forked from OSchip/llvm-project
637 lines
24 KiB
C++
637 lines
24 KiB
C++
//===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass splits the stack into the safe stack (kept as-is for LLVM backend)
|
|
// and the unsafe stack (explicitly allocated and managed through the runtime
|
|
// support library).
|
|
//
|
|
// http://clang.llvm.org/docs/SafeStack.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_os_ostream.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "safestack"
|
|
|
|
static const char *const kUnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
|
|
static const char *const kUnsafeStackPtrAddrFn = "__safestack_pointer_address";
|
|
|
|
namespace llvm {
|
|
|
|
STATISTIC(NumFunctions, "Total number of functions");
|
|
STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
|
|
STATISTIC(NumUnsafeStackRestorePointsFunctions,
|
|
"Number of functions that use setjmp or exceptions");
|
|
|
|
STATISTIC(NumAllocas, "Total number of allocas");
|
|
STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
|
|
STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
|
|
STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
|
|
|
|
} // namespace llvm
|
|
|
|
namespace {
|
|
|
|
/// Check whether a given alloca instruction (AI) should be put on the safe
|
|
/// stack or not. The function analyzes all uses of AI and checks whether it is
|
|
/// only accessed in a memory safe way (as decided statically).
|
|
bool IsSafeStackAlloca(const AllocaInst *AI) {
|
|
// Go through all uses of this alloca and check whether all accesses to the
|
|
// allocated object are statically known to be memory safe and, hence, the
|
|
// object can be placed on the safe stack.
|
|
|
|
SmallPtrSet<const Value *, 16> Visited;
|
|
SmallVector<const Instruction *, 8> WorkList;
|
|
WorkList.push_back(AI);
|
|
|
|
// A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
|
|
while (!WorkList.empty()) {
|
|
const Instruction *V = WorkList.pop_back_val();
|
|
for (const Use &UI : V->uses()) {
|
|
auto I = cast<const Instruction>(UI.getUser());
|
|
assert(V == UI.get());
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
// Loading from a pointer is safe.
|
|
break;
|
|
case Instruction::VAArg:
|
|
// "va-arg" from a pointer is safe.
|
|
break;
|
|
case Instruction::Store:
|
|
if (V == I->getOperand(0))
|
|
// Stored the pointer - conservatively assume it may be unsafe.
|
|
return false;
|
|
// Storing to the pointee is safe.
|
|
break;
|
|
|
|
case Instruction::GetElementPtr:
|
|
if (!cast<const GetElementPtrInst>(I)->hasAllConstantIndices())
|
|
// GEP with non-constant indices can lead to memory errors.
|
|
// This also applies to inbounds GEPs, as the inbounds attribute
|
|
// represents an assumption that the address is in bounds, rather than
|
|
// an assertion that it is.
|
|
return false;
|
|
|
|
// We assume that GEP on static alloca with constant indices is safe,
|
|
// otherwise a compiler would detect it and warn during compilation.
|
|
|
|
if (!isa<const ConstantInt>(AI->getArraySize()))
|
|
// However, if the array size itself is not constant, the access
|
|
// might still be unsafe at runtime.
|
|
return false;
|
|
|
|
/* fallthrough */
|
|
|
|
case Instruction::BitCast:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PHI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::Select:
|
|
// The object can be safe or not, depending on how the result of the
|
|
// instruction is used.
|
|
if (Visited.insert(I).second)
|
|
WorkList.push_back(cast<const Instruction>(I));
|
|
break;
|
|
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
// FIXME: add support for memset and memcpy intrinsics.
|
|
ImmutableCallSite CS(I);
|
|
|
|
// LLVM 'nocapture' attribute is only set for arguments whose address
|
|
// is not stored, passed around, or used in any other non-trivial way.
|
|
// We assume that passing a pointer to an object as a 'nocapture'
|
|
// argument is safe.
|
|
// FIXME: a more precise solution would require an interprocedural
|
|
// analysis here, which would look at all uses of an argument inside
|
|
// the function being called.
|
|
ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
|
|
for (ImmutableCallSite::arg_iterator A = B; A != E; ++A)
|
|
if (A->get() == V && !CS.doesNotCapture(A - B))
|
|
// The parameter is not marked 'nocapture' - unsafe.
