forked from OSchip/llvm-project
957 lines
35 KiB
C++
957 lines
35 KiB
C++
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This pass generates an entirely new schedule tree from the data dependences
|
||
// and iteration domains. The new schedule tree is computed in two steps:
|
||
//
|
||
// 1) The isl scheduling optimizer is run
|
||
//
|
||
// The isl scheduling optimizer creates a new schedule tree that maximizes
|
||
// parallelism and tileability and minimizes data-dependence distances. The
|
||
// algorithm used is a modified version of the ``Pluto'' algorithm:
|
||
//
|
||
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
|
||
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
|
||
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
|
||
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
|
||
//
|
||
// 2) A set of post-scheduling transformations is applied on the schedule tree.
|
||
//
|
||
// These optimizations include:
|
||
//
|
||
// - Tiling of the innermost tilable bands
|
||
// - Prevectorization - The choice of a possible outer loop that is strip-mined
|
||
// to the innermost level to enable inner-loop
|
||
// vectorization.
|
||
// - Some optimizations for spatial locality are also planned.
|
||
//
|
||
// For a detailed description of the schedule tree itself please see section 6
|
||
// of:
|
||
//
|
||
// Polyhedral AST generation is more than scanning polyhedra
|
||
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
|
||
// ACM Transactions on Programming Languages and Systems (TOPLAS),
|
||
// 37(4), July 2015
|
||
// http://www.grosser.es/#pub-polyhedral-AST-generation
|
||
//
|
||
// This publication also contains a detailed discussion of the different options
|
||
// for polyhedral loop unrolling, full/partial tile separation and other uses
|
||
// of the schedule tree.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "polly/ScheduleOptimizer.h"
|
||
#include "polly/CodeGen/CodeGeneration.h"
|
||
#include "polly/DependenceInfo.h"
|
||
#include "polly/ManualOptimizer.h"
|
||
#include "polly/MatmulOptimizer.h"
|
||
#include "polly/Options.h"
|
||
#include "polly/ScheduleTreeTransform.h"
|
||
#include "polly/Support/ISLOStream.h"
|
||
#include "llvm/ADT/Sequence.h"
|
||
#include "llvm/ADT/Statistic.h"
|
||
#include "llvm/InitializePasses.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "isl/options.h"
|
||
|
||
using namespace llvm;
|
||
using namespace polly;
|
||
|
||
namespace llvm {
|
||
class Loop;
|
||
class Module;
|
||
} // namespace llvm
|
||
|
||
#define DEBUG_TYPE "polly-opt-isl"
|
||
|
||
static cl::opt<std::string>
|
||
OptimizeDeps("polly-opt-optimize-only",
|
||
cl::desc("Only a certain kind of dependences (all/raw)"),
|
||
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
SimplifyDeps("polly-opt-simplify-deps",
|
||
cl::desc("Dependences should be simplified (yes/no)"),
|
||
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxConstantTerm(
|
||
"polly-opt-max-constant-term",
|
||
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxCoefficient(
|
||
"polly-opt-max-coefficient",
|
||
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> FusionStrategy(
|
||
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
|
||
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
MaximizeBandDepth("polly-opt-maximize-bands",
|
||
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
|
||
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> OuterCoincidence(
|
||
"polly-opt-outer-coincidence",
|
||
cl::desc("Try to construct schedules where the outer member of each band "
|
||
"satisfies the coincidence constraints (yes/no)"),
|
||
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> PrevectorWidth(
|
||
"polly-prevect-width",
|
||
cl::desc(
|
||
"The number of loop iterations to strip-mine for pre-vectorization"),
|
||
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> FirstLevelTiling("polly-tiling",
|
||
cl::desc("Enable loop tiling"),
|
||
cl::init(true), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstLevelDefaultTileSize(
|
||
"polly-default-tile-size",
|
||
cl::desc("The default tile size (if not enough were provided by"
|
||
" --polly-tile-sizes)"),
|
||
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
FirstLevelTileSizes("polly-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
SecondLevelTiling("polly-2nd-level-tiling",
|
||
cl::desc("Enable a 2nd level loop of loop tiling"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondLevelDefaultTileSize(
|
||
"polly-2nd-level-default-tile-size",
|
||
cl::desc("The default 2nd-level tile size (if not enough were provided by"
