llvm-project/polly/lib/Transform/ScheduleOptimizer.cpp

957 lines
35 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirely new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI 08, pages 101113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
// - Tiling of the innermost tilable bands
// - Prevectorization - The choice of a possible outer loop that is strip-mined
// to the innermost level to enable inner-loop
// vectorization.
// - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/ManualOptimizer.h"
#include "polly/MatmulOptimizer.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/Support/ISLOStream.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "isl/options.h"
using namespace llvm;
using namespace polly;
namespace llvm {
class Loop;
class Module;
} // namespace llvm
#define DEBUG_TYPE "polly-opt-isl"
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> FusionStrategy(
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> OuterCoincidence(
"polly-opt-outer-coincidence",
cl::desc("Try to construct schedules where the outer member of each band "
"satisfies the coincidence constraints (yes/no)"),
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PrevectorWidth(
"polly-prevect-width",
cl::desc(
"The number of loop iterations to strip-mine for pre-vectorization"),
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> FirstLevelTiling("polly-tiling",
cl::desc("Enable loop tiling"),
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> FirstLevelDefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
FirstLevelTileSizes("polly-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
SecondLevelTiling("polly-2nd-level-tiling",
cl::desc("Enable a 2nd level loop of loop tiling"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondLevelDefaultTileSize(
"polly-2nd-level-default-tile-size",
cl::desc("The default 2nd-level tile size (if not enough were provided by"
" --polly-2nd-level-tile-sizes)"),
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> RegisterTiling("polly-register-tiling",
cl::desc("Enable register tiling"),
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> RegisterDefaultTileSize(
"polly-register-tiling-default-tile-size",
cl::desc("The default register tile size (if not enough were provided by"
" --polly-register-tile-sizes)"),
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
RegisterTileSizes("polly-register-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-register-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> PragmaBasedOpts(
"polly-pragma-based-opts",
cl::desc("Apply user-directed transformation from metadata"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedOpts("polly-pattern-matching-based-opts",
cl::desc("Perform optimizations based on pattern matching"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> OptimizedScops(
"polly-optimized-scops",
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
"the isl scheduling optimizer and the set of post-scheduling "
"transformations is applied on the schedule tree"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
STATISTIC(ScopsProcessed, "Number of scops processed");
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
STATISTIC(ScopsOptimized, "Number of scops optimized");
STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
#define THREE_STATISTICS(VARNAME, DESC) \
static Statistic VARNAME[3] = { \
{DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
{DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
{DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
THREE_STATISTICS(NumBands, "Number of bands");
THREE_STATISTICS(NumBandMembers, "Number of band members");
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
THREE_STATISTICS(NumFilters, "Number of filter nodes");
THREE_STATISTICS(NumExtension, "Number of extension nodes");
STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
STATISTIC(MatMulOpts,
"Number of matrix multiplication patterns detected and optimized");
namespace {
/// Additional parameters of the schedule optimizer.
///
/// Target Transform Info and the SCoP dependencies used by the schedule
/// optimizer.
struct OptimizerAdditionalInfoTy {
const llvm::TargetTransformInfo *TTI;
const Dependences *D;
};
class ScheduleTreeOptimizer {
public:
/// Apply schedule tree transformations.
///
/// This function takes an (possibly already optimized) schedule tree and
/// applies a set of additional optimizations on the schedule tree. The
/// transformations applied include:
///
/// - Tiling
/// - Prevectorization
///
/// @param Schedule The schedule object the transformations will be applied
/// to.
/// @param OAI Target Transform Info and the SCoP dependencies.
/// @returns The transformed schedule.
static isl::schedule
optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI = nullptr);
/// Apply schedule tree transformations.
///
/// This function takes a node in an (possibly already optimized) schedule
/// tree and applies a set of additional optimizations on this schedule tree
/// node and its descendants. The transformations applied include:
///
/// - Tiling
/// - Prevectorization
///
/// @param Node The schedule object post-transformations will be applied to.
/// @param OAI Target Transform Info and the SCoP dependencies.