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
default:
|
|
// The object is unsafe if it is used in any other way.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All uses of the alloca are safe, we can place it on the safe stack.
|
|
return true;
|
|
}
|
|
|
|
/// The SafeStack pass splits the stack of each function into the
|
|
/// safe stack, which is only accessed through memory safe dereferences
|
|
/// (as determined statically), and the unsafe stack, which contains all
|
|
/// local variables that are accessed in unsafe ways.
|
|
class SafeStack : public FunctionPass {
|
|
const TargetMachine *TM;
|
|
const TargetLoweringBase *TLI;
|
|
const DataLayout *DL;
|
|
|
|
Type *StackPtrTy;
|
|
Type *IntPtrTy;
|
|
Type *Int32Ty;
|
|
Type *Int8Ty;
|
|
|
|
Value *UnsafeStackPtr = nullptr;
|
|
|
|
/// Unsafe stack alignment. Each stack frame must ensure that the stack is
|
|
/// aligned to this value. We need to re-align the unsafe stack if the
|
|
/// alignment of any object on the stack exceeds this value.
|
|
///
|
|
/// 16 seems like a reasonable upper bound on the alignment of objects that we
|
|
/// might expect to appear on the stack on most common targets.
|
|
enum { StackAlignment = 16 };
|
|
|
|
/// \brief Build a constant representing a pointer to the unsafe stack
|
|
/// pointer.
|
|
Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F);
|
|
|
|
/// \brief Find all static allocas, dynamic allocas, return instructions and
|
|
/// stack restore points (exception unwind blocks and setjmp calls) in the
|
|
/// given function and append them to the respective vectors.
|
|
void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
|
|
SmallVectorImpl<AllocaInst *> &DynamicAllocas,
|
|
SmallVectorImpl<ReturnInst *> &Returns,
|
|
SmallVectorImpl<Instruction *> &StackRestorePoints);
|
|
|
|
/// \brief Allocate space for all static allocas in \p StaticAllocas,
|
|
/// replace allocas with pointers into the unsafe stack and generate code to
|
|
/// restore the stack pointer before all return instructions in \p Returns.
|
|
///
|
|
/// \returns A pointer to the top of the unsafe stack after all unsafe static
|
|
/// allocas are allocated.
|
|
Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
|
|
ArrayRef<AllocaInst *> StaticAllocas,
|
|
ArrayRef<ReturnInst *> Returns);
|
|
|
|
/// \brief Generate code to restore the stack after all stack restore points
|
|
/// in \p StackRestorePoints.
|
|
///
|
|
/// \returns A local variable in which to maintain the dynamic top of the
|
|
/// unsafe stack if needed.
|
|
AllocaInst *
|
|
createStackRestorePoints(Function &F,
|
|
ArrayRef<Instruction *> StackRestorePoints,
|
|
Value *StaticTop, bool NeedDynamicTop);
|
|
|
|
/// \brief Replace all allocas in \p DynamicAllocas with code to allocate
|
|
/// space dynamically on the unsafe stack and store the dynamic unsafe stack
|
|
/// top to \p DynamicTop if non-null.
|
|
void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
|
|
AllocaInst *DynamicTop,
|
|
ArrayRef<AllocaInst *> DynamicAllocas);
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
SafeStack(const TargetMachine *TM)
|
|
: FunctionPass(ID), TM(TM), TLI(nullptr), DL(nullptr) {
|
|
initializeSafeStackPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
SafeStack() : SafeStack(nullptr) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
}
|
|
|
|
bool doInitialization(Module &M) override {
|
|
DL = &M.getDataLayout();
|
|
|
|
StackPtrTy = Type::getInt8PtrTy(M.getContext());
|
|
IntPtrTy = DL->getIntPtrType(M.getContext());
|
|
Int32Ty = Type::getInt32Ty(M.getContext());
|
|
Int8Ty = Type::getInt8Ty(M.getContext());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
}; // class SafeStack
|
|
|
|
Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) {
|
|
Module &M = *F.getParent();
|
|
Triple TargetTriple(M.getTargetTriple());
|
|
|
|
unsigned Offset;
|
|
unsigned AddressSpace;
|
|
// Check if the target keeps the unsafe stack pointer at a fixed offset.
