llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp

910 lines
37 KiB
C++

//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "AArch64FrameLowering.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "frame-info"
static cl::opt<bool> EnableRedZone("aarch64-redzone",
cl::desc("enable use of redzone on AArch64"),
cl::init(false), cl::Hidden);
STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
static unsigned estimateStackSize(MachineFunction &MF) {
const MachineFrameInfo *FFI = MF.getFrameInfo();
int Offset = 0;
for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
int FixedOff = -FFI->getObjectOffset(i);
if (FixedOff > Offset)