|
||
" --polly-2nd-level-tile-sizes)"),
|
||
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> RegisterTiling("polly-register-tiling",
|
||
cl::desc("Enable register tiling"),
|
||
cl::init(false), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> RegisterDefaultTileSize(
|
||
"polly-register-tiling-default-tile-size",
|
||
cl::desc("The default register tile size (if not enough were provided by"
|
||
" --polly-register-tile-sizes)"),
|
||
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
RegisterTileSizes("polly-register-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-register-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> PragmaBasedOpts(
|
||
"polly-pragma-based-opts",
|
||
cl::desc("Apply user-directed transformation from metadata"),
|
||
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
PMBasedOpts("polly-pattern-matching-based-opts",
|
||
cl::desc("Perform optimizations based on pattern matching"),
|
||
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> OptimizedScops(
|
||
"polly-optimized-scops",
|
||
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
|
||
"the isl scheduling optimizer and the set of post-scheduling "
|
||
"transformations is applied on the schedule tree"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
STATISTIC(ScopsProcessed, "Number of scops processed");
|
||
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
|
||
STATISTIC(ScopsOptimized, "Number of scops optimized");
|
||
|
||
STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
|
||
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
|
||
|
||
#define THREE_STATISTICS(VARNAME, DESC) \
|
||
static Statistic VARNAME[3] = { \
|
||
{DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
|
||
{DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
|
||
{DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
|
||
|
||
THREE_STATISTICS(NumBands, "Number of bands");
|
||
THREE_STATISTICS(NumBandMembers, "Number of band members");
|
||
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
|
||
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
|
||
THREE_STATISTICS(NumFilters, "Number of filter nodes");
|
||
THREE_STATISTICS(NumExtension, "Number of extension nodes");
|
||
|
||
STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
|
||
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
|
||
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
|
||
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
|
||
STATISTIC(MatMulOpts,
|
||
"Number of matrix multiplication patterns detected and optimized");
|
||
|
||
namespace {
|
||
/// Additional parameters of the schedule optimizer.
|
||
///
|
||
/// Target Transform Info and the SCoP dependencies used by the schedule
|
||
/// optimizer.
|
||
struct OptimizerAdditionalInfoTy {
|
||
const llvm::TargetTransformInfo *TTI;
|
||
const Dependences *D;
|
||
};
|
||
|
||
class ScheduleTreeOptimizer {
|
||
public:
|
||
/// Apply schedule tree transformations.
|
||
///
|
||
/// This function takes an (possibly already optimized) schedule tree and
|
||
/// applies a set of additional optimizations on the schedule tree. The
|
||
/// transformations applied include:
|
||
///
|
||
/// - Tiling
|
||
/// - Prevectorization
|
||
///
|
||
/// @param Schedule The schedule object the transformations will be applied
|
||
/// to.
|
||
/// @param OAI Target Transform Info and the SCoP dependencies.
|
||
/// @returns The transformed schedule.
|
||
static isl::schedule
|
||
optimizeSchedule(isl::schedule Schedule,
|
||
const OptimizerAdditionalInfoTy *OAI = nullptr);
|
||
|
||
/// Apply schedule tree transformations.
|
||
///
|
||
/// This function takes a node in an (possibly already optimized) schedule
|
||
/// tree and applies a set of additional optimizations on this schedule tree
|
||
/// node and its descendants. The transformations applied include:
|
||
///
|
||
/// - Tiling
|
||
/// - Prevectorization
|
||
///
|
||
/// @param Node The schedule object post-transformations will be applied to.
|
||
/// @param OAI Target Transform Info and the SCoP dependencies.
|
||
/// @returns The transformed schedule.
|
||
static isl::schedule_node
|
||
optimizeScheduleNode(isl::schedule_node Node,
|
||
const OptimizerAdditionalInfoTy *OAI = nullptr);
|
||
|
||
/// Decide if the @p NewSchedule is profitable for @p S.
|
||
///
|
||
/// @param S The SCoP we optimize.
|
||
/// @param NewSchedule The new schedule we computed.
|
||
///
|
||
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
|
||
static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule);
|
||
|
||
/// Isolate a set of partial tile prefixes.
