llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp

1601 lines
56 KiB
C++

//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include <cerrno>
using namespace llvm;
char AsmPrinter::ID = 0;
AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
const TargetAsmInfo *T)
: MachineFunctionPass(&ID), FunctionNumber(0), O(o),
TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
IsInTextSection(false)
{}
AsmPrinter::~AsmPrinter() {
for (gcp_iterator I = GCMetadataPrinters.begin(),
E = GCMetadataPrinters.end(); I != E; ++I)
delete I->second;
}
/// SwitchToTextSection - Switch to the specified text section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToTextSection(const char *NewSection,
const GlobalValue *GV) {
std::string NS;
if (GV && GV->hasSection())
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
else
NS = NewSection;
// If we're already in this section, we're done.
if (CurrentSection == NS) return;
// Close the current section, if applicable.
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
CurrentSection = NS;
if (!CurrentSection.empty())
O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
IsInTextSection = true;
}
/// SwitchToDataSection - Switch to the specified data section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToDataSection(const char *NewSection,
const GlobalValue *GV) {
std::string NS;
if (GV && GV->hasSection())
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
else
NS = NewSection;
// If we're already in this section, we're done.
if (CurrentSection == NS) return;
// Close the current section, if applicable.
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
CurrentSection = NS;
if (!CurrentSection.empty())
O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
IsInTextSection = false;
}
/// SwitchToSection - Switch to the specified section of the executable if we
/// are not already in it!
void AsmPrinter::SwitchToSection(const Section* NS) {
const std::string& NewSection = NS->getName();
// If we're already in this section, we're done.
if (CurrentSection == NewSection) return;
// Close the current section, if applicable.
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
// FIXME: Make CurrentSection a Section* in the future
CurrentSection = NewSection;
CurrentSection_ = NS;
if (!CurrentSection.empty()) {
// If section is named we need to switch into it via special '.section'
// directive and also append funky flags. Otherwise - section name is just
// some magic assembler directive.
if (NS->isNamed())
O << TAI->getSwitchToSectionDirective()
<< CurrentSection
<< TAI->getSectionFlags(NS->getFlags());
else
O << CurrentSection;
O << TAI->getDataSectionStartSuffix() << '\n';
}
IsInTextSection = (NS->getFlags() & SectionFlags::Code);
}
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<GCModuleInfo>();
}
bool AsmPrinter::doInitialization(Module &M) {
Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
if (TAI->hasSingleParameterDotFile()) {
/* Very minimal debug info. It is ignored if we emit actual
debug info. If we don't, this at helps the user find where
a function came from. */
O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
}
for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
MP->beginAssembly(O, *this, *TAI);
if (!M.getModuleInlineAsm().empty())
O << TAI->getCommentString() << " Start of file scope inline assembly\n"
<< M.getModuleInlineAsm()
<< '\n' << TAI->getCommentString()
<< " End of file scope inline assembly\n";
SwitchToDataSection(""); // Reset back to no section.
MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
if (MMI) MMI->AnalyzeModule(M);
DW = getAnalysisIfAvailable<DwarfWriter>();
return false;
}
bool AsmPrinter::doFinalization(Module &M) {
if (TAI->getWeakRefDirective()) {
if (!ExtWeakSymbols.empty())
SwitchToDataSection("");
for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
e = ExtWeakSymbols.end(); i != e; ++i) {
const GlobalValue *GV = *i;
std::string Name = Mang->getValueName(GV);
O << TAI->getWeakRefDirective() << Name << '\n';
}
}
if (TAI->getSetDirective()) {
if (!M.alias_empty())
SwitchToSection(TAI->getTextSection());
O << '\n';
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I!=E; ++I) {
std::string Name = Mang->getValueName(I);
std::string Target;
const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
Target = Mang->getValueName(GV);
if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
O << "\t.globl\t" << Name << '\n';
else if (I->hasWeakLinkage())
O << TAI->getWeakRefDirective() << Name << '\n';
else if (!I->hasLocalLinkage())
assert(0 && "Invalid alias linkage");
printVisibility(Name, I->getVisibility());
O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
// If the aliasee has external weak linkage it can be referenced only by
// alias itself. In this case it can be not in ExtWeakSymbols list. Emit
// weak reference in such case.
