forked from OSchip/llvm-project
2351 lines
88 KiB
C++
2351 lines
88 KiB
C++
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include <cstdarg>
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using llvm::Value;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Scalar Expression Emitter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct BinOpInfo {
|
|
Value *LHS;
|
|
Value *RHS;
|
|
QualType Ty; // Computation Type.
|
|
BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
|
|
const Expr *E; // Entire expr, for error unsupported. May not be binop.
|
|
};
|
|
|
|
namespace {
|
|
class ScalarExprEmitter
|
|
: public StmtVisitor<ScalarExprEmitter, Value*> {
|
|
CodeGenFunction &CGF;
|
|
CGBuilderTy &Builder;
|
|
bool IgnoreResultAssign;
|
|
llvm::LLVMContext &VMContext;
|
|
public:
|
|
|
|
ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
|
|
: CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
|
|
VMContext(cgf.getLLVMContext()) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool TestAndClearIgnoreResultAssign() {
|
|
bool I = IgnoreResultAssign;
|
|
IgnoreResultAssign = false;
|
|
return I;
|
|
}
|
|
|
|
const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
|
|
LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
|
|
LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
|
|
|
|
Value *EmitLoadOfLValue(LValue LV, QualType T) {
|
|
return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression with complex type that represents a
|
|
/// value l-value, this method emits the address of the l-value, then loads
|
|
/// and returns the result.
|
|
Value *EmitLoadOfLValue(const Expr *E) {
|
|
return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
|
|
}
|
|
|
|
/// EmitConversionToBool - Convert the specified expression value to a
|
|
/// boolean (i1) truth value. This is equivalent to "Val != 0".
|
|
Value *EmitConversionToBool(Value *Src, QualType DstTy);
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
|
|
/// complex type to the specified destination type, where the destination type
|
|
/// is an LLVM scalar type.
|
|
Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
|
|
QualType SrcTy, QualType DstTy);
|
|
|
|
/// EmitNullValue - Emit a value that corresponds to null for the given type.
|
|
Value *EmitNullValue(QualType Ty);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
Value *VisitStmt(Stmt *S) {
|
|
S->dump(CGF.getContext().getSourceManager());
|
|
assert(0 && "Stmt can't have complex result type!");
|
|
return 0;
|
|
}
|
|
Value *VisitExpr(Expr *S);
|
|
|
|
Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
|
|
|
|
// Leaves.
|
|
Value *VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
return llvm::ConstantInt::get(VMContext, E->getValue());
|
|
}
|
|
Value *VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
return llvm::ConstantFP::get(VMContext, E->getValue());
|
|
}
|
|
Value *VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
Value *VisitGNUNullExpr(const GNUNullExpr *E) {
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()),
|
|
CGF.getContext().typesAreCompatible(
|
|
E->getArgType1(), E->getArgType2()));
|
|
}
|
|
Value *VisitOffsetOfExpr(OffsetOfExpr *E);
|
|
Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
|
|
Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
|
|
llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
|
|
return Builder.CreateBitCast(V, ConvertType(E->getType()));
|
|
}
|
|
|
|
// l-values.
|
|
Value *VisitDeclRefExpr(DeclRefExpr *E) {
|
|
Expr::EvalResult Result;
|
|
if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
|
|
assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
|
|
llvm::ConstantInt *CI
|
|
= llvm::ConstantInt::get(VMContext, Result.Val.getInt());
|
|
CGF.EmitDeclRefExprDbgValue(E, CI);
|
|
return CI;
|
|
}
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
|
|
return CGF.EmitObjCSelectorExpr(E);
|
|
}
|
|
Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
|
|
return CGF.EmitObjCProtocolExpr(E);
|
|
}
|
|
Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCImplicitSetterGetterRefExpr(
|
|
ObjCImplicitSetterGetterRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
|
return CGF.EmitObjCMessageExpr(E).getScalarVal();
|
|
}
|
|
|
|
Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
|
|
LValue LV = CGF.EmitObjCIsaExpr(E);
|
|
Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
|
|
return V;
|
|
}
|
|
|
|
Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
|
|
Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
|
|
Value *VisitMemberExpr(MemberExpr *E);
|
|
Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
|
|
Value *VisitInitListExpr(InitListExpr *E);
|
|
|
|
Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
|
|
return CGF.CGM.EmitNullConstant(E->getType());
|
|
}
|
|
Value *VisitCastExpr(CastExpr *E) {
|
|
// Make sure to evaluate VLA bounds now so that we have them for later.
|
|
if (E->getType()->isVariablyModifiedType())
|
|
CGF.EmitVLASize(E->getType());
|
|
|
|
return EmitCastExpr(E);
|
|
}
|
|
Value *EmitCastExpr(CastExpr *E);
|
|
|
|
Value *VisitCallExpr(const CallExpr *E) {
|
|
if (E->getCallReturnType()->isReferenceType())
|
|
return EmitLoadOfLValue(E);
|
|
|
|
return CGF.EmitCallExpr(E).getScalarVal();
|
|
}
|
|
|
|
Value *VisitStmtExpr(const StmtExpr *E);
|
|
|
|
Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
|
|
|
|
// Unary Operators.
|
|
Value *VisitUnaryPostDec(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, false, false);
|
|
}
|
|
Value *VisitUnaryPostInc(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, true, false);
|
|
}
|
|
Value *VisitUnaryPreDec(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, false, true);
|
|
}
|
|
Value *VisitUnaryPreInc(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, true, true);
|
|
}
|
|
|
|
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre);
|
|
|
|
|
|
Value *VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
// If the sub-expression is an instance member reference,
|
|
// EmitDeclRefLValue will magically emit it with the appropriate
|
|
// value as the "address".
|
|
return EmitLValue(E->getSubExpr()).getAddress();
|
|
}
|
|
Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitUnaryPlus(const UnaryOperator *E) {
|
|
// This differs from gcc, though, most likely due to a bug in gcc.
|
|
TestAndClearIgnoreResultAssign();
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
Value *VisitUnaryMinus (const UnaryOperator *E);
|
|
Value *VisitUnaryNot (const UnaryOperator *E);
|
|
Value *VisitUnaryLNot (const UnaryOperator *E);
|
|
Value *VisitUnaryReal (const UnaryOperator *E);
|
|
Value *VisitUnaryImag (const UnaryOperator *E);
|
|
Value *VisitUnaryExtension(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
// C++
|
|
Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
|
return Visit(DAE->getExpr());
|
|
}
|
|
Value *VisitCXXThisExpr(CXXThisExpr *TE) {
|
|
return CGF.LoadCXXThis();
|
|
}
|
|
|
|
Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
|
|
return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
|
|
}
|
|
Value *VisitCXXNewExpr(const CXXNewExpr *E) {
|
|
return CGF.EmitCXXNewExpr(E);
|
|
}
|
|
Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
|
|
CGF.EmitCXXDeleteExpr(E);
|
|
return 0;
|
|
}
|
|
Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
|
|
return llvm::ConstantInt::get(Builder.getInt1Ty(),
|
|
E->EvaluateTrait(CGF.getContext()));
|
|
}
|
|
|
|
Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
|
|
// C++ [expr.pseudo]p1:
|
|
// The result shall only be used as the operand for the function call
|
|
// operator (), and the result of such a call has type void. The only
|
|
// effect is the evaluation of the postfix-expression before the dot or
|
|
// arrow.
|
|
CGF.EmitScalarExpr(E->getBase());
|
|
return 0;
|
|
}
|
|
|
|
Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
|
|
Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
|
|
CGF.EmitCXXThrowExpr(E);
|
|
return 0;
|
|
}
|
|
|
|
Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
|
|
return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
|
|
}
|
|
|
|
// Binary Operators.
|
|
Value *EmitMul(const BinOpInfo &Ops) {
|
|
if (Ops.Ty->hasSignedIntegerRepresentation()) {
|
|
switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Undefined:
|
|
return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
|
|
case LangOptions::SOB_Defined:
|
|
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
|
|
case LangOptions::SOB_Trapping:
|
|
return EmitOverflowCheckedBinOp(Ops);
|
|
}
|
|
}
|
|
|
|
if (Ops.LHS->getType()->isFPOrFPVectorTy())
|
|
return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
|
|
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
|
|
}
|
|
bool isTrapvOverflowBehavior() {
|
|
return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
|
|
== LangOptions::SOB_Trapping;
|
|
}
|
|
/// Create a binary op that checks for overflow.
|
|
/// Currently only supports +, - and *.
|
|
Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
|
|
// Emit the overflow BB when -ftrapv option is activated.
|
|
void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
|
|
Builder.SetInsertPoint(overflowBB);
|
|
llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
|
|
Builder.CreateCall(Trap);
|
|
Builder.CreateUnreachable();
|
|
}
|
|
// Check for undefined division and modulus behaviors.
|
|
void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
|
|
llvm::Value *Zero,bool isDiv);
|
|
Value *EmitDiv(const BinOpInfo &Ops);
|
|
Value *EmitRem(const BinOpInfo &Ops);
|
|
Value *EmitAdd(const BinOpInfo &Ops);
|
|
Value *EmitSub(const BinOpInfo &Ops);
|
|
Value *EmitShl(const BinOpInfo &Ops);
|
|
Value *EmitShr(const BinOpInfo &Ops);
|
|
Value *EmitAnd(const BinOpInfo &Ops) {
|
|
return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
|
|
}
|
|
Value *EmitXor(const BinOpInfo &Ops) {
|
|
return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
|
|
}
|
|
Value *EmitOr (const BinOpInfo &Ops) {
|
|
return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
|
|
}
|
|
|
|
BinOpInfo EmitBinOps(const BinaryOperator *E);
|
|
LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
|
|
Value *&Result);
|
|
|
|
Value *EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
|
|
|
|
// Binary operators and binary compound assignment operators.