|
||
///
|
||
/// This set should ensure that it contains only partial tile prefixes that
|
||
/// have exactly VectorWidth iterations.
|
||
///
|
||
/// @param Node A schedule node band, which is a parent of a band node,
|
||
/// that contains a vector loop.
|
||
/// @return Modified isl_schedule_node.
|
||
static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node,
|
||
int VectorWidth);
|
||
|
||
private:
|
||
/// Check if this node is a band node we want to tile.
|
||
///
|
||
/// We look for innermost band nodes where individual dimensions are marked as
|
||
/// permutable.
|
||
///
|
||
/// @param Node The node to check.
|
||
static bool isTileableBandNode(isl::schedule_node Node);
|
||
|
||
/// Pre-vectorizes one scheduling dimension of a schedule band.
|
||
///
|
||
/// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
|
||
/// sinks the resulting point loop.
|
||
///
|
||
/// Example (DimToVectorize=0, VectorWidth=4):
|
||
///
|
||
/// | Before transformation:
|
||
/// |
|
||
/// | A[i,j] -> [i,j]
|
||
/// |
|
||
/// | for (i = 0; i < 128; i++)
|
||
/// | for (j = 0; j < 128; j++)
|
||
/// | A(i,j);
|
||
///
|
||
/// | After transformation:
|
||
/// |
|
||
/// | for (it = 0; it < 32; it+=1)
|
||
/// | for (j = 0; j < 128; j++)
|
||
/// | for (ip = 0; ip <= 3; ip++)
|
||
/// | A(4 * it + ip,j);
|
||
///
|
||
/// The goal of this transformation is to create a trivially vectorizable
|
||
/// loop. This means a parallel loop at the innermost level that has a
|
||
/// constant number of iterations corresponding to the target vector width.
|
||
///
|
||
/// This transformation creates a loop at the innermost level. The loop has
|
||
/// a constant number of iterations, if the number of loop iterations at
|
||
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
|
||
/// currently constant and not yet target specific. This function does not
|
||
/// reason about parallelism.
|
||
static isl::schedule_node prevectSchedBand(isl::schedule_node Node,
|
||
unsigned DimToVectorize,
|
||
int VectorWidth);
|
||
|
||
/// Apply additional optimizations on the bands in the schedule tree.
|
||
///
|
||
/// We are looking for an innermost band node and apply the following
|
||
/// transformations:
|
||
///
|
||
/// - Tile the band
|
||
/// - if the band is tileable
|
||
/// - if the band has more than one loop dimension
|
||
///
|
||
/// - Prevectorize the schedule of the band (or the point loop in case of
|
||
/// tiling).
|
||
/// - if vectorization is enabled
|
||
///
|
||
/// @param Node The schedule node to (possibly) optimize.
|
||
/// @param User A pointer to forward some use information
|
||
/// (currently unused).
|
||
static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
|
||
|
||
/// Apply additional optimizations on the bands in the schedule tree.
|
||
///
|
||
/// We apply the following
|
||
/// transformations:
|
||
///
|
||
/// - Tile the band
|
||
/// - Prevectorize the schedule of the band (or the point loop in case of
|
||
/// tiling).
|
||
/// - if vectorization is enabled
|
||
///
|
||
/// @param Node The schedule node to (possibly) optimize.
|
||
/// @param User A pointer to forward some use information
|
||
/// (currently unused).
|
||
static isl::schedule_node standardBandOpts(isl::schedule_node Node,
|
||
void *User);
|
||
};
|
||
|
||
isl::schedule_node
|
||
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
|
||
int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
||
Node = Node.child(0).child(0);
|
||
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
|
||
isl::union_set ScheduleRangeUSet = SchedRelUMap.range();
|
||
isl::set ScheduleRange{ScheduleRangeUSet};
|
||
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
|
||
auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
|
||
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
|
||
Node = Node.parent().parent();
|
||
isl::union_set Options = IsolateOption.unite(AtomicOption);
|
||
Node = Node.band_set_ast_build_options(Options);
|
||
return Node;
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
|
||
isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
||
|
||
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
isl_size ScheduleDimensions = Space.dim(isl::dim::set);
|
||
assert((isl_size)DimToVectorize < ScheduleDimensions);
|
||
|
||
if (DimToVectorize > 0) {
|
||
Node = isl::manage(
|
||
isl_schedule_node_band_split(Node.release(), DimToVectorize));
|
||
Node = Node.child(0);
|
||
}
|
||
if ((isl_size)DimToVectorize < ScheduleDimensions - 1)
|
||
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
|
||
Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto Sizes = isl::multi_val::zero(Space);
|
||
Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
|
||
Node =
|
||
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
|
||
Node = isolateFullPartialTiles(Node, VectorWidth);
|
||
Node = Node.child(0);
|
||
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
|
||
// we will have troubles to match it in the backend.
