llvm-project/lldb/source/Core/FastDemangle.cpp

2367 lines
69 KiB
C++

//===-- FastDemangle.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "lldb/lldb-private.h"
//#define DEBUG_FAILURES 1
//#define DEBUG_SUBSTITUTIONS 1
//#define DEBUG_TEMPLATE_ARGS 1
//#define DEBUG_HIGHWATER 1
//#define DEBUG_REORDERING 1
namespace {
/// @brief Represents the collection of qualifiers on a type
enum Qualifiers {
QualifierNone = 0,
QualifierConst = 1,
QualifierRestrict = 2,
QualifierVolatile = 4,
QualifierReference = 8,
QualifierRValueReference = 16,
QualifierPointer = 32
};
/// @brief Categorizes the recognized operators
enum class OperatorKind {
Unary,
Postfix,
Binary,
Ternary,
Other,
ConversionOperator,
Vendor,
NoMatch
};
/// @brief Represents one of the recognized two-character operator
/// abbreviations used when parsing operators as names and expressions
struct Operator {
const char *name;
OperatorKind kind;
};
/// @brief Represents a range of characters in the output buffer, typically for
/// use with RewriteRange()
struct BufferRange {
int offset;
int length;
};
/// @brief Transient state required while parsing a name
struct NameState {
bool parse_function_params;
bool is_last_generic;
bool has_no_return_type;
BufferRange last_name_range;
};
/// @brief LLDB's fast C++ demangler
///
/// This is an incomplete implementation designed to speed up the demangling
/// process that is often a bottleneck when LLDB stops a process for the first
/// time. Where the implementation doesn't know how to demangle a symbol it
/// fails gracefully to allow the caller to fall back to the existing demangler.
///
/// Over time the full mangling spec should be supported without compromising
/// performance for the most common cases.
class SymbolDemangler {
public:
//----------------------------------------------------
// Public API
//----------------------------------------------------
/// @brief Create a SymbolDemangler
///
/// The newly created demangler allocates and owns scratch memory sufficient
/// for demangling typical symbols. Additional memory will be allocated if
/// needed and managed by the demangler instance.
SymbolDemangler() {
m_buffer = (char *)malloc(8192);
m_buffer_end = m_buffer + 8192;
m_owns_buffer = true;
m_rewrite_ranges = (BufferRange *)malloc(128 * sizeof(BufferRange));
m_rewrite_ranges_size = 128;
m_owns_m_rewrite_ranges = true;
}
/// @brief Create a SymbolDemangler that uses provided scratch memory
///
/// The provided memory is not owned by the demangler. It will be
/// overwritten during calls to GetDemangledCopy() but can be used for
/// other purposes between calls. The provided memory will not be freed
/// when this instance is destroyed.
///
/// If demangling a symbol requires additional space it will be allocated
/// and managed by the demangler instance.
///
/// @param storage_ptr Valid pointer to at least storage_size bytes of
/// space that the SymbolDemangler can use during demangling
///
/// @param storage_size Number of bytes of space available scratch memory
/// referenced by storage_ptr
SymbolDemangler(void *storage_ptr, int storage_size) {
// Use up to 1/8th of the provided space for rewrite ranges
m_rewrite_ranges_size = (storage_size >> 3) / sizeof(BufferRange);
m_rewrite_ranges = (BufferRange *)storage_ptr;
m_owns_m_rewrite_ranges = false;
// Use the rest for the character buffer
m_buffer =
(char *)storage_ptr + m_rewrite_ranges_size * sizeof(BufferRange);
m_buffer_end = (const char *)storage_ptr + storage_size;
m_owns_buffer = false;
}
/// @brief Destroys the SymbolDemangler and deallocates any scratch
/// memory that it owns
~SymbolDemangler() {
if (m_owns_buffer)
free(m_buffer);
if (m_owns_m_rewrite_ranges)
free(m_rewrite_ranges);
}
#ifdef DEBUG_HIGHWATER
int highwater_store = 0;
int highwater_buffer = 0;
#endif
/// @brief Parses the provided mangled name and returns a newly allocated
/// demangling
///
/// @param mangled_name Valid null-terminated C++ mangled name following
/// the Itanium C++ ABI mangling specification as implemented by Clang
///
/// @result Newly allocated null-terminated demangled name when demangling
/// is successful, and nullptr when demangling fails. The caller is
/// responsible for freeing the allocated memory.
char *GetDemangledCopy(const char *mangled_name,
long mangled_name_length = 0) {
if (!ParseMangling(mangled_name, mangled_name_length))
return nullptr;
#ifdef DEBUG_HIGHWATER
int rewrite_count = m_next_substitute_index +
(m_rewrite_ranges_size - 1 - m_next_template_arg_index);
int buffer_size = (int)(m_write_ptr - m_buffer);
if (rewrite_count > highwater_store)
highwater_store = rewrite_count;
if (buffer_size > highwater_buffer)
highwater_buffer = buffer_size;
#endif
int length = (int)(m_write_ptr - m_buffer);
char *copy = (char *)malloc(length + 1);
memcpy(copy, m_buffer, length);
copy[length] = '\0';
return copy;
}
private:
//----------------------------------------------------
// Grow methods
//
// Manage the storage used during demangling
//----------------------------------------------------
void GrowBuffer(long min_growth = 0) {
// By default, double the size of the buffer
long growth = m_buffer_end - m_buffer;
// Avoid growing by more than 1MB at a time
if (growth > 1 << 20)
growth = 1 << 20;
// ... but never grow by less than requested,
// or 1K, whichever is greater
if (min_growth < 1024)
min_growth = 1024;
if (growth < min_growth)
growth = min_growth;
// Allocate the new m_buffer and migrate content
long new_size = (m_buffer_end - m_buffer) + growth;
char *new_buffer = (char *)malloc(new_size);
memcpy(new_buffer, m_buffer, m_write_ptr - m_buffer);
if (m_owns_buffer)
free(m_buffer);
m_owns_buffer = true;
// Update references to the new buffer
m_write_ptr = new_buffer + (m_write_ptr - m_buffer);
m_buffer = new_buffer;
m_buffer_end = m_buffer + new_size;
}
void GrowRewriteRanges() {
// By default, double the size of the array
int growth = m_rewrite_ranges_size;
// Apply reasonable minimum and maximum sizes for growth
if (growth > 128)
growth = 128;
if (growth < 16)
growth = 16;
// Allocate the new array and migrate content
int bytes = (m_rewrite_ranges_size + growth) * sizeof(BufferRange);
BufferRange *new_ranges = (BufferRange *)malloc(bytes);
for (int index = 0; index < m_next_substitute_index; index++) {
new_ranges[index] = m_rewrite_ranges[index];
}
for (int index = m_rewrite_ranges_size - 1;
index > m_next_template_arg_index; index--) {
new_ranges[index + growth] = m_rewrite_ranges[index];
}
if (m_owns_m_rewrite_ranges)
free(m_rewrite_ranges);
m_owns_m_rewrite_ranges = true;
// Update references to the new array
m_rewrite_ranges = new_ranges;
m_rewrite_ranges_size += growth;
m_next_template_arg_index += growth;
}
//----------------------------------------------------
// Range and state management
//----------------------------------------------------
int GetStartCookie() { return (int)(m_write_ptr - m_buffer); }
BufferRange EndRange(int start_cookie) {
return {start_cookie, (int)(m_write_ptr - (m_buffer + start_cookie))};
}
void ReorderRange(BufferRange source_range, int insertion_point_cookie) {
// Ensure there's room the preserve the source range
if (m_write_ptr + source_range.length > m_buffer_end) {
GrowBuffer(m_write_ptr + source_range.length - m_buffer_end);
}
// Reorder the content
memcpy(m_write_ptr, m_buffer + source_range.offset, source_range.length);
memmove(m_buffer + insertion_point_cookie + source_range.length,