/// @returns The transformed schedule.
static isl::schedule_node
optimizeScheduleNode(isl::schedule_node Node,
const OptimizerAdditionalInfoTy *OAI = nullptr);
/// Decide if the @p NewSchedule is profitable for @p S.
///
/// @param S The SCoP we optimize.
/// @param NewSchedule The new schedule we computed.
///
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule);
/// Isolate a set of partial tile prefixes.
///
/// This set should ensure that it contains only partial tile prefixes that
/// have exactly VectorWidth iterations.
///
/// @param Node A schedule node band, which is a parent of a band node,
/// that contains a vector loop.
/// @return Modified isl_schedule_node.
static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth);
private:
/// Check if this node is a band node we want to tile.
///
/// We look for innermost band nodes where individual dimensions are marked as
/// permutable.
///
/// @param Node The node to check.
static bool isTileableBandNode(isl::schedule_node Node);
/// Pre-vectorizes one scheduling dimension of a schedule band.
///
/// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
/// sinks the resulting point loop.
///
/// Example (DimToVectorize=0, VectorWidth=4):
///
/// | Before transformation:
/// |
/// | A[i,j] -> [i,j]
/// |
/// | for (i = 0; i < 128; i++)
/// | for (j = 0; j < 128; j++)
/// | A(i,j);
///
/// | After transformation:
/// |
/// | for (it = 0; it < 32; it+=1)
/// | for (j = 0; j < 128; j++)
/// | for (ip = 0; ip <= 3; ip++)
/// | A(4 * it + ip,j);
///
/// The goal of this transformation is to create a trivially vectorizable
/// loop. This means a parallel loop at the innermost level that has a
/// constant number of iterations corresponding to the target vector width.
///
/// This transformation creates a loop at the innermost level. The loop has
/// a constant number of iterations, if the number of loop iterations at
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
/// currently constant and not yet target specific. This function does not
/// reason about parallelism.
static isl::schedule_node prevectSchedBand(isl::schedule_node Node,
unsigned DimToVectorize,
int VectorWidth);
/// Apply additional optimizations on the bands in the schedule tree.
///
/// We are looking for an innermost band node and apply the following
/// transformations:
///
/// - Tile the band
/// - if the band is tileable
/// - if the band has more than one loop dimension
///
/// - Prevectorize the schedule of the band (or the point loop in case of
/// tiling).
/// - if vectorization is enabled
///
/// @param Node The schedule node to (possibly) optimize.
/// @param User A pointer to forward some use information
/// (currently unused).
static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
/// Apply additional optimizations on the bands in the schedule tree.
///
/// We apply the following
/// transformations:
///
/// - Tile the band
/// - Prevectorize the schedule of the band (or the point loop in case of
/// tiling).
/// - if vectorization is enabled
///
/// @param Node The schedule node to (possibly) optimize.
/// @param User A pointer to forward some use information
/// (currently unused).
static isl::schedule_node standardBandOpts(isl::schedule_node Node,
void *User);
};
isl::schedule_node
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
Node = Node.child(0).child(0);
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
isl::union_set ScheduleRangeUSet = SchedRelUMap.range();
isl::set ScheduleRange{ScheduleRangeUSet};
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
Node = Node.parent().parent();
isl::union_set Options = IsolateOption.unite(AtomicOption);
Node = Node.band_set_ast_build_options(Options);
return Node;
}
isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
isl_size ScheduleDimensions = Space.dim(isl::dim::set);
assert((isl_size)DimToVectorize < ScheduleDimensions);
if (DimToVectorize > 0) {
Node = isl::manage(
isl_schedule_node_band_split(Node.release(), DimToVectorize));
Node = Node.child(0);
}
if ((isl_size)DimToVectorize < ScheduleDimensions - 1)
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Sizes = isl::multi_val::zero(Space);
Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
Node =
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
Node = isolateFullPartialTiles(Node, VectorWidth);
Node = Node.child(0);
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
// we will have troubles to match it in the backend.
