llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp

648 lines
22 KiB
C++

//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// AArch64 target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "aarch64tti"
// Declare the pass initialization routine locally as target-specific passes
// don't have a target-wide initialization entry point, and so we rely on the
// pass constructor initialization.
namespace llvm {
void initializeAArch64TTIPass(PassRegistry &);
}
namespace {
class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
const AArch64TargetMachine *TM;
const AArch64Subtarget *ST;
const AArch64TargetLowering *TLI;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the result needs to be inserted and/or extracted from vectors.
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
enum MemIntrinsicType {
VECTOR_LDST_TWO_ELEMENTS,
VECTOR_LDST_THREE_ELEMENTS,
VECTOR_LDST_FOUR_ELEMENTS
};
public:
AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
llvm_unreachable("This pass cannot be directly constructed");
}
AArch64TTI(const AArch64TargetMachine *TM)
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
}
void initializePass() override { pushTTIStack(this); }
void getAnalysisUsage(AnalysisUsage &AU) const override {
TargetTransformInfo::getAnalysisUsage(AU);
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo *)this;
return this;
}
/// \name Scalar TTI Implementations
/// @{
unsigned getIntImmCost(int64_t Val) const;
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
/// @}
/// \name Vector TTI Implementations
/// @{
unsigned getNumberOfRegisters(bool Vector) const override {
if (Vector) {
if (ST->hasNEON())
return 32;
return 0;
}
return 31;
}
unsigned getRegisterBitWidth(bool Vector) const override {
if (Vector) {
if (ST->hasNEON())
return 128;
return 0;
}
return 64;
}
unsigned getMaxInterleaveFactor() const override;
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
override;
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
override;
unsigned getArithmeticInstrCost(
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
OperandValueKind Opd2Info = OK_AnyValue,
OperandValueProperties Opd1PropInfo = OP_None,
OperandValueProperties Opd2PropInfo = OP_None) const override;
unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
override;
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const override;
unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override;
void getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const override;
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) const override;
bool getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const override;
/// @}
};
} // end anonymous namespace
INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti",
"AArch64 Target Transform Info", true, true, false)
char AArch64TTI::ID = 0;
ImmutablePass *
llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
return new AArch64TTI(TM);
}
/// \brief Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
// Check if the immediate can be encoded within an instruction.
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
return 0;
if (Val < 0)
Val = ~Val;
// Calculate how many moves we will need to materialize this constant.
unsigned LZ = countLeadingZeros((uint64_t)Val);
return (64 - LZ + 15) / 16;
}
/// \brief Calculate the cost of materializing the given constant.
unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
// Sign-extend all constants to a multiple of 64-bit.
APInt ImmVal = Imm;
if (BitSize & 0x3f)
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
// Split the constant into 64-bit chunks and calculate the cost for each
// chunk.
unsigned Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
int64_t Val = Tmp.getSExtValue();
Cost += getIntImmCost(Val);
}
// We need at least one instruction to materialze the constant.
return std::max(1U, Cost);
}
unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TCC_Free;
unsigned ImmIdx = ~0U;
switch (Opcode) {
default:
return TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr.
if (Idx == 0)
return 2 * TCC_Basic;
return TCC_Free;
case Instruction::Store:
ImmIdx = 0;
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
ImmIdx = 1;
break;
// Always return TCC_Free for the shift value of a shift instruction.
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
if (Idx == 1)
return TCC_Free;
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Call:
case Instruction::Select:
case Instruction::Ret:
case Instruction::Load:
break;
}
if (Idx == ImmIdx) {
unsigned NumConstants = (BitSize + 63) / 64;
unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
return (Cost <= NumConstants * TCC_Basic)
? static_cast<unsigned>(TCC_Free) : Cost;
}
return AArch64TTI::getIntImmCost(Imm, Ty);
}
unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TCC_Free;
switch (IID) {
default:
return TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
if (Idx == 1) {
unsigned NumConstants = (BitSize + 63) / 64;
unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
return (Cost <= NumConstants * TCC_Basic)
? static_cast<unsigned>(TCC_Free) : Cost;
}
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TCC_Free;
break;
}
return AArch64TTI::getIntImmCost(Imm, Ty);
}
AArch64TTI::PopcntSupportKind
AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
if (TyWidth == 32 || TyWidth == 64)
return PSK_FastHardware;
// TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
return PSK_Software;
}
unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
EVT SrcTy = TLI->getValueType(Src);
EVT DstTy = TLI->getValueType(Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple())
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
// LowerVectorINT_TO_FP:
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
// Complex: to v2f32
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
// Complex: to v4f32
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
// Complex: to v2f64
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
// LowerVectorFP_TO_INT
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
// Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
// Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
// Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
};
int Idx = ConvertCostTableLookup<MVT>(
ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
SrcTy.getSimpleVT());
if (Idx != -1)
return ConversionTbl[Idx].Cost;
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
}
unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
assert(Val->isVectorTy() && "This must be a vector type");
if (Index != -1U) {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector())
return 0;
// The type may be split. Normalize the index to the new type.