m_buffer + insertion_point_cookie,
source_range.offset - insertion_point_cookie);
memcpy(m_buffer + insertion_point_cookie, m_write_ptr, source_range.length);
// Fix up rewritable ranges, covering both substitutions and templates
int index = 0;
while (true) {
if (index == m_next_substitute_index)
index = m_next_template_arg_index + 1;
if (index == m_rewrite_ranges_size)
break;
// Affected ranges are either shuffled forward when after the
// insertion but before the source, or backward when inside the
// source
int candidate_offset = m_rewrite_ranges[index].offset;
if (candidate_offset >= insertion_point_cookie) {
if (candidate_offset < source_range.offset) {
m_rewrite_ranges[index].offset += source_range.length;
} else if (candidate_offset >= source_range.offset) {
m_rewrite_ranges[index].offset -=
(source_range.offset - insertion_point_cookie);
}
}
++index;
}
}
void EndSubstitution(int start_cookie) {
if (m_next_substitute_index == m_next_template_arg_index)
GrowRewriteRanges();
int index = m_next_substitute_index++;
m_rewrite_ranges[index] = EndRange(start_cookie);
#ifdef DEBUG_SUBSTITUTIONS
printf("Saved substitution # %d = %.*s\n", index,
m_rewrite_ranges[index].length, m_buffer + start_cookie);
#endif
}
void EndTemplateArg(int start_cookie) {
if (m_next_substitute_index == m_next_template_arg_index)
GrowRewriteRanges();
int index = m_next_template_arg_index--;
m_rewrite_ranges[index] = EndRange(start_cookie);
#ifdef DEBUG_TEMPLATE_ARGS
printf("Saved template arg # %d = %.*s\n",
m_rewrite_ranges_size - index - 1, m_rewrite_ranges[index].length,
m_buffer + start_cookie);
#endif
}
void ResetTemplateArgs() {
// TODO: this works, but is it the right thing to do?
// Should we push/pop somehow at the call sites?
m_next_template_arg_index = m_rewrite_ranges_size - 1;
}
//----------------------------------------------------
// Write methods
//
// Appends content to the existing output buffer
//----------------------------------------------------
void Write(char character) {
if (m_write_ptr == m_buffer_end)
GrowBuffer();
*m_write_ptr++ = character;
}
void Write(const char *content) { Write(content, strlen(content)); }
void Write(const char *content, long content_length) {
char *end_m_write_ptr = m_write_ptr + content_length;
if (end_m_write_ptr > m_buffer_end) {
if (content >= m_buffer && content < m_buffer_end) {
long offset = content - m_buffer;
GrowBuffer(end_m_write_ptr - m_buffer_end);
content = m_buffer + offset;
} else {
GrowBuffer(end_m_write_ptr - m_buffer_end);
}
end_m_write_ptr = m_write_ptr + content_length;
}
memcpy(m_write_ptr, content, content_length);
m_write_ptr = end_m_write_ptr;
}
#define WRITE(x) Write(x, sizeof(x) - 1)
void WriteTemplateStart() { Write('<'); }
void WriteTemplateEnd() {
// Put a space between terminal > characters when nesting templates
if (m_write_ptr != m_buffer && *(m_write_ptr - 1) == '>')
WRITE(" >");
else
Write('>');
}
void WriteCommaSpace() { WRITE(", "); }
void WriteNamespaceSeparator() { WRITE("::"); }
void WriteStdPrefix() { WRITE("std::"); }
void WriteQualifiers(int qualifiers, bool space_before_reference = true) {
if (qualifiers & QualifierPointer)
Write('*');
if (qualifiers & QualifierConst)
WRITE(" const");
if (qualifiers & QualifierVolatile)
WRITE(" volatile");
if (qualifiers & QualifierRestrict)
WRITE(" restrict");
if (qualifiers & QualifierReference) {
if (space_before_reference)
WRITE(" &");
else
Write('&');
}
if (qualifiers & QualifierRValueReference) {
if (space_before_reference)
WRITE(" &&");
else
WRITE("&&");
}
}
//----------------------------------------------------
// Rewrite methods
//
// Write another copy of content already present
// earlier in the output buffer
//----------------------------------------------------
void RewriteRange(BufferRange range) {
Write(m_buffer + range.offset, range.length);
}
bool RewriteSubstitution(int index) {
if (index < 0 || index >= m_next_substitute_index) {
#ifdef DEBUG_FAILURES
printf("*** Invalid substitution #%d\n", index);
#endif
return false;
}
RewriteRange(m_rewrite_ranges[index]);
return true;
}
bool RewriteTemplateArg(int template_index) {
int index = m_rewrite_ranges_size - 1 - template_index;
if (template_index < 0 || index <= m_next_template_arg_index) {
#ifdef DEBUG_FAILURES
printf("*** Invalid template arg reference #%d\n", template_index);
#endif
return false;
}
RewriteRange(m_rewrite_ranges[index]);
return true;
}
//----------------------------------------------------
// TryParse methods
//
// Provide information with return values instead of
// writing to the output buffer
//
// Values indicating failure guarantee that the pre-
// call m_read_ptr is unchanged
//----------------------------------------------------
int TryParseNumber() {
unsigned char digit = *m_read_ptr - '0';
if (digit > 9)
return -1;
int count = digit;
while (true) {
digit = *++m_read_ptr - '0';
if (digit > 9)
break;
count = count * 10 + digit;
}
return count;
}
int TryParseBase36Number() {
char digit = *m_read_ptr;
int count;
if (digit >= '0' && digit <= '9')
count = digit -= '0';
else if (digit >= 'A' && digit <= 'Z')
count = digit -= ('A' - 10);
else
return -1;
while (true) {
digit = *++m_read_ptr;
if (digit >= '0' && digit <= '9')
digit -= '0';
else if (digit >= 'A' && digit <= 'Z')
digit -= ('A' - 10);
else
break;
count = count * 36 + digit;
}
return count;
}
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// ::= g # __float128
// ::= z # ellipsis
// ::= Dd # IEEE 754r decimal floating point (64 bits)
// ::= De # IEEE 754r decimal floating point (128 bits)
// ::= Df # IEEE 754r decimal floating point (32 bits)
// ::= Dh # IEEE 754r half-precision floating point (16 bits)
// ::= Di # char32_t
// ::= Ds # char16_t
// ::= Da # auto (in dependent new-expressions)
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
// ::= u <source-name> # vendor extended type
const char *TryParseBuiltinType() {
switch (*m_read_ptr++) {
case 'v':
return "void";
case 'w':
return "wchar_t";
case 'b':
return "bool";
case 'c':
return "char";
case 'a':
return "signed char";
case 'h':
return "unsigned char";
case 's':
return "short";
case 't':
return "unsigned short";
case 'i':
return "int";
case 'j':
return "unsigned int";
case 'l':
return "long";
case 'm':
return "unsigned long";
case 'x':
return "long long";
case 'y':
return "unsigned long long";
case 'n':
return "__int128";
case 'o':
return "unsigned __int128";
case 'f':
return "float";
case 'd':
return "double";
case 'e':
return "long double";
case 'g':
return "__float128";
case 'z':
return "...";
case 'D': {
switch (*m_read_ptr++) {
case 'd':
return "decimal64";
case 'e':
return "decimal128";
case 'f':
return "decimal32";
case 'h':
return "decimal16";
case 'i':
return "char32_t";
case 's':
return "char16_t";
case 'a':
return "auto";
case 'c':
return "decltype(auto)";
case 'n':
return "std::nullptr_t";
default:
--m_read_ptr;
}
}
}
--m_read_ptr;
return nullptr;
}
// <operator-name>
// ::= aa # &&
// ::= ad # & (unary)
// ::= an # &
// ::= aN # &=
// ::= aS # =
// ::= cl # ()
// ::= cm # ,
// ::= co # ~
// ::= da # delete[]
// ::= de # * (unary)
// ::= dl # delete
// ::= dv # /
// ::= dV # /=
// ::= eo # ^
// ::= eO # ^=
// ::= eq # ==
// ::= ge # >=
// ::= gt # >
// ::= ix # []
// ::= le # <=
// ::= ls # <<
// ::= lS # <<=
// ::= lt # <
// ::= mi # -
// ::= mI # -=
// ::= ml # *
// ::= mL # *=
// ::= mm # -- (postfix in <expression> context)
// ::= na # new[]
// ::= ne # !=
// ::= ng # - (unary)
// ::= nt # !