if (GV->hasExternalWeakLinkage()) {
if (TAI->getWeakRefDirective())
O << TAI->getWeakRefDirective() << Target << '\n';
else
O << "\t.globl\t" << Target << '\n';
}
}
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
MP->finishAssembly(O, *this, *TAI);
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (TAI->getNonexecutableStackDirective())
O << TAI->getNonexecutableStackDirective() << '\n';
delete Mang; Mang = 0;
return false;
}
std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
assert(MF && "No machine function?");
std::string Name = MF->getFunction()->getName();
if (Name.empty())
Name = Mang->getValueName(MF->getFunction());
return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
Name + ".eh", TAI->getGlobalPrefix());
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
// What's my mangled name?
CurrentFnName = Mang->getValueName(MF.getFunction());
IncrementFunctionNumber();
}
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Calculate sections for constant pool entries. We collect entries to go into
// the same section together to reduce amount of section switch statements.
typedef
std::multimap<const Section*,
std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
CPMap CPs;
SmallPtrSet<const Section*, 5> Sections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
MachineConstantPoolEntry CPE = CP[i];
const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
Sections.insert(S);
}
// Now print stuff into the calculated sections.
for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
ES = Sections.end(); IS != ES; ++IS) {
SwitchToSection(*IS);
EmitAlignment(MCP->getConstantPoolAlignment());
std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
CPMap::iterator J = next(I);
MachineConstantPoolEntry Entry = I->second.first;
unsigned index = I->second.second;
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< index << ":\t\t\t\t\t";
// O << TAI->getCommentString() << ' ' <<
// WriteTypeSymbolic(O, CP[i].first.getType(), 0);
O << '\n';
if (Entry.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
else
EmitGlobalConstant(Entry.Val.ConstVal);
// Emit inter-object padding for alignment.
if (J != E) {
const Type *Ty = Entry.getType();
unsigned EntSize = TM.getTargetData()->getTypePaddedSize(Ty);
unsigned ValEnd = Entry.getOffset() + EntSize;
EmitZeros(J->second.first.getOffset()-ValEnd);
}
}
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
MachineFunction &MF) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
TargetLowering *LoweringInfo = TM.getTargetLowering();
const char* JumpTableDataSection = TAI->getJumpTableDataSection();
const Function *F = MF.getFunction();
unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
!JumpTableDataSection ||
SectionFlags & SectionFlags::Linkonce) {
// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// We should also do if the section name is NULL or function is declared in
// discardable section.
SwitchToSection(TAI->SectionForGlobal(F));
} else {
SwitchToDataSection(JumpTableDataSection);
}
EmitAlignment(Log2_32(MJTI->getAlignment()));
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For PIC codegen, if possible we want to use the SetDirective to reduce
// the number of relocations the assembler will generate for the jump table.
// Set directives are all printed before the jump table itself.
SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
if (TAI->getSetDirective() && IsPic)
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
if (EmittedSets.insert(JTBBs[ii]))
printPICJumpTableSetLabel(i, JTBBs[ii]);
// On some targets (e.g. darwin) we want to emit two consequtive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << i << ":\n";
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
printPICJumpTableEntry(MJTI, JTBBs[ii], i);
O << '\n';
}
}
}
void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const {
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
// Use JumpTableDirective otherwise honor the entry size from the jump table
// info.
const char *JTEntryDirective = TAI->getJumpTableDirective();
bool HadJTEntryDirective = JTEntryDirective != NULL;
if (!HadJTEntryDirective) {
JTEntryDirective = MJTI->getEntrySize() == 4 ?
TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
}
O << JTEntryDirective << ' ';
// If we have emitted set directives for the jump table entries, print
// them rather than the entries themselves. If we're emitting PIC, then
// emit the table entries as differences between two text section labels.