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
// The element at index zero is already inside the vector.
if (Index == 0)
return 0;
}
// All other insert/extracts cost this much.
return 2;
}
unsigned AArch64TTI::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
OperandValueProperties Opd2PropInfo) const {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
if (ISD == ISD::SDIV &&
Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
// On AArch64, scalar signed division by constants power-of-two are
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
// The OperandValue properties many not be same as that of previous
// operation; conservatively assume OP_None.
unsigned Cost =
getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
return Cost;
}
switch (ISD) {
default:
return TargetTransformInfo::getArithmeticInstrCost(
Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
// These nodes are marked as 'custom' for combining purposes only.
// We know that they are legal. See LowerAdd in ISelLowering.
return 1 * LT.first;
}
}
unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
// extra micro-ops can significantly decrease throughput.
unsigned NumVectorInstToHideOverhead = 10;
if (Ty->isVectorTy() && IsComplex)
return NumVectorInstToHideOverhead;
// In many cases the address computation is not merged into the instruction
// addressing mode.
return 1;
}
unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// We don't lower vector selects well that are wider than the register width.
if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
// We would need this many instructions to hide the scalarization happening.
unsigned AmortizationCost = 20;
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
VectorSelectTbl[] = {
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
};
EVT SelCondTy = TLI->getValueType(CondTy);
EVT SelValTy = TLI->getValueType(ValTy);
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
int Idx =
ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
SelValTy.getSimpleVT());
if (Idx != -1)
return VectorSelectTbl[Idx].Cost;
}
}
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
Src->getVectorElementType()->isIntegerTy(64)) {
// Unaligned stores are extremely inefficient. We don't split
// unaligned v2i64 stores because the negative impact that has shown in
// practice on inlined memcpy code.
// We make v2i64 stores expensive so that we will only vectorize if there
// are 6 other instructions getting vectorized.
unsigned AmortizationCost = 6;
return LT.first * 2 * AmortizationCost;
}
if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
Src->getVectorNumElements() < 8) {
// We scalarize the loads/stores because there is not v.4b register and we
// have to promote the elements to v.4h.
unsigned NumVecElts = Src->getVectorNumElements();
unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
// We generate 2 instructions per vector element.
return NumVectorizableInstsToAmortize * NumVecElts * 2;
}
return LT.first;
}
unsigned AArch64TTI::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const {
unsigned Cost = 0;
for (auto *I : Tys) {
if (!I->isVectorTy())
continue;
if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
getMemoryOpCost(Instruction::Load, I, 128, 0);
}
return Cost;
}
unsigned AArch64TTI::getMaxInterleaveFactor() const {
if (ST->isCortexA57())
return 4;
return 2;
}
void AArch64TTI::getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const {
// Disable partial & runtime unrolling on -Os.
UP.PartialOptSizeThreshold = 0;
}
Value *AArch64TTI::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) const {
switch (Inst->getIntrinsicID()) {
default:
return nullptr;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4: {
// Create a struct type
StructType *ST = dyn_cast<StructType>(ExpectedType);
if (!ST)
return nullptr;
unsigned NumElts = Inst->getNumArgOperands() - 1;
if (ST->getNumElements() != NumElts)
return nullptr;
for (unsigned i = 0, e = NumElts; i != e; ++i) {
if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
return nullptr;
}
Value *Res = UndefValue::get(ExpectedType);
IRBuilder<> Builder(Inst);
for (unsigned i = 0, e = NumElts; i != e; ++i) {
Value *L = Inst->getArgOperand(i);
Res = Builder.CreateInsertValue(Res, L, i);
}
return Res;
}
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
if (Inst->getType() == ExpectedType)
return Inst;
return nullptr;
}
}
bool AArch64TTI::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
switch (Inst->getIntrinsicID()) {
default:
break;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
Info.ReadMem = true;
Info.WriteMem = false;
Info.Vol = false;
Info.NumMemRefs = 1;
Info.PtrVal = Inst->getArgOperand(0);
break;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
Info.ReadMem = false;
Info.WriteMem = true;
Info.Vol = false;
Info.NumMemRefs = 1;
Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
break;
}
switch (Inst->getIntrinsicID()) {
default:
return false;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_st2:
Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_st3:
Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_st4:
Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
break;
}
return true;
}