|
|
#define HANDLEBINOP(OP) \
|
|
Value *VisitBin ## OP(const BinaryOperator *E) { \
|
|
return Emit ## OP(EmitBinOps(E)); \
|
|
} \
|
|
Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
|
|
return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
|
|
}
|
|
HANDLEBINOP(Mul)
|
|
HANDLEBINOP(Div)
|
|
HANDLEBINOP(Rem)
|
|
HANDLEBINOP(Add)
|
|
HANDLEBINOP(Sub)
|
|
HANDLEBINOP(Shl)
|
|
HANDLEBINOP(Shr)
|
|
HANDLEBINOP(And)
|
|
HANDLEBINOP(Xor)
|
|
HANDLEBINOP(Or)
|
|
#undef HANDLEBINOP
|
|
|
|
// Comparisons.
|
|
Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
|
|
unsigned SICmpOpc, unsigned FCmpOpc);
|
|
#define VISITCOMP(CODE, UI, SI, FP) \
|
|
Value *VisitBin##CODE(const BinaryOperator *E) { \
|
|
return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
|
|
llvm::FCmpInst::FP); }
|
|
VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
|
|
VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
|
|
VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
|
|
VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
|
|
VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
|
|
VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
|
|
#undef VISITCOMP
|
|
|
|
Value *VisitBinAssign (const BinaryOperator *E);
|
|
|
|
Value *VisitBinLAnd (const BinaryOperator *E);
|
|
Value *VisitBinLOr (const BinaryOperator *E);
|
|
Value *VisitBinComma (const BinaryOperator *E);
|
|
|
|
Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
|
|
|
|
// Other Operators.
|
|
Value *VisitBlockExpr(const BlockExpr *BE);
|
|
Value *VisitConditionalOperator(const ConditionalOperator *CO);
|
|
Value *VisitChooseExpr(ChooseExpr *CE);
|
|
Value *VisitVAArgExpr(VAArgExpr *VE);
|
|
Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
|
|
return CGF.EmitObjCStringLiteral(E);
|
|
}
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitConversionToBool - Convert the specified expression value to a
|
|
/// boolean (i1) truth value. This is equivalent to "Val != 0".
|
|
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
|
|
assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
|
|
|
|
if (SrcType->isRealFloatingType()) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return Builder.CreateFCmpUNE(Src, Zero, "tobool");
|
|
}
|
|
|
|
if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
|
|
return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
|
|
|
|
assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
|
|
"Unknown scalar type to convert");
|
|
|
|
// Because of the type rules of C, we often end up computing a logical value,
|
|
// then zero extending it to int, then wanting it as a logical value again.
|
|
// Optimize this common case.
|
|
if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
|
|
if (ZI->getOperand(0)->getType() ==
|
|
llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
|
|
Value *Result = ZI->getOperand(0);
|
|
// If there aren't any more uses, zap the instruction to save space.
|
|
// Note that there can be more uses, for example if this
|
|
// is the result of an assignment.
|
|
if (ZI->use_empty())
|
|
ZI->eraseFromParent();
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// Compare against an integer or pointer null.
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return Builder.CreateICmpNE(Src, Zero, "tobool");
|
|
}
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
|
|
QualType DstType) {
|
|
SrcType = CGF.getContext().getCanonicalType(SrcType);
|
|
DstType = CGF.getContext().getCanonicalType(DstType);
|
|
if (SrcType == DstType) return Src;
|
|
|
|
if (DstType->isVoidType()) return 0;
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstType->isBooleanType())
|
|
return EmitConversionToBool(Src, SrcType);
|
|
|
|
const llvm::Type *DstTy = ConvertType(DstType);
|
|
|
|
// Ignore conversions like int -> uint.
|
|
if (Src->getType() == DstTy)
|
|
return Src;
|
|
|
|
// Handle pointer conversions next: pointers can only be converted to/from
|
|
// other pointers and integers. Check for pointer types in terms of LLVM, as
|
|
// some native types (like Obj-C id) may map to a pointer type.
|
|
if (isa<llvm::PointerType>(DstTy)) {
|
|
// The source value may be an integer, or a pointer.
|
|
if (isa<llvm::PointerType>(Src->getType()))
|
|
return Builder.CreateBitCast(Src, DstTy, "conv");
|
|
|
|
assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
|
|
// First, convert to the correct width so that we control the kind of
|
|
// extension.
|
|
const llvm::Type *MiddleTy = CGF.IntPtrTy;
|
|
bool InputSigned = SrcType->isSignedIntegerType();
|
|
llvm::Value* IntResult =
|
|
Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
|
|
// Then, cast to pointer.
|
|
return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
|
|
}
|
|
|
|
if (isa<llvm::PointerType>(Src->getType())) {
|
|
// Must be an ptr to int cast.
|
|
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
|
|
return Builder.CreatePtrToInt(Src, DstTy, "conv");
|
|
}
|
|
|
|
// A scalar can be splatted to an extended vector of the same element type
|
|
if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
|
|
// Cast the scalar to element type
|
|
QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
|
|
llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
|
|
|
|
// Insert the element in element zero of an undef vector
|
|
llvm::Value *UnV = llvm::UndefValue::get(DstTy);
|
|
llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
|
|
UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
|
|
|
|
// Splat the element across to all elements
|
|
llvm::SmallVector<llvm::Constant*, 16> Args;
|
|
unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
|
|
for (unsigned i = 0; i < NumElements; i++)
|
|
Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
|
|
|
|
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
|
|
llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
|
|
return Yay;
|
|
}
|
|
|
|
// Allow bitcast from vector to integer/fp of the same size.
|
|
if (isa<llvm::VectorType>(Src->getType()) ||
|
|
isa<llvm::VectorType>(DstTy))
|
|
return Builder.CreateBitCast(Src, DstTy, "conv");
|
|
|
|
// Finally, we have the arithmetic types: real int/float.
|
|
if (isa<llvm::IntegerType>(Src->getType())) {
|
|
bool InputSigned = SrcType->isSignedIntegerType();
|
|
if (isa<llvm::IntegerType>(DstTy))
|
|
return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
|
|
else if (InputSigned)
|
|
return Builder.CreateSIToFP(Src, DstTy, "conv");
|
|
else
|
|
return Builder.CreateUIToFP(Src, DstTy, "conv");
|
|
}
|
|
|
|
assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
|
|
if (isa<llvm::IntegerType>(DstTy)) {
|
|
if (DstType->isSignedIntegerType())
|
|
return Builder.CreateFPToSI(Src, DstTy, "conv");
|
|
else
|
|
return Builder.CreateFPToUI(Src, DstTy, "conv");
|
|
}
|
|
|
|
assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
|
|
if (DstTy->getTypeID() < Src->getType()->getTypeID())
|
|
return Builder.CreateFPTrunc(Src, DstTy, "conv");
|
|
else
|
|
return Builder.CreateFPExt(Src, DstTy, "conv");
|
|
}
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
|
|
/// type to the specified destination type, where the destination type is an
|
|
/// LLVM scalar type.
|
|
Value *ScalarExprEmitter::
|
|
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
|
|
QualType SrcTy, QualType DstTy) {
|
|
// Get the source element type.
|
|
SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstTy->isBooleanType()) {
|
|
// Complex != 0 -> (Real != 0) | (Imag != 0)
|
|
Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
|
|
Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
|
|
return Builder.CreateOr(Src.first, Src.second, "tobool");
|
|
}
|
|
|
|
// C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
|
|
// the imaginary part of the complex value is discarded and the value of the
|
|
// real part is converted according to the conversion rules for the
|
|
// corresponding real type.
|
|
return EmitScalarConversion(Src.first, SrcTy, DstTy);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
|
|
if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
|
|
return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
|
|
|
|
return llvm::Constant::getNullValue(ConvertType(Ty));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value *ScalarExprEmitter::VisitExpr(Expr *E) {
|
|
CGF.ErrorUnsupported(E, "scalar expression");
|
|
if (E->getType()->isVoidType())
|
|
return 0;
|
|
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
|
|
// Vector Mask Case
|
|
if (E->getNumSubExprs() == 2 ||
|
|
(E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
|
|
Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
|
|
Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
|
|
Value *Mask;
|
|
|
|
const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
|
|
unsigned LHSElts = LTy->getNumElements();
|
|
|
|
if (E->getNumSubExprs() == 3) {
|
|
Mask = CGF.EmitScalarExpr(E->getExpr(2));
|
|
|
|
// Shuffle LHS & RHS into one input vector.
|
|
llvm::SmallVector<llvm::Constant*, 32> concat;
|
|
for (unsigned i = 0; i != LHSElts; ++i) {
|
|
concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
|
|
concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
|
|
}
|
|
|
|
Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
|
|
LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
|
|
LHSElts *= 2;
|
|
} else {
|
|
Mask = RHS;
|
|
}
|
|
|
|
const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
|
|
llvm::Constant* EltMask;
|
|
|
|
// Treat vec3 like vec4.