// If we're emitting non-PIC code, then emit the entries as direct
// references to the target basic blocks.
if (IsPic) {
if (TAI->getSetDirective()) {
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << uid << "_set_" << MBB->getNumber();
} else {
printBasicBlockLabel(MBB, false, false, false);
// If the arch uses custom Jump Table directives, don't calc relative to
// JT
if (!HadJTEntryDirective)
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid;
}
} else {
printBasicBlockLabel(MBB, false, false, false);
}
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
if (TAI->getUsedDirective() != 0) // No need to emit this at all.
EmitLLVMUsedList(GV->getInitializer());
return true;
}
// Ignore debug and non-emitted data.
if (GV->getSection() == "llvm.metadata") return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
const TargetData *TD = TM.getTargetData();
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
SwitchToDataSection(TAI->getStaticCtorsSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
SwitchToDataSection(TAI->getStaticDtorsSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
return false;
}
/// findGlobalValue - if CV is an expression equivalent to a single
/// global value, return that value.
const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return GV;
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData *TD = TM.getTargetData();
unsigned Opcode = CE->getOpcode();
switch (Opcode) {
case Instruction::GetElementPtr: {
const Constant *ptrVal = CE->getOperand(0);
SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
return 0;
return findGlobalValue(ptrVal);
}
case Instruction::BitCast:
return findGlobalValue(CE->getOperand(0));
default:
return 0;
}
}
return 0;
}
/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
const char *Directive = TAI->getUsedDirective();
// Should be an array of 'sbyte*'.
ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (InitList == 0) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
if (TAI->emitUsedDirectiveFor(GV, Mang)) {
O << Directive;
EmitConstantValueOnly(InitList->getOperand(i));
O << '\n';
}
}
}
/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority, which we ignore.
if (!isa<ConstantArray>(List)) return;
ConstantArray *InitList = cast<ConstantArray>(List);
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
// Emit the function pointer.
EmitGlobalConstant(CS->getOperand(1));
}
}
/// getGlobalLinkName - Returns the asm/link name of of the specified
/// global variable. Should be overridden by each target asm printer to
/// generate the appropriate value.
const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
std::string LinkName;
if (isa<Function>(GV)) {
LinkName += TAI->getFunctionAddrPrefix();
LinkName += Mang->getValueName(GV);
LinkName += TAI->getFunctionAddrSuffix();
} else {
LinkName += TAI->getGlobalVarAddrPrefix();
LinkName += Mang->getValueName(GV);
LinkName += TAI->getGlobalVarAddrSuffix();
}
return LinkName;
}
/// EmitExternalGlobal - Emit the external reference to a global variable.
/// Should be overridden if an indirect reference should be used.
void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
O << getGlobalLinkName(GV);
}
//===----------------------------------------------------------------------===//
/// LEB 128 number encoding.
/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
/// representing an unsigned leb128 value.
void AsmPrinter::PrintULEB128(unsigned Value) const {
char Buffer[20];
do {
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
Value >>= 7;
if (Value) Byte |= 0x80;
O << "0x" << utohex_buffer(Byte, Buffer+20);
if (Value) O << ", ";
} while (Value);
}
/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
/// representing a signed leb128 value.
void AsmPrinter::PrintSLEB128(int Value) const {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
char Buffer[20];
do {
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
O << "0x" << utohex_buffer(Byte, Buffer+20);
if (IsMore) O << ", ";
} while (IsMore);
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// PrintHex - Print a value as a hexidecimal value.