// ::= nw # new
// ::= oo # ||
// ::= or # |
// ::= oR # |=
// ::= pm # ->*
// ::= pl # +
// ::= pL # +=
// ::= pp # ++ (postfix in <expression> context)
// ::= ps # + (unary)
// ::= pt # ->
// ::= qu # ?
// ::= rm # %
// ::= rM # %=
// ::= rs # >>
// ::= rS # >>=
// ::= cv <type> # (cast)
// ::= v <digit> <source-name> # vendor extended
// operator
Operator TryParseOperator() {
switch (*m_read_ptr++) {
case 'a':
switch (*m_read_ptr++) {
case 'a':
return {"&&", OperatorKind::Binary};
case 'd':
return {"&", OperatorKind::Unary};
case 'n':
return {"&", OperatorKind::Binary};
case 'N':
return {"&=", OperatorKind::Binary};
case 'S':
return {"=", OperatorKind::Binary};
}
--m_read_ptr;
break;
case 'c':
switch (*m_read_ptr++) {
case 'l':
return {"()", OperatorKind::Other};
case 'm':
return {",", OperatorKind::Other};
case 'o':
return {"~", OperatorKind::Unary};
case 'v':
return {nullptr, OperatorKind::ConversionOperator};
}
--m_read_ptr;
break;
case 'd':
switch (*m_read_ptr++) {
case 'a':
return {" delete[]", OperatorKind::Other};
case 'e':
return {"*", OperatorKind::Unary};
case 'l':
return {" delete", OperatorKind::Other};
case 'v':
return {"/", OperatorKind::Binary};
case 'V':
return {"/=", OperatorKind::Binary};
}
--m_read_ptr;
break;
case 'e':
switch (*m_read_ptr++) {
case 'o':
return {"^", OperatorKind::Binary};
case 'O':
return {"^=", OperatorKind::Binary};
case 'q':
return {"==", OperatorKind::Binary};
}
--m_read_ptr;
break;
case 'g':
switch (*m_read_ptr++) {
case 'e':
return {">=", OperatorKind::Binary};
case 't':
return {">", OperatorKind::Binary};
}
--m_read_ptr;
break;
case 'i':
switch (*m_read_ptr++) {
case 'x':
return {"[]", OperatorKind::Other};
}
--m_read_ptr;
break;
case 'l':
switch (*m_read_ptr++) {
case 'e':
return {"<=", OperatorKind::Binary};
case 's':
return {"<<", OperatorKind::Binary};
case 'S':
return {"<<=", OperatorKind::Binary};
case 't':
return {"<", OperatorKind::Binary};
// case 'i': return { "?", OperatorKind::Binary };
}
--m_read_ptr;
break;
case 'm':
switch (*m_read_ptr++) {
case 'i':
return {"-", OperatorKind::Binary};
case 'I':
return {"-=", OperatorKind::Binary};
case 'l':
return {"*", OperatorKind::Binary};
case 'L':
return {"*=", OperatorKind::Binary};
case 'm':
return {"--", OperatorKind::Postfix};
}
--m_read_ptr;
break;
case 'n':
switch (*m_read_ptr++) {
case 'a':
return {" new[]", OperatorKind::Other};
case 'e':
return {"!=", OperatorKind::Binary};
case 'g':
return {"-", OperatorKind::Unary};
case 't':
return {"!", OperatorKind::Unary};
case 'w':
return {" new", OperatorKind::Other};
}
--m_read_ptr;
break;
case 'o':
switch (*m_read_ptr++) {
case 'o':
return {"||", OperatorKind::Binary};
case 'r':
return {"|", OperatorKind::Binary};
case 'R':
return {"|=", OperatorKind::Binary};
}
--m_read_ptr;
break;
case 'p':
switch (*m_read_ptr++) {
case 'm':
return {"->*", OperatorKind::Binary};
case 's':
return {"+", OperatorKind::Unary};
case 'l':
return {"+", OperatorKind::Binary};
case 'L':
return {"+=", OperatorKind::Binary};
case 'p':
return {"++", OperatorKind::Postfix};
case 't':
return {"->", OperatorKind::Binary};
}
--m_read_ptr;
break;
case 'q':
switch (*m_read_ptr++) {
case 'u':
return {"?", OperatorKind::Ternary};
}
--m_read_ptr;
break;
case 'r':
switch (*m_read_ptr++) {
case 'm':
return {"%", OperatorKind::Binary};
case 'M':
return {"%=", OperatorKind::Binary};
case 's':
return {">>", OperatorKind::Binary};
case 'S':
return {">=", OperatorKind::Binary};
}
--m_read_ptr;
break;
case 'v':
char digit = *m_read_ptr;
if (digit >= '0' && digit <= '9') {
m_read_ptr++;
return {nullptr, OperatorKind::Vendor};
}
--m_read_ptr;
break;
}
--m_read_ptr;
return {nullptr, OperatorKind::NoMatch};
}
// <CV-qualifiers> ::= [r] [V] [K]
// <ref-qualifier> ::= R # & ref-qualifier
// <ref-qualifier> ::= O # && ref-qualifier
int TryParseQualifiers(bool allow_cv, bool allow_ro) {
int qualifiers = QualifierNone;
char next = *m_read_ptr;
if (allow_cv) {
if (next == 'r') // restrict
{
qualifiers |= QualifierRestrict;
next = *++m_read_ptr;
}
if (next == 'V') // volatile
{
qualifiers |= QualifierVolatile;
next = *++m_read_ptr;
}
if (next == 'K') // const
{
qualifiers |= QualifierConst;
next = *++m_read_ptr;
}
}
if (allow_ro) {
if (next == 'R') {
++m_read_ptr;
qualifiers |= QualifierReference;
} else if (next == 'O') {
++m_read_ptr;
qualifiers |= QualifierRValueReference;
}
}
return qualifiers;
}
// <discriminator> := _ <non-negative number> # when number < 10
// := __ <non-negative number> _ # when number >= 10
// extension := decimal-digit+
int TryParseDiscriminator() {
const char *discriminator_start = m_read_ptr;
// Test the extension first, since it's what Clang uses
int discriminator_value = TryParseNumber();
if (discriminator_value != -1)
return discriminator_value;
char next = *m_read_ptr;
if (next == '_') {
next = *++m_read_ptr;
if (next == '_') {
++m_read_ptr;
discriminator_value = TryParseNumber();
if (discriminator_value != -1 && *m_read_ptr++ != '_') {
return discriminator_value;
}
} else if (next >= '0' && next <= '9') {
++m_read_ptr;
return next - '0';
}
}
// Not a valid discriminator
m_read_ptr = discriminator_start;
return -1;
}
//----------------------------------------------------
// Parse methods
//