|
|
if (TLI && TLI->getSafeStackPointerLocation(Offset, AddressSpace)) {
|
|
Constant *OffsetVal =
|
|
ConstantInt::get(Type::getInt32Ty(F.getContext()), Offset);
|
|
return ConstantExpr::getIntToPtr(OffsetVal,
|
|
StackPtrTy->getPointerTo(AddressSpace));
|
|
}
|
|
|
|
// Android provides a libc function that returns the stack pointer address.
|
|
if (TargetTriple.getEnvironment() == llvm::Triple::Android) {
|
|
Value *Fn = M.getOrInsertFunction(kUnsafeStackPtrAddrFn,
|
|
StackPtrTy->getPointerTo(0), nullptr);
|
|
return IRB.CreateCall(Fn);
|
|
} else {
|
|
// Otherwise, declare a thread-local variable with a magic name.
|
|
auto UnsafeStackPtr =
|
|
dyn_cast_or_null<GlobalVariable>(M.getNamedValue(kUnsafeStackPtrVar));
|
|
|
|
if (!UnsafeStackPtr) {
|
|
// The global variable is not defined yet, define it ourselves.
|
|
// We use the initial-exec TLS model because we do not support the
|
|
// variable living anywhere other than in the main executable.
|
|
UnsafeStackPtr = new GlobalVariable(
|
|
/*Module=*/M, /*Type=*/StackPtrTy,
|
|
/*isConstant=*/false, /*Linkage=*/GlobalValue::ExternalLinkage,
|
|
/*Initializer=*/0, /*Name=*/kUnsafeStackPtrVar,
|
|
/*InsertBefore=*/nullptr,
|
|
/*ThreadLocalMode=*/GlobalValue::InitialExecTLSModel);
|
|
} else {
|
|
// The variable exists, check its type and attributes.
|
|
if (UnsafeStackPtr->getValueType() != StackPtrTy) {
|
|
report_fatal_error(Twine(kUnsafeStackPtrVar) + " must have void* type");
|
|
}
|
|
|
|
if (!UnsafeStackPtr->isThreadLocal()) {
|
|
report_fatal_error(Twine(kUnsafeStackPtrVar) + " must be thread-local");
|
|
}
|
|
}
|
|
return UnsafeStackPtr;
|
|
}
|
|
}
|
|
|
|
void SafeStack::findInsts(Function &F,
|
|
SmallVectorImpl<AllocaInst *> &StaticAllocas,
|
|
SmallVectorImpl<AllocaInst *> &DynamicAllocas,
|
|
SmallVectorImpl<ReturnInst *> &Returns,
|
|
SmallVectorImpl<Instruction *> &StackRestorePoints) {
|
|
for (Instruction &I : instructions(&F)) {
|
|
if (auto AI = dyn_cast<AllocaInst>(&I)) {
|
|
++NumAllocas;
|
|
|
|
if (IsSafeStackAlloca(AI))
|
|
continue;
|
|
|
|
if (AI->isStaticAlloca()) {
|
|
++NumUnsafeStaticAllocas;
|
|
StaticAllocas.push_back(AI);
|
|
} else {
|
|
++NumUnsafeDynamicAllocas;
|
|
DynamicAllocas.push_back(AI);
|
|
}
|
|
} else if (auto RI = dyn_cast<ReturnInst>(&I)) {
|
|
Returns.push_back(RI);
|
|
} else if (auto CI = dyn_cast<CallInst>(&I)) {
|
|
// setjmps require stack restore.
|
|
if (CI->getCalledFunction() && CI->canReturnTwice())
|
|
StackRestorePoints.push_back(CI);
|
|
} else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
|
|
// Exception landing pads require stack restore.