///
void AsmPrinter::PrintHex(int Value) const {
char Buffer[20];
O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
}
/// EOL - Print a newline character to asm stream. If a comment is present
/// then it will be printed first. Comments should not contain '\n'.
void AsmPrinter::EOL() const {
O << '\n';
}
void AsmPrinter::EOL(const std::string &Comment) const {
if (VerboseAsm && !Comment.empty()) {
O << '\t'
<< TAI->getCommentString()
<< ' '
<< Comment;
}
O << '\n';
}
void AsmPrinter::EOL(const char* Comment) const {
if (VerboseAsm && *Comment) {
O << '\t'
<< TAI->getCommentString()
<< ' '
<< Comment;
}
O << '\n';
}
/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
/// unsigned leb128 value.
void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
if (TAI->hasLEB128()) {
O << "\t.uleb128\t"
<< Value;
} else {
O << TAI->getData8bitsDirective();
PrintULEB128(Value);
}
}
/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
/// signed leb128 value.
void AsmPrinter::EmitSLEB128Bytes(int Value) const {
if (TAI->hasLEB128()) {
O << "\t.sleb128\t"
<< Value;
} else {
O << TAI->getData8bitsDirective();
PrintSLEB128(Value);
}
}
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
O << TAI->getData8bitsDirective();
PrintHex(Value & 0xFF);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
O << TAI->getData16bitsDirective();
PrintHex(Value & 0xFFFF);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
O << TAI->getData32bitsDirective();
PrintHex(Value);
}
/// EmitInt64 - Emit a long long directive and value.
///
void AsmPrinter::EmitInt64(uint64_t Value) const {
if (TAI->getData64bitsDirective()) {
O << TAI->getData64bitsDirective();
PrintHex(Value);
} else {
if (TM.getTargetData()->isBigEndian()) {
EmitInt32(unsigned(Value >> 32)); O << '\n';
EmitInt32(unsigned(Value));
} else {
EmitInt32(unsigned(Value)); O << '\n';
EmitInt32(unsigned(Value >> 32));
}
}
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
/// printStringChar - Print a char, escaped if necessary.
///
static void printStringChar(raw_ostream &O, char C) {
if (C == '"') {
O << "\\\"";
} else if (C == '\\') {
O << "\\\\";
} else if (isprint((unsigned char)C)) {
O << C;
} else {
switch(C) {
case '\b': O << "\\b"; break;
case '\f': O << "\\f"; break;
case '\n': O << "\\n"; break;
case '\r': O << "\\r"; break;
case '\t': O << "\\t"; break;
default:
O << '\\';
O << toOctal(C >> 6);
O << toOctal(C >> 3);
O << toOctal(C >> 0);
break;
}
}
}
/// EmitString - Emit a string with quotes and a null terminator.
/// Special characters are emitted properly.
/// \literal (Eg. '\t') \endliteral
void AsmPrinter::EmitString(const std::string &String) const {
const char* AscizDirective = TAI->getAscizDirective();
if (AscizDirective)
O << AscizDirective;
else
O << TAI->getAsciiDirective();
O << '\"';
for (unsigned i = 0, N = String.size(); i < N; ++i) {
unsigned char C = String[i];
printStringChar(O, C);
}
if (AscizDirective)
O << '\"';
else
O << "\\0\"";
}
/// EmitFile - Emit a .file directive.
void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
O << "\t.file\t" << Number << " \"";
for (unsigned i = 0, N = Name.size(); i < N; ++i) {
unsigned char C = Name[i];
printStringChar(O, C);
}
O << '\"';
}
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. For example, if you pass in 3 here, you will get an 8
// byte alignment. If a global value is specified, and if that global has
// an explicit alignment requested, it will unconditionally override the
// alignment request. However, if ForcedAlignBits is specified, this value
// has final say: the ultimate alignment will be the max of ForcedAlignBits
// and the alignment computed with NumBits and the global.
//
// The algorithm is:
// Align = NumBits;
// if (GV && GV->hasalignment) Align = GV->getalignment();
// Align = std::max(Align, ForcedAlignBits);
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
unsigned ForcedAlignBits,
bool UseFillExpr) const {
if (GV && GV->getAlignment())
NumBits = Log2_32(GV->getAlignment());
NumBits = std::max(NumBits, ForcedAlignBits);
if (NumBits == 0) return; // No need to emit alignment.
if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
O << TAI->getAlignDirective() << NumBits;
unsigned FillValue = TAI->getTextAlignFillValue();
UseFillExpr &= IsInTextSection && FillValue;
if (UseFillExpr) {
O << ',';
PrintHex(FillValue);
}
O << '\n';
}
/// EmitZeros - Emit a block of zeros.