|
||
Node = Node.band_set_ast_build_options(
|
||
isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
|
||
Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
|
||
Node = Node.child(0);
|
||
if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
|
||
Node = Node.parent();
|
||
auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
|
||
PrevectOpts++;
|
||
return Node.insert_mark(LoopMarker);
|
||
}
|
||
|
||
static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
|
||
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
||
assert(isl_schedule_node_n_children(Node.get()) == 1);
|
||
|
||
auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
|
||
|
||
if (ChildType == isl_schedule_node_leaf)
|
||
return true;
|
||
|
||
if (ChildType != isl_schedule_node_sequence)
|
||
return false;
|
||
|
||
auto Sequence = Node.child(0);
|
||
|
||
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
|
||
++c) {
|
||
auto Child = Sequence.child(c);
|
||
if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
|
||
return false;
|
||
if (isl_schedule_node_get_type(Child.child(0).get()) !=
|
||
isl_schedule_node_leaf)
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
|
||
if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
|
||
return false;
|
||
|
||
if (isl_schedule_node_n_children(Node.get()) != 1)
|
||
return false;
|
||
|
||
if (!isl_schedule_node_band_get_permutable(Node.get()))
|
||
return false;
|
||
|
||
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto Dims = Space.dim(isl::dim::set);
|
||
|
||
if (Dims <= 1)
|
||
return false;
|
||
|
||
return isSimpleInnermostBand(Node);
|
||
}
|
||
|
||
__isl_give isl::schedule_node
|
||
ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
|
||
if (FirstLevelTiling) {
|
||
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
|
||
FirstLevelDefaultTileSize);
|
||
FirstLevelTileOpts++;
|
||
}
|
||
|
||
if (SecondLevelTiling) {
|
||
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
|
||
SecondLevelDefaultTileSize);
|
||
SecondLevelTileOpts++;
|
||
}
|
||
|
||
if (RegisterTiling) {
|
||
Node =
|
||
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
|
||
RegisterTileOpts++;
|
||
}
|
||
|
||
if (PollyVectorizerChoice == VECTORIZER_NONE)
|
||
return Node;
|
||
|
||
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto Dims = Space.dim(isl::dim::set);
|
||
|
||
for (int i = Dims - 1; i >= 0; i--)
|
||
if (Node.band_member_get_coincident(i)) {
|
||
Node = prevectSchedBand(Node, i, PrevectorWidth);
|
||
break;
|
||
}
|
||
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
|
||
void *User) {
|
||
if (!isTileableBandNode(isl::manage_copy(Node)))
|
||
return Node;
|
||
|
||
const OptimizerAdditionalInfoTy *OAI =
|
||
static_cast<const OptimizerAdditionalInfoTy *>(User);
|
||
|
||
if (PMBasedOpts && User) {
|
||
isl::schedule_node PatternOptimizedSchedule =
|
||
tryOptimizeMatMulPattern(isl::manage_copy(Node), OAI->TTI, OAI->D);
|
||
if (!PatternOptimizedSchedule.is_null()) {
|
||
MatMulOpts++;
|
||
isl_schedule_node_free(Node);
|
||
return PatternOptimizedSchedule.release();
|
||
}
|
||
}
|
||
|
||
return standardBandOpts(isl::manage(Node), User).release();
|
||
}
|
||
|
||
isl::schedule
|
||
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
|
||
const OptimizerAdditionalInfoTy *OAI) {
|
||
auto Root = Schedule.get_root();
|
||
Root = optimizeScheduleNode(Root, OAI);
|
||
return Root.get_schedule();
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
|
||
isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
|
||
Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
|
||
Node.release(), optimizeBand,
|
||
const_cast<void *>(static_cast<const void *>(OAI))));
|
||
return Node;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
|
||
isl::schedule NewSchedule) {
|
||
// To understand if the schedule has been optimized we check if the schedule
|
||
// has changed at all.