// Consume input starting from m_read_ptr and produce
// buffered output at m_write_ptr
//
// Failures return false and may leave m_read_ptr in an
// indeterminate state
//----------------------------------------------------
bool Parse(char character) {
if (*m_read_ptr++ == character)
return true;
#ifdef DEBUG_FAILURES
printf("*** Expected '%c'\n", character);
#endif
return false;
}
// <number> ::= [n] <non-negative decimal integer>
bool ParseNumber(bool allow_negative = false) {
if (allow_negative && *m_read_ptr == 'n') {
Write('-');
++m_read_ptr;
}
const char *before_digits = m_read_ptr;
while (true) {
unsigned char digit = *m_read_ptr - '0';
if (digit > 9)
break;
++m_read_ptr;
}
if (int digit_count = (int)(m_read_ptr - before_digits)) {
Write(before_digits, digit_count);
return true;
}
#ifdef DEBUG_FAILURES
printf("*** Expected number\n");
#endif
return false;
}
// <substitution> ::= S <seq-id> _
// ::= S_
// <substitution> ::= Sa # ::std::allocator
// <substitution> ::= Sb # ::std::basic_string
// <substitution> ::= Ss # ::std::basic_string < char,
// ::std::char_traits<char>,
// ::std::allocator<char> >
// <substitution> ::= Si # ::std::basic_istream<char, std::char_traits<char>
// >
// <substitution> ::= So # ::std::basic_ostream<char, std::char_traits<char>
// >
// <substitution> ::= Sd # ::std::basic_iostream<char, std::char_traits<char>
// >
bool ParseSubstitution() {
const char *substitution;
switch (*m_read_ptr) {
case 'a':
substitution = "std::allocator";
break;
case 'b':
substitution = "std::basic_string";
break;
case 's':
substitution = "std::string";
break;
case 'i':
substitution = "std::istream";
break;
case 'o':
substitution = "std::ostream";
break;
case 'd':
substitution = "std::iostream";
break;
default:
// A failed attempt to parse a number will return -1 which turns out to be
// perfect here as S_ is the first substitution, S0_ the next and so forth
int substitution_index = TryParseBase36Number();
if (*m_read_ptr++ != '_') {
#ifdef DEBUG_FAILURES
printf("*** Expected terminal _ in substitution\n");
#endif
return false;
}
return RewriteSubstitution(substitution_index + 1);
}
Write(substitution);
++m_read_ptr;
return true;
}
// <function-type> ::= F [Y] <bare-function-type> [<ref-qualifier>] E
//
// <bare-function-type> ::= <signature type>+ # types are possible return
// type, then parameter types
bool ParseFunctionType(int inner_qualifiers = QualifierNone) {
#ifdef DEBUG_FAILURES
printf("*** Function types not supported\n");
#endif
// TODO: first steps toward an implementation follow, but they're far
// from complete. Function types tend to bracket other types eg:
// int (*)() when used as the type for "name" becomes int (*name)().
// This makes substitution et al ... interesting.
return false;
#if 0 // TODO
if (*m_read_ptr == 'Y')
++m_read_ptr;
int return_type_start_cookie = GetStartCookie();
if (!ParseType())
return false;
Write(' ');
int insert_cookie = GetStartCookie();
Write('(');
bool first_param = true;
int qualifiers = QualifierNone;
while (true)
{
switch (*m_read_ptr)
{
case 'E':
++m_read_ptr;
Write(')');
break;
case 'v':
++m_read_ptr;
continue;
case 'R':
case 'O':
if (*(m_read_ptr + 1) == 'E')
{
qualifiers = TryParseQualifiers (false, true);
Parse('E');
break;
}
// fallthrough
default:
{
if (first_param)
first_param = false;
else WriteCommaSpace();
if (!ParseType())
return false;
continue;
}
}
break;
}
if (qualifiers)
{
WriteQualifiers (qualifiers);
EndSubstitution (return_type_start_cookie);
}
if (inner_qualifiers)
{
int qualifier_start_cookie = GetStartCookie();
Write ('(');
WriteQualifiers (inner_qualifiers);
Write (')');
ReorderRange (EndRange (qualifier_start_cookie), insert_cookie);
}
return true;
#endif // TODO
}
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
bool ParseArrayType(int qualifiers = QualifierNone) {
#ifdef DEBUG_FAILURES
printf("*** Array type unsupported\n");
#endif
// TODO: We fail horribly when recalling these as substitutions or
// templates and trying to constify them eg:
// _ZN4llvm2cl5applyIA28_cNS0_3optIbLb0ENS0_6parserIbEEEEEEvRKT_PT0_
//
// TODO: Chances are we don't do any better with references and pointers
// that should be type (&) [] instead of type & []
return false;
#if 0 // TODO
if (*m_read_ptr == '_')
{
++m_read_ptr;
if (!ParseType())
return false;
if (qualifiers)
WriteQualifiers(qualifiers);
WRITE(" []");
return true;
}
else
{
const char *before_digits = m_read_ptr;
if (TryParseNumber() != -1)
{
const char *after_digits = m_read_ptr;
if (!Parse('_'))
return false;
if (!ParseType())
return false;
if (qualifiers)
WriteQualifiers(qualifiers);
Write(' ');
Write('[');
Write(before_digits, after_digits - before_digits);
}
else
{
int type_insertion_cookie = GetStartCookie();
if (!ParseExpression())
return false;
if (!Parse('_'))
return false;
int type_start_cookie = GetStartCookie();
if (!ParseType())
return false;
if (qualifiers)
WriteQualifiers(qualifiers);
Write(' ');
Write('[');
ReorderRange (EndRange (type_start_cookie), type_insertion_cookie);
}
Write(']');
return true;
}
#endif // TODO
}
// <pointer-to-member-type> ::= M <class type> <member type>
// TODO: Determine how to handle pointers to function members correctly,
// currently not an issue because we don't have function types at all...