|
|
if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
|
|
EltMask = llvm::ConstantInt::get(MTy->getElementType(),
|
|
(1 << llvm::Log2_32(LHSElts+2))-1);
|
|
else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
|
|
EltMask = llvm::ConstantInt::get(MTy->getElementType(),
|
|
(1 << llvm::Log2_32(LHSElts+1))-1);
|
|
else
|
|
EltMask = llvm::ConstantInt::get(MTy->getElementType(),
|
|
(1 << llvm::Log2_32(LHSElts))-1);
|
|
|
|
// Mask off the high bits of each shuffle index.
|
|
llvm::SmallVector<llvm::Constant *, 32> MaskV;
|
|
for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
|
|
MaskV.push_back(EltMask);
|
|
|
|
Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
|
|
Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
|
|
|
|
// newv = undef
|
|
// mask = mask & maskbits
|
|
// for each elt
|
|
// n = extract mask i
|
|
// x = extract val n
|
|
// newv = insert newv, x, i
|
|
const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
|
|
MTy->getNumElements());
|
|
Value* NewV = llvm::UndefValue::get(RTy);
|
|
for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
|
|
Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
|
|
Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
|
|
Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
|
|
|
|
// Handle vec3 special since the index will be off by one for the RHS.
|
|
if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
|
|
Value *cmpIndx, *newIndx;
|
|
cmpIndx = Builder.CreateICmpUGT(Indx,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, 3),
|
|
"cmp_shuf_idx");
|
|
newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
|
|
"shuf_idx_adj");
|
|
Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
|
|
}
|
|
Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
|
|
NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
|
|
}
|
|
return NewV;
|
|
}
|
|
|
|
Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
|
|
Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
|
|
|
|
// Handle vec3 special since the index will be off by one for the RHS.
|
|
llvm::SmallVector<llvm::Constant*, 32> indices;
|
|
for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
|
|
llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
|
|
const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
|
|
if (VTy->getNumElements() == 3) {
|
|
if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
|
|
uint64_t cVal = CI->getZExtValue();
|
|
if (cVal > 3) {
|
|
C = llvm::ConstantInt::get(C->getType(), cVal-1);
|
|
}
|
|
}
|
|
}
|
|
indices.push_back(C);
|
|
}
|
|
|
|
Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
|
|
return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
|
|
}
|
|
Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
|
|
Expr::EvalResult Result;
|
|
if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
|
|
if (E->isArrow())
|
|
CGF.EmitScalarExpr(E->getBase());
|
|
else
|
|
EmitLValue(E->getBase());
|
|
return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
|
|
}
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
|
|
// Emit subscript expressions in rvalue context's. For most cases, this just
|
|
// loads the lvalue formed by the subscript expr. However, we have to be
|
|
// careful, because the base of a vector subscript is occasionally an rvalue,
|
|
// so we can't get it as an lvalue.
|
|
if (!E->getBase()->getType()->isVectorType())
|
|
return EmitLoadOfLValue(E);
|
|
|
|
// Handle the vector case. The base must be a vector, the index must be an
|
|
// integer value.
|
|
Value *Base = Visit(E->getBase());
|
|
Value *Idx = Visit(E->getIdx());
|
|
bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
|
|
Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
|
|
return Builder.CreateExtractElement(Base, Idx, "vecext");
|
|
}
|
|
|
|
static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
|
|
unsigned Off, const llvm::Type *I32Ty) {
|
|
int MV = SVI->getMaskValue(Idx);
|
|
if (MV == -1)
|
|
return llvm::UndefValue::get(I32Ty);
|
|
return llvm::ConstantInt::get(I32Ty, Off+MV);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
|
|
bool Ignore = TestAndClearIgnoreResultAssign();
|
|
(void)Ignore;
|
|
assert (Ignore == false && "init list ignored");
|
|
unsigned NumInitElements = E->getNumInits();
|
|
|
|
if (E->hadArrayRangeDesignator())
|
|
CGF.ErrorUnsupported(E, "GNU array range designator extension");
|
|
|
|
const llvm::VectorType *VType =
|
|
dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
|
|
|
|
// We have a scalar in braces. Just use the first element.
|
|
if (!VType)
|
|
return Visit(E->getInit(0));
|
|
|
|
unsigned ResElts = VType->getNumElements();
|
|
|
|
// Loop over initializers collecting the Value for each, and remembering
|
|
// whether the source was swizzle (ExtVectorElementExpr). This will allow
|
|
// us to fold the shuffle for the swizzle into the shuffle for the vector
|
|
// initializer, since LLVM optimizers generally do not want to touch
|
|
// shuffles.
|
|
unsigned CurIdx = 0;
|
|
bool VIsUndefShuffle = false;
|
|
llvm::Value *V = llvm::UndefValue::get(VType);
|
|
for (unsigned i = 0; i != NumInitElements; ++i) {
|
|
Expr *IE = E->getInit(i);
|
|
Value *Init = Visit(IE);
|
|
llvm::SmallVector<llvm::Constant*, 16> Args;
|
|
|
|
const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
|
|
|
|
// Handle scalar elements. If the scalar initializer is actually one
|
|
// element of a different vector of the same width, use shuffle instead of
|
|
// extract+insert.
|
|
if (!VVT) {
|
|
if (isa<ExtVectorElementExpr>(IE)) {
|
|
llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
|
|
|
|
if (EI->getVectorOperandType()->getNumElements() == ResElts) {
|
|
llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
|
|
Value *LHS = 0, *RHS = 0;
|
|
if (CurIdx == 0) {
|
|
// insert into undef -> shuffle (src, undef)
|
|
Args.push_back(C);
|
|
for (unsigned j = 1; j != ResElts; ++j)
|
|
Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
|
|
|
|
LHS = EI->getVectorOperand();
|
|
RHS = V;
|
|
VIsUndefShuffle = true;
|
|
} else if (VIsUndefShuffle) {
|
|
// insert into undefshuffle && size match -> shuffle (v, src)
|
|
llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
|
|
for (unsigned j = 0; j != CurIdx; ++j)
|
|
Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
|
|
Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
|
|
ResElts + C->getZExtValue()));
|
|
for (unsigned j = CurIdx + 1; j != ResElts; ++j)
|
|
Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
|
|
|
|
LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
|
|
RHS = EI->getVectorOperand();
|
|
VIsUndefShuffle = false;
|
|
}
|
|
if (!Args.empty()) {
|
|
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
|
|
V = Builder.CreateShuffleVector(LHS, RHS, Mask);
|
|
++CurIdx;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
|
|
V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
|
|
VIsUndefShuffle = false;
|
|
++CurIdx;
|
|
continue;
|
|
}
|
|
|
|
unsigned InitElts = VVT->getNumElements();
|
|
|
|
// If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
|
|
// input is the same width as the vector being constructed, generate an
|
|
// optimized shuffle of the swizzle input into the result.
|
|
unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
|
|
if (isa<ExtVectorElementExpr>(IE)) {
|
|
llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
|
|
Value *SVOp = SVI->getOperand(0);
|
|
const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
|
|
|
|
if (OpTy->getNumElements() == ResElts) {
|
|
for (unsigned j = 0; j != CurIdx; ++j) {
|
|
// If the current vector initializer is a shuffle with undef, merge
|
|
// this shuffle directly into it.
|
|
if (VIsUndefShuffle) {
|
|
Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
|
|
CGF.Int32Ty));
|
|
} else {
|
|
Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
|
|
}
|
|
}
|
|
for (unsigned j = 0, je = InitElts; j != je; ++j)
|
|
Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
|
|
for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
|
|
Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
|
|
|
|
if (VIsUndefShuffle)
|
|
V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
|
|
|
|
Init = SVOp;
|
|
}
|
|
}
|
|
|
|
// Extend init to result vector length, and then shuffle its contribution
|
|
// to the vector initializer into V.
|
|
if (Args.empty()) {
|
|
for (unsigned j = 0; j != InitElts; ++j)
|
|
Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
|
|
for (unsigned j = InitElts; j != ResElts; ++j)
|
|
Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
|
|
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
|
|
Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
|
|
Mask, "vext");
|
|
|
|
Args.clear();
|
|
for (unsigned j = 0; j != CurIdx; ++j)
|
|
Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
|
|
for (unsigned j = 0; j != InitElts; ++j)
|
|
Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
|
|
for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
|
|
Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
|
|
}
|
|
|
|
// If V is undef, make sure it ends up on the RHS of the shuffle to aid
|
|
// merging subsequent shuffles into this one.
|
|
if (CurIdx == 0)
|
|
std::swap(V, Init);
|
|
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
|
|
V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
|
|
VIsUndefShuffle = isa<llvm::UndefValue>(Init);
|
|
CurIdx += InitElts;
|
|
}
|
|
|
|
// FIXME: evaluate codegen vs. shuffling against constant null vector.
|
|
// Emit remaining default initializers.
|
|
const llvm::Type *EltTy = VType->getElementType();
|
|
|
|
// Emit remaining default initializers
|
|
for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
|
|
Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
|
|
llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
|
|
V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
|
|
}
|
|
return V;
|
|
}
|
|
|
|
static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
|
|
const Expr *E = CE->getSubExpr();
|
|
|
|
if (CE->getCastKind() == CK_UncheckedDerivedToBase)
|
|
return false;
|
|
|
|
if (isa<CXXThisExpr>(E)) {
|
|
// We always assume that 'this' is never null.
