matter.
if (EvaluatesAsFalse(S, OrRHS))
return;
// If it's "1 && a || b" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getLHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
} else if (Bop->getOpcode() == BO_LOr) {
if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
// If it's "a || b && 1 || c" we didn't warn earlier for
// "a || b && 1", but warn now.
if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
}
}
}
}
/// \brief Look for '&&' in the right hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
Expr *OrLHS, Expr *OrRHS) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "0 || a && b" don't warn since the precedence doesn't matter.
if (EvaluatesAsFalse(S, OrLHS))
return;
// If it's "a || b && 1" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getRHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
}
}
}
/// \brief Look for '&' in the left or right hand of a '|' expr.
static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
Expr *OrArg) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
if (Bop->getOpcode() == BO_And)
return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
}
}
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
/// precedence.
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
SourceLocation OpLoc, Expr *lhs, Expr *rhs){
// Diagnose "arg1 'bitwise' arg2 'eq' arg3".
if (BinaryOperator::isBitwiseOp(Opc))
DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
// Diagnose "arg1 & arg2 | arg3"
if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, lhs);
DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, rhs);
}
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
// We don't warn for 'assert(a || b && "bad")' since this is safe.
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
}
}
// Binary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
Expr *lhs, Expr *rhs) {
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
}
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *lhs, Expr *rhs) {
if (getLangOptions().CPlusPlus) {
bool UseBuiltinOperator;
if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
UseBuiltinOperator = false;
} else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
UseBuiltinOperator = true;
} else {
UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
!rhs->getType()->isOverloadableType();
}
if (!UseBuiltinOperator) {
// Find all of the overloaded operators visible from this
// point. We perform both an operator-name lookup from the local
// scope and an argument-dependent lookup based on the types of
// the arguments.
UnresolvedSet<16> Functions;
OverloadedOperatorKind OverOp
= BinaryOperator::getOverloadedOperator(Opc);
if (S && OverOp != OO_None)
LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
Functions);
// Build the (potentially-overloaded, potentially-dependent)
// binary operation.
return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
}
}
// Build a built-in binary operation.
return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
}
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *InputExpr) {
ExprResult Input = Owned(InputExpr);
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType resultType;
switch (Opc) {
case UO_PreInc:
case UO_PreDec:
case UO_PostInc:
case UO_PostDec:
resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
Opc == UO_PreInc ||
Opc == UO_PostInc,
Opc == UO_PreInc ||
Opc == UO_PreDec);
break;
case UO_AddrOf:
resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
break;
case UO_Deref: {
ExprResult resolved = CheckPlaceholderExpr(Input.get());
if (!resolved.isUsable()) return ExprError();
Input = move(resolved);
Input = DefaultFunctionArrayLvalueConversion(Input.take());
resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
break;
}
case UO_Plus:
case UO_Minus:
Input = UsualUnaryConversions(Input.take());
if (Input.isInvalid()) return ExprError();
resultType = Input.get()->getType();
if (resultType->isDependentType())
break;
if (resultType->isArithmeticType() || // C99 6.5.3.3p1
resultType->isVectorType())
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
resultType->isEnumeralType())
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
Opc == UO_Plus &&
resultType->isPointerType())
break;
else if (resultType->isPlaceholderType()) {
Input = CheckPlaceholderExpr(Input.take());
if (Input.isInvalid()) return ExprError();
return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
}
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
case UO_Not: // bitwise complement
Input = UsualUnaryConversions(Input.take());
if (Input.isInvalid()) return ExprError();
resultType = Input.get()->getType();
if (resultType->isDependentType())
break;
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
if (resultType->isComplexType() || resultType->isComplexIntegerType())
// C99 does not support '~' for complex conjugation.
Diag(OpLoc, diag::ext_integer_complement_complex)
<< resultType << Input.get()->getSourceRange();
else if (resultType->hasIntegerRepresentation())
break;
else if (resultType->isPlaceholderType()) {
Input = CheckPlaceholderExpr(Input.take());
if (Input.isInvalid()) return ExprError();
return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
} else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
}
break;
case UO_LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
Input = DefaultFunctionArrayLvalueConversion(Input.take());
if (Input.isInvalid()) return ExprError();
resultType = Input.get()->getType();
if (resultType->isDependentType())
break;
if (resultType->isScalarType()) {
// C99 6.5.3.3p1: ok, fallthrough;
if (Context.getLangOptions().CPlusPlus) {
// C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
// operand contextually converted to bool.
Input = ImpCastExprToType(Input.take(), Context.BoolTy,
ScalarTypeToBooleanCastKind(resultType));
}
} else if (resultType->isPlaceholderType()) {
Input = CheckPlaceholderExpr(Input.take());
if (Input.isInvalid()) return ExprError();
return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
} else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
}
// LNot always has type int. C99 6.5.3.3p5.
// In C++, it's bool. C++ 5.3.1p8
resultType = Context.getLogicalOperationType();
break;
case UO_Real:
case UO_Imag:
resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
// _Real and _Imag map ordinary l-values into ordinary l-values.
if (Input.isInvalid()) return ExprError();
if (Input.get()->getValueKind() != VK_RValue &&
Input.get()->getObjectKind() == OK_Ordinary)
VK = Input.get()->getValueKind();
break;
case UO_Extension:
resultType = Input.get()->getType();
VK = Input.get()->getValueKind();
OK = Input.get()->getObjectKind();
break;
}
if (resultType.isNull() || Input.isInvalid())
return ExprError();
// Check for array bounds violations in the operand of the UnaryOperator,
// except for the '*' and '&' operators that have to be handled specially
// by CheckArrayAccess (as there are special cases like &array[arraysize]
// that are explicitly defined as valid by the standard).
if (Opc != UO_AddrOf && Opc != UO_Deref)
CheckArrayAccess(Input.get());
return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
VK, OK, OpLoc));
}
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *Input) {
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
// Find all of the overloaded operators visible from this
// point. We perform both an operator-name lookup from the local
// scope and an argument-dependent lookup based on the types of
// the arguments.
UnresolvedSet<16> Functions;
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
if (S && OverOp != OO_None)
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
Functions);
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
}
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
}
// Unary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, Expr *Input) {
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
LabelDecl *TheDecl) {
TheDecl->setUsed();
// Create the AST node. The address of a label always has type 'void*'.
return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
Context.getPointerType(Context.VoidTy)));
}
/// Given the last statement in a statement-expression, check whether
/// the result is a producing expression (like a call to an
/// ns_returns_retained function) and, if so, rebuild it to hoist the
/// release out of the full-expression. Otherwise, return null.
/// Cannot fail.
static Expr *maybeRebuildARCConsumingStmt(Stmt *s) {
// Should always be wrapped with one of these.
ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(s);
if (!cleanups) return 0;
ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
if (!cast || cast->getCastKind() != CK_ObjCConsumeObject)
return 0;
// Splice out the cast. This shouldn't modify any interesting
// features of the statement.
Expr *producer = cast->getSubExpr();
assert(producer->getType() == cast->getType());
assert(producer->getValueKind() == cast->getValueKind());
cleanups->setSubExpr(producer);
return cleanups;
}
ExprResult
Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc) { // "({..})"
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
bool isFileScope
= (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
if (isFileScope)
return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
// FIXME: there are a variety of strange constraints to enforce here, for
// example, it is not possible to goto into a stmt expression apparently.
// More semantic analysis is needed.
// If there are sub stmts in the compound stmt, take the type of the last one
// as the type of the stmtexpr.
QualType Ty = Context.VoidTy;
bool StmtExprMayBindToTemp = false;
if (!Compound->body_empty()) {
Stmt *LastStmt = Compound->body_back();
LabelStmt *LastLabelStmt = 0;
// If LastStmt is a label, skip down through into the body.
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
LastLabelStmt = Label;
LastStmt = Label->getSubStmt();
}
if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
// Do function/array conversion on the last expression, but not
// lvalue-to-rvalue. However, initialize an unqualified type.
ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
if (LastExpr.isInvalid())
return ExprError();
Ty = LastExpr.get()->getType().getUnqualifiedType();
if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
// In ARC, if the final expression ends in a consume, splice
// the consume out and bind it later. In the alternate case
// (when dealing with a retainable type), the result
// initialization will create a produce. In both cases the
// result will be +1, and we'll need to balance that out with
// a bind.
if (Expr *rebuiltLastStmt
= maybeRebuildARCConsumingStmt(LastExpr.get())) {
LastExpr = rebuiltLastStmt;
} else {
LastExpr = PerformCopyInitialization(
InitializedEntity::InitializeResult(LPLoc,
Ty,
false),
SourceLocation(),
LastExpr);
}
if (LastExpr.isInvalid())
return ExprError();
if (LastExpr.get() != 0) {
if (!LastLabelStmt)
Compound->setLastStmt(LastExpr.take());
else
LastLabelStmt->setSubStmt(LastExpr.take());
StmtExprMayBindToTemp = true;
}
}
}
}
// FIXME: Check that expression type is complete/non-abstract; statement
// expressions are not lvalues.
Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
if (StmtExprMayBindToTemp)
return MaybeBindToTemporary(ResStmtExpr);
return Owned(ResStmtExpr);
}
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc) {
QualType ArgTy = TInfo->getType();
bool Dependent = ArgTy->isDependentType();
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
// We must have at least one component that refers to the type, and the first
// one is known to be a field designator. Verify that the ArgTy represents
// a struct/union/class.
if (!Dependent && !ArgTy->isRecordType())
return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
<< ArgTy << TypeRange);
// Type must be complete per C99 7.17p3 because a declaring a variable
// with an incomplete type would be ill-formed.
if (!Dependent
&& RequireCompleteType(BuiltinLoc, ArgTy,
PDiag(diag::err_offsetof_incomplete_type)
<< TypeRange))
return ExprError();
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
// GCC extension, diagnose them.
// FIXME: This diagnostic isn't actually visible because the location is in
// a system header!
if (NumComponents != 1)
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
bool DidWarnAboutNonPOD = false;
QualType CurrentType = ArgTy;
typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
SmallVector<OffsetOfNode, 4> Comps;
SmallVector<Expr*, 4> Exprs;
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
if (!CurrentType->isDependentType()) {
const ArrayType *AT = Context.getAsArrayType(CurrentType);
if(!AT)
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
<< CurrentType);
CurrentType = AT->getElementType();
} else
CurrentType = Context.DependentTy;
// The expression must be an integral expression.
// FIXME: An integral constant expression?
Expr *Idx = static_cast<Expr*>(OC.U.E);
if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
!Idx->getType()->isIntegerType())
return ExprError(Diag(Idx->getLocStart(),
diag::err_typecheck_subscript_not_integer)
<< Idx->getSourceRange());
// Record this array index.
Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
Exprs.push_back(Idx);
continue;
}
// Offset of a field.
if (CurrentType->isDependentType()) {
// We have the offset of a field, but we can't look into the dependent
// type. Just record the identifier of the field.
Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
CurrentType = Context.DependentTy;
continue;
}
// We need to have a complete type to look into.
if (RequireCompleteType(OC.LocStart, CurrentType,
diag::err_offsetof_incomplete_type))
return ExprError();
// Look for the designated field.
const RecordType *RC = CurrentType->getAs<RecordType>();
if (!RC)
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
<< CurrentType);
RecordDecl *RD = RC->getDecl();
// C++ [lib.support.types]p5:
// The macro offsetof accepts a restricted set of type arguments in this
// International Standard. type shall be a POD structure or a POD union
// (clause 9).
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
DiagRuntimeBehavior(BuiltinLoc, 0,
PDiag(diag::warn_offsetof_non_pod_type)
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
<< CurrentType))
DidWarnAboutNonPOD = true;
}
// Look for the field.
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
LookupQualifiedName(R, RD);
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
IndirectFieldDecl *IndirectMemberDecl = 0;
if (!MemberDecl) {
if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
MemberDecl = IndirectMemberDecl->getAnonField();
}
if (!MemberDecl)
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
OC.LocEnd));
// C99 7.17p3:
// (If the specified member is a bit-field, the behavior is undefined.)
//
// We diagnose this as an error.
if (MemberDecl->getBitWidth()) {
Diag(OC.LocEnd, diag::err_offsetof_bitfield)
<< MemberDecl->getDeclName()
<< SourceRange(BuiltinLoc, RParenLoc);
Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
return ExprError();
}
RecordDecl *Parent = MemberDecl->getParent();
if (IndirectMemberDecl)
Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
// If the member was found in a base class, introduce OffsetOfNodes for
// the base class indirections.