///
void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
if (NumZeros) {
if (TAI->getZeroDirective()) {
O << TAI->getZeroDirective() << NumZeros;
if (TAI->getZeroDirectiveSuffix())
O << TAI->getZeroDirectiveSuffix();
O << '\n';
} else {
for (; NumZeros; --NumZeros)
O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
}
}
}
// Print out the specified constant, without a storage class. Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
if (CV->isNullValue() || isa<UndefValue>(CV))
O << '0';
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
O << CI->getZExtValue();
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
// This is a constant address for a global variable or function. Use the
// name of the variable or function as the address value, possibly
// decorating it with GlobalVarAddrPrefix/Suffix or
// FunctionAddrPrefix/Suffix (these all default to "" )
if (isa<Function>(GV)) {
O << TAI->getFunctionAddrPrefix()
<< Mang->getValueName(GV)
<< TAI->getFunctionAddrSuffix();
} else {
O << TAI->getGlobalVarAddrPrefix()
<< Mang->getValueName(GV)
<< TAI->getGlobalVarAddrSuffix();
}
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData *TD = TM.getTargetData();
unsigned Opcode = CE->getOpcode();
switch (Opcode) {
case Instruction::GetElementPtr: {
// generate a symbolic expression for the byte address
const Constant *ptrVal = CE->getOperand(0);
SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
idxVec.size())) {
if (Offset)
O << '(';
EmitConstantValueOnly(ptrVal);
if (Offset > 0)
O << ") + " << Offset;
else if (Offset < 0)
O << ") - " << -Offset;
} else {
EmitConstantValueOnly(ptrVal);
}
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
break;
case Instruction::BitCast:
return EmitConstantValueOnly(CE->getOperand(0));
case Instruction::IntToPtr: {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
return EmitConstantValueOnly(Op);
}
case Instruction::PtrToInt: {
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
const Type *Ty = CE->getType();
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
return EmitConstantValueOnly(Op);
O << "((";
EmitConstantValueOnly(Op);
APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
SmallString<40> S;
ptrMask.toStringUnsigned(S);
O << ") & " << S.c_str() << ')';
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
O << '(';
EmitConstantValueOnly(CE->getOperand(0));
O << ')';
switch (Opcode) {
case Instruction::Add:
O << " + ";
break;
case Instruction::Sub:
O << " - ";
break;
case Instruction::And:
O << " & ";
break;
case Instruction::Or:
O << " | ";
break;
case Instruction::Xor:
O << " ^ ";
break;
default:
break;
}
O << '(';
EmitConstantValueOnly(CE->getOperand(1));
O << ')';
break;
default:
assert(0 && "Unsupported operator!");
}
} else {
assert(0 && "Unknown constant value!");
}
}
/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
unsigned LastElt) {
assert(CVA->isString() && "Array is not string compatible!");
O << '\"';
for (unsigned i = 0; i != LastElt; ++i) {
unsigned char C =
(unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
printStringChar(O, C);
}
O << '\"';
}
/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (TAI->getAscizDirective() && NumElts &&
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
O << TAI->getAscizDirective();
printAsCString(O, CVA, NumElts-1);
} else {
O << TAI->getAsciiDirective();
printAsCString(O, CVA, NumElts);
}
O << '\n';
}
void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
if (CVA->isString()) {
EmitString(CVA);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i));
}
}
void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I));
}
void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
unsigned AddrSpace) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypePaddedSize(CVS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value.
