forked from OSchip/llvm-project
1578ec8860
Summary: Previously SelectionDAGBuilder asserted that the pointer operands of memcpy / memset / memmove intrinsics are in address space < 256. This assert implicitly assumed the X86 backend, where all address spaces < 256 are equivalent to address space 0 from the code generator's point of view. On some targets (R600 and NVPTX) several address spaces < 256 have a target-defined meaning, so this assert made little sense for these targets. This patch removes this wrong assertion and adds extra checks before lowering these intrinsics to library calls. If a pointer operand can't be casted to address space 0 without changing semantics, a fatal error is reported to the user. The new behavior should be valid for all targets that give address spaces != 0 a target-specified meaning (NVPTX, R600, X86). NVPTX lowers big or variable-sized memory intrinsics before SelectionDAG construction. All other memory intrinsics are inlined (the threshold is set very high for this target). R600 doesn't support memcpy / memset / memmove library calls (previously the illegal emission of a call to such library function triggered an error somewhere in the code generator). X86 now emits inline loads and stores for address spaces 256 and 257 up to the same threshold that is used for address space 0 and reports a fatal error otherwise. I call this a "partial fix" because there are still cases that can't be lowered. A fatal error is reported in these cases. Reviewers: arsenm, theraven, compnerd, hfinkel Subscribers: hfinkel, llvm-commits, alex Differential Revision: http://reviews.llvm.org/D7241 llvm-svn: 255441 |
||
---|---|---|
.. | ||
AsmPrinter | ||
MIRParser | ||
SelectionDAG | ||
AggressiveAntiDepBreaker.cpp | ||
AggressiveAntiDepBreaker.h | ||
AllocationOrder.cpp | ||
AllocationOrder.h | ||
Analysis.cpp | ||
AntiDepBreaker.h | ||
AtomicExpandPass.cpp | ||
BasicTargetTransformInfo.cpp | ||
BranchFolding.cpp | ||
BranchFolding.h | ||
CMakeLists.txt | ||
CalcSpillWeights.cpp | ||
CallingConvLower.cpp | ||
CodeGen.cpp | ||
CodeGenPrepare.cpp | ||
CoreCLRGC.cpp | ||
CriticalAntiDepBreaker.cpp | ||
CriticalAntiDepBreaker.h | ||
DFAPacketizer.cpp | ||
DeadMachineInstructionElim.cpp | ||
DwarfEHPrepare.cpp | ||
EarlyIfConversion.cpp | ||
EdgeBundles.cpp | ||
ErlangGC.cpp | ||
ExecutionDepsFix.cpp | ||
ExpandISelPseudos.cpp | ||
ExpandPostRAPseudos.cpp | ||
FaultMaps.cpp | ||
FuncletLayout.cpp | ||
GCMetadata.cpp | ||
GCMetadataPrinter.cpp | ||
GCRootLowering.cpp | ||
GCStrategy.cpp | ||
GlobalMerge.cpp | ||
IfConversion.cpp | ||
ImplicitNullChecks.cpp | ||
InlineSpiller.cpp | ||
InterferenceCache.cpp | ||
InterferenceCache.h | ||
InterleavedAccessPass.cpp | ||
IntrinsicLowering.cpp | ||
LLVMBuild.txt | ||
LLVMTargetMachine.cpp | ||
LatencyPriorityQueue.cpp | ||
LexicalScopes.cpp | ||
LiveDebugVariables.cpp | ||
LiveDebugVariables.h | ||
LiveInterval.cpp | ||
LiveIntervalAnalysis.cpp | ||
LiveIntervalUnion.cpp | ||
LivePhysRegs.cpp | ||
LiveRangeCalc.cpp | ||
LiveRangeCalc.h | ||
LiveRangeEdit.cpp | ||
LiveRegMatrix.cpp | ||
LiveStackAnalysis.cpp | ||
LiveVariables.cpp | ||
LocalStackSlotAllocation.cpp | ||
MIRPrinter.cpp | ||
MIRPrinter.h | ||
MIRPrintingPass.cpp | ||
MachineBasicBlock.cpp | ||
MachineBlockFrequencyInfo.cpp | ||
MachineBlockPlacement.cpp | ||
MachineBranchProbabilityInfo.cpp | ||
MachineCSE.cpp | ||
MachineCombiner.cpp | ||
MachineCopyPropagation.cpp | ||
MachineDominanceFrontier.cpp | ||
MachineDominators.cpp | ||
MachineFunction.cpp | ||
MachineFunctionAnalysis.cpp | ||
MachineFunctionPass.cpp | ||
MachineFunctionPrinterPass.cpp | ||
MachineInstr.cpp | ||
MachineInstrBundle.cpp | ||
MachineLICM.cpp | ||
MachineLoopInfo.cpp | ||
MachineModuleInfo.cpp | ||
MachineModuleInfoImpls.cpp | ||
MachinePassRegistry.cpp | ||