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
CXXBasePath &Path = Paths.front();
for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
B != BEnd; ++B)
Comps.push_back(OffsetOfNode(B->Base));
}
if (IndirectMemberDecl) {
for (IndirectFieldDecl::chain_iterator FI =
IndirectMemberDecl->chain_begin(),
FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
assert(isa<FieldDecl>(*FI));
Comps.push_back(OffsetOfNode(OC.LocStart,
cast<FieldDecl>(*FI), OC.LocEnd));
}
} else
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
CurrentType = MemberDecl->getType().getNonReferenceType();
}
return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
TInfo, Comps.data(), Comps.size(),
Exprs.data(), Exprs.size(), RParenLoc));
}
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
ParsedType argty,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RPLoc) {
TypeSourceInfo *ArgTInfo;
QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
if (ArgTy.isNull())
return ExprError();
if (!ArgTInfo)
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
RPLoc);
}
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
Expr *CondExpr,
Expr *LHSExpr, Expr *RHSExpr,
SourceLocation RPLoc) {
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType resType;
bool ValueDependent = false;
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
resType = Context.DependentTy;
ValueDependent = true;
} else {
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
SourceLocation ExpLoc;
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
return ExprError(Diag(ExpLoc,
diag::err_typecheck_choose_expr_requires_constant)
<< CondExpr->getSourceRange());
// If the condition is > zero, then the AST type is the same as the LSHExpr.
Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
resType = ActiveExpr->getType();
ValueDependent = ActiveExpr->isValueDependent();
VK = ActiveExpr->getValueKind();
OK = ActiveExpr->getObjectKind();
}
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
resType, VK, OK, RPLoc,
resType->isDependentType(),
ValueDependent));
}
//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
PushBlockScope(BlockScope, Block);
CurContext->addDecl(Block);
if (BlockScope)
PushDeclContext(BlockScope, Block);
else
CurContext = Block;
}
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
BlockScopeInfo *CurBlock = getCurBlock();
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
QualType T = Sig->getType();
// GetTypeForDeclarator always produces a function type for a block
// literal signature. Furthermore, it is always a FunctionProtoType
// unless the function was written with a typedef.
assert(T->isFunctionType() &&
"GetTypeForDeclarator made a non-function block signature");
// Look for an explicit signature in that function type.
FunctionProtoTypeLoc ExplicitSignature;
TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
if (isa<FunctionProtoTypeLoc>(tmp)) {
ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
// Check whether that explicit signature was synthesized by
// GetTypeForDeclarator. If so, don't save that as part of the
// written signature.
if (ExplicitSignature.getLocalRangeBegin() ==
ExplicitSignature.getLocalRangeEnd()) {
// This would be much cheaper if we stored TypeLocs instead of
// TypeSourceInfos.
TypeLoc Result = ExplicitSignature.getResultLoc();
unsigned Size = Result.getFullDataSize();
Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
Sig->getTypeLoc().initializeFullCopy(Result, Size);
ExplicitSignature = FunctionProtoTypeLoc();
}
}
CurBlock->TheDecl->setSignatureAsWritten(Sig);
CurBlock->FunctionType = T;
const FunctionType *Fn = T->getAs<FunctionType>();
QualType RetTy = Fn->getResultType();
bool isVariadic =
(isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
CurBlock->TheDecl->setIsVariadic(isVariadic);
// Don't allow returning a objc interface by value.
if (RetTy->isObjCObjectType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
return;
}
// Context.DependentTy is used as a placeholder for a missing block
// return type. TODO: what should we do with declarators like:
// ^ * { ... }
// If the answer is "apply template argument deduction"....
if (RetTy != Context.DependentTy)
CurBlock->ReturnType = RetTy;
// Push block parameters from the declarator if we had them.
SmallVector<ParmVarDecl*, 8> Params;
if (ExplicitSignature) {
for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
ParmVarDecl *Param = ExplicitSignature.getArg(I);
if (Param->getIdentifier() == 0 &&
!Param->isImplicit() &&
!Param->isInvalidDecl() &&
!getLangOptions().CPlusPlus)
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
Params.push_back(Param);
}
// Fake up parameter variables if we have a typedef, like
// ^ fntype { ... }
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
for (FunctionProtoType::arg_type_iterator
I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
ParmVarDecl *Param =
BuildParmVarDeclForTypedef(CurBlock->TheDecl,
ParamInfo.getSourceRange().getBegin(),
*I);
Params.push_back(Param);
}
}
// Set the parameters on the block decl.
if (!Params.empty()) {
CurBlock->TheDecl->setParams(Params.data(), Params.size());
CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
CurBlock->TheDecl->param_end(),
/*CheckParameterNames=*/false);
}
// Finally we can process decl attributes.
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
// Put the parameter variables in scope. We can bail out immediately
// if we don't have any.
if (Params.empty())
return;
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
(*AI)->setOwningFunction(CurBlock->TheDecl);
// If this has an identifier, add it to the scope stack.
if ((*AI)->getIdentifier()) {
CheckShadow(CurBlock->TheScope, *AI);
PushOnScopeChains(*AI, CurBlock->TheScope);
}
}
}
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
// Pop off CurBlock, handle nested blocks.
PopDeclContext();
PopFunctionOrBlockScope();
}
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
Stmt *Body, Scope *CurScope) {
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
Diag(CaretLoc, diag::err_blocks_disable);
BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
PopDeclContext();
QualType RetTy = Context.VoidTy;
if (!BSI->ReturnType.isNull())
RetTy = BSI->ReturnType;
bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
QualType BlockTy;
// Set the captured variables on the block.
BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
BSI->CapturesCXXThis);
// If the user wrote a function type in some form, try to use that.
if (!BSI->FunctionType.isNull()) {
const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
FunctionType::ExtInfo Ext = FTy->getExtInfo();
if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
// Turn protoless block types into nullary block types.
if (isa<FunctionNoProtoType>(FTy)) {
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = Ext;
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
// Otherwise, if we don't need to change anything about the function type,
// preserve its sugar structure.
} else if (FTy->getResultType() == RetTy &&
(!NoReturn || FTy->getNoReturnAttr())) {
BlockTy = BSI->FunctionType;
// Otherwise, make the minimal modifications to the function type.
} else {
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
EPI.TypeQuals = 0; // FIXME: silently?
EPI.ExtInfo = Ext;
BlockTy = Context.getFunctionType(RetTy,
FPT->arg_type_begin(),
FPT->getNumArgs(),
EPI);
}
// If we don't have a function type, just build one from nothing.
} else {
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
}
DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
BSI->TheDecl->param_end());
BlockTy = Context.getBlockPointerType(BlockTy);
// If needed, diagnose invalid gotos and switches in the block.
if (getCurFunction()->NeedsScopeChecking() &&
!hasAnyUnrecoverableErrorsInThisFunction())
DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
const VarDecl *variable = ci->getVariable();
QualType T = variable->getType();
QualType::DestructionKind destructKind = T.isDestructedType();
if (destructKind != QualType::DK_none)
getCurFunction()->setHasBranchProtectedScope();
}
BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
return Owned(Result);
}
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
Expr *expr, ParsedType type,
SourceLocation RPLoc) {
TypeSourceInfo *TInfo;
GetTypeFromParser(type, &TInfo);
return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
}
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
Expr *E, TypeSourceInfo *TInfo,
SourceLocation RPLoc) {
Expr *OrigExpr = E;
// Get the va_list type
QualType VaListType = Context.getBuiltinVaListType();
if (VaListType->isArrayType()) {
// Deal with implicit array decay; for example, on x86-64,
// va_list is an array, but it's supposed to decay to
// a pointer for va_arg.