|
|
return false;
|
|
}
|
|
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
|
|
// And that glvalue casts are never null.
|
|
if (ICE->getValueKind() != VK_RValue)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
|
|
// have to handle a more broad range of conversions than explicit casts, as they
|
|
// handle things like function to ptr-to-function decay etc.
|
|
Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
|
|
Expr *E = CE->getSubExpr();
|
|
QualType DestTy = CE->getType();
|
|
CastKind Kind = CE->getCastKind();
|
|
|
|
if (!DestTy->isVoidType())
|
|
TestAndClearIgnoreResultAssign();
|
|
|
|
// Since almost all cast kinds apply to scalars, this switch doesn't have
|
|
// a default case, so the compiler will warn on a missing case. The cases
|
|
// are in the same order as in the CastKind enum.
|
|
switch (Kind) {
|
|
case CK_Unknown:
|
|
// FIXME: All casts should have a known kind!
|
|
//assert(0 && "Unknown cast kind!");
|
|
break;
|
|
|
|
case CK_LValueBitCast:
|
|
case CK_ObjCObjectLValueCast: {
|
|
Value *V = EmitLValue(E).getAddress();
|
|
V = Builder.CreateBitCast(V,
|
|
ConvertType(CGF.getContext().getPointerType(DestTy)));
|
|
return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
|
|
}
|
|
|
|
case CK_AnyPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_BitCast: {
|
|
Value *Src = Visit(const_cast<Expr*>(E));
|
|
return Builder.CreateBitCast(Src, ConvertType(DestTy));
|
|
}
|
|
case CK_NoOp:
|
|
case CK_UserDefinedConversion:
|
|
return Visit(const_cast<Expr*>(E));
|
|
|
|
case CK_BaseToDerived: {
|
|
const CXXRecordDecl *DerivedClassDecl =
|
|
DestTy->getCXXRecordDeclForPointerType();
|
|
|
|
return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
|
|
CE->path_begin(), CE->path_end(),
|
|
ShouldNullCheckClassCastValue(CE));
|
|
}
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
const RecordType *DerivedClassTy =
|
|
E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
|
|
CXXRecordDecl *DerivedClassDecl =
|
|
cast<CXXRecordDecl>(DerivedClassTy->getDecl());
|
|
|
|
return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
|
|
CE->path_begin(), CE->path_end(),
|
|
ShouldNullCheckClassCastValue(CE));
|
|
}
|
|
case CK_Dynamic: {
|
|
Value *V = Visit(const_cast<Expr*>(E));
|
|
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
|
|
return CGF.EmitDynamicCast(V, DCE);
|
|
}
|
|
case CK_ToUnion:
|
|
assert(0 && "Should be unreachable!");
|
|
break;
|
|
|
|
case CK_ArrayToPointerDecay: {
|
|
assert(E->getType()->isArrayType() &&
|
|
"Array to pointer decay must have array source type!");
|
|
|
|
Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
|
|
|
|
// Note that VLA pointers are always decayed, so we don't need to do
|
|
// anything here.
|
|
if (!E->getType()->isVariableArrayType()) {
|
|
assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
|
|
assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
|
|
->getElementType()) &&
|
|
"Expected pointer to array");
|
|
V = Builder.CreateStructGEP(V, 0, "arraydecay");
|
|
}
|
|
|
|
return V;
|
|
}
|
|
case CK_FunctionToPointerDecay:
|
|
return EmitLValue(E).getAddress();
|
|
|
|
case CK_NullToMemberPointer: {
|
|
// If the subexpression's type is the C++0x nullptr_t, emit the
|
|
// subexpression, which may have side effects.
|
|
if (E->getType()->isNullPtrType())
|
|
(void) Visit(E);
|
|
|
|
const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
|
|
return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
|
|
}
|
|
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_DerivedToBaseMemberPointer: {
|
|
Value *Src = Visit(E);
|
|
|
|
// Note that the AST doesn't distinguish between checked and
|
|
// unchecked member pointer conversions, so we always have to
|
|
// implement checked conversions here. This is inefficient when
|
|
// actual control flow may be required in order to perform the
|
|
// check, which it is for data member pointers (but not member
|
|
// function pointers on Itanium and ARM).
|
|
return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
|
|
}
|
|
|
|
|
|
case CK_ConstructorConversion:
|
|
assert(0 && "Should be unreachable!");
|
|
break;
|
|
|
|
case CK_IntegralToPointer: {
|
|
Value *Src = Visit(const_cast<Expr*>(E));
|
|
|
|
// First, convert to the correct width so that we control the kind of
|
|
// extension.
|
|
const llvm::Type *MiddleTy = CGF.IntPtrTy;
|
|
bool InputSigned = E->getType()->isSignedIntegerType();
|
|
llvm::Value* IntResult =
|
|
Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
|
|
|
|
return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
|
|
}
|
|
case CK_PointerToIntegral: {
|
|
Value *Src = Visit(const_cast<Expr*>(E));
|
|
|
|
// Handle conversion to bool correctly.
|
|
if (DestTy->isBooleanType())
|
|
return EmitScalarConversion(Src, E->getType(), DestTy);
|
|
|
|
return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
|
|
}
|
|
case CK_ToVoid: {
|
|
if (E->Classify(CGF.getContext()).isGLValue()) {
|
|
LValue LV = CGF.EmitLValue(E);
|
|
if (LV.isPropertyRef())
|
|
CGF.EmitLoadOfPropertyRefLValue(LV, E->getType());
|
|
else if (LV.isKVCRef())
|
|
CGF.EmitLoadOfKVCRefLValue(LV, E->getType());
|
|
}
|
|
else
|
|
CGF.EmitAnyExpr(E, 0, false, true);
|
|
return 0;
|
|
}
|
|
case CK_VectorSplat: {
|
|
const llvm::Type *DstTy = ConvertType(DestTy);
|
|
Value *Elt = Visit(const_cast<Expr*>(E));
|
|
|
|
// Insert the element in element zero of an undef vector
|
|
llvm::Value *UnV = llvm::UndefValue::get(DstTy);
|
|
llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
|
|
UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
|
|
|
|
// Splat the element across to all elements
|
|
llvm::SmallVector<llvm::Constant*, 16> Args;
|
|
unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
|
|
for (unsigned i = 0; i < NumElements; i++)
|
|
Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
|
|
|
|
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
|
|
llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
|
|
return Yay;
|
|
}
|
|
case CK_IntegralCast:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingCast:
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy);
|
|
|
|
case CK_MemberPointerToBoolean: {
|
|
llvm::Value *MemPtr = Visit(E);
|
|
const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
|
|
return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
|
|
}
|
|
}
|
|
|
|
// Handle cases where the source is an non-complex type.
|
|
|
|
if (!CGF.hasAggregateLLVMType(E->getType())) {
|
|
Value *Src = Visit(const_cast<Expr*>(E));
|
|
|
|
// Use EmitScalarConversion to perform the conversion.
|
|
return EmitScalarConversion(Src, E->getType(), DestTy);
|
|
}
|
|
|
|
if (E->getType()->isAnyComplexType()) {
|
|
// Handle cases where the source is a complex type.
|
|
bool IgnoreImag = true;
|
|
bool IgnoreImagAssign = true;
|
|
bool IgnoreReal = IgnoreResultAssign;
|
|
bool IgnoreRealAssign = IgnoreResultAssign;
|
|
if (DestTy->isBooleanType())
|
|
IgnoreImagAssign = IgnoreImag = false;
|
|
else if (DestTy->isVoidType()) {
|
|
IgnoreReal = IgnoreImag = false;
|
|
IgnoreRealAssign = IgnoreImagAssign = true;
|
|
}
|
|
CodeGenFunction::ComplexPairTy V
|
|
= CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
|
|
IgnoreImagAssign);
|
|
return EmitComplexToScalarConversion(V, E->getType(), DestTy);
|
|
}
|
|
|
|
// Okay, this is a cast from an aggregate. It must be a cast to void. Just
|
|
// evaluate the result and return.
|
|
CGF.EmitAggExpr(E, 0, false, true);
|
|
return 0;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
|
|
return CGF.EmitCompoundStmt(*E->getSubStmt(),
|
|
!E->getType()->isVoidType()).getScalarVal();
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
|
|
llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
|
|
if (E->getType().isObjCGCWeak())
|
|
return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
|
|
return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unary Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::Value *ScalarExprEmitter::
|
|
EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre) {
|
|
|
|
QualType ValTy = E->getSubExpr()->getType();
|
|
llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
|
|
|
|
int AmountVal = isInc ? 1 : -1;
|
|
|
|
if (ValTy->isPointerType() &&
|
|
ValTy->getAs<PointerType>()->isVariableArrayType()) {
|
|
// The amount of the addition/subtraction needs to account for the VLA size
|
|
CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
|
|
}
|
|
|
|
llvm::Value *NextVal;
|
|
if (const llvm::PointerType *PT =
|
|
dyn_cast<llvm::PointerType>(InVal->getType())) {
|
|
llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
|
|
if (!isa<llvm::FunctionType>(PT->getElementType())) {
|
|
QualType PTEE = ValTy->getPointeeType();
|
|
if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
|
|
// Handle interface types, which are not represented with a concrete
|
|
// type.
