forked from OSchip/llvm-project
290 lines
11 KiB
C++
290 lines
11 KiB
C++
//===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Utility functions for Hexagon specific MCInst queries
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
|
|
#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
|
|
|
|
#include "HexagonMCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
|
|
namespace llvm {
|
|
class HexagonMCChecker;
|
|
class MCContext;
|
|
class MCInstrDesc;
|
|
class MCInstrInfo;
|
|
class MCInst;
|
|
class MCOperand;
|
|
class MCSubtargetInfo;
|
|
namespace HexagonII {
|
|
enum class MemAccessSize;
|
|
}
|
|
class DuplexCandidate {
|
|
public:
|
|
unsigned packetIndexI, packetIndexJ, iClass;
|
|
DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
|
|
: packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
|
|
};
|
|
namespace HexagonMCInstrInfo {
|
|
size_t const innerLoopOffset = 0;
|
|
int64_t const innerLoopMask = 1 << innerLoopOffset;
|
|
|
|
size_t const outerLoopOffset = 1;
|
|
int64_t const outerLoopMask = 1 << outerLoopOffset;
|
|
|
|
// do not reorder memory load/stores by default load/stores are re-ordered
|
|
// and by default loads can be re-ordered
|
|
size_t const memReorderDisabledOffset = 2;
|
|
int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;
|
|
|
|
// allow re-ordering of memory stores by default stores cannot be re-ordered
|
|
size_t const memStoreReorderEnabledOffset = 3;
|
|
int64_t const memStoreReorderEnabledMask = 1 << memStoreReorderEnabledOffset;
|
|
|
|
size_t const bundleInstructionsOffset = 1;
|
|
|
|
void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
|
|
void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
|
|
MCInst const &MCI);
|
|
|
|
// Returns a iterator range of instructions in this bundle
|
|
iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
|
|
|
|
// Returns the number of instructions in the bundle
|
|
size_t bundleSize(MCInst const &MCI);
|
|
|
|
// Put the packet in to canonical form, compound, duplex, pad, and shuffle
|
|
bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
|
|
MCContext &Context, MCInst &MCB,
|
|
HexagonMCChecker *Checker);
|
|
|
|
// Clamp off upper 26 bits of extendable operand for emission
|
|
void clampExtended(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI);
|
|
|
|
MCInst createBundle();
|
|
|
|
// Return the extender for instruction at Index or nullptr if none
|
|
MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
|
|
void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
|
|
MCInst const &MCI, bool MustExtend);
|
|
|
|
// Create a duplex instruction given the two subinsts
|
|
MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
|
|
MCInst const &inst1);
|
|
MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
|
|
MCOperand const &MO);
|
|
|
|
// Convert this instruction in to a duplex subinst
|
|
MCInst deriveSubInst(MCInst const &Inst);
|
|
|
|
// Return the extender for instruction at Index or nullptr if none
|
|
MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
|
|
|
|
// Return memory access size
|
|
HexagonII::MemAccessSize getAccessSize(MCInstrInfo const &MCII,
|
|
MCInst const &MCI);
|
|
|
|
// Return number of bits in the constant extended operand.
|
|
unsigned getBitCount(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return constant extended operand number.
|
|
unsigned short getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return which duplex group this instruction belongs to
|
|
unsigned getDuplexCandidateGroup(MCInst const &MI);
|
|
|
|
// Return a list of all possible instruction duplex combinations
|
|
SmallVector<DuplexCandidate, 8> getDuplexPossibilties(MCInstrInfo const &MCII,
|
|
MCInst const &MCB);
|
|
|
|
// Return the index of the extendable operand
|
|
unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return a reference to the extendable operand
|
|
MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
|
|
MCInst const &MCI);
|
|
|
|
// Return the implicit alignment of the extendable operand
|
|
unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the number of logical bits of the extendable operand
|
|
unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the max value that a constant extendable operand can have
|
|
// without being extended.
|
|
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the min value that a constant extendable operand can have
|
|
// without being extended.
|
|
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return instruction name
|
|
char const *getName(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the operand index for the new value.
|
|
unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the operand that consumes or produces a new value.
|
|
MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
|
|
MCInst const &MCI);
|
|
|
|
int getSubTarget(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the Hexagon ISA class for the insn.
|
|
unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
/// Return the slots used by the insn.