VaListType = Context.getArrayDecayedType(VaListType);
// Make sure the input expression also decays appropriately.
ExprResult Result = UsualUnaryConversions(E);
if (Result.isInvalid())
return ExprError();
E = Result.take();
} else {
// Otherwise, the va_list argument must be an l-value because
// it is modified by va_arg.
if (!E->isTypeDependent() &&
CheckForModifiableLvalue(E, BuiltinLoc, *this))
return ExprError();
}
if (!E->isTypeDependent() &&
!Context.hasSameType(VaListType, E->getType())) {
return ExprError(Diag(E->getLocStart(),
diag::err_first_argument_to_va_arg_not_of_type_va_list)
<< OrigExpr->getType() << E->getSourceRange());
}
if (!TInfo->getType()->isDependentType()) {
if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
PDiag(diag::err_second_parameter_to_va_arg_incomplete)
<< TInfo->getTypeLoc().getSourceRange()))
return ExprError();
if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
TInfo->getType(),
PDiag(diag::err_second_parameter_to_va_arg_abstract)
<< TInfo->getTypeLoc().getSourceRange()))
return ExprError();
if (!TInfo->getType().isPODType(Context)) {
Diag(TInfo->getTypeLoc().getBeginLoc(),
TInfo->getType()->isObjCLifetimeType()
? diag::warn_second_parameter_to_va_arg_ownership_qualified
: diag::warn_second_parameter_to_va_arg_not_pod)
<< TInfo->getType()
<< TInfo->getTypeLoc().getSourceRange();
}
// Check for va_arg where arguments of the given type will be promoted
// (i.e. this va_arg is guaranteed to have undefined behavior).
QualType PromoteType;
if (TInfo->getType()->isPromotableIntegerType()) {
PromoteType = Context.getPromotedIntegerType(TInfo->getType());
if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
PromoteType = QualType();
}
if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
PromoteType = Context.DoubleTy;
if (!PromoteType.isNull())
Diag(TInfo->getTypeLoc().getBeginLoc(),
diag::warn_second_parameter_to_va_arg_never_compatible)
<< TInfo->getType()
<< PromoteType
<< TInfo->getTypeLoc().getSourceRange();
}
QualType T = TInfo->getType().getNonLValueExprType(Context);
return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
}
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
// The type of __null will be int or long, depending on the size of
// pointers on the target.
QualType Ty;
unsigned pw = Context.Target.getPointerWidth(0);
if (pw == Context.Target.getIntWidth())
Ty = Context.IntTy;
else if (pw == Context.Target.getLongWidth())
Ty = Context.LongTy;
else if (pw == Context.Target.getLongLongWidth())
Ty = Context.LongLongTy;
else {
assert(!"I don't know size of pointer!");
Ty = Context.IntTy;
}
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
}
static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
Expr *SrcExpr, FixItHint &Hint) {
if (!SemaRef.getLangOptions().ObjC1)
return;
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
if (!PT)
return;
// Check if the destination is of type 'id'.
if (!PT->isObjCIdType()) {
// Check if the destination is the 'NSString' interface.
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
if (!ID || !ID->getIdentifier()->isStr("NSString"))
return;
}
// Strip off any parens and casts.
StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
if (!SL || !SL->isAscii())
return;
Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
}
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, AssignmentAction Action,
bool *Complained) {
if (Complained)
*Complained = false;
// Decode the result (notice that AST's are still created for extensions).
bool CheckInferredResultType = false;
bool isInvalid = false;
unsigned DiagKind;
FixItHint Hint;
ConversionFixItGenerator ConvHints;
bool MayHaveConvFixit = false;
switch (ConvTy) {
default: assert(0 && "Unknown conversion type");
case Compatible: return false;
case PointerToInt:
DiagKind = diag::ext_typecheck_convert_pointer_int;
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
MayHaveConvFixit = true;
break;
case IntToPointer:
DiagKind = diag::ext_typecheck_convert_int_pointer;
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
MayHaveConvFixit = true;
break;
case IncompatiblePointer:
MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
CheckInferredResultType = DstType->isObjCObjectPointerType() &&
SrcType->isObjCObjectPointerType();
if (Hint.isNull() && !CheckInferredResultType) {
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
}
MayHaveConvFixit = true;
break;
case IncompatiblePointerSign:
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
break;
case FunctionVoidPointer:
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
break;
case IncompatiblePointerDiscardsQualifiers: {
// Perform array-to-pointer decay if necessary.
if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
Qualifiers rhq = DstType->getPointeeType().getQualifiers();
if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
DiagKind = diag::err_typecheck_incompatible_address_space;
break;
} else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
DiagKind = diag::err_typecheck_incompatible_ownership;
break;
}
llvm_unreachable("unknown error case for discarding qualifiers!");
// fallthrough
}
case CompatiblePointerDiscardsQualifiers:
// If the qualifiers lost were because we were applying the
// (deprecated) C++ conversion from a string literal to a char*
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
// Ideally, this check would be performed in
// checkPointerTypesForAssignment. However, that would require a
// bit of refactoring (so that the second argument is an
// expression, rather than a type), which should be done as part
// of a larger effort to fix checkPointerTypesForAssignment for
// C++ semantics.
if (getLangOptions().CPlusPlus &&
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
return false;
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
break;
case IncompatibleNestedPointerQualifiers:
DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
break;
case IntToBlockPointer:
DiagKind = diag::err_int_to_block_pointer;
break;
case IncompatibleBlockPointer:
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
break;
case IncompatibleObjCQualifiedId:
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
// it can give a more specific diagnostic.
DiagKind = diag::warn_incompatible_qualified_id;
break;
case IncompatibleVectors:
DiagKind = diag::warn_incompatible_vectors;
break;
case IncompatibleObjCWeakRef:
DiagKind = diag::err_arc_weak_unavailable_assign;
break;
case Incompatible:
DiagKind = diag::err_typecheck_convert_incompatible;
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
MayHaveConvFixit = true;
isInvalid = true;
break;
}
QualType FirstType, SecondType;
switch (Action) {
case AA_Assigning:
case AA_Initializing:
// The destination type comes first.
FirstType = DstType;
SecondType = SrcType;
break;
case AA_Returning:
case AA_Passing:
case AA_Converting:
case AA_Sending:
case AA_Casting:
// The source type comes first.