|
|
int size = CGF.getContext().getTypeSize(OIT) / 8;
|
|
if (!isInc)
|
|
size = -size;
|
|
Inc = llvm::ConstantInt::get(Inc->getType(), size);
|
|
const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
|
|
InVal = Builder.CreateBitCast(InVal, i8Ty);
|
|
NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
|
|
llvm::Value *lhs = LV.getAddress();
|
|
lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
|
|
LV = CGF.MakeAddrLValue(lhs, ValTy);
|
|
} else
|
|
NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
|
|
} else {
|
|
const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
|
|
NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
|
|
NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
|
|
NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
|
|
}
|
|
} else if (InVal->getType()->isIntegerTy(1) && isInc) {
|
|
// Bool++ is an interesting case, due to promotion rules, we get:
|
|
// Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
|
|
// Bool = ((int)Bool+1) != 0
|
|
// An interesting aspect of this is that increment is always true.
|
|
// Decrement does not have this property.
|
|
NextVal = llvm::ConstantInt::getTrue(VMContext);
|
|
} else if (isa<llvm::IntegerType>(InVal->getType())) {
|
|
NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
|
|
|
|
if (!ValTy->isSignedIntegerType())
|
|
// Unsigned integer inc is always two's complement.
|
|
NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
|
|
else {
|
|
switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Undefined:
|
|
NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
|
|
break;
|
|
case LangOptions::SOB_Defined:
|
|
NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
|
|
break;
|
|
case LangOptions::SOB_Trapping:
|
|
BinOpInfo BinOp;
|
|
BinOp.LHS = InVal;
|
|
BinOp.RHS = NextVal;
|
|
BinOp.Ty = E->getType();
|
|
BinOp.Opcode = BO_Add;
|
|
BinOp.E = E;
|
|
NextVal = EmitOverflowCheckedBinOp(BinOp);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// Add the inc/dec to the real part.
|
|
if (InVal->getType()->isFloatTy())
|
|
NextVal =
|
|
llvm::ConstantFP::get(VMContext,
|
|
llvm::APFloat(static_cast<float>(AmountVal)));
|
|
else if (InVal->getType()->isDoubleTy())
|
|
NextVal =
|
|
llvm::ConstantFP::get(VMContext,
|
|
llvm::APFloat(static_cast<double>(AmountVal)));
|
|
else {
|
|
llvm::APFloat F(static_cast<float>(AmountVal));
|
|
bool ignored;
|
|
F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
|
|
&ignored);
|
|
NextVal = llvm::ConstantFP::get(VMContext, F);
|
|
}
|
|
NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
|
|
}
|
|
|
|
// Store the updated result through the lvalue.
|
|
if (LV.isBitField())
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
|
|
else
|
|
CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
|
|
|
|
// If this is a postinc, return the value read from memory, otherwise use the
|
|
// updated value.
|
|
return isPre ? NextVal : InVal;
|
|
}
|
|
|
|
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
// Emit unary minus with EmitSub so we handle overflow cases etc.
|
|
BinOpInfo BinOp;
|
|
BinOp.RHS = Visit(E->getSubExpr());
|
|
|
|
if (BinOp.RHS->getType()->isFPOrFPVectorTy())
|
|
BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
|
|
else
|
|
BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
|
|
BinOp.Ty = E->getType();
|
|
BinOp.Opcode = BO_Sub;
|
|
BinOp.E = E;
|
|
return EmitSub(BinOp);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
Value *Op = Visit(E->getSubExpr());
|
|
return Builder.CreateNot(Op, "neg");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
|
|
// Compare operand to zero.
|
|
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
|
|
|
|
// Invert value.
|
|
// TODO: Could dynamically modify easy computations here. For example, if
|
|
// the operand is an icmp ne, turn into icmp eq.
|
|
BoolVal = Builder.CreateNot(BoolVal, "lnot");
|
|
|
|
// ZExt result to the expr type.
|
|
return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
|
|
// Try folding the offsetof to a constant.
|
|
Expr::EvalResult EvalResult;
|
|
if (E->Evaluate(EvalResult, CGF.getContext()))
|
|
return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
|
|
|
|
// Loop over the components of the offsetof to compute the value.
|
|
unsigned n = E->getNumComponents();
|
|
const llvm::Type* ResultType = ConvertType(E->getType());
|
|
llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
|
|
QualType CurrentType = E->getTypeSourceInfo()->getType();
|
|
for (unsigned i = 0; i != n; ++i) {
|
|
OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
|
|
llvm::Value *Offset = 0;
|
|
switch (ON.getKind()) {
|
|
case OffsetOfExpr::OffsetOfNode::Array: {
|
|
// Compute the index
|
|
Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
|
|
llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
|
|
bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
|
|
Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
|
|
|
|
// Save the element type
|
|
CurrentType =
|
|
CGF.getContext().getAsArrayType(CurrentType)->getElementType();
|
|
|
|
// Compute the element size
|
|
llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
|
|
CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
|
|
|
|
// Multiply out to compute the result
|
|
Offset = Builder.CreateMul(Idx, ElemSize);
|
|
break;
|
|
}
|
|
|
|
case OffsetOfExpr::OffsetOfNode::Field: {
|
|
FieldDecl *MemberDecl = ON.getField();
|
|
RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
|
|
const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
|
|
|
|
// Compute the index of the field in its parent.
|
|
unsigned i = 0;
|
|
// FIXME: It would be nice if we didn't have to loop here!
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
Field != FieldEnd; (void)++Field, ++i) {
|
|
if (*Field == MemberDecl)
|
|
break;
|
|
}
|
|
assert(i < RL.getFieldCount() && "offsetof field in wrong type");
|
|
|
|
// Compute the offset to the field
|
|
int64_t OffsetInt = RL.getFieldOffset(i) /
|
|
CGF.getContext().getCharWidth();
|
|
Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
|
|
|
|
// Save the element type.
|
|
CurrentType = MemberDecl->getType();
|
|
break;
|
|
}
|
|
|
|
case OffsetOfExpr::OffsetOfNode::Identifier:
|
|
llvm_unreachable("dependent __builtin_offsetof");
|
|
|
|
case OffsetOfExpr::OffsetOfNode::Base: {
|
|
if (ON.getBase()->isVirtual()) {
|
|
CGF.ErrorUnsupported(E, "virtual base in offsetof");
|
|
continue;
|
|
}
|
|
|
|
RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
|
|
const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
|
|
|
|
// Save the element type.
|
|
CurrentType = ON.getBase()->getType();
|
|
|
|
// Compute the offset to the base.
|
|
const RecordType *BaseRT = CurrentType->getAs<RecordType>();
|
|
CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
int64_t OffsetInt = RL.getBaseClassOffset(BaseRD) /
|
|
CGF.getContext().getCharWidth();
|
|
Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
|
|
break;
|
|
}
|
|
}
|
|
Result = Builder.CreateAdd(Result, Offset);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
|
|
/// argument of the sizeof expression as an integer.
|
|
Value *
|
|
ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
|
|
QualType TypeToSize = E->getTypeOfArgument();
|
|
if (E->isSizeOf()) {
|
|
if (const VariableArrayType *VAT =
|
|
CGF.getContext().getAsVariableArrayType(TypeToSize)) {
|
|
if (E->isArgumentType()) {
|
|
// sizeof(type) - make sure to emit the VLA size.
|
|
CGF.EmitVLASize(TypeToSize);
|
|
} else {
|
|
// C99 6.5.3.4p2: If the argument is an expression of type
|
|
// VLA, it is evaluated.
|
|
CGF.EmitAnyExpr(E->getArgumentExpr());
|
|
}
|
|
|
|
return CGF.GetVLASize(VAT);
|
|
}
|
|
}
|
|
|
|
// If this isn't sizeof(vla), the result must be constant; use the constant
|
|
// folding logic so we don't have to duplicate it here.
|
|
Expr::EvalResult Result;
|
|
E->Evaluate(Result, CGF.getContext());
|
|
return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
|
|
Expr *Op = E->getSubExpr();
|
|
if (Op->getType()->isAnyComplexType())
|
|
return CGF.EmitComplexExpr(Op, false, true, false, true).first;
|
|
return Visit(Op);
|
|
}
|
|
Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
|
|
Expr *Op = E->getSubExpr();
|
|
if (Op->getType()->isAnyComplexType())
|
|
return CGF.EmitComplexExpr(Op, true, false, true, false).second;
|
|
|
|
// __imag on a scalar returns zero. Emit the subexpr to ensure side
|
|
// effects are evaluated, but not the actual value.
|
|
if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
|
|
CGF.EmitLValue(Op);
|
|
else
|
|
CGF.EmitScalarExpr(Op, true);
|
|
return llvm::Constant::getNullValue(ConvertType(E->getType()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binary Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
BinOpInfo Result;
|
|
Result.LHS = Visit(E->getLHS());
|
|
Result.RHS = Visit(E->getRHS());
|
|
Result.Ty = E->getType();
|
|
Result.Opcode = E->getOpcode();
|
|
Result.E = E;
|
|
return Result;
|
|
}
|
|
|
|
LValue ScalarExprEmitter::EmitCompoundAssignLValue(
|
|
const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
|
|
Value *&Result) {
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
BinOpInfo OpInfo;
|
|
|
|
if (E->getComputationResultType()->isAnyComplexType()) {
|
|
// This needs to go through the complex expression emitter, but it's a tad
|
|
// complicated to do that... I'm leaving it out for now. (Note that we do
|
|
// actually need the imaginary part of the RHS for multiplication and
|
|
// division.)