|
|
StackRestorePoints.push_back(LP);
|
|
} else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::gcroot)
|
|
llvm::report_fatal_error(
|
|
"gcroot intrinsic not compatible with safestack attribute");
|
|
}
|
|
}
|
|
}
|
|
|
|
AllocaInst *
|
|
SafeStack::createStackRestorePoints(Function &F,
|
|
ArrayRef<Instruction *> StackRestorePoints,
|
|
Value *StaticTop, bool NeedDynamicTop) {
|
|
if (StackRestorePoints.empty())
|
|
return nullptr;
|
|
|
|
IRBuilder<> IRB(StaticTop
|
|
? cast<Instruction>(StaticTop)->getNextNode()
|
|
: (Instruction *)F.getEntryBlock().getFirstInsertionPt());
|
|
|
|
// We need the current value of the shadow stack pointer to restore
|
|
// after longjmp or exception catching.
|
|
|
|
// FIXME: On some platforms this could be handled by the longjmp/exception
|
|
// runtime itself.
|
|
|
|
AllocaInst *DynamicTop = nullptr;
|
|
if (NeedDynamicTop)
|
|
// If we also have dynamic alloca's, the stack pointer value changes
|
|
// throughout the function. For now we store it in an alloca.
|
|
DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
|
|
"unsafe_stack_dynamic_ptr");
|
|
|
|
if (!StaticTop)
|
|
// We need the original unsafe stack pointer value, even if there are
|
|
// no unsafe static allocas.
|
|
StaticTop = IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
|
|
|
|
if (NeedDynamicTop)
|
|
IRB.CreateStore(StaticTop, DynamicTop);
|
|
|
|
// Restore current stack pointer after longjmp/exception catch.
|
|
for (Instruction *I : StackRestorePoints) {
|
|
++NumUnsafeStackRestorePoints;
|
|
|
|
IRB.SetInsertPoint(cast<Instruction>(I->getNextNode()));
|
|
Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop;
|
|
IRB.CreateStore(CurrentTop, UnsafeStackPtr);
|
|
}
|
|
|
|
return DynamicTop;
|
|
}
|
|
|
|
Value *
|
|
SafeStack::moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
|
|
ArrayRef<AllocaInst *> StaticAllocas,
|
|
ArrayRef<ReturnInst *> Returns) {
|
|
if (StaticAllocas.empty())
|
|
return nullptr;
|
|
|
|
DIBuilder DIB(*F.getParent());
|
|
|
|
// We explicitly compute and set the unsafe stack layout for all unsafe
|
|
// static alloca instructions. We save the unsafe "base pointer" in the
|
|
// prologue into a local variable and restore it in the epilogue.
|
|
|
|
// Load the current stack pointer (we'll also use it as a base pointer).
|
|
// FIXME: use a dedicated register for it ?
|
|
Instruction *BasePointer =
|
|
IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
|
|
assert(BasePointer->getType() == StackPtrTy);
|
|
|
|
for (ReturnInst *RI : Returns) {
|
|
IRB.SetInsertPoint(RI);
|
|
IRB.CreateStore(BasePointer, UnsafeStackPtr);
|
|
}
|
|
|
|
// Compute maximum alignment among static objects on the unsafe stack.
|
|
unsigned MaxAlignment = 0;
|
|
for (AllocaInst *AI : StaticAllocas) {
|
|
Type *Ty = AI->getAllocatedType();
|
|
unsigned Align =
|
|
std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
|
|
if (Align > MaxAlignment)
|
|
MaxAlignment = Align;
|
|
}
|
|
|
|
if (MaxAlignment > StackAlignment) {
|
|
// Re-align the base pointer according to the max requested alignment.
|
|
assert(isPowerOf2_32(MaxAlignment));
|
|
IRB.SetInsertPoint(cast<Instruction>(BasePointer->getNextNode()));
|
|
BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
|
|
IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
|
|
ConstantInt::get(IntPtrTy, ~uint64_t(MaxAlignment - 1))),
|
|
StackPtrTy));
|
|
}
|
|
|
|
// Allocate space for every unsafe static AllocaInst on the unsafe stack.
|
|
int64_t StaticOffset = 0; // Current stack top.
|
|
for (AllocaInst *AI : StaticAllocas) {
|
|
IRB.SetInsertPoint(AI);
|
|
|
|
auto CArraySize = cast<ConstantInt>(AI->getArraySize());
|
|
Type *Ty = AI->getAllocatedType();
|
|
|
|
uint64_t Size = DL->getTypeAllocSize(Ty) * CArraySize->getZExtValue();
|
|
if (Size == 0)
|
|
Size = 1; // Don't create zero-sized stack objects.