FirstType = SrcType;
SecondType = DstType;
break;
}
PartialDiagnostic FDiag = PDiag(DiagKind);
FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
// If we can fix the conversion, suggest the FixIts.
assert(ConvHints.isNull() || Hint.isNull());
if (!ConvHints.isNull()) {
for (llvm::SmallVector<FixItHint, 1>::iterator
HI = ConvHints.Hints.begin(), HE = ConvHints.Hints.end();
HI != HE; ++HI)
FDiag << *HI;
} else {
FDiag << Hint;
}
if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
Diag(Loc, FDiag);
if (CheckInferredResultType)
EmitRelatedResultTypeNote(SrcExpr);
if (Complained)
*Complained = true;
return isInvalid;
}
bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
llvm::APSInt ICEResult;
if (E->isIntegerConstantExpr(ICEResult, Context)) {
if (Result)
*Result = ICEResult;
return false;
}
Expr::EvalResult EvalResult;
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
EvalResult.HasSideEffects) {
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
if (EvalResult.Diag) {
// We only show the note if it's not the usual "invalid subexpression"
// or if it's actually in a subexpression.
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
Diag(EvalResult.DiagLoc, EvalResult.Diag);
}
return true;
}
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
E->getSourceRange();
if (EvalResult.Diag &&
Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
!= Diagnostic::Ignored)
Diag(EvalResult.DiagLoc, EvalResult.Diag);
if (Result)
*Result = EvalResult.Val.getInt();
return false;
}
void
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
ExprEvalContexts.push_back(
ExpressionEvaluationContextRecord(NewContext,
ExprTemporaries.size(),
ExprNeedsCleanups));
ExprNeedsCleanups = false;
}
void Sema::PopExpressionEvaluationContext() {
// Pop the current expression evaluation context off the stack.
ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
ExprEvalContexts.pop_back();
if (Rec.Context == PotentiallyPotentiallyEvaluated) {
if (Rec.PotentiallyReferenced) {
// Mark any remaining declarations in the current position of the stack
// as "referenced". If they were not meant to be referenced, semantic
// analysis would have eliminated them (e.g., in ActOnCXXTypeId).
for (PotentiallyReferencedDecls::iterator
I = Rec.PotentiallyReferenced->begin(),
IEnd = Rec.PotentiallyReferenced->end();
I != IEnd; ++I)
MarkDeclarationReferenced(I->first, I->second);
}
if (Rec.PotentiallyDiagnosed) {
// Emit any pending diagnostics.
for (PotentiallyEmittedDiagnostics::iterator
I = Rec.PotentiallyDiagnosed->begin(),
IEnd = Rec.PotentiallyDiagnosed->end();
I != IEnd; ++I)
Diag(I->first, I->second);
}
}
// When are coming out of an unevaluated context, clear out any
// temporaries that we may have created as part of the evaluation of
// the expression in that context: they aren't relevant because they
// will never be constructed.
if (Rec.Context == Unevaluated) {
ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
ExprTemporaries.end());
ExprNeedsCleanups = Rec.ParentNeedsCleanups;
// Otherwise, merge the contexts together.
} else {
ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
}
// Destroy the popped expression evaluation record.
Rec.Destroy();
}
void Sema::DiscardCleanupsInEvaluationContext() {
ExprTemporaries.erase(
ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
ExprTemporaries.end());
ExprNeedsCleanups = false;
}
/// \brief Note that the given declaration was referenced in the source code.
///
/// This routine should be invoke whenever a given declaration is referenced
/// in the source code, and where that reference occurred. If this declaration
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
/// C99 6.9p3), then the declaration will be marked as used.
///
/// \param Loc the location where the declaration was referenced.
///
/// \param D the declaration that has been referenced by the source code.
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
assert(D && "No declaration?");
D->setReferenced();
if (D->isUsed(false))
return;
// Mark a parameter or variable declaration "used", regardless of whether
// we're in a template or not. The reason for this is that unevaluated
// expressions (e.g. (void)sizeof()) constitute a use for warning purposes
// (-Wunused-variables and -Wunused-parameters)
if (isa<ParmVarDecl>(D) ||
(isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
D->setUsed();
return;
}
if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
return;
// Do not mark anything as "used" within a dependent context; wait for
// an instantiation.
if (CurContext->isDependentContext())
return;
switch (ExprEvalContexts.back().Context) {
case Unevaluated:
// We are in an expression that is not potentially evaluated; do nothing.
return;
case PotentiallyEvaluated:
// We are in a potentially-evaluated expression, so this declaration is
// "used"; handle this below.
break;
case PotentiallyPotentiallyEvaluated:
// We are in an expression that may be potentially evaluated; queue this
// declaration reference until we know whether the expression is
// potentially evaluated.
ExprEvalContexts.back().addReferencedDecl(Loc, D);
return;
case PotentiallyEvaluatedIfUsed:
// Referenced declarations will only be used if the construct in the
// containing expression is used.
return;
}
// Note that this declaration has been used.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
if (Constructor->isDefaulted() && Constructor->isDefaultConstructor()) {
if (Constructor->isTrivial())
return;
if (!Constructor->isUsed(false))
DefineImplicitDefaultConstructor(Loc, Constructor);
} else if (Constructor->isDefaulted() &&
Constructor->isCopyConstructor()) {
if (!Constructor->isUsed(false))
DefineImplicitCopyConstructor(Loc, Constructor);
}
MarkVTableUsed(Loc, Constructor->getParent());
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
if (Destructor->isDefaulted() && !Destructor->isUsed(false))
DefineImplicitDestructor(Loc, Destructor);
if (Destructor->isVirtual())
MarkVTableUsed(Loc, Destructor->getParent());
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
MethodDecl->getOverloadedOperator() == OO_Equal) {
if (!MethodDecl->isUsed(false))
DefineImplicitCopyAssignment(Loc, MethodDecl);
} else if (MethodDecl->isVirtual())
MarkVTableUsed(Loc, MethodDecl->getParent());
}
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
// Recursive functions should be marked when used from another function.
if (CurContext == Function) return;
// Implicit instantiation of function templates and member functions of
// class templates.
if (Function->isImplicitlyInstantiable()) {
bool AlreadyInstantiated = false;
if (FunctionTemplateSpecializationInfo *SpecInfo
= Function->getTemplateSpecializationInfo()) {
if (SpecInfo->getPointOfInstantiation().isInvalid())
SpecInfo->setPointOfInstantiation(Loc);
else if (SpecInfo->getTemplateSpecializationKind()
== TSK_ImplicitInstantiation)
AlreadyInstantiated = true;
} else if (MemberSpecializationInfo *MSInfo
= Function->getMemberSpecializationInfo()) {
if (MSInfo->getPointOfInstantiation().isInvalid())
MSInfo->setPointOfInstantiation(Loc);
else if (MSInfo->getTemplateSpecializationKind()
== TSK_ImplicitInstantiation)
AlreadyInstantiated = true;
}
if (!AlreadyInstantiated) {
if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
Loc));
else
PendingInstantiations.push_back(std::make_pair(Function, Loc));
}
} else {
// Walk redefinitions, as some of them may be instantiable.