bool ParsePointerToMemberType() {
int insertion_cookie = GetStartCookie();
Write(' ');
if (!ParseType())
return false;
WRITE("::*");
int type_cookie = GetStartCookie();
if (!ParseType())
return false;
ReorderRange(EndRange(type_cookie), insertion_cookie);
return true;
}
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
bool ParseTemplateParam() {
int count = TryParseNumber();
if (!Parse('_'))
return false;
// When no number is present we get -1, which is convenient since
// T_ is the zeroth element T0_ is element 1, and so on
return RewriteTemplateArg(count + 1);
}
// <type> ::= <builtin-type>
// ::= <function-type>
// ::= <class-enum-type>
// ::= <array-type>
// ::= <pointer-to-member-type>
// ::= <template-param>
// ::= <template-template-param> <template-args>
// ::= <decltype>
// ::= <substitution>
// ::= <CV-qualifiers> <type>
// ::= P <type> # pointer-to
// ::= R <type> # reference-to
// ::= O <type> # rvalue reference-to (C++0x)
// ::= C <type> # complex pair (C 2000)
// ::= G <type> # imaginary (C 2000)
// ::= Dp <type> # pack expansion (C++0x)
// ::= U <source-name> <type> # vendor extended type qualifier
// extension := U <objc-name> <objc-type> # objc-type<identifier>
// extension := <vector-type> # <vector-type> starts with Dv
// <objc-name> ::= <k0 number> objcproto <k1 number> <identifier> # k0 = 9 +
// <number of digits in k1> + k1
// <objc-type> := <source-name> # PU<11+>objcproto 11objc_object<source-name>
// 11objc_object -> id<source-name>
bool ParseType() {
#ifdef DEBUG_FAILURES
const char *failed_type = m_read_ptr;
#endif
int type_start_cookie = GetStartCookie();
bool suppress_substitution = false;
int qualifiers = TryParseQualifiers(true, false);
switch (*m_read_ptr) {
case 'D':
++m_read_ptr;
switch (*m_read_ptr++) {
case 'p':
if (!ParseType())
return false;
break;
case 'T':
case 't':
case 'v':
default:
#ifdef DEBUG_FAILURES
printf("*** Unsupported type: %.3s\n", failed_type);
#endif
return false;
}
break;
case 'T':
++m_read_ptr;
if (!ParseTemplateParam())
return false;
break;
case 'M':
++m_read_ptr;
if (!ParsePointerToMemberType())
return false;
break;
case 'A':
++m_read_ptr;
if (!ParseArrayType())
return false;
break;
case 'F':
++m_read_ptr;
if (!ParseFunctionType())
return false;
break;
case 'S':
if (*++m_read_ptr == 't') {
++m_read_ptr;
WriteStdPrefix();
if (!ParseName())
return false;
} else {
suppress_substitution = true;
if (!ParseSubstitution())
return false;
}
break;
case 'P': {
switch (*++m_read_ptr) {
case 'F':
++m_read_ptr;
if (!ParseFunctionType(QualifierPointer))
return false;
break;
default:
if (!ParseType())
return false;
Write('*');
break;
}
break;
}
case 'R': {
++m_read_ptr;
if (!ParseType())
return false;
Write('&');
break;
}
case 'O': {
++m_read_ptr;
if (!ParseType())
return false;
Write('&');
Write('&');
break;
}
case 'C':
case 'G':
case 'U':
#ifdef DEBUG_FAILURES
printf("*** Unsupported type: %.3s\n", failed_type);
#endif
return false;
// Test for common cases to avoid TryParseBuiltinType() overhead
case 'N':
case 'Z':
case 'L':
if (!ParseName())
return false;
break;
default:
if (const char *builtin = TryParseBuiltinType()) {
Write(builtin);
suppress_substitution = true;
} else {
if (!ParseName())
return false;
}
break;
}
// Allow base substitutions to be suppressed, but always record
// substitutions for the qualified variant
if (!suppress_substitution)
EndSubstitution(type_start_cookie);
if (qualifiers) {
WriteQualifiers(qualifiers, false);
EndSubstitution(type_start_cookie);
}
return true;
}
// <unnamed-type-name> ::= Ut [ <nonnegative number> ] _
// ::= <closure-type-name>
//
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
//
// <lambda-sig> ::= <parameter type>+ # Parameter types or "v" if the lambda
// has no parameters
bool ParseUnnamedTypeName(NameState &name_state) {
switch (*m_read_ptr++) {
case 't': {
int cookie = GetStartCookie();
WRITE("'unnamed");
const char *before_digits = m_read_ptr;
if (TryParseNumber() != -1)
Write(before_digits, m_read_ptr - before_digits);
if (!Parse('_'))
return false;
Write('\'');
name_state.last_name_range = EndRange(cookie);
return true;
}
case 'b': {
int cookie = GetStartCookie();
WRITE("'block");
const char *before_digits = m_read_ptr;
if (TryParseNumber() != -1)
Write(before_digits, m_read_ptr - before_digits);
if (!Parse('_'))
return false;
Write('\'');
name_state.last_name_range = EndRange(cookie);
return true;
}
case 'l':
#ifdef DEBUG_FAILURES
printf("*** Lambda type names unsupported\n");
#endif
return false;
}
#ifdef DEBUG_FAILURES
printf("*** Unknown unnamed type %.3s\n", m_read_ptr - 2);
#endif
return false;
}
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
bool ParseCtor(NameState &name_state) {
char next = *m_read_ptr;
if (next == '1' || next == '2' || next == '3' || next == '5') {
RewriteRange(name_state.last_name_range);
name_state.has_no_return_type = true;
++m_read_ptr;
return true;
}
#ifdef DEBUG_FAILURES
printf("*** Broken constructor\n");
#endif
return false;
}
// <ctor-dtor-name> ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
bool ParseDtor(NameState &name_state) {
char next = *m_read_ptr;
if (next == '0' || next == '1' || next == '2' || next == '5') {
Write('~');
RewriteRange(name_state.last_name_range);
name_state.has_no_return_type = true;
++m_read_ptr;
return true;
}
#ifdef DEBUG_FAILURES
printf("*** Broken destructor\n");
#endif
return false;
}
// See TryParseOperator()
bool ParseOperatorName(NameState &name_state) {
#ifdef DEBUG_FAILURES
const char *operator_ptr = m_read_ptr;
#endif
Operator parsed_operator = TryParseOperator();
if (parsed_operator.name) {
WRITE("operator");
Write(parsed_operator.name);
return true;
}
// Handle special operators
switch (parsed_operator.kind) {
case OperatorKind::Vendor:
WRITE("operator ");
return ParseSourceName();
case OperatorKind::ConversionOperator:
ResetTemplateArgs();
name_state.has_no_return_type = true;