EmitGlobalConstant(field, AddrSpace);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
EmitZeros(padSize, AddrSpace);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
unsigned AddrSpace) {
// FP Constants are printed as integer constants to avoid losing
// precision...
const TargetData *TD = TM.getTargetData();
if (CFP->getType() == Type::DoubleTy) {
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (TAI->getData64bitsDirective(AddrSpace))
O << TAI->getData64bitsDirective(AddrSpace) << i << '\t'
<< TAI->getCommentString() << " double value: " << Val << '\n';
else if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32)
<< '\t' << TAI->getCommentString()
<< " double most significant word " << Val << '\n';
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i)
<< '\t' << TAI->getCommentString()
<< " double least significant word " << Val << '\n';
} else {
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i)
<< '\t' << TAI->getCommentString()
<< " double least significant word " << Val << '\n';
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32)
<< '\t' << TAI->getCommentString()
<< " double most significant word " << Val << '\n';
}
return;
} else if (CFP->getType() == Type::FloatTy) {
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
O << TAI->getData32bitsDirective(AddrSpace)
<< CFP->getValueAPF().bitcastToAPInt().getZExtValue()
<< '\t' << TAI->getCommentString() << " float " << Val << '\n';
return;
} else if (CFP->getType() == Type::X86_FP80Ty) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
// Convert to double so we can print the approximate val as a comment.
APFloat DoubleVal = CFP->getValueAPF();
bool ignored;
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
if (TD->isBigEndian()) {
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)
<< '\t' << TAI->getCommentString()
<< " long double most significant halfword of ~"
<< DoubleVal.convertToDouble() << '\n';
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)
<< '\t' << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)
<< '\t' << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0])
<< '\t' << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1])
<< '\t' << TAI->getCommentString()
<< " long double least significant halfword\n";
} else {
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1])
<< '\t' << TAI->getCommentString()
<< " long double least significant halfword of ~"
<< DoubleVal.convertToDouble() << '\n';
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0])
<< '\t' << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)
<< '\t' << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)
<< '\t' << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)
<< '\t' << TAI->getCommentString()
<< " long double most significant halfword\n";
}
EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
return;
} else if (CFP->getType() == Type::PPC_FP128Ty) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)
<< '\t' << TAI->getCommentString()
<< " long double most significant word\n";
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])
<< '\t' << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)
<< '\t' << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])
<< '\t' << TAI->getCommentString()
<< " long double least significant word\n";
} else {
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])
<< '\t' << TAI->getCommentString()
<< " long double least significant word\n";
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)
<< '\t' << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])
<< '\t' << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)
<< '\t' << TAI->getCommentString()
<< " long double most significant word\n";
}
return;
} else assert(0 && "Floating point constant type not handled");
}
void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
unsigned BitWidth = CI->getBitWidth();
assert(isPowerOf2_32(BitWidth) &&
"Non-power-of-2-sized integers not handled!");
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = CI->getValue().getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val;
if (TD->isBigEndian())
Val = RawData[e - i - 1];
else
Val = RawData[i];
if (TAI->getData64bitsDirective(AddrSpace))
O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
else if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32)
<< '\t' << TAI->getCommentString()
<< " Double-word most significant word " << Val << '\n';
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val)
<< '\t' << TAI->getCommentString()
<< " Double-word least significant word " << Val << '\n';
} else {
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val)
<< '\t' << TAI->getCommentString()
<< " Double-word least significant word " << Val << '\n';
O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32)
<< '\t' << TAI->getCommentString()
<< " Double-word most significant word " << Val << '\n';
}
}
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
const Type *type = CV->getType();
unsigned Size = TD->getTypePaddedSize(type);
if (CV->isNullValue() || isa<UndefValue>(CV)) {
EmitZeros(Size, AddrSpace);
return;
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
EmitGlobalConstantArray(CVA);
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
EmitGlobalConstantStruct(CVS, AddrSpace);
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
EmitGlobalConstantFP(CFP, AddrSpace);
return;
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
// Small integers are handled below; large integers are handled here.
if (Size > 4) {
EmitGlobalConstantLargeInt(CI, AddrSpace);
return;
}
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
EmitGlobalConstantVector(CP);
return;
}
printDataDirective(type, AddrSpace);
EmitConstantValueOnly(CV);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
SmallString<40> S;
CI->getValue().toStringUnsigned(S, 16);
O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
}
O << '\n';
}
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
abort();
}
/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself. This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings. The
/// syntax used is ${:comment}. Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
if (!strcmp(Code, "private")) {
O << TAI->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
O << TAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Assign a unique ID to this machine instruction.