|
||
// TODO: We can improve this by tracking if any necessarily beneficial
|
||
// transformations have been performed. This can e.g. be tiling, loop
|
||
// interchange, or ...) We can track this either at the place where the
|
||
// transformation has been performed or, in case of automatic ILP based
|
||
// optimizations, by comparing (yet to be defined) performance metrics
|
||
// before/after the scheduling optimizer
|
||
// (e.g., #stride-one accesses)
|
||
auto NewScheduleMap = NewSchedule.get_map();
|
||
auto OldSchedule = S.getSchedule();
|
||
assert(!OldSchedule.is_null() &&
|
||
"Only IslScheduleOptimizer can insert extension nodes "
|
||
"that make Scop::getSchedule() return nullptr.");
|
||
bool changed = !OldSchedule.is_equal(NewScheduleMap);
|
||
return changed;
|
||
}
|
||
|
||
class IslScheduleOptimizerWrapperPass : public ScopPass {
|
||
public:
|
||
static char ID;
|
||
|
||
explicit IslScheduleOptimizerWrapperPass() : ScopPass(ID) {}
|
||
|
||
/// Optimize the schedule of the SCoP @p S.
|
||
bool runOnScop(Scop &S) override;
|
||
|
||
/// Print the new schedule for the SCoP @p S.
|
||
void printScop(raw_ostream &OS, Scop &S) const override;
|
||
|
||
/// Register all analyses and transformation required.
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||
|
||
/// Release the internal memory.
|
||
void releaseMemory() override {
|
||
LastSchedule = {};
|
||
IslCtx.reset();
|
||
}
|
||
|
||
private:
|
||
std::shared_ptr<isl_ctx> IslCtx;
|
||
isl::schedule LastSchedule;
|
||
};
|
||
|
||
char IslScheduleOptimizerWrapperPass::ID = 0;
|
||
|
||
#ifndef NDEBUG
|
||
static void printSchedule(llvm::raw_ostream &OS, const isl::schedule &Schedule,
|
||
StringRef Desc) {
|
||
isl::ctx Ctx = Schedule.get_ctx();
|
||
isl_printer *P = isl_printer_to_str(Ctx.get());
|
||
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
|
||
P = isl_printer_print_schedule(P, Schedule.get());
|
||
char *Str = isl_printer_get_str(P);
|
||
OS << Desc << ": \n" << Str << "\n";
|
||
free(Str);
|
||
isl_printer_free(P);
|
||
}
|
||
#endif
|
||
|
||
/// Collect statistics for the schedule tree.
|
||
///
|
||
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
|
||
/// ignored.
|
||
/// @param Version The version of the schedule tree that is analyzed.
|
||
/// 0 for the original schedule tree before any transformation.
|
||
/// 1 for the schedule tree after isl's rescheduling.
|
||
/// 2 for the schedule tree after optimizations are applied
|
||
/// (tiling, pattern matching)
|
||
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
|
||
auto Root = Schedule.get_root();
|
||
if (Root.is_null())
|
||
return;
|
||
|
||
isl_schedule_node_foreach_descendant_top_down(
|
||
Root.get(),
|
||
[](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
|
||
isl::schedule_node Node = isl::manage_copy(nodeptr);
|
||
int Version = *static_cast<int *>(user);
|
||
|
||
switch (isl_schedule_node_get_type(Node.get())) {
|
||
case isl_schedule_node_band: {
|
||
NumBands[Version]++;
|
||
if (isl_schedule_node_band_get_permutable(Node.get()) ==
|
||
isl_bool_true)
|
||
NumPermutable[Version]++;
|
||
|
||
int CountMembers = isl_schedule_node_band_n_member(Node.get());
|
||
NumBandMembers[Version] += CountMembers;
|
||
for (int i = 0; i < CountMembers; i += 1) {
|
||
if (Node.band_member_get_coincident(i))
|
||
NumCoincident[Version]++;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case isl_schedule_node_filter:
|
||
NumFilters[Version]++;
|
||
break;
|
||
|
||
case isl_schedule_node_extension:
|
||
NumExtension[Version]++;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return isl_bool_true;
|
||
},
|
||
&Version);
|
||
}
|
||
|
||
static bool runIslScheduleOptimizer(
|
||
Scop &S,
|
||
function_ref<const Dependences &(Dependences::AnalysisLevel)> GetDeps,
|
||
TargetTransformInfo *TTI, isl::schedule &LastSchedule) {
|
||
// Skip SCoPs in case they're already optimised by PPCGCodeGeneration
|
||
if (S.isToBeSkipped())
|
||
return false;
|
||
|
||
// Skip empty SCoPs but still allow code generation as it will delete the
|
||
// loops present but not needed.