|
|
unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
|
|
MCInst const &MCI);
|
|
|
|
// Does the packet have an extender for the instruction at Index
|
|
bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
|
|
|
|
bool hasImmExt(MCInst const &MCI);
|
|
|
|
// Return whether the instruction is a legal new-value producer.
|
|
bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the instruction at Index
|
|
MCInst const &instruction(MCInst const &MCB, size_t Index);
|
|
|
|
// Returns whether this MCInst is a wellformed bundle
|
|
bool isBundle(MCInst const &MCI);
|
|
|
|
// Return whether the insn is an actual insn.
|
|
bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return the duplex iclass given the two duplex classes
|
|
unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
|
|
|
|
int64_t minConstant(MCInst const &MCI, size_t Index);
|
|
template <unsigned N, unsigned S>
|
|
bool inRange(MCInst const &MCI, size_t Index) {
|
|
return isShiftedUInt<N, S>(minConstant(MCI, Index));
|
|
}
|
|
template <unsigned N, unsigned S>
|
|
bool inSRange(MCInst const &MCI, size_t Index) {
|
|
return isShiftedInt<N, S>(minConstant(MCI, Index));
|
|
}
|
|
template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
|
|
return isUInt<N>(minConstant(MCI, Index));
|
|
}
|
|
|
|
// Return whether the instruction needs to be constant extended.
|
|
bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Is this double register suitable for use in a duplex subinst
|
|
bool isDblRegForSubInst(unsigned Reg);
|
|
|
|
// Is this a duplex instruction
|
|
bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Can these instructions be duplexed
|
|
bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
|
|
|
|
// Can these duplex classes be combine in to a duplex instruction
|
|
bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
|
|
|
|
// Return true if the insn may be extended based on the operand value.
|
|
bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return whether the instruction must be always extended.
|
|
bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
/// Return whether it is a floating-point insn.
|
|
bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Returns whether this instruction is an immediate extender
|
|
bool isImmext(MCInst const &MCI);
|
|
|
|
// Returns whether this bundle is an endloop0
|
|
bool isInnerLoop(MCInst const &MCI);
|
|
|
|
// Is this an integer register
|
|
bool isIntReg(unsigned Reg);
|
|
|
|
// Is this register suitable for use in a duplex subinst
|
|
bool isIntRegForSubInst(unsigned Reg);
|
|
bool isMemReorderDisabled(MCInst const &MCI);
|
|
bool isMemStoreReorderEnabled(MCInst const &MCI);
|
|
|
|
// Return whether the insn is a new-value consumer.
|
|
bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return true if the operand can be constant extended.
|
|
bool isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI,
|
|
unsigned short OperandNum);
|
|
|
|
// Can these two instructions be duplexed
|
|
bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
|
|
bool ExtendedA, MCInst const &MIb, bool ExtendedB,
|
|
bool bisReversable);
|
|
|
|
// Returns whether this bundle is an endloop1
|
|
bool isOuterLoop(MCInst const &MCI);
|
|
|
|
// Return whether this instruction is predicated
|
|
bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return whether the predicate sense is true
|
|
bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Is this a predicate register
|
|
bool isPredReg(unsigned Reg);
|
|
|
|
// Return whether the insn is a prefix.
|
|
bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Return whether the insn is solo, i.e., cannot be in a packet.
|
|
bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
/// Return whether the insn can be packaged only with A and X-type insns.
|
|
bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
/// Return whether the insn can be packaged only with an A-type insn in slot #1.
|
|
bool isSoloAin1(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Pad the bundle with nops to satisfy endloop requirements
|
|
void padEndloop(MCContext &Context, MCInst &MCI);
|
|
|
|
bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
|
|
|
|
// Replace the instructions inside MCB, represented by Candidate
|
|
void replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate);
|
|
|
|
// Marks a bundle as endloop0
|
|
void setInnerLoop(MCInst &MCI);
|
|
void setMemReorderDisabled(MCInst &MCI);
|
|
void setMemStoreReorderEnabled(MCInst &MCI);
|
|
|
|
// Marks a bundle as endloop1
|
|
void setOuterLoop(MCInst &MCI);
|
|
|
|
// Would duplexing this instruction create a requirement to extend
|
|
bool subInstWouldBeExtended(MCInst const &potentialDuplex);
|
|
|
|
// Attempt to find and replace compound pairs
|
|
void tryCompound(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI);
|
|
}
|
|
}
|
|
|
|
#endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
|