static const MachineInstr *LastMI = 0;
static const Function *F = 0;
static unsigned Counter = 0U-1;
// Comparing the address of MI isn't sufficient, because machineinstrs may
// be allocated to the same address across functions.
const Function *ThisF = MI->getParent()->getParent()->getFunction();
// If this is a new machine instruction, bump the counter.
if (LastMI != MI || F != ThisF) {
++Counter;
LastMI = MI;
F = ThisF;
}
O << Counter;
} else {
cerr << "Unknown special formatter '" << Code
<< "' for machine instr: " << *MI;
exit(1);
}
}
/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
unsigned NumOperands = MI->getNumOperands();
// Count the number of register definitions.
unsigned NumDefs = 0;
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
++NumDefs)
assert(NumDefs != NumOperands-1 && "No asm string?");
assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
// If this asmstr is empty, just print the #APP/#NOAPP markers.
// These are useful to see where empty asm's wound up.
if (AsmStr[0] == 0) {
O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
return;
}
O << TAI->getInlineAsmStart() << "\n\t";
// The variant of the current asmprinter.
int AsmPrinterVariant = TAI->getAssemblerDialect();
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
O << '\n'; // Indent code with newline.
break;
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$': // $$ -> $
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O << '$';
++LastEmitted; // Consume second '$' character.
break;
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1) {
cerr << "Nested variants found in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
CurVariant = 0; // We're in the first variant now.
break;
case '|':
++LastEmitted; // consume '|' character.
if (CurVariant == -1)
O << '|'; // this is gcc's behavior for | outside a variant
else
++CurVariant; // We're in the next variant.
break;
case ')': // $) -> same as GCC's } char.
++LastEmitted; // consume ')' character.
if (CurVariant == -1)
O << '}'; // this is gcc's behavior for } outside a variant
else
CurVariant = -1;
break;
}
if (Done) break;
bool HasCurlyBraces = false;
if (*LastEmitted == '{') { // ${variable}
++LastEmitted; // Consume '{' character.
HasCurlyBraces = true;
}
const char *IDStart = LastEmitted;
char *IDEnd;
errno = 0;
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
cerr << "Bad $ operand number in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
LastEmitted = IDEnd;
char Modifier[2] = { 0, 0 };
if (HasCurlyBraces) {
// If we have curly braces, check for a modifier character. This
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0) {
cerr << "Bad ${:} expression in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
Modifier[0] = *LastEmitted;
++LastEmitted; // Consume modifier character.
}
if (*LastEmitted != '}') {
cerr << "Bad ${} expression in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
++LastEmitted; // Consume '}' character.
}
if ((unsigned)Val >= NumOperands-1) {
cerr << "Invalid $ operand number in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
// Okay, we finally have a value number. Ask the target to print this
// operand!
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
unsigned OpNo = 1;
bool Error = false;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
OpNo += (OpFlags >> 3) + 1;
}
if (OpNo >= MI->getNumOperands()) {
Error = true;
} else {
unsigned OpFlags = MI->getOperand(OpNo).getImm();
++OpNo; // Skip over the ID number.
if (Modifier[0]=='l') // labels are target independent
printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
false, false, false);
else {
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
}
}
}
if (Error) {
cerr << "Invalid operand found in inline asm: '"
<< AsmStr << "'\n";
MI->dump();
exit(1);
}
}
break;
}
}
}
O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
}
/// printImplicitDef - This method prints the specified machine instruction
/// that is an implicit def.
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
O << '\t' << TAI->getCommentString() << " implicit-def: "
<< TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
}
/// printLabel - This method prints a local label used by debug and
/// exception handling tables.
void AsmPrinter::printLabel(const MachineInstr *MI) const {
printLabel(MI->getOperand(0).getImm());
}
void AsmPrinter::printLabel(unsigned Id) const {
O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
}
/// printDeclare - This method prints a local variable declaration used by
/// debug tables.