for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
e(Function->redecls_end()); i != e; ++i) {
if (!i->isUsed(false) && i->isImplicitlyInstantiable())
MarkDeclarationReferenced(Loc, *i);
}
}
// Keep track of used but undefined functions.
if (!Function->isPure() && !Function->hasBody() &&
Function->getLinkage() != ExternalLinkage) {
SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
if (old.isInvalid()) old = Loc;
}
Function->setUsed(true);
return;
}
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
// Implicit instantiation of static data members of class templates.
if (Var->isStaticDataMember() &&
Var->getInstantiatedFromStaticDataMember()) {
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
assert(MSInfo && "Missing member specialization information?");
if (MSInfo->getPointOfInstantiation().isInvalid() &&
MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
MSInfo->setPointOfInstantiation(Loc);
// This is a modification of an existing AST node. Notify listeners.
if (ASTMutationListener *L = getASTMutationListener())
L->StaticDataMemberInstantiated(Var);
PendingInstantiations.push_back(std::make_pair(Var, Loc));
}
}
// Keep track of used but undefined variables. We make a hole in
// the warning for static const data members with in-line
// initializers.
if (Var->hasDefinition() == VarDecl::DeclarationOnly
&& Var->getLinkage() != ExternalLinkage
&& !(Var->isStaticDataMember() && Var->hasInit())) {
SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
if (old.isInvalid()) old = Loc;
}
D->setUsed(true);
return;
}
}
namespace {
// Mark all of the declarations referenced
// FIXME: Not fully implemented yet! We need to have a better understanding
// of when we're entering
class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
Sema &S;
SourceLocation Loc;
public:
typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
bool TraverseTemplateArgument(const TemplateArgument &Arg);
bool TraverseRecordType(RecordType *T);
};
}
bool MarkReferencedDecls::TraverseTemplateArgument(
const TemplateArgument &Arg) {
if (Arg.getKind() == TemplateArgument::Declaration) {
S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
}
return Inherited::TraverseTemplateArgument(Arg);
}
bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
const TemplateArgumentList &Args = Spec->getTemplateArgs();
return TraverseTemplateArguments(Args.data(), Args.size());
}
return true;
}
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
MarkReferencedDecls Marker(*this, Loc);
Marker.TraverseType(Context.getCanonicalType(T));
}
namespace {
/// \brief Helper class that marks all of the declarations referenced by
/// potentially-evaluated subexpressions as "referenced".
class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
Sema &S;
public:
typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
void VisitDeclRefExpr(DeclRefExpr *E) {
S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
}
void VisitMemberExpr(MemberExpr *E) {
S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
Inherited::VisitMemberExpr(E);
}
void VisitCXXNewExpr(CXXNewExpr *E) {
if (E->getConstructor())
S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
if (E->getOperatorNew())
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
if (E->getOperatorDelete())
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
Inherited::VisitCXXNewExpr(E);
}
void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
if (E->getOperatorDelete())
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
S.MarkDeclarationReferenced(E->getLocStart(),
S.LookupDestructor(Record));
}
Inherited::VisitCXXDeleteExpr(E);
}
void VisitCXXConstructExpr(CXXConstructExpr *E) {
S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
Inherited::VisitCXXConstructExpr(E);
}
void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
}
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
Visit(E->getExpr());
}
};
}
/// \brief Mark any declarations that appear within this expression or any
/// potentially-evaluated subexpressions as "referenced".
void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
EvaluatedExprMarker(*this).Visit(E);
}
/// \brief Emit a diagnostic that describes an effect on the run-time behavior
/// of the program being compiled.
///
/// This routine emits the given diagnostic when the code currently being
/// type-checked is "potentially evaluated", meaning that there is a
/// possibility that the code will actually be executable. Code in sizeof()
/// expressions, code used only during overload resolution, etc., are not
/// potentially evaluated. This routine will suppress such diagnostics or,
/// in the absolutely nutty case of potentially potentially evaluated
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
/// later.
///
/// This routine should be used for all diagnostics that describe the run-time
/// behavior of a program, such as passing a non-POD value through an ellipsis.
/// Failure to do so will likely result in spurious diagnostics or failures
/// during overload resolution or within sizeof/alignof/typeof/typeid.
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
const PartialDiagnostic &PD) {
switch (ExprEvalContexts.back().Context) {
case Unevaluated:
// The argument will never be evaluated, so don't complain.
break;
case PotentiallyEvaluated:
case PotentiallyEvaluatedIfUsed:
if (stmt && getCurFunctionOrMethodDecl()) {
FunctionScopes.back()->PossiblyUnreachableDiags.
push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
}
else
Diag(Loc, PD);
return true;
case PotentiallyPotentiallyEvaluated:
ExprEvalContexts.back().addDiagnostic(Loc, PD);
break;
}
return false;
}
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
CallExpr *CE, FunctionDecl *FD) {
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
return false;
PartialDiagnostic Note =
FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
<< FD->getDeclName() : PDiag();
SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
if (RequireCompleteType(Loc, ReturnType,
FD ?
PDiag(diag::err_call_function_incomplete_return)
<< CE->getSourceRange() << FD->getDeclName() :
PDiag(diag::err_call_incomplete_return)
<< CE->getSourceRange(),
std::make_pair(NoteLoc, Note)))
return true;
return false;
}
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
// will prevent this condition from triggering, which is what we want.
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
SourceLocation Loc;
unsigned diagnostic = diag::warn_condition_is_assignment;
bool IsOrAssign = false;
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
return;
IsOrAssign = Op->getOpcode() == BO_OrAssign;
// Greylist some idioms by putting them into a warning subcategory.
if (ObjCMessageExpr *ME
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
Selector Sel = ME->getSelector();
// self = [<foo> init...]
if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
diagnostic = diag::warn_condition_is_idiomatic_assignment;
// <foo> = [<bar> nextObject]
else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
diagnostic = diag::warn_condition_is_idiomatic_assignment;
}
Loc = Op->getOperatorLoc();
} else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
return;
IsOrAssign = Op->getOperator() == OO_PipeEqual;
Loc = Op->getOperatorLoc();
} else {
// Not an assignment.
return;
}
Diag(Loc, diagnostic) << E->getSourceRange();
SourceLocation Open = E->getSourceRange().getBegin();
SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
Diag(Loc, diag::note_condition_assign_silence)
<< FixItHint::CreateInsertion(Open, "(")
<< FixItHint::CreateInsertion(Close, ")");
if (IsOrAssign)
Diag(Loc, diag::note_condition_or_assign_to_comparison)
<< FixItHint::CreateReplacement(Loc, "!=");
else
Diag(Loc, diag::note_condition_assign_to_comparison)
<< FixItHint::CreateReplacement(Loc, "==");
}
/// \brief Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
// Don't warn if the parens came from a macro.