|
|
CGF.ErrorUnsupported(E, "complex compound assignment");
|
|
Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
|
|
return LValue();
|
|
}
|
|
|
|
// Emit the RHS first. __block variables need to have the rhs evaluated
|
|
// first, plus this should improve codegen a little.
|
|
OpInfo.RHS = Visit(E->getRHS());
|
|
OpInfo.Ty = E->getComputationResultType();
|
|
OpInfo.Opcode = E->getOpcode();
|
|
OpInfo.E = E;
|
|
// Load/convert the LHS.
|
|
LValue LHSLV = EmitCheckedLValue(E->getLHS());
|
|
OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
|
|
OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
|
|
E->getComputationLHSType());
|
|
|
|
// Expand the binary operator.
|
|
Result = (this->*Func)(OpInfo);
|
|
|
|
// Convert the result back to the LHS type.
|
|
Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
|
|
|
|
// Store the result value into the LHS lvalue. Bit-fields are handled
|
|
// specially because the result is altered by the store, i.e., [C99 6.5.16p1]
|
|
// 'An assignment expression has the value of the left operand after the
|
|
// assignment...'.
|
|
if (LHSLV.isBitField())
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
|
|
&Result);
|
|
else
|
|
CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
|
|
|
|
return LHSLV;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
|
|
bool Ignore = TestAndClearIgnoreResultAssign();
|
|
Value *RHS;
|
|
LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
|
|
|
|
// If the result is clearly ignored, return now.
|
|
if (Ignore)
|
|
return 0;
|
|
|
|
// Objective-C property assignment never reloads the value following a store.
|
|
if (LHS.isPropertyRef() || LHS.isKVCRef())
|
|
return RHS;
|
|
|
|
// If the lvalue is non-volatile, return the computed value of the assignment.
|
|
if (!LHS.isVolatileQualified())
|
|
return RHS;
|
|
|
|
// Otherwise, reload the value.
|
|
return EmitLoadOfLValue(LHS, E->getType());
|
|
}
|
|
|
|
void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
|
|
const BinOpInfo &Ops,
|
|
llvm::Value *Zero, bool isDiv) {
|
|
llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
|
|
llvm::BasicBlock *contBB =
|
|
CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
|
|
|
|
const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
|
|
|
|
if (Ops.Ty->hasSignedIntegerRepresentation()) {
|
|
llvm::Value *IntMin =
|
|
llvm::ConstantInt::get(VMContext,
|
|
llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
|
|
llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
|
|
|
|
llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
|
|
llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
|
|
llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
|
|
llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
|
|
Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
|
|
overflowBB, contBB);
|
|
} else {
|
|
CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
|
|
overflowBB, contBB);
|
|
}
|
|
EmitOverflowBB(overflowBB);
|
|
Builder.SetInsertPoint(contBB);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
|
|
if (isTrapvOverflowBehavior()) {
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
|
|
|
if (Ops.Ty->isIntegerType())
|
|
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
|
|
else if (Ops.Ty->isRealFloatingType()) {
|
|
llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
|
|
CGF.CurFn);
|
|
llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
|
|
CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
|
|
overflowBB, DivCont);
|
|
EmitOverflowBB(overflowBB);
|
|
Builder.SetInsertPoint(DivCont);
|
|
}
|
|
}
|
|
if (Ops.LHS->getType()->isFPOrFPVectorTy())
|
|
return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
|
|
else if (Ops.Ty->hasUnsignedIntegerRepresentation())
|
|
return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
|
|
else
|
|
return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
|
|
// Rem in C can't be a floating point type: C99 6.5.5p2.
|
|
if (isTrapvOverflowBehavior()) {
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
|
|
|
if (Ops.Ty->isIntegerType())
|
|
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
|
|
}
|
|
|
|
if (Ops.Ty->isUnsignedIntegerType())
|
|
return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
|
|
else
|
|
return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
|
|
unsigned IID;
|
|
unsigned OpID = 0;
|
|
|
|
switch (Ops.Opcode) {
|
|
case BO_Add:
|
|
case BO_AddAssign:
|
|
OpID = 1;
|
|
IID = llvm::Intrinsic::sadd_with_overflow;
|
|
break;
|
|
case BO_Sub:
|
|
case BO_SubAssign:
|
|
OpID = 2;
|
|
IID = llvm::Intrinsic::ssub_with_overflow;
|
|
break;
|
|
case BO_Mul:
|
|
case BO_MulAssign:
|
|
OpID = 3;
|
|
IID = llvm::Intrinsic::smul_with_overflow;
|
|
break;
|
|
default:
|
|
assert(false && "Unsupported operation for overflow detection");
|
|
IID = 0;
|
|
}
|
|
OpID <<= 1;
|
|
OpID |= 1;
|
|
|
|
const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
|
|
|
|
llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
|
|
|
|
Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
|
|
Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
|
|
Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
|
|
|
|
// Branch in case of overflow.
|
|
llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
|
|
llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
|
|
|
|
Builder.CreateCondBr(overflow, overflowBB, continueBB);
|
|
|
|
// Handle overflow with llvm.trap.
|
|
// TODO: it would be better to generate one of these blocks per function.
|
|
EmitOverflowBB(overflowBB);
|
|
|
|
// Continue on.
|
|
Builder.SetInsertPoint(continueBB);
|
|
return result;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
|
|
if (!Ops.Ty->isAnyPointerType()) {
|
|
if (Ops.Ty->hasSignedIntegerRepresentation()) {
|
|
switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Undefined:
|
|
return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
|
|
case LangOptions::SOB_Defined:
|
|
return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
|
|
case LangOptions::SOB_Trapping:
|
|
return EmitOverflowCheckedBinOp(Ops);
|
|
}
|
|
}
|
|
|
|
if (Ops.LHS->getType()->isFPOrFPVectorTy())
|
|
return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
|
|
|
|
return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
|
|
}
|
|
|
|
// Must have binary (not unary) expr here. Unary pointer decrement doesn't
|
|
// use this path.
|
|
const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
|
|
|
|
if (Ops.Ty->isPointerType() &&
|
|
Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
|
|
// The amount of the addition needs to account for the VLA size
|
|
CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
|
|
}
|
|
|
|
Value *Ptr, *Idx;
|
|
Expr *IdxExp;
|
|
const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
|
|
const ObjCObjectPointerType *OPT =
|
|
BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
|
|
if (PT || OPT) {
|
|
Ptr = Ops.LHS;
|
|
Idx = Ops.RHS;
|
|
IdxExp = BinOp->getRHS();
|
|
} else { // int + pointer
|
|
PT = BinOp->getRHS()->getType()->getAs<PointerType>();
|
|
OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
|
|
assert((PT || OPT) && "Invalid add expr");
|
|
Ptr = Ops.RHS;
|
|
Idx = Ops.LHS;
|
|
IdxExp = BinOp->getLHS();
|
|
}
|
|
|
|
unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
|
|
if (Width < CGF.LLVMPointerWidth) {
|
|
// Zero or sign extend the pointer value based on whether the index is
|
|
// signed or not.
|
|
const llvm::Type *IdxType = CGF.IntPtrTy;
|
|
if (IdxExp->getType()->isSignedIntegerType())
|
|
Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
|
|
else
|
|
Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
|
|
}
|
|
const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
|
|
// Handle interface types, which are not represented with a concrete type.
|
|
if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
|
|
llvm::Value *InterfaceSize =
|
|
llvm::ConstantInt::get(Idx->getType(),
|
|
CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
|
|
Idx = Builder.CreateMul(Idx, InterfaceSize);
|
|
const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
|
|
Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
|
|
Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
|
|
return Builder.CreateBitCast(Res, Ptr->getType());
|
|
}
|
|
|
|
// Explicitly handle GNU void* and function pointer arithmetic extensions. The
|
|
// GNU void* casts amount to no-ops since our void* type is i8*, but this is
|
|
// future proof.
|
|
if (ElementType->isVoidType() || ElementType->isFunctionType()) {
|
|
const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
|
|
Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
|
|
Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
|
|
return Builder.CreateBitCast(Res, Ptr->getType());
|
|
}
|
|
|
|
return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
|
|
if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
|
|
if (Ops.Ty->hasSignedIntegerRepresentation()) {
|
|
switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Undefined:
|
|
return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
|
|
case LangOptions::SOB_Defined:
|
|
return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
|
|
case LangOptions::SOB_Trapping:
|
|
return EmitOverflowCheckedBinOp(Ops);
|
|
}
|
|
}
|
|
|
|
if (Ops.LHS->getType()->isFPOrFPVectorTy())
|
|
return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
|
|
|
|
return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
|
|
}
|
|
|
|
// Must have binary (not unary) expr here. Unary pointer increment doesn't
|
|
// use this path.
|
|
const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
|
|
|
|
if (BinOp->getLHS()->getType()->isPointerType() &&
|
|
BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
|
|
// The amount of the addition needs to account for the VLA size for
|
|
// ptr-int
|
|
// The amount of the division needs to account for the VLA size for
|
|
// ptr-ptr.