|
||
if (S.getSize() == 0) {
|
||
S.markAsOptimized();
|
||
return false;
|
||
}
|
||
|
||
ScopsProcessed++;
|
||
|
||
// Schedule without optimizations.
|
||
isl::schedule Schedule = S.getScheduleTree();
|
||
walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
|
||
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "Original schedule tree"));
|
||
|
||
bool HasUserTransformation = false;
|
||
if (PragmaBasedOpts) {
|
||
isl::schedule ManuallyTransformed =
|
||
applyManualTransformations(&S, Schedule);
|
||
if (ManuallyTransformed.is_null()) {
|
||
LLVM_DEBUG(dbgs() << "Error during manual optimization\n");
|
||
return false;
|
||
}
|
||
|
||
if (ManuallyTransformed.get() != Schedule.get()) {
|
||
// User transformations have precedence over other transformations.
|
||
HasUserTransformation = true;
|
||
Schedule = std::move(ManuallyTransformed);
|
||
LLVM_DEBUG(
|
||
printSchedule(dbgs(), Schedule, "After manual transformations"));
|
||
}
|
||
}
|
||
|
||
// Only continue if either manual transformations have been applied or we are
|
||
// allowed to apply heuristics.
|
||
// TODO: Detect disabled heuristics and no user-directed transformation
|
||
// metadata earlier in ScopDetection.
|
||
if (!HasUserTransformation && S.hasDisableHeuristicsHint()) {
|
||
LLVM_DEBUG(dbgs() << "Heuristic optimizations disabled by metadata\n");
|
||
return false;
|
||
}
|
||
|
||
// Get dependency analysis.
|
||
const Dependences &D = GetDeps(Dependences::AL_Statement);
|
||
if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
|
||
LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
|
||
return false;
|
||
}
|
||
if (!D.hasValidDependences()) {
|
||
LLVM_DEBUG(dbgs() << "Dependency information not available\n");
|
||
return false;
|
||
}
|
||
|
||
// Apply ISL's algorithm only if not overriden by the user. Note that
|
||
// post-rescheduling optimizations (tiling, pattern-based, prevectorization)
|
||
// rely on the coincidence/permutable annotations on schedule tree bands that
|
||
// are added by the rescheduling analyzer. Therefore, disabling the
|
||
// rescheduler implicitly also disables these optimizations.
|
||
if (HasUserTransformation) {
|
||
LLVM_DEBUG(
|
||
dbgs() << "Skipping rescheduling due to manual transformation\n");
|
||
} else {
|
||
// Build input data.
|
||
int ValidityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
int ProximityKinds;
|
||
|
||
if (OptimizeDeps == "all")
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
else if (OptimizeDeps == "raw")
|
||
ProximityKinds = Dependences::TYPE_RAW;
|
||
else {
|
||
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
|
||
<< " Falling back to optimizing all dependences.\n";
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
}
|
||
|
||
isl::union_set Domain = S.getDomains();
|
||
|
||
if (Domain.is_null())
|
||
return false;
|
||
|
||
isl::union_map Validity = D.getDependences(ValidityKinds);
|
||
isl::union_map Proximity = D.getDependences(ProximityKinds);
|
||
|
||
// Simplify the dependences by removing the constraints introduced by the
|
||
// domains. This can speed up the scheduling time significantly, as large
|
||
// constant coefficients will be removed from the dependences. The
|
||
// introduction of some additional dependences reduces the possible
|
||
// transformations, but in most cases, such transformation do not seem to be
|
||
// interesting anyway. In some cases this option may stop the scheduler to
|
||
// find any schedule.