WRITE("operator ");
return ParseType();
default:
#ifdef DEBUG_FAILURES
printf("*** Unknown operator: %.2s\n", operator_ptr);
#endif
return false;
}
}
// <source-name> ::= <positive length number> <identifier>
bool ParseSourceName() {
int count = TryParseNumber();
if (count == -1) {
#ifdef DEBUG_FAILURES
printf("*** Malformed source name, missing length count\n");
#endif
return false;
}
const char *next_m_read_ptr = m_read_ptr + count;
if (next_m_read_ptr > m_read_end) {
#ifdef DEBUG_FAILURES
printf("*** Malformed source name, premature termination\n");
#endif
return false;
}
if (count >= 10 && strncmp(m_read_ptr, "_GLOBAL__N", 10) == 0)
WRITE("(anonymous namespace)");
else
Write(m_read_ptr, count);
m_read_ptr = next_m_read_ptr;
return true;
}
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
// ::= <unnamed-type-name>
bool ParseUnqualifiedName(NameState &name_state) {
// Note that these are detected directly in ParseNestedName for
// performance rather than switching on the same options twice
char next = *m_read_ptr;
switch (next) {
case 'C':
++m_read_ptr;
return ParseCtor(name_state);
case 'D':
++m_read_ptr;
return ParseDtor(name_state);
case 'U':
++m_read_ptr;
return ParseUnnamedTypeName(name_state);
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
int name_start_cookie = GetStartCookie();
if (!ParseSourceName())
return false;
name_state.last_name_range = EndRange(name_start_cookie);
return true;
}
default:
return ParseOperatorName(name_state);
};
}
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
// extension ::= StL<unqualified-name>
bool ParseUnscopedName(NameState &name_state) {
if (*m_read_ptr == 'S' && *(m_read_ptr + 1) == 't') {
WriteStdPrefix();
if (*(m_read_ptr += 2) == 'L')
++m_read_ptr;
}
return ParseUnqualifiedName(name_state);
}
bool ParseIntegerLiteral(const char *prefix, const char *suffix,
bool allow_negative) {
if (prefix)
Write(prefix);
if (!ParseNumber(allow_negative))
return false;
if (suffix)
Write(suffix);
return Parse('E');
}
bool ParseBooleanLiteral() {
switch (*m_read_ptr++) {
case '0':
WRITE("false");
break;
case '1':
WRITE("true");
break;
default:
#ifdef DEBUG_FAILURES
printf("*** Boolean literal not 0 or 1\n");
#endif
return false;
}
return Parse('E');
}
// <expr-primary> ::= L <type> <value number> E #
// integer literal
// ::= L <type> <value float> E #
// floating literal
// ::= L <string type> E #
// string literal
// ::= L <nullptr type> E #
// nullptr literal (i.e., "LDnE")
// ::= L <type> <real-part float> _ <imag-part float> E #
// complex floating point literal (C 2000)
// ::= L <mangled-name> E #
// external name
bool ParseExpressionPrimary() {
switch (*m_read_ptr++) {
case 'b':
return ParseBooleanLiteral();
case 'x':
return ParseIntegerLiteral(nullptr, "ll", true);
case 'l':
return ParseIntegerLiteral(nullptr, "l", true);
case 'i':
return ParseIntegerLiteral(nullptr, nullptr, true);
case 'n':
return ParseIntegerLiteral("(__int128)", nullptr, true);
case 'j':
return ParseIntegerLiteral(nullptr, "u", false);
case 'm':
return ParseIntegerLiteral(nullptr, "ul", false);
case 'y':
return ParseIntegerLiteral(nullptr, "ull", false);
case 'o':
return ParseIntegerLiteral("(unsigned __int128)", nullptr, false);
case '_':
if (*m_read_ptr++ == 'Z') {
if (!ParseEncoding())
return false;
return Parse('E');
}
--m_read_ptr;
LLVM_FALLTHROUGH;
case 'w':
case 'c':
case 'a':
case 'h':
case 's':
case 't':
case 'f':
case 'd':
case 'e':
#ifdef DEBUG_FAILURES
printf("*** Unsupported primary expression %.5s\n", m_read_ptr - 1);
#endif
return false;
case 'T':
// Invalid mangled name per
// http://sourcerytools.com/pipermail/cxx-abi-dev/2011-August/002422.html
#ifdef DEBUG_FAILURES
printf("*** Invalid primary expr encoding\n");
#endif
return false;
default:
--m_read_ptr;
Write('(');
if (!ParseType())
return false;
Write(')');
if (!ParseNumber())
return false;
return Parse('E');
}
}
// <unresolved-type> ::= <template-param>
// ::= <decltype>
// ::= <substitution>
bool ParseUnresolvedType() {
int type_start_cookie = GetStartCookie();
switch (*m_read_ptr++) {
case 'T':
if (!ParseTemplateParam())
return false;
EndSubstitution(type_start_cookie);
return true;
case 'S': {
if (*m_read_ptr != 't')
return ParseSubstitution();
++m_read_ptr;
WriteStdPrefix();
NameState type_name = {};
if (!ParseUnqualifiedName(type_name))
return false;
EndSubstitution(type_start_cookie);
return true;
}
case 'D':
default:
#ifdef DEBUG_FAILURES
printf("*** Unsupported unqualified type: %3s\n", m_read_ptr - 1);
#endif
return false;
}
}
// <base-unresolved-name> ::= <simple-id> #
// unresolved name
// extension ::= <operator-name> #
// unresolved operator-function-id
// extension ::= <operator-name> <template-args> #
// unresolved operator template-id
// ::= on <operator-name> #
// unresolved operator-function-id
// ::= on <operator-name> <template-args> #
// unresolved operator template-id
// ::= dn <destructor-name> #
// destructor or pseudo-destructor;
// #
// e.g.
// ~X
// or
// ~X<N-1>
bool ParseBaseUnresolvedName() {
#ifdef DEBUG_FAILURES
printf("*** Base unresolved name unsupported\n");
#endif
return false;
}
// <unresolved-name>
// extension ::= srN <unresolved-type> [<template-args>]
// <unresolved-qualifier-level>* E <base-unresolved-name>
// ::= [gs] <base-unresolved-name> # x
// or (with "gs") ::x
// ::= [gs] sr <unresolved-qualifier-level>+ E
// <base-unresolved-name>
// #
// A::x,
// N::y,
// A<T>::z;
// "gs"
// means
// leading
// "::"
// ::= sr <unresolved-type> <base-unresolved-name> #
// T::x / decltype(p)::x
// extension ::= sr <unresolved-type> <template-args>
// <base-unresolved-name>
// #
// T::N::x
// /decltype(p)::N::x
// (ignored) ::= srN <unresolved-type> <unresolved-qualifier-level>+
// E <base-unresolved-name>
bool ParseUnresolvedName() {
#ifdef DEBUG_FAILURES
printf("*** Unresolved names not supported\n");
#endif
// TODO: grammar for all of this seems unclear...