MachinePostDominators.cpp | ||
MachineRegionInfo.cpp | ||
MachineRegisterInfo.cpp | ||
MachineSSAUpdater.cpp | ||
MachineScheduler.cpp | ||
MachineSink.cpp | ||
MachineTraceMetrics.cpp | ||
MachineVerifier.cpp | ||
Makefile | ||
OcamlGC.cpp | ||
OptimizePHIs.cpp | ||
PHIElimination.cpp | ||
PHIEliminationUtils.cpp | ||
PHIEliminationUtils.h | ||
ParallelCG.cpp | ||
Passes.cpp | ||
PeepholeOptimizer.cpp | ||
PostRASchedulerList.cpp | ||
ProcessImplicitDefs.cpp | ||
PrologEpilogInserter.cpp | ||
PseudoSourceValue.cpp | ||
README.txt | ||
RegAllocBase.cpp | ||
RegAllocBase.h | ||
RegAllocBasic.cpp | ||
RegAllocFast.cpp | ||
RegAllocGreedy.cpp | ||
RegAllocPBQP.cpp | ||
RegisterClassInfo.cpp | ||
RegisterCoalescer.cpp | ||
RegisterCoalescer.h | ||
RegisterPressure.cpp | ||
RegisterScavenging.cpp | ||
ScheduleDAG.cpp | ||
ScheduleDAGInstrs.cpp | ||
ScheduleDAGPrinter.cpp | ||
ScoreboardHazardRecognizer.cpp | ||
ShadowStackGC.cpp | ||
ShadowStackGCLowering.cpp | ||
ShrinkWrap.cpp | ||
SjLjEHPrepare.cpp | ||
SlotIndexes.cpp | ||
SpillPlacement.cpp | ||
SpillPlacement.h | ||
Spiller.h | ||
SplitKit.cpp | ||
SplitKit.h | ||
StackColoring.cpp | ||
StackMapLivenessAnalysis.cpp | ||
StackMaps.cpp | ||
StackProtector.cpp | ||
StackSlotColoring.cpp | ||
StatepointExampleGC.cpp | ||
TailDuplication.cpp | ||
TargetFrameLoweringImpl.cpp | ||
TargetInstrInfo.cpp | ||
TargetLoweringBase.cpp | ||
TargetLoweringObjectFileImpl.cpp | ||
TargetOptionsImpl.cpp | ||
TargetRegisterInfo.cpp | ||
TargetSchedule.cpp | ||
TwoAddressInstructionPass.cpp | ||
UnreachableBlockElim.cpp | ||
VirtRegMap.cpp | ||
WinEHPrepare.cpp | ||
module.modulemap |
README.txt
//===---------------------------------------------------------------------===// Common register allocation / spilling problem: mul lr, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 ldr r4, [sp, #+52] mla r4, r3, lr, r4 can be: mul lr, r4, lr mov r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 and then "merge" mul and mov: mul r4, r4, lr str r4, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 It also increase the likelihood the store may become dead. //===---------------------------------------------------------------------===// bb27 ... ... %reg1037 = ADDri %reg1039, 1 %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10 Successors according to CFG: 0x8b03bf0 (#5) bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5): Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4) %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0> Note ADDri is not a two-address instruction. However, its result %reg1037 is an operand of the PHI node in bb76 and its operand %reg1039 is the result of the PHI node. We should treat it as a two-address code and make sure the ADDri is scheduled after any node that reads %reg1039. //===---------------------------------------------------------------------===// Use local info (i.e. register scavenger) to assign it a free register to allow reuse: ldr r3, [sp, #+4] add r3, r3, #3 ldr r2, [sp, #+8] add r2, r2, #2 ldr r1, [sp, #+4] <== add r1, r1, #1 ldr r0, [sp, #+4] add r0, r0, #2 //===---------------------------------------------------------------------===// LLVM aggressively lift CSE out of loop. Sometimes this can be negative side- effects: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: load [i + R1] ... load [i + R2] ... load [i + R3] Suppose there is high register pressure, R1, R2, R3, can be spilled. We need to implement proper re-materialization to handle this: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: R1 = X + 4 @ re-materialized load [i + R1] ... R2 = X + 7 @ re-materialized load [i + R2] ... R3 = X + 15 @ re-materialized load [i + R3] Furthermore, with re-association, we can enable sharing: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: T = i + X load [T + 4] ... load [T + 7] ... load [T + 15] //===---------------------------------------------------------------------===// It's not always a good idea to choose rematerialization over spilling. If all the load / store instructions would be folded then spilling is cheaper because it won't require new live intervals / registers. See 2003-05-31-LongShifts for an example. //===---------------------------------------------------------------------===// With a copying garbage collector, derived pointers must not be retained across collector safe points; the collector could move the objects and invalidate the derived pointer. This is bad enough in the first place, but safe points can crop up unpredictably. Consider: %array = load { i32, [0 x %obj] }** %array_addr %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n %old = load %obj** %nth_el %z = div i64 %x, %y store %obj* %new, %obj** %nth_el If the i64 division is lowered to a libcall, then a safe point will (must) appear for the call site. If a collection occurs, %array and %nth_el no longer point into the correct object. The fix for this is to copy address calculations so that dependent pointers are never live across safe point boundaries. But the loads cannot be copied like this if there was an intervening store, so may be hard to get right. Only a concurrent mutator can trigger a collection at the libcall safe point. So single-threaded programs do not have this requirement, even with a copying collector. Still, LLVM optimizations would probably undo a front-end's careful work. //===---------------------------------------------------------------------===// The ocaml frametable structure supports liveness information. It would be good to support it. //===---------------------------------------------------------------------===// The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be revisited. The check is there to work around a misuse of directives in inline assembly. //===---------------------------------------------------------------------===// It would be good to detect collector/target compatibility instead of silently doing the wrong thing. //===---------------------------------------------------------------------===// It would be really nice to be able to write patterns in .td files for copies, which would eliminate a bunch of explicit predicates on them (e.g. no side effects). Once this is in place, it would be even better to have tblgen synthesize the various copy insertion/inspection methods in TargetInstrInfo. //===---------------------------------------------------------------------===// Stack coloring improvements: 1. Do proper LiveStackAnalysis on all stack objects including those which are not spill slots. 2. Reorder objects to fill in gaps between objects. e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4 //===---------------------------------------------------------------------===// The scheduler should be able to sort nearby instructions by their address. For example, in an expanded memset sequence it's not uncommon to see code like this: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) Each of the stores is independent, and the scheduler is currently making an arbitrary decision about the order. //===---------------------------------------------------------------------===// Another opportunitiy in this code is that the $0 could be moved to a register: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) This would save substantial code size, especially for longer sequences like this. It would be easy to have a rule telling isel to avoid matching MOV32mi if the immediate has more than some fixed number of uses. It's more involved to teach the register allocator how to do late folding to recover from excessive register pressure.