SourceLocation parenLoc = parenE->getLocStart();
if (parenLoc.isInvalid() || parenLoc.isMacroID())
return;
// Don't warn for dependent expressions.
if (parenE->isTypeDependent())
return;
Expr *E = parenE->IgnoreParens();
if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
if (opE->getOpcode() == BO_EQ &&
opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
== Expr::MLV_Valid) {
SourceLocation Loc = opE->getOperatorLoc();
Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
Diag(Loc, diag::note_equality_comparison_silence)
<< FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
<< FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
Diag(Loc, diag::note_equality_comparison_to_assign)
<< FixItHint::CreateReplacement(Loc, "=");
}
}
ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
DiagnoseAssignmentAsCondition(E);
if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
DiagnoseEqualityWithExtraParens(parenE);
ExprResult result = CheckPlaceholderExpr(E);
if (result.isInvalid()) return ExprError();
E = result.take();
if (!E->isTypeDependent()) {
if (getLangOptions().CPlusPlus)
return CheckCXXBooleanCondition(E); // C++ 6.4p4
ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
if (ERes.isInvalid())
return ExprError();
E = ERes.take();
QualType T = E->getType();
if (!T->isScalarType()) { // C99 6.8.4.1p1
Diag(Loc, diag::err_typecheck_statement_requires_scalar)
<< T << E->getSourceRange();
return ExprError();
}
}
return Owned(E);
}
ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
Expr *Sub) {
if (!Sub)
return ExprError();
return CheckBooleanCondition(Sub, Loc);
}
namespace {
/// A visitor for rebuilding a call to an __unknown_any expression
/// to have an appropriate type.
struct RebuildUnknownAnyFunction
: StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
Sema &S;
RebuildUnknownAnyFunction(Sema &S) : S(S) {}
ExprResult VisitStmt(Stmt *S) {
llvm_unreachable("unexpected statement!");
return ExprError();
}
ExprResult VisitExpr(Expr *expr) {
S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
<< expr->getSourceRange();
return ExprError();
}
/// Rebuild an expression which simply semantically wraps another
/// expression which it shares the type and value kind of.
template <class T> ExprResult rebuildSugarExpr(T *expr) {
ExprResult subResult = Visit(expr->getSubExpr());
if (subResult.isInvalid()) return ExprError();
Expr *subExpr = subResult.take();
expr->setSubExpr(subExpr);
expr->setType(subExpr->getType());
expr->setValueKind(subExpr->getValueKind());
assert(expr->getObjectKind() == OK_Ordinary);
return expr;
}
ExprResult VisitParenExpr(ParenExpr *paren) {
return rebuildSugarExpr(paren);
}
ExprResult VisitUnaryExtension(UnaryOperator *op) {
return rebuildSugarExpr(op);
}
ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
ExprResult subResult = Visit(op->getSubExpr());
if (subResult.isInvalid()) return ExprError();
Expr *subExpr = subResult.take();
op->setSubExpr(subExpr);
op->setType(S.Context.getPointerType(subExpr->getType()));
assert(op->getValueKind() == VK_RValue);
assert(op->getObjectKind() == OK_Ordinary);
return op;
}
ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
expr->setType(decl->getType());
assert(expr->getValueKind() == VK_RValue);
if (S.getLangOptions().CPlusPlus &&
!(isa<CXXMethodDecl>(decl) &&
cast<CXXMethodDecl>(decl)->isInstance()))
expr->setValueKind(VK_LValue);
return expr;
}
ExprResult VisitMemberExpr(MemberExpr *mem) {
return resolveDecl(mem, mem->getMemberDecl());
}
ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
return resolveDecl(ref, ref->getDecl());
}
};
}
/// Given a function expression of unknown-any type, try to rebuild it
/// to have a function type.
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
if (result.isInvalid()) return ExprError();
return S.DefaultFunctionArrayConversion(result.take());
}
namespace {
/// A visitor for rebuilding an expression of type __unknown_anytype
/// into one which resolves the type directly on the referring
/// expression. Strict preservation of the original source
/// structure is not a goal.
struct RebuildUnknownAnyExpr
: StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
Sema &S;
/// The current destination type.
QualType DestType;
RebuildUnknownAnyExpr(Sema &S, QualType castType)
: S(S), DestType(castType) {}
ExprResult VisitStmt(Stmt *S) {
llvm_unreachable("unexpected statement!");
return ExprError();
}
ExprResult VisitExpr(Expr *expr) {
S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
<< expr->getSourceRange();
return ExprError();
}
ExprResult VisitCallExpr(CallExpr *call);
ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
/// Rebuild an expression which simply semantically wraps another
/// expression which it shares the type and value kind of.
template <class T> ExprResult rebuildSugarExpr(T *expr) {
ExprResult subResult = Visit(expr->getSubExpr());
if (subResult.isInvalid()) return ExprError();
Expr *subExpr = subResult.take();
expr->setSubExpr(subExpr);
expr->setType(subExpr->getType());
expr->setValueKind(subExpr->getValueKind());
assert(expr->getObjectKind() == OK_Ordinary);
return expr;
}
ExprResult VisitParenExpr(ParenExpr *paren) {
return rebuildSugarExpr(paren);
}
ExprResult VisitUnaryExtension(UnaryOperator *op) {
return rebuildSugarExpr(op);
}
ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
const PointerType *ptr = DestType->getAs<PointerType>();
if (!ptr) {
S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
<< op->getSourceRange();
return ExprError();
}
assert(op->getValueKind() == VK_RValue);
assert(op->getObjectKind() == OK_Ordinary);
op->setType(DestType);
// Build the sub-expression as if it were an object of the pointee type.
DestType = ptr->getPointeeType();
ExprResult subResult = Visit(op->getSubExpr());
if (subResult.isInvalid()) return ExprError();
op->setSubExpr(subResult.take());
return op;
}
ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
ExprResult VisitMemberExpr(MemberExpr *mem) {
return resolveDecl(mem, mem->getMemberDecl());
}
ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
return resolveDecl(ref, ref->getDecl());
}
};
}
/// Rebuilds a call expression which yielded __unknown_anytype.
ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
Expr *callee = call->getCallee();
enum FnKind {
FK_MemberFunction,
FK_FunctionPointer,
FK_BlockPointer
};
FnKind kind;
QualType type = callee->getType();
if (type == S.Context.BoundMemberTy) {
assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
kind = FK_MemberFunction;
type = Expr::findBoundMemberType(callee);
} else if (const PointerType *ptr = type->getAs<PointerType>()) {
type = ptr->getPointeeType();
kind = FK_FunctionPointer;
} else {
type = type->castAs<BlockPointerType>()->getPointeeType();
kind = FK_BlockPointer;
}
const FunctionType *fnType = type->castAs<FunctionType>();
// Verify that this is a legal result type of a function.
if (DestType->isArrayType() || DestType->isFunctionType()) {
unsigned diagID = diag::err_func_returning_array_function;
if (kind == FK_BlockPointer)
diagID = diag::err_block_returning_array_function;
S.Diag(call->getExprLoc(), diagID)
<< DestType->isFunctionType() << DestType;
return ExprError();
}
// Otherwise, go ahead and set DestType as the call's result.
call->setType(DestType.getNonLValueExprType(S.Context));
call->setValueKind(Expr::getValueKindForType(DestType));
assert(call->getObjectKind() == OK_Ordinary);
// Rebuild the function type, replacing the result type with DestType.
if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
DestType = S.Context.getFunctionType(DestType,
proto->arg_type_begin(),
proto->getNumArgs(),
proto->getExtProtoInfo());
else
DestType = S.Context.getFunctionNoProtoType(DestType,
fnType->getExtInfo());
// Rebuild the appropriate pointer-to-function type.
switch (kind) {
case FK_MemberFunction:
// Nothing to do.
break;
case FK_FunctionPointer:
DestType = S.Context.getPointerType(DestType);
break;
case FK_BlockPointer:
DestType = S.Context.getBlockPointerType(DestType);
break;
}
// Finally, we can recurse.
ExprResult calleeResult = Visit(callee);
if (!calleeResult.isUsable()) return ExprError();
call->setCallee(calleeResult.take());
// Bind a temporary if necessary.
return S.MaybeBindToTemporary(call);
}
ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
// Verify that this is a legal result type of a call.
if (DestType->isArrayType() || DestType->isFunctionType()) {
S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
<< DestType->isFunctionType() << DestType;
return ExprError();
}
// Rewrite the method result type if available.
if (ObjCMethodDecl *method = msg->getMethodDecl()) {
assert(method->getResultType() == S.Context.UnknownAnyTy);
method->setResultType(DestType);
}
// Change the type of the message.
msg->setType(DestType.getNonReferenceType());
msg->setValueKind(Expr::getValueKindForType(DestType));
return S.MaybeBindToTemporary(msg);
}
ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
// The only case we should ever see here is a function-to-pointer decay.
assert(ice->getCastKind() == CK_FunctionToPointerDecay);
assert(ice->getValueKind() == VK_RValue);
assert(ice->getObjectKind() == OK_Ordinary);
ice->setType(DestType);
// Rebuild the sub-expression as the pointee (function) type.
DestType = DestType->castAs<PointerType>()->getPointeeType();
ExprResult result = Visit(ice->getSubExpr());
if (!result.isUsable()) return ExprError();
ice->setSubExpr(result.take());
return S.Owned(ice);
}
ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
ExprValueKind valueKind = VK_LValue;
QualType type = DestType;
// We know how to make this work for certain kinds of decls:
// - functions
if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
DestType = ptr->getPointeeType();
ExprResult result = resolveDecl(expr, decl);
if (result.isInvalid()) return ExprError();
return S.ImpCastExprToType(result.take(), type,
CK_FunctionToPointerDecay, VK_RValue);
}
if (!type->isFunctionType()) {
S.Diag(expr->getExprLoc(), diag::err_unknown_any_function)
<< decl << expr->getSourceRange();
return ExprError();
}
if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
if (method->isInstance()) {
valueKind = VK_RValue;
type = S.Context.BoundMemberTy;
}
// Function references aren't l-values in C.
if (!S.getLangOptions().CPlusPlus)
valueKind = VK_RValue;
// - variables
} else if (isa<VarDecl>(decl)) {
if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
type = refTy->getPointeeType();
} else if (type->isFunctionType()) {
S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
<< decl << expr->getSourceRange();
return ExprError();
}
// - nothing else
} else {
S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
<< decl << expr->getSourceRange();
return ExprError();
}
decl->setType(DestType);
expr->setType(type);
expr->setValueKind(valueKind);
return S.Owned(expr);
}
/// Check a cast of an unknown-any type. We intentionally only
/// trigger this for C-style casts.
ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
Expr *castExpr, CastKind &castKind,
ExprValueKind &VK, CXXCastPath &path) {
// Rewrite the casted expression from scratch.
ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
if (!result.isUsable()) return ExprError();
castExpr = result.take();
VK = castExpr->getValueKind();
castKind = CK_NoOp;
return castExpr;
}
static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
Expr *orig = e;
unsigned diagID = diag::err_uncasted_use_of_unknown_any;
while (true) {
e = e->IgnoreParenImpCasts();
if (CallExpr *call = dyn_cast<CallExpr>(e)) {
e = call->getCallee();
diagID = diag::err_uncasted_call_of_unknown_any;
} else {
break;
}
}
SourceLocation loc;
NamedDecl *d;
if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
loc = ref->getLocation();
d = ref->getDecl();
} else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
loc = mem->getMemberLoc();
d = mem->getMemberDecl();
} else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
diagID = diag::err_uncasted_call_of_unknown_any;
loc = msg->getSelectorLoc();
d = msg->getMethodDecl();
assert(d && "unknown method returning __unknown_any?");
} else {
S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
<< e->getSourceRange();
return ExprError();
}
S.Diag(loc, diagID) << d << orig->getSourceRange();
// Never recoverable.
return ExprError();
}
/// Check for operands with placeholder types and complain if found.
/// Returns true if there was an error and no recovery was possible.
ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
// Placeholder types are always *exactly* the appropriate builtin type.
QualType type = E->getType();
// Overloaded expressions.
if (type == Context.OverloadTy)
return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
E->getSourceRange(),
QualType(),
diag::err_ovl_unresolvable);
// Bound member functions.
if (type == Context.BoundMemberTy) {
Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
<< E->getSourceRange();
return ExprError();
}
// Expressions of unknown type.
if (type == Context.UnknownAnyTy)
return diagnoseUnknownAnyExpr(*this, E);
assert(!type->isPlaceholderType());
return Owned(E);
}
bool Sema::CheckCaseExpression(Expr *expr) {
if (expr->isTypeDependent())
return true;
if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
return expr->getType()->isIntegralOrEnumerationType();
return false;
}