return false;
#if 0 // TODO
if (*m_read_ptr == 'g' && *(m_read_ptr + 1) == 's')
{
m_read_ptr += 2;
WriteNamespaceSeparator();
}
#endif // TODO
}
// <expression> ::= <unary operator-name> <expression>
// ::= <binary operator-name> <expression> <expression>
// ::= <ternary operator-name> <expression> <expression>
// <expression>
// ::= cl <expression>+ E #
// call
// ::= cv <type> <expression> #
// conversion with one argument
// ::= cv <type> _ <expression>* E #
// conversion with a different number of arguments
// ::= [gs] nw <expression>* _ <type> E # new
// (expr-list) type
// ::= [gs] nw <expression>* _ <type> <initializer> # new
// (expr-list) type (init)
// ::= [gs] na <expression>* _ <type> E #
// new[] (expr-list) type
// ::= [gs] na <expression>* _ <type> <initializer> #
// new[] (expr-list) type (init)
// ::= [gs] dl <expression> #
// delete expression
// ::= [gs] da <expression> #
// delete[] expression
// ::= pp_ <expression> #
// prefix ++
// ::= mm_ <expression> #
// prefix --
// ::= ti <type> #
// typeid (type)
// ::= te <expression> #
// typeid (expression)
// ::= dc <type> <expression> #
// dynamic_cast<type> (expression)
// ::= sc <type> <expression> #
// static_cast<type> (expression)
// ::= cc <type> <expression> #
// const_cast<type> (expression)
// ::= rc <type> <expression> #
// reinterpret_cast<type> (expression)
// ::= st <type> #
// sizeof (a type)
// ::= sz <expression> #
// sizeof (an expression)
// ::= at <type> #
// alignof (a type)
// ::= az <expression> #
// alignof (an expression)
// ::= nx <expression> #
// noexcept (expression)
// ::= <template-param>
// ::= <function-param>
// ::= dt <expression> <unresolved-name> #
// expr.name
// ::= pt <expression> <unresolved-name> #
// expr->name
// ::= ds <expression> <expression> #
// expr.*expr
// ::= sZ <template-param> #
// size of a parameter pack
// ::= sZ <function-param> #
// size of a function parameter pack
// ::= sp <expression> #
// pack expansion
// ::= tw <expression> #
// throw expression
// ::= tr #
// throw with no operand (rethrow)
// ::= <unresolved-name> #
// f(p), N::f(p), ::f(p),
// #
// freestanding
// dependent
// name
// (e.g.,
// T::x),
// #
// objectless
// nonstatic
// member
// reference
// ::= <expr-primary>
bool ParseExpression() {
Operator expression_operator = TryParseOperator();
switch (expression_operator.kind) {
case OperatorKind::Unary:
Write(expression_operator.name);
Write('(');
if (!ParseExpression())
return false;
Write(')');
return true;
case OperatorKind::Binary:
if (!ParseExpression())
return false;
Write(expression_operator.name);
return ParseExpression();
case OperatorKind::Ternary:
if (!ParseExpression())
return false;
Write('?');
if (!ParseExpression())
return false;
Write(':');
return ParseExpression();
case OperatorKind::NoMatch:
break;
case OperatorKind::Other:
default:
#ifdef DEBUG_FAILURES
printf("*** Unsupported operator: %s\n", expression_operator.name);
#endif
return false;
}
switch (*m_read_ptr++) {
case 'T':
return ParseTemplateParam();
case 'L':
return ParseExpressionPrimary();
case 's':
if (*m_read_ptr++ == 'r')
return ParseUnresolvedName();
--m_read_ptr;
LLVM_FALLTHROUGH;
default:
return ParseExpressionPrimary();
}
}
// <template-arg> ::= <type> #
// type or template
// ::= X <expression> E #
// expression
// ::= <expr-primary> #
// simple expressions
// ::= J <template-arg>* E #
// argument pack
// ::= LZ <encoding> E #
// extension
bool ParseTemplateArg() {
switch (*m_read_ptr) {
case 'J':
#ifdef DEBUG_FAILURES
printf("*** Template argument packs unsupported\n");
#endif
return false;
case 'X':
++m_read_ptr;
if (!ParseExpression())
return false;
return Parse('E');
case 'L':
++m_read_ptr;
return ParseExpressionPrimary();
default:
return ParseType();
}
}
// <template-args> ::= I <template-arg>* E
// extension, the abi says <template-arg>+
bool ParseTemplateArgs(bool record_template_args = false) {
if (record_template_args)
ResetTemplateArgs();
bool first_arg = true;
while (*m_read_ptr != 'E') {
if (first_arg)
first_arg = false;
else
WriteCommaSpace();
int template_start_cookie = GetStartCookie();
if (!ParseTemplateArg())
return false;
if (record_template_args)
EndTemplateArg(template_start_cookie);
}
++m_read_ptr;
return true;
}
// <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
// <unqualified-name> E
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
// <template-args> E
//
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= <decltype>
// ::= # empty
// ::= <substitution>
// ::= <prefix> <data-member-prefix>
// extension ::= L
//
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
//
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
// ::= <unnamed-type-name>
bool ParseNestedName(NameState &name_state,
bool parse_discriminator = false) {
int qualifiers = TryParseQualifiers(true, true);
bool first_part = true;
bool suppress_substitution = true;
int name_start_cookie = GetStartCookie();
while (true) {
char next = *m_read_ptr;
if (next == 'E') {
++m_read_ptr;
break;
}
// Record a substitution candidate for all prefixes, but not the full name
if (suppress_substitution)
suppress_substitution = false;
else
EndSubstitution(name_start_cookie);
if (next == 'I') {
++m_read_ptr;
name_state.is_last_generic = true;
WriteTemplateStart();
if (!ParseTemplateArgs(name_state.parse_function_params))
return false;
WriteTemplateEnd();
continue;
}
if (first_part)
first_part = false;
else
WriteNamespaceSeparator();
name_state.is_last_generic = false;
switch (next) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
int name_start_cookie = GetStartCookie();
if (!ParseSourceName())
return false;
name_state.last_name_range = EndRange(name_start_cookie);
continue;
}
case 'S':
if (*++m_read_ptr == 't') {
WriteStdPrefix();
++m_read_ptr;
if (!ParseUnqualifiedName(name_state))
return false;
} else {
if (!ParseSubstitution())
return false;
suppress_substitution = true;
}
continue;
case 'T':
++m_read_ptr;
if (!ParseTemplateParam())
return false;
continue;
case 'C':
++m_read_ptr;
if (!ParseCtor(name_state))
return false;
continue;
case 'D': {
switch (*(m_read_ptr + 1)) {
case 't':
case 'T':
#ifdef DEBUG_FAILURES
printf("*** Decltype unsupported\n");
#endif
return false;
}
++m_read_ptr;
if (!ParseDtor(name_state))
return false;
continue;
}
case 'U':
++m_read_ptr;
if (!ParseUnnamedTypeName(name_state))
return false;
continue;
case 'L':
++m_read_ptr;
if (!ParseUnqualifiedName(name_state))
return false;
continue;
default:
if (!ParseOperatorName(name_state))
return false;
}
}
if (parse_discriminator)
TryParseDiscriminator();
if (name_state.parse_function_params &&
!ParseFunctionArgs(name_state, name_start_cookie)) {
return false;
}
if (qualifiers)
WriteQualifiers(qualifiers);
return true;
}
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// := Z <function encoding> Ed [ <parameter number> ] _ <entity
// name>
bool ParseLocalName(bool parse_function_params) {
if (!ParseEncoding())
return false;
if (!Parse('E'))
return false;
switch (*m_read_ptr) {
case 's':
++m_read_ptr;
TryParseDiscriminator(); // Optional and ignored