Node = Node.band_set_ast_build_options(
isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
Node = Node.child(0);
if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
Node = Node.parent();
auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
PrevectOpts++;
return Node.insert_mark(LoopMarker);
}
static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
assert(isl_schedule_node_n_children(Node.get()) == 1);
auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
if (ChildType == isl_schedule_node_leaf)
return true;
if (ChildType != isl_schedule_node_sequence)
return false;
auto Sequence = Node.child(0);
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
++c) {
auto Child = Sequence.child(c);
if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
return false;
if (isl_schedule_node_get_type(Child.child(0).get()) !=
isl_schedule_node_leaf)
return false;
}
return true;
}
bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
return false;
if (isl_schedule_node_n_children(Node.get()) != 1)
return false;
if (!isl_schedule_node_band_get_permutable(Node.get()))
return false;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
if (Dims <= 1)
return false;
return isSimpleInnermostBand(Node);
}
__isl_give isl::schedule_node
ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
if (FirstLevelTiling) {
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
FirstLevelDefaultTileSize);
FirstLevelTileOpts++;
}
if (SecondLevelTiling) {
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
SecondLevelDefaultTileSize);
SecondLevelTileOpts++;
}
if (RegisterTiling) {
Node =
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
RegisterTileOpts++;
}
if (PollyVectorizerChoice == VECTORIZER_NONE)
return Node;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
for (int i = Dims - 1; i >= 0; i--)
if (Node.band_member_get_coincident(i)) {
Node = prevectSchedBand(Node, i, PrevectorWidth);
break;
}
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
void *User) {
if (!isTileableBandNode(isl::manage_copy(Node)))
return Node;
const OptimizerAdditionalInfoTy *OAI =
static_cast<const OptimizerAdditionalInfoTy *>(User);
if (PMBasedOpts && User) {
isl::schedule_node PatternOptimizedSchedule =
tryOptimizeMatMulPattern(isl::manage_copy(Node), OAI->TTI, OAI->D);
if (!PatternOptimizedSchedule.is_null()) {
MatMulOpts++;
isl_schedule_node_free(Node);
return PatternOptimizedSchedule.release();
}
}
return standardBandOpts(isl::manage(Node), User).release();
}
isl::schedule
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI) {
auto Root = Schedule.get_root();
Root = optimizeScheduleNode(Root, OAI);
return Root.get_schedule();
}
isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
Node.release(), optimizeBand,
const_cast<void *>(static_cast<const void *>(OAI))));
return Node;
}
bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
isl::schedule NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
auto NewScheduleMap = NewSchedule.get_map();
auto OldSchedule = S.getSchedule();
assert(!OldSchedule.is_null() &&
"Only IslScheduleOptimizer can insert extension nodes "
"that make Scop::getSchedule() return nullptr.");
bool changed = !OldSchedule.is_equal(NewScheduleMap);
return changed;
}
class IslScheduleOptimizerWrapperPass : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizerWrapperPass() : ScopPass(ID) {}
/// Optimize the schedule of the SCoP @p S.
bool runOnScop(Scop &S) override;
/// Print the new schedule for the SCoP @p S.
void printScop(raw_ostream &OS, Scop &S) const override;
/// Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Release the internal memory.
void releaseMemory() override {
LastSchedule = {};
IslCtx.reset();
}
private:
std::shared_ptr<isl_ctx> IslCtx;
isl::schedule LastSchedule;
};
char IslScheduleOptimizerWrapperPass::ID = 0;
#ifndef NDEBUG
static void printSchedule(llvm::raw_ostream &OS, const isl::schedule &Schedule,
StringRef Desc) {
isl::ctx Ctx = Schedule.get_ctx();
isl_printer *P = isl_printer_to_str(Ctx.get());
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule.get());
char *Str = isl_printer_get_str(P);
OS << Desc << ": \n" << Str << "\n";
free(Str);
isl_printer_free(P);
}
#endif
/// Collect statistics for the schedule tree.
///
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
/// ignored.
/// @param Version The version of the schedule tree that is analyzed.
/// 0 for the original schedule tree before any transformation.