|
|
|
|
// Ensure the object is properly aligned.
|
|
unsigned Align =
|
|
std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
|
|
|
|
// Add alignment.
|
|
// NOTE: we ensure that BasePointer itself is aligned to >= Align.
|
|
StaticOffset += Size;
|
|
StaticOffset = RoundUpToAlignment(StaticOffset, Align);
|
|
|
|
Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
|
|
ConstantInt::get(Int32Ty, -StaticOffset));
|
|
Value *NewAI = IRB.CreateBitCast(Off, AI->getType(), AI->getName());
|
|
if (AI->hasName() && isa<Instruction>(NewAI))
|
|
cast<Instruction>(NewAI)->takeName(AI);
|
|
|
|
// Replace alloc with the new location.
|
|
replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true);
|
|
AI->replaceAllUsesWith(NewAI);
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
// Re-align BasePointer so that our callees would see it aligned as
|
|
// expected.
|
|
// FIXME: no need to update BasePointer in leaf functions.
|
|
StaticOffset = RoundUpToAlignment(StaticOffset, StackAlignment);
|
|
|
|
// Update shadow stack pointer in the function epilogue.
|
|
IRB.SetInsertPoint(cast<Instruction>(BasePointer->getNextNode()));
|
|
|
|
Value *StaticTop =
|
|
IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -StaticOffset),
|
|
"unsafe_stack_static_top");
|
|
IRB.CreateStore(StaticTop, UnsafeStackPtr);
|
|
return StaticTop;
|
|
}
|
|
|
|
void SafeStack::moveDynamicAllocasToUnsafeStack(
|
|
Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
|
|
ArrayRef<AllocaInst *> DynamicAllocas) {
|
|
DIBuilder DIB(*F.getParent());
|
|
|
|
for (AllocaInst *AI : DynamicAllocas) {
|
|
IRBuilder<> IRB(AI);
|
|
|
|
// Compute the new SP value (after AI).
|
|
Value *ArraySize = AI->getArraySize();
|
|
if (ArraySize->getType() != IntPtrTy)
|
|
ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
|
|
|
|
Type *Ty = AI->getAllocatedType();
|
|
uint64_t TySize = DL->getTypeAllocSize(Ty);
|
|
Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
|
|
|
|
Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy);
|
|
SP = IRB.CreateSub(SP, Size);
|
|
|
|
// Align the SP value to satisfy the AllocaInst, type and stack alignments.
|
|
unsigned Align = std::max(
|
|
std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()),
|
|
(unsigned)StackAlignment);
|
|
|
|
assert(isPowerOf2_32(Align));
|
|
Value *NewTop = IRB.CreateIntToPtr(
|
|
IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
|
|
StackPtrTy);
|
|
|
|
// Save the stack pointer.
|
|
IRB.CreateStore(NewTop, UnsafeStackPtr);
|
|
if (DynamicTop)
|
|
IRB.CreateStore(NewTop, DynamicTop);
|
|
|
|
Value *NewAI = IRB.CreateIntToPtr(SP, AI->getType());
|
|
if (AI->hasName() && isa<Instruction>(NewAI))
|
|
NewAI->takeName(AI);
|
|
|
|
replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true);
|
|
AI->replaceAllUsesWith(NewAI);
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
if (!DynamicAllocas.empty()) {
|
|
// Now go through the instructions again, replacing stacksave/stackrestore.