/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
/// entry into dwarf table.
void AsmPrinter::printDeclare(const MachineInstr *MI) const {
unsigned FI = MI->getOperand(0).getIndex();
GlobalValue *GV = MI->getOperand(1).getGlobal();
DW->RecordVariable(cast<GlobalVariable>(GV), FI);
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
/// overried this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
/// printBasicBlockLabel - This method prints the label for the specified
/// MachineBasicBlock
void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
bool printAlign,
bool printColon,
bool printComment) const {
if (printAlign) {
unsigned Align = MBB->getAlignment();
if (Align)
EmitAlignment(Log2_32(Align));
}
O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
<< MBB->getNumber();
if (printColon)
O << ':';
if (printComment && MBB->getBasicBlock())
O << '\t' << TAI->getCommentString() << ' '
<< MBB->getBasicBlock()->getNameStart();
}
/// printPICJumpTableSetLabel - This method prints a set label for the
/// specified MachineBasicBlock for a jumptable entry.
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false, false);
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
}
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false, false);
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '_' << uid2 << '\n';
}
/// printDataDirective - This method prints the asm directive for the
/// specified type.
void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
switch (type->getTypeID()) {
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
if (BitWidth <= 8)
O << TAI->getData8bitsDirective(AddrSpace);
else if (BitWidth <= 16)
O << TAI->getData16bitsDirective(AddrSpace);
else if (BitWidth <= 32)
O << TAI->getData32bitsDirective(AddrSpace);
else if (BitWidth <= 64) {
assert(TAI->getData64bitsDirective(AddrSpace) &&
"Target cannot handle 64-bit constant exprs!");
O << TAI->getData64bitsDirective(AddrSpace);
} else {
assert(0 && "Target cannot handle given data directive width!");
}
break;
}
case Type::PointerTyID:
if (TD->getPointerSize() == 8) {
assert(TAI->getData64bitsDirective(AddrSpace) &&
"Target cannot handle 64-bit pointer exprs!");
O << TAI->getData64bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 2) {
O << TAI->getData16bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 1) {
O << TAI->getData8bitsDirective(AddrSpace);
} else {
O << TAI->getData32bitsDirective(AddrSpace);
}
break;
case Type::FloatTyID: case Type::DoubleTyID:
case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
assert (0 && "Should have already output floating point constant.");
default:
assert (0 && "Can't handle printing this type of thing");
break;
}
}
void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
const char *Prefix) {
if (Name[0]=='\"')
O << '\"';
O << TAI->getPrivateGlobalPrefix();
if (Prefix) O << Prefix;
if (Name[0]=='\"')
O << '\"';
if (Name[0]=='\"')
O << Name[1];
else
O << Name;
O << Suffix;
if (Name[0]=='\"')
O << '\"';
}
void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
printSuffixedName(Name.c_str(), Suffix);
}
void AsmPrinter::printVisibility(const std::string& Name,
unsigned Visibility) const {
if (Visibility == GlobalValue::HiddenVisibility) {
if (const char *Directive = TAI->getHiddenDirective())
O << Directive << Name << '\n';
} else if (Visibility == GlobalValue::ProtectedVisibility) {
if (const char *Directive = TAI->getProtectedDirective())
O << Directive << Name << '\n';
}
}
void AsmPrinter::printOffset(int64_t Offset) const {
if (Offset > 0)
O << '+' << Offset;
else if (Offset < 0)
O << Offset;
}
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
if (!S->usesMetadata())
return 0;
gcp_iterator GCPI = GCMetadataPrinters.find(S);
if (GCPI != GCMetadataPrinters.end())
return GCPI->second;
const char *Name = S->getName().c_str();
for (GCMetadataPrinterRegistry::iterator
I = GCMetadataPrinterRegistry::begin(),
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
if (strcmp(Name, I->getName()) == 0) {
GCMetadataPrinter *GMP = I->instantiate();
GMP->S = S;
GCMetadataPrinters.insert(std::make_pair(S, GMP));
return GMP;
}
cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
abort();
}