/// 1 for the schedule tree after isl's rescheduling.
/// 2 for the schedule tree after optimizations are applied
/// (tiling, pattern matching)
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
auto Root = Schedule.get_root();
if (Root.is_null())
return;
isl_schedule_node_foreach_descendant_top_down(
Root.get(),
[](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
isl::schedule_node Node = isl::manage_copy(nodeptr);
int Version = *static_cast<int *>(user);
switch (isl_schedule_node_get_type(Node.get())) {
case isl_schedule_node_band: {
NumBands[Version]++;
if (isl_schedule_node_band_get_permutable(Node.get()) ==
isl_bool_true)
NumPermutable[Version]++;
int CountMembers = isl_schedule_node_band_n_member(Node.get());
NumBandMembers[Version] += CountMembers;
for (int i = 0; i < CountMembers; i += 1) {
if (Node.band_member_get_coincident(i))
NumCoincident[Version]++;
}
break;
}
case isl_schedule_node_filter:
NumFilters[Version]++;
break;
case isl_schedule_node_extension:
NumExtension[Version]++;
break;
default:
break;
}
return isl_bool_true;
},
&Version);
}
static bool runIslScheduleOptimizer(
Scop &S,
function_ref<const Dependences &(Dependences::AnalysisLevel)> GetDeps,
TargetTransformInfo *TTI, isl::schedule &LastSchedule) {
// Skip SCoPs in case they're already optimised by PPCGCodeGeneration
if (S.isToBeSkipped())
return false;
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return false;
}
ScopsProcessed++;
// Schedule without optimizations.
isl::schedule Schedule = S.getScheduleTree();
walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "Original schedule tree"));
bool HasUserTransformation = false;
if (PragmaBasedOpts) {
isl::schedule ManuallyTransformed =
applyManualTransformations(&S, Schedule);
if (ManuallyTransformed.is_null()) {
LLVM_DEBUG(dbgs() << "Error during manual optimization\n");
return false;
}
if (ManuallyTransformed.get() != Schedule.get()) {
// User transformations have precedence over other transformations.
HasUserTransformation = true;
Schedule = std::move(ManuallyTransformed);
LLVM_DEBUG(
printSchedule(dbgs(), Schedule, "After manual transformations"));
}
}
// Only continue if either manual transformations have been applied or we are
// allowed to apply heuristics.
// TODO: Detect disabled heuristics and no user-directed transformation
// metadata earlier in ScopDetection.
if (!HasUserTransformation && S.hasDisableHeuristicsHint()) {
LLVM_DEBUG(dbgs() << "Heuristic optimizations disabled by metadata\n");
return false;
}
// Get dependency analysis.
const Dependences &D = GetDeps(Dependences::AL_Statement);
if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
return false;
}
if (!D.hasValidDependences()) {
LLVM_DEBUG(dbgs() << "Dependency information not available\n");
return false;
}
// Apply ISL's algorithm only if not overriden by the user. Note that
// post-rescheduling optimizations (tiling, pattern-based, prevectorization)
// rely on the coincidence/permutable annotations on schedule tree bands that
// are added by the rescheduling analyzer. Therefore, disabling the
// rescheduler implicitly also disables these optimizations.