|
|
for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
|
|
Instruction *I = &*(It++);
|
|
auto II = dyn_cast<IntrinsicInst>(I);
|
|
if (!II)
|
|
continue;
|
|
|
|
if (II->getIntrinsicID() == Intrinsic::stacksave) {
|
|
IRBuilder<> IRB(II);
|
|
Instruction *LI = IRB.CreateLoad(UnsafeStackPtr);
|
|
LI->takeName(II);
|
|
II->replaceAllUsesWith(LI);
|
|
II->eraseFromParent();
|
|
} else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
|
|
IRBuilder<> IRB(II);
|
|
Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
|
|
SI->takeName(II);
|
|
assert(II->use_empty());
|
|
II->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SafeStack::runOnFunction(Function &F) {
|
|
DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
|
|
|
|
if (!F.hasFnAttribute(Attribute::SafeStack)) {
|
|
DEBUG(dbgs() << "[SafeStack] safestack is not requested"
|
|
" for this function\n");
|
|
return false;
|
|
}
|
|
|
|
if (F.isDeclaration()) {
|
|
DEBUG(dbgs() << "[SafeStack] function definition"
|
|
" is not available\n");
|
|
return false;
|
|
}
|
|
|
|
auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
TLI = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr;
|
|
|
|
{
|
|
// Make sure the regular stack protector won't run on this function
|
|
// (safestack attribute takes precedence).
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::StackProtect)
|
|
.addAttribute(Attribute::StackProtectReq)
|
|
.addAttribute(Attribute::StackProtectStrong);
|
|
F.removeAttributes(
|
|
AttributeSet::FunctionIndex,
|
|
AttributeSet::get(F.getContext(), AttributeSet::FunctionIndex, B));
|
|
}
|
|
|
|
if (AA->onlyReadsMemory(&F)) {
|
|
// XXX: we don't protect against information leak attacks for now.
|
|
DEBUG(dbgs() << "[SafeStack] function only reads memory\n");
|
|
return false;
|
|
}
|
|
|
|
++NumFunctions;
|
|
|
|
SmallVector<AllocaInst *, 16> StaticAllocas;
|
|
SmallVector<AllocaInst *, 4> DynamicAllocas;
|
|
SmallVector<ReturnInst *, 4> Returns;
|
|
|
|
// Collect all points where stack gets unwound and needs to be restored
|
|
// This is only necessary because the runtime (setjmp and unwind code) is
|
|
// not aware of the unsafe stack and won't unwind/restore it prorerly.
|
|
// To work around this problem without changing the runtime, we insert
|
|
// instrumentation to restore the unsafe stack pointer when necessary.
|
|
SmallVector<Instruction *, 4> StackRestorePoints;
|
|
|
|
// Find all static and dynamic alloca instructions that must be moved to the
|
|
// unsafe stack, all return instructions and stack restore points.
|
|
findInsts(F, StaticAllocas, DynamicAllocas, Returns, StackRestorePoints);
|
|
|
|
if (StaticAllocas.empty() && DynamicAllocas.empty() &&
|
|
StackRestorePoints.empty())
|
|
return false; // Nothing to do in this function.
|
|
|
|
if (!StaticAllocas.empty() || !DynamicAllocas.empty())
|
|
++NumUnsafeStackFunctions; // This function has the unsafe stack.
|
|
|
|
if (!StackRestorePoints.empty())
|
|
++NumUnsafeStackRestorePointsFunctions;
|
|
|
|
IRBuilder<> IRB(F.begin()->getFirstInsertionPt());
|
|
UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F);
|
|
|
|
// The top of the unsafe stack after all unsafe static allocas are allocated.
|
|
Value *StaticTop = moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, Returns);
|
|
|
|
// Safe stack object that stores the current unsafe stack top. It is updated
|
|
// as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
|
|
// This is only needed if we need to restore stack pointer after longjmp
|
|
// or exceptions, and we have dynamic allocations.
|
|
// FIXME: a better alternative might be to store the unsafe stack pointer
|
|
// before setjmp / invoke instructions.
|
|
AllocaInst *DynamicTop = createStackRestorePoints(
|
|
F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
|
|
|
|
// Handle dynamic allocas.
|
|
moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
|
|
DynamicAllocas);
|
|
|
|
DEBUG(dbgs() << "[SafeStack] safestack applied\n");
|
|
return true;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
char SafeStack::ID = 0;
|
|
INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack",
|
|
"Safe Stack instrumentation pass", false, false)
|
|
INITIALIZE_TM_PASS_END(SafeStack, "safe-stack",
|
|
"Safe Stack instrumentation pass", false, false)
|
|
|
|
FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) {
|
|
return new SafeStack(TM);
|
|
}
|