|
|
CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
|
|
}
|
|
|
|
const QualType LHSType = BinOp->getLHS()->getType();
|
|
const QualType LHSElementType = LHSType->getPointeeType();
|
|
if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
|
|
// pointer - int
|
|
Value *Idx = Ops.RHS;
|
|
unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
|
|
if (Width < CGF.LLVMPointerWidth) {
|
|
// Zero or sign extend the pointer value based on whether the index is
|
|
// signed or not.
|
|
const llvm::Type *IdxType = CGF.IntPtrTy;
|
|
if (BinOp->getRHS()->getType()->isSignedIntegerType())
|
|
Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
|
|
else
|
|
Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
|
|
}
|
|
Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
|
|
|
|
// Handle interface types, which are not represented with a concrete type.
|
|
if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
|
|
llvm::Value *InterfaceSize =
|
|
llvm::ConstantInt::get(Idx->getType(),
|
|
CGF.getContext().
|
|
getTypeSizeInChars(OIT).getQuantity());
|
|
Idx = Builder.CreateMul(Idx, InterfaceSize);
|
|
const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
|
|
Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
|
|
Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
|
|
return Builder.CreateBitCast(Res, Ops.LHS->getType());
|
|
}
|
|
|
|
// Explicitly handle GNU void* and function pointer arithmetic
|
|
// extensions. The GNU void* casts amount to no-ops since our void* type is
|
|
// i8*, but this is future proof.
|
|
if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
|
|
const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
|
|
Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
|
|
Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
|
|
return Builder.CreateBitCast(Res, Ops.LHS->getType());
|
|
}
|
|
|
|
return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
|
|
} else {
|
|
// pointer - pointer
|
|
Value *LHS = Ops.LHS;
|
|
Value *RHS = Ops.RHS;
|
|
|
|
CharUnits ElementSize;
|
|
|
|
// Handle GCC extension for pointer arithmetic on void* and function pointer
|
|
// types.
|
|
if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
|
|
ElementSize = CharUnits::One();
|
|
} else {
|
|
ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
|
|
}
|
|
|
|
const llvm::Type *ResultType = ConvertType(Ops.Ty);
|
|
LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
|
|
RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
|
|
Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
|
|
|
|
// Optimize out the shift for element size of 1.
|
|
if (ElementSize.isOne())
|
|
return BytesBetween;
|
|
|
|
// Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
|
|
// pointer difference in C is only defined in the case where both operands
|
|
// are pointing to elements of an array.
|
|
Value *BytesPerElt =
|
|
llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
|
|
return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
|
|
}
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
Value *RHS = Ops.RHS;
|
|
if (Ops.LHS->getType() != RHS->getType())
|
|
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
|
|
|
|
if (CGF.CatchUndefined
|
|
&& isa<llvm::IntegerType>(Ops.LHS->getType())) {
|
|
unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
|
|
llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
|
|
CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
|
|
llvm::ConstantInt::get(RHS->getType(), Width)),
|
|
Cont, CGF.getTrapBB());
|
|
CGF.EmitBlock(Cont);
|
|
}
|
|
|
|
return Builder.CreateShl(Ops.LHS, RHS, "shl");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
Value *RHS = Ops.RHS;
|
|
if (Ops.LHS->getType() != RHS->getType())
|
|
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
|
|
|
|
if (CGF.CatchUndefined
|
|
&& isa<llvm::IntegerType>(Ops.LHS->getType())) {
|
|
unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
|
|
llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
|
|
CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
|
|
llvm::ConstantInt::get(RHS->getType(), Width)),
|
|
Cont, CGF.getTrapBB());
|
|
CGF.EmitBlock(Cont);
|
|
}
|
|
|
|
if (Ops.Ty->hasUnsignedIntegerRepresentation())
|
|
return Builder.CreateLShr(Ops.LHS, RHS, "shr");
|
|
return Builder.CreateAShr(Ops.LHS, RHS, "shr");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
|
|
unsigned SICmpOpc, unsigned FCmpOpc) {
|
|
TestAndClearIgnoreResultAssign();
|
|
Value *Result;
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
|
|
assert(E->getOpcode() == BO_EQ ||
|
|
E->getOpcode() == BO_NE);
|
|
Value *LHS = CGF.EmitScalarExpr(E->getLHS());
|
|
Value *RHS = CGF.EmitScalarExpr(E->getRHS());
|
|
Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
|
|
CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
|
|
} else if (!LHSTy->isAnyComplexType()) {
|
|
Value *LHS = Visit(E->getLHS());
|
|
Value *RHS = Visit(E->getRHS());
|
|
|
|
if (LHS->getType()->isFPOrFPVectorTy()) {
|
|
Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
|
|
LHS, RHS, "cmp");
|
|
} else if (LHSTy->hasSignedIntegerRepresentation()) {
|
|
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
|
|
LHS, RHS, "cmp");
|
|
} else {
|
|
// Unsigned integers and pointers.
|
|
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
|
|
LHS, RHS, "cmp");
|
|
}
|
|
|
|
// If this is a vector comparison, sign extend the result to the appropriate
|
|
// vector integer type and return it (don't convert to bool).
|
|
if (LHSTy->isVectorType())
|
|
return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
|
|
|
|
} else {
|
|
// Complex Comparison: can only be an equality comparison.
|
|
CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
|
|
CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
|
|
|
|
QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
|
|
|
|
Value *ResultR, *ResultI;
|
|
if (CETy->isRealFloatingType()) {
|
|
ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
|
|
LHS.first, RHS.first, "cmp.r");
|
|
ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
|
|
LHS.second, RHS.second, "cmp.i");
|
|
} else {
|
|
// Complex comparisons can only be equality comparisons. As such, signed
|
|
// and unsigned opcodes are the same.
|
|
ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
|
|
LHS.first, RHS.first, "cmp.r");
|
|
ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
|
|
LHS.second, RHS.second, "cmp.i");
|
|
}
|
|
|
|
if (E->getOpcode() == BO_EQ) {
|
|
Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
|
|
} else {
|
|
assert(E->getOpcode() == BO_NE &&
|
|
"Complex comparison other than == or != ?");
|
|
Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
|
|
}
|
|
}
|
|
|
|
return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
|
|
bool Ignore = TestAndClearIgnoreResultAssign();
|
|
|
|
// __block variables need to have the rhs evaluated first, plus this should
|
|
// improve codegen just a little.
|
|
Value *RHS = Visit(E->getRHS());
|
|
LValue LHS = EmitCheckedLValue(E->getLHS());
|
|
|
|
// Store the value into the LHS. Bit-fields are handled specially
|
|
// because the result is altered by the store, i.e., [C99 6.5.16p1]
|
|
// 'An assignment expression has the value of the left operand after
|
|
// the assignment...'.
|
|
if (LHS.isBitField())
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
|
|
&RHS);
|
|
else
|
|
CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
|
|
|
|
// If the result is clearly ignored, return now.
|
|
if (Ignore)
|
|
return 0;
|
|
|
|
// Objective-C property assignment never reloads the value following a store.
|
|
if (LHS.isPropertyRef() || LHS.isKVCRef())
|
|
return RHS;
|
|
|
|
// If the lvalue is non-volatile, return the computed value of the assignment.
|
|
if (!LHS.isVolatileQualified())
|
|
return RHS;
|
|
|
|
// Otherwise, reload the value.
|
|
return EmitLoadOfLValue(LHS, E->getType());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
|
|
const llvm::Type *ResTy = ConvertType(E->getType());
|
|
|
|
// If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
|
|
// If we have 1 && X, just emit X without inserting the control flow.
|
|
if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
|
|
if (Cond == 1) { // If we have 1 && X, just emit X.
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
// ZExt result to int or bool.
|
|
return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
|
|
}
|
|
|
|
// 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
|
|
if (!CGF.ContainsLabel(E->getRHS()))
|
|
return llvm::Constant::getNullValue(ResTy);
|
|
}
|
|
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
|
|
|
|
// Branch on the LHS first. If it is false, go to the failure (cont) block.
|
|
CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
|
|
|
|
// Any edges into the ContBlock are now from an (indeterminate number of)
|
|
// edges from this first condition. All of these values will be false. Start
|
|
// setting up the PHI node in the Cont Block for this.
|
|
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
|
|
"", ContBlock);
|
|
PN->reserveOperandSpace(2); // Normal case, two inputs.
|
|
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
|
|
PI != PE; ++PI)
|
|
PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
|
|
|
|
CGF.BeginConditionalBranch();
|
|
CGF.EmitBlock(RHSBlock);
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
CGF.EndConditionalBranch();
|
|
|
|
// Reaquire the RHS block, as there may be subblocks inserted.
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
|
|
// Emit an unconditional branch from this block to ContBlock. Insert an entry
|
|
// into the phi node for the edge with the value of RHSCond.
|
|
CGF.EmitBlock(ContBlock);
|
|
PN->addIncoming(RHSCond, RHSBlock);
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
|
|
const llvm::Type *ResTy = ConvertType(E->getType());
|
|
|
|
// If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
|
|
// If we have 0 || X, just emit X without inserting the control flow.
|
|
if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
|
|
if (Cond == -1) { // If we have 0 || X, just emit X.