|
||
if (SimplifyDeps == "yes") {
|
||
Validity = Validity.gist_domain(Domain);
|
||
Validity = Validity.gist_range(Domain);
|
||
Proximity = Proximity.gist_domain(Domain);
|
||
Proximity = Proximity.gist_range(Domain);
|
||
} else if (SimplifyDeps != "no") {
|
||
errs()
|
||
<< "warning: Option -polly-opt-simplify-deps should either be 'yes' "
|
||
"or 'no'. Falling back to default: 'yes'\n";
|
||
}
|
||
|
||
LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
|
||
LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
|
||
LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
|
||
LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
|
||
|
||
unsigned IslSerializeSCCs;
|
||
|
||
if (FusionStrategy == "max") {
|
||
IslSerializeSCCs = 0;
|
||
} else if (FusionStrategy == "min") {
|
||
IslSerializeSCCs = 1;
|
||
} else {
|
||
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
|
||
"fusion.\n";
|
||
IslSerializeSCCs = 0;
|
||
}
|
||
|
||
int IslMaximizeBands;
|
||
|
||
if (MaximizeBandDepth == "yes") {
|
||
IslMaximizeBands = 1;
|
||
} else if (MaximizeBandDepth == "no") {
|
||
IslMaximizeBands = 0;
|
||
} else {
|
||
errs()
|
||
<< "warning: Option -polly-opt-maximize-bands should either be 'yes'"
|
||
" or 'no'. Falling back to default: 'yes'\n";
|
||
IslMaximizeBands = 1;
|
||
}
|
||
|
||
int IslOuterCoincidence;
|
||
|
||
if (OuterCoincidence == "yes") {
|
||
IslOuterCoincidence = 1;
|
||
} else if (OuterCoincidence == "no") {
|
||
IslOuterCoincidence = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
|
||
"'yes' or 'no'. Falling back to default: 'no'\n";
|
||
IslOuterCoincidence = 0;
|
||
}
|
||
|
||
isl_ctx *Ctx = S.getIslCtx().get();
|
||
|
||
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
|
||
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
|
||
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
|
||
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
|
||
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
|
||
isl_options_set_tile_scale_tile_loops(Ctx, 0);
|
||
|
||
auto OnErrorStatus = isl_options_get_on_error(Ctx);
|
||
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
|
||
|
||
auto SC = isl::schedule_constraints::on_domain(Domain);
|
||
SC = SC.set_proximity(Proximity);
|
||
SC = SC.set_validity(Validity);
|
||
SC = SC.set_coincidence(Validity);
|
||
Schedule = SC.compute_schedule();
|
||
isl_options_set_on_error(Ctx, OnErrorStatus);
|
||
|
||
ScopsRescheduled++;
|
||
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After rescheduling"));
|
||
}
|
||
|
||
walkScheduleTreeForStatistics(Schedule, 1);
|
||
|
||
// In cases the scheduler is not able to optimize the code, we just do not
|
||
// touch the schedule.
|
||
if (Schedule.is_null())
|
||
return false;
|
||
|
||
// Apply post-rescheduling optimizations.