if (HasUserTransformation) {
LLVM_DEBUG(
dbgs() << "Skipping rescheduling due to manual transformation\n");
} else {
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl::union_set Domain = S.getDomains();
if (Domain.is_null())
return false;
isl::union_map Validity = D.getDependences(ValidityKinds);
isl::union_map Proximity = D.getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = Validity.gist_domain(Domain);
Validity = Validity.gist_range(Domain);
Proximity = Proximity.gist_domain(Domain);
Proximity = Proximity.gist_range(Domain);
} else if (SimplifyDeps != "no") {
errs()
<< "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
unsigned IslSerializeSCCs;
if (FusionStrategy == "max") {
IslSerializeSCCs = 0;
} else if (FusionStrategy == "min") {
IslSerializeSCCs = 1;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslSerializeSCCs = 0;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs()
<< "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
int IslOuterCoincidence;
if (OuterCoincidence == "yes") {
IslOuterCoincidence = 1;
} else if (OuterCoincidence == "no") {
IslOuterCoincidence = 0;
} else {
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
"'yes' or 'no'. Falling back to default: 'no'\n";
IslOuterCoincidence = 0;
}
isl_ctx *Ctx = S.getIslCtx().get();
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
isl_options_set_tile_scale_tile_loops(Ctx, 0);
auto OnErrorStatus = isl_options_get_on_error(Ctx);
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
auto SC = isl::schedule_constraints::on_domain(Domain);
SC = SC.set_proximity(Proximity);
SC = SC.set_validity(Validity);
SC = SC.set_coincidence(Validity);
Schedule = SC.compute_schedule();
isl_options_set_on_error(Ctx, OnErrorStatus);
ScopsRescheduled++;
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After rescheduling"));
}
walkScheduleTreeForStatistics(Schedule, 1);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (Schedule.is_null())
return false;
// Apply post-rescheduling optimizations.
const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
Schedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
Schedule = hoistExtensionNodes(Schedule);
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After post-optimizations"));
walkScheduleTreeForStatistics(Schedule, 2);
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, Schedule))
return false;
auto ScopStats = S.getStatistics();
ScopsOptimized++;
NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
LastSchedule = Schedule;
S.setScheduleTree(Schedule);
S.markAsOptimized();
if (OptimizedScops)
errs() << S;
return false;
}
bool IslScheduleOptimizerWrapperPass::runOnScop(Scop &S) {
releaseMemory();
Function &F = S.getFunction();
IslCtx = S.getSharedIslCtx();
auto getDependences =
[this](Dependences::AnalysisLevel) -> const Dependences & {
return getAnalysis<DependenceInfo>().getDependences(
Dependences::AL_Statement);
};
// auto &Deps = getAnalysis<DependenceInfo>();
TargetTransformInfo *TTI =
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
return runIslScheduleOptimizer(S, getDependences, TTI, LastSchedule);
}
static void runScheduleOptimizerPrinter(raw_ostream &OS,
isl::schedule LastSchedule) {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (LastSchedule.is_null()) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(LastSchedule.get_ctx().get());
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
p = isl_printer_print_schedule(p, LastSchedule.get());
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
free(ScheduleStr);
}
void IslScheduleOptimizerWrapperPass::printScop(raw_ostream &OS, Scop &) const {
runScheduleOptimizerPrinter(OS, LastSchedule);
}
void IslScheduleOptimizerWrapperPass::getAnalysisUsage(
AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<DependenceInfo>();
}
} // namespace
Pass *polly::createIslScheduleOptimizerWrapperPass() {
return new IslScheduleOptimizerWrapperPass();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)
static llvm::PreservedAnalyses
runIslScheduleOptimizerUsingNPM(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR, SPMUpdater &U,
raw_ostream *OS) {
DependenceAnalysis::Result &Deps = SAM.getResult<DependenceAnalysis>(S, SAR);
auto GetDeps = [&Deps](Dependences::AnalysisLevel) -> const Dependences & {
return Deps.getDependences(Dependences::AL_Statement);
};
TargetTransformInfo *TTI = &SAR.TTI;
isl::schedule LastSchedule;
bool Modified = runIslScheduleOptimizer(S, GetDeps, TTI, LastSchedule);
if (OS) {
*OS << "Printing analysis 'Polly - Optimize schedule of SCoP' for region: '"
<< S.getName() << "' in function '" << S.getFunction().getName()
<< "':\n";
runScheduleOptimizerPrinter(*OS, LastSchedule);
}
if (!Modified)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<AllAnalysesOn<Module>>();
PA.preserveSet<AllAnalysesOn<Function>>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}
llvm::PreservedAnalyses
IslScheduleOptimizerPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, nullptr);
}
llvm::PreservedAnalyses
IslScheduleOptimizerPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR,
SPMUpdater &U) {
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, &OS);
}