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
// ZExt result to int or bool.
|
|
return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
|
|
}
|
|
|
|
// 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
|
|
if (!CGF.ContainsLabel(E->getRHS()))
|
|
return llvm::ConstantInt::get(ResTy, 1);
|
|
}
|
|
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
|
|
|
|
// Branch on the LHS first. If it is true, go to the success (cont) block.
|
|
CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
|
|
|
|
// Any edges into the ContBlock are now from an (indeterminate number of)
|
|
// edges from this first condition. All of these values will be true. Start
|
|
// setting up the PHI node in the Cont Block for this.
|
|
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
|
|
"", ContBlock);
|
|
PN->reserveOperandSpace(2); // Normal case, two inputs.
|
|
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
|
|
PI != PE; ++PI)
|
|
PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
|
|
|
|
CGF.BeginConditionalBranch();
|
|
|
|
// Emit the RHS condition as a bool value.
|
|
CGF.EmitBlock(RHSBlock);
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
|
|
CGF.EndConditionalBranch();
|
|
|
|
// Reaquire the RHS block, as there may be subblocks inserted.
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
|
|
// Emit an unconditional branch from this block to ContBlock. Insert an entry
|
|
// into the phi node for the edge with the value of RHSCond.
|
|
CGF.EmitBlock(ContBlock);
|
|
PN->addIncoming(RHSCond, RHSBlock);
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
|
|
CGF.EmitStmt(E->getLHS());
|
|
CGF.EnsureInsertPoint();
|
|
return Visit(E->getRHS());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
|
|
/// expression is cheap enough and side-effect-free enough to evaluate
|
|
/// unconditionally instead of conditionally. This is used to convert control
|
|
/// flow into selects in some cases.
|
|
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
|
|
CodeGenFunction &CGF) {
|
|
if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
|
|
return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
|
|
|
|
// TODO: Allow anything we can constant fold to an integer or fp constant.
|
|
if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
|
|
isa<FloatingLiteral>(E))
|
|
return true;
|
|
|
|
// Non-volatile automatic variables too, to get "cond ? X : Y" where
|
|
// X and Y are local variables.
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
|
if (VD->hasLocalStorage() && !(CGF.getContext()
|
|
.getCanonicalType(VD->getType())
|
|
.isVolatileQualified()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
Value *ScalarExprEmitter::
|
|
VisitConditionalOperator(const ConditionalOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm.
|
|
if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
|
|
Expr *Live = E->getLHS(), *Dead = E->getRHS();
|
|
if (Cond == -1)
|
|
std::swap(Live, Dead);
|
|
|
|
// If the dead side doesn't have labels we need, and if the Live side isn't
|
|
// the gnu missing ?: extension (which we could handle, but don't bother
|
|
// to), just emit the Live part.
|
|
if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
|
|
Live) // Live part isn't missing.
|
|
return Visit(Live);
|
|
}
|
|
|
|
|
|
// If this is a really simple expression (like x ? 4 : 5), emit this as a
|
|
// select instead of as control flow. We can only do this if it is cheap and
|
|
// safe to evaluate the LHS and RHS unconditionally.
|
|
if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
|
|
CGF) &&
|
|
isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
|
|
llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
|
|
llvm::Value *LHS = Visit(E->getLHS());
|
|
llvm::Value *RHS = Visit(E->getRHS());
|
|
return Builder.CreateSelect(CondV, LHS, RHS, "cond");
|
|
}
|
|
|
|
if (!E->getLHS() && CGF.getContext().getLangOptions().CPlusPlus) {
|
|
// Does not support GNU missing condition extension in C++ yet (see #7726)
|
|
CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
|
|
return llvm::UndefValue::get(ConvertType(E->getType()));
|
|
}
|
|
|
|
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
|
|
Value *CondVal = 0;
|
|
|
|
// If we don't have the GNU missing condition extension, emit a branch on bool
|
|
// the normal way.
|
|
if (E->getLHS()) {
|
|
// Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
|
|
// the branch on bool.
|
|
CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
|
|
} else {
|
|
// Otherwise, for the ?: extension, evaluate the conditional and then
|
|
// convert it to bool the hard way. We do this explicitly because we need
|
|
// the unconverted value for the missing middle value of the ?:.
|
|
CondVal = CGF.EmitScalarExpr(E->getCond());
|
|
|
|
// In some cases, EmitScalarConversion will delete the "CondVal" expression
|
|
// if there are no extra uses (an optimization). Inhibit this by making an
|
|
// extra dead use, because we're going to add a use of CondVal later. We
|
|
// don't use the builder for this, because we don't want it to get optimized
|
|
// away. This leaves dead code, but the ?: extension isn't common.
|
|
new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
|
|
Builder.GetInsertBlock());
|
|
|
|
Value *CondBoolVal =
|
|
CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
|
|
CGF.getContext().BoolTy);
|
|
Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
|
|
}
|
|
|
|
CGF.BeginConditionalBranch();
|
|
CGF.EmitBlock(LHSBlock);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
Value *LHS;
|
|
if (E->getLHS())
|
|
LHS = Visit(E->getLHS());
|
|
else // Perform promotions, to handle cases like "short ?: int"
|
|
LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
|
|
|
|
CGF.EndConditionalBranch();
|
|
LHSBlock = Builder.GetInsertBlock();
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.BeginConditionalBranch();
|
|
CGF.EmitBlock(RHSBlock);
|
|
|
|
Value *RHS = Visit(E->getRHS());
|
|
CGF.EndConditionalBranch();
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.EmitBlock(ContBlock);
|
|
|
|
// If the LHS or RHS is a throw expression, it will be legitimately null.
|
|
if (!LHS)
|
|
return RHS;
|
|
if (!RHS)
|
|
return LHS;
|
|
|
|
// Create a PHI node for the real part.
|
|
llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
|
|
PN->reserveOperandSpace(2);
|
|
PN->addIncoming(LHS, LHSBlock);
|
|
PN->addIncoming(RHS, RHSBlock);
|
|
return PN;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
|
|
return Visit(E->getChosenSubExpr(CGF.getContext()));
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
|
|
llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
|
|
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
|
|
|
|
// If EmitVAArg fails, we fall back to the LLVM instruction.
|
|
if (!ArgPtr)
|
|
return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
|
|
|
|
// FIXME Volatility.
|
|
return Builder.CreateLoad(ArgPtr);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
|
|
return CGF.BuildBlockLiteralTmp(BE);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Point into this File
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitScalarExpr - Emit the computation of the specified expression of scalar
|
|
/// type, ignoring the result.
|
|
Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
|
|
assert(E && !hasAggregateLLVMType(E->getType()) &&
|
|
"Invalid scalar expression to emit");
|
|
|
|
return ScalarExprEmitter(*this, IgnoreResultAssign)
|
|
.Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
|
|
QualType DstTy) {
|
|
assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
|
|
"Invalid scalar expression to emit");
|
|
return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
|
|
}
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
|
|
/// type to the specified destination type, where the destination type is an
|
|
/// LLVM scalar type.
|
|
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
|
|
QualType SrcTy,
|
|
QualType DstTy) {
|
|
assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
|
|
"Invalid complex -> scalar conversion");
|
|
return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
|
|
DstTy);
|
|
}
|
|
|
|
|
|
llvm::Value *CodeGenFunction::
|
|
EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre) {
|
|
return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
|
|
llvm::Value *V;
|
|
// object->isa or (*object).isa
|
|
// Generate code as for: *(Class*)object
|
|
// build Class* type
|
|
const llvm::Type *ClassPtrTy = ConvertType(E->getType());
|
|
|
|
Expr *BaseExpr = E->getBase();
|
|
if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
|
|
V = CreateTempAlloca(ClassPtrTy, "resval");
|
|
llvm::Value *Src = EmitScalarExpr(BaseExpr);
|
|
Builder.CreateStore(Src, V);
|
|
V = ScalarExprEmitter(*this).EmitLoadOfLValue(
|
|
MakeAddrLValue(V, E->getType()), E->getType());
|
|
} else {
|
|
if (E->isArrow())
|
|
V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
|
|
else
|
|
V = EmitLValue(BaseExpr).getAddress();
|
|
}
|
|
|
|
// build Class* type
|
|
ClassPtrTy = ClassPtrTy->getPointerTo();
|
|
V = Builder.CreateBitCast(V, ClassPtrTy);
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
|
|
|
|
LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
|
|
const CompoundAssignOperator *E) {
|
|
ScalarExprEmitter Scalar(*this);
|
|
Value *Result = 0;
|
|
switch (E->getOpcode()) {
|
|
#define COMPOUND_OP(Op) \
|
|
case BO_##Op##Assign: \
|
|
return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
|
|
Result)
|
|
COMPOUND_OP(Mul);
|
|
COMPOUND_OP(Div);
|
|
COMPOUND_OP(Rem);
|
|
COMPOUND_OP(Add);
|
|
COMPOUND_OP(Sub);
|
|
COMPOUND_OP(Shl);
|
|
COMPOUND_OP(Shr);
|
|
COMPOUND_OP(And);
|
|
COMPOUND_OP(Xor);
|
|
COMPOUND_OP(Or);
|
|
#undef COMPOUND_OP
|
|
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
case BO_And:
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
case BO_Assign:
|
|
case BO_Comma:
|
|
assert(false && "Not valid compound assignment operators");
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled compound assignment operator");
|
|
}
|