|
||
const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
|
||
Schedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
|
||
Schedule = hoistExtensionNodes(Schedule);
|
||
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After post-optimizations"));
|
||
walkScheduleTreeForStatistics(Schedule, 2);
|
||
|
||
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, Schedule))
|
||
return false;
|
||
|
||
auto ScopStats = S.getStatistics();
|
||
ScopsOptimized++;
|
||
NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
|
||
NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
|
||
LastSchedule = Schedule;
|
||
|
||
S.setScheduleTree(Schedule);
|
||
S.markAsOptimized();
|
||
|
||
if (OptimizedScops)
|
||
errs() << S;
|
||
|
||
return false;
|
||
}
|
||
|
||
bool IslScheduleOptimizerWrapperPass::runOnScop(Scop &S) {
|
||
releaseMemory();
|
||
|
||
Function &F = S.getFunction();
|
||
IslCtx = S.getSharedIslCtx();
|
||
|
||
auto getDependences =
|
||
[this](Dependences::AnalysisLevel) -> const Dependences & {
|
||
return getAnalysis<DependenceInfo>().getDependences(
|
||
Dependences::AL_Statement);
|
||
};
|
||
// auto &Deps = getAnalysis<DependenceInfo>();
|
||
TargetTransformInfo *TTI =
|
||
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||
return runIslScheduleOptimizer(S, getDependences, TTI, LastSchedule);
|
||
}
|
||
|
||
static void runScheduleOptimizerPrinter(raw_ostream &OS,
|
||
isl::schedule LastSchedule) {
|
||
isl_printer *p;
|
||
char *ScheduleStr;
|
||
|
||
OS << "Calculated schedule:\n";
|
||
|
||
if (LastSchedule.is_null()) {
|
||
OS << "n/a\n";
|
||
return;
|
||
}
|
||
|
||
p = isl_printer_to_str(LastSchedule.get_ctx().get());
|
||
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
|
||
p = isl_printer_print_schedule(p, LastSchedule.get());
|
||
ScheduleStr = isl_printer_get_str(p);
|
||
isl_printer_free(p);
|
||
|
||
OS << ScheduleStr << "\n";
|
||
|
||
free(ScheduleStr);
|
||
}
|
||
|
||
void IslScheduleOptimizerWrapperPass::printScop(raw_ostream &OS, Scop &) const {
|
||
runScheduleOptimizerPrinter(OS, LastSchedule);
|
||
}
|
||
|
||
void IslScheduleOptimizerWrapperPass::getAnalysisUsage(
|
||
AnalysisUsage &AU) const {
|
||
ScopPass::getAnalysisUsage(AU);
|
||
AU.addRequired<DependenceInfo>();
|
||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||
|
||
AU.addPreserved<DependenceInfo>();
|
||
}
|
||
|
||
} // namespace
|
||
|
||
Pass *polly::createIslScheduleOptimizerWrapperPass() {
|
||
return new IslScheduleOptimizerWrapperPass();
|
||
}
|
||
|
||
INITIALIZE_PASS_BEGIN(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false);
|
||
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
|
||
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
|
||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
|
||
INITIALIZE_PASS_END(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false)
|
||
|
||
static llvm::PreservedAnalyses
|
||
runIslScheduleOptimizerUsingNPM(Scop &S, ScopAnalysisManager &SAM,
|
||
ScopStandardAnalysisResults &SAR, SPMUpdater &U,
|
||
raw_ostream *OS) {
|
||
DependenceAnalysis::Result &Deps = SAM.getResult<DependenceAnalysis>(S, SAR);
|
||
auto GetDeps = [&Deps](Dependences::AnalysisLevel) -> const Dependences & {
|
||
return Deps.getDependences(Dependences::AL_Statement);
|
||
};
|
||
TargetTransformInfo *TTI = &SAR.TTI;
|
||
isl::schedule LastSchedule;
|
||
bool Modified = runIslScheduleOptimizer(S, GetDeps, TTI, LastSchedule);
|
||
if (OS) {
|
||
*OS << "Printing analysis 'Polly - Optimize schedule of SCoP' for region: '"
|
||
<< S.getName() << "' in function '" << S.getFunction().getName()
|
||
<< "':\n";
|
||
runScheduleOptimizerPrinter(*OS, LastSchedule);
|
||
}
|
||
|
||
if (!Modified)
|
||
return PreservedAnalyses::all();
|
||
|
||
PreservedAnalyses PA;
|
||
PA.preserveSet<AllAnalysesOn<Module>>();
|
||
PA.preserveSet<AllAnalysesOn<Function>>();
|
||
PA.preserveSet<AllAnalysesOn<Loop>>();
|
||
return PA;
|
||
}
|
||
|
||
llvm::PreservedAnalyses
|
||
IslScheduleOptimizerPass::run(Scop &S, ScopAnalysisManager &SAM,
|
||
ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
|
||
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, nullptr);
|
||
}
|
||
|
||
llvm::PreservedAnalyses
|
||
IslScheduleOptimizerPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
|
||
ScopStandardAnalysisResults &SAR,
|
||
SPMUpdater &U) {
|
||
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, &OS);
|
||
}
|