WRITE("::string literal");
break;
case 'd':
++m_read_ptr;
TryParseNumber(); // Optional and ignored
if (!Parse('_'))
return false;
WriteNamespaceSeparator();
if (!ParseName())
return false;
break;
default:
WriteNamespaceSeparator();
if (!ParseName(parse_function_params, true))
return false;
TryParseDiscriminator(); // Optional and ignored
}
return true;
}
// <name> ::= <nested-name>
// ::= <local-name>
// ::= <unscoped-template-name> <template-args>
// ::= <unscoped-name>
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
bool ParseName(bool parse_function_params = false,
bool parse_discriminator = false) {
NameState name_state = {parse_function_params, false, false, {0, 0}};
int name_start_cookie = GetStartCookie();
switch (*m_read_ptr) {
case 'N':
++m_read_ptr;
return ParseNestedName(name_state, parse_discriminator);
case 'Z': {
++m_read_ptr;
if (!ParseLocalName(parse_function_params))
return false;
break;
}
case 'L':
++m_read_ptr;
LLVM_FALLTHROUGH;
default: {
if (!ParseUnscopedName(name_state))
return false;
if (*m_read_ptr == 'I') {
EndSubstitution(name_start_cookie);
++m_read_ptr;
name_state.is_last_generic = true;
WriteTemplateStart();
if (!ParseTemplateArgs(parse_function_params))
return false;
WriteTemplateEnd();
}
break;
}
}
if (parse_discriminator)
TryParseDiscriminator();
if (parse_function_params &&
!ParseFunctionArgs(name_state, name_start_cookie)) {
return false;
}
return true;
}
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
//
// <nv-offset> ::= <offset number>
// # non-virtual base override
//
// <v-offset> ::= <offset number> _ <virtual offset number>
// # virtual base override, with vcall offset
bool ParseCallOffset() {
switch (*m_read_ptr++) {
case 'h':
if (*m_read_ptr == 'n')
++m_read_ptr;
if (TryParseNumber() == -1 || *m_read_ptr++ != '_')
break;
return true;
case 'v':
if (*m_read_ptr == 'n')
++m_read_ptr;
if (TryParseNumber() == -1 || *m_read_ptr++ != '_')
break;
if (*m_read_ptr == 'n')
++m_read_ptr;
if (TryParseNumber() == -1 || *m_read_ptr++ != '_')
break;
return true;
}
#ifdef DEBUG_FAILURES
printf("*** Malformed call offset\n");
#endif
return false;
}
// <special-name> ::= TV <type> # virtual table
// ::= TT <type> # VTT structure (construction vtable index)
// ::= TI <type> # typeinfo structure
// ::= TS <type> # typeinfo name (null-terminated byte
// string)
// ::= Tc <call-offset> <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # first call-offset is 'this' adjustment
// # second call-offset is result adjustment
// ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
// extension ::= TC <first type> <number> _ <second type> # construction
// vtable for second-in-first
bool ParseSpecialNameT() {
switch (*m_read_ptr++) {
case 'V':
WRITE("vtable for ");
return ParseType();
case 'T':
WRITE("VTT for ");
return ParseType();
case 'I':
WRITE("typeinfo for ");
return ParseType();
case 'S':
WRITE("typeinfo name for ");
return ParseType();
case 'c':
case 'C':
#ifdef DEBUG_FAILURES
printf("*** Unsupported thunk or construction vtable name: %.3s\n",
m_read_ptr - 1);
#endif
return false;
default:
if (*--m_read_ptr == 'v') {
WRITE("virtual thunk to ");
} else {
WRITE("non-virtual thunk to ");
}
if (!ParseCallOffset())
return false;
return ParseEncoding();
}
}
// <special-name> ::= GV <object name> # Guard variable for one-time
// initialization
// # No <type>
// extension ::= GR <object name> # reference temporary for object
bool ParseSpecialNameG() {
switch (*m_read_ptr++) {
case 'V':
WRITE("guard variable for ");
if (!ParseName(true))
return false;
break;
case 'R':
WRITE("reference temporary for ");
if (!ParseName(true))
return false;
break;
default:
#ifdef DEBUG_FAILURES
printf("*** Unknown G encoding\n");
#endif
return false;
}
return true;
}
// <bare-function-type> ::= <signature type>+ # types are possible
// return type, then parameter types
bool ParseFunctionArgs(NameState &name_state, int return_insert_cookie) {
char next = *m_read_ptr;
if (next == 'E' || next == '\0' || next == '.')
return true;
// Clang has a bad habit of making unique manglings by just sticking numbers
// on the end of a symbol,
// which is ambiguous with malformed source name manglings
const char *before_clang_uniquing_test = m_read_ptr;
if (TryParseNumber()) {
if (*m_read_ptr == '\0')
return true;
m_read_ptr = before_clang_uniquing_test;
}
if (name_state.is_last_generic && !name_state.has_no_return_type) {
int return_type_start_cookie = GetStartCookie();
if (!ParseType())
return false;
Write(' ');
ReorderRange(EndRange(return_type_start_cookie), return_insert_cookie);
}
Write('(');
bool first_param = true;
while (true) {
switch (*m_read_ptr) {
case '\0':
case 'E':
case '.':
break;
case 'v':
++m_read_ptr;
continue;
case '_':
// Not a formal part of the mangling specification, but clang emits
// suffixes starting with _block_invoke
if (strncmp(m_read_ptr, "_block_invoke", 13) == 0) {
m_read_ptr += strlen(m_read_ptr);
break;
}
LLVM_FALLTHROUGH;
default:
if (first_param)
first_param = false;
else
WriteCommaSpace();
if (!ParseType())
return false;
continue;
}
break;
}
Write(')');
return true;
}
// <encoding> ::= <function name> <bare-function-type>
// ::= <data name>
// ::= <special-name>
bool ParseEncoding() {
switch (*m_read_ptr) {
case 'T':
++m_read_ptr;
if (!ParseSpecialNameT())
return false;
break;
case 'G':
++m_read_ptr;
if (!ParseSpecialNameG())
return false;
break;
default:
if (!ParseName(true))
return false;
break;
}
return true;
}
bool ParseMangling(const char *mangled_name, long mangled_name_length = 0) {
if (!mangled_name_length)
mangled_name_length = strlen(mangled_name);
m_read_end = mangled_name + mangled_name_length;
m_read_ptr = mangled_name;
m_write_ptr = m_buffer;
m_next_substitute_index = 0;
m_next_template_arg_index = m_rewrite_ranges_size - 1;
if (*m_read_ptr++ != '_' || *m_read_ptr++ != 'Z') {
#ifdef DEBUG_FAILURES
printf("*** Missing _Z prefix\n");
#endif
return false;
}
if (!ParseEncoding())
return false;
switch (*m_read_ptr) {
case '.':
Write(' ');
Write('(');
Write(m_read_ptr, m_read_end - m_read_ptr);
Write(')');
LLVM_FALLTHROUGH;
case '\0':
return true;
default:
#ifdef DEBUG_FAILURES
printf("*** Unparsed mangled content\n");
#endif
return false;
}
}
private:
// External scratch storage used during demanglings
char *m_buffer;
const char *m_buffer_end;
BufferRange *m_rewrite_ranges;
int m_rewrite_ranges_size;
bool m_owns_buffer;
bool m_owns_m_rewrite_ranges;
// Internal state used during demangling
const char *m_read_ptr;
const char *m_read_end;
char *m_write_ptr;
int m_next_template_arg_index;
int m_next_substitute_index;
};
} // Anonymous namespace
// Public entry points referenced from Mangled.cpp
namespace lldb_private {
char *FastDemangle(const char *mangled_name) {
char buffer[16384];
SymbolDemangler demangler(buffer, sizeof(buffer));
return demangler.GetDemangledCopy(mangled_name);
}
char *FastDemangle(const char *mangled_name, long mangled_name_length) {
char buffer[16384];
SymbolDemangler demangler(buffer, sizeof(buffer));
return demangler.GetDemangledCopy(mangled_name, mangled_name_length);
}
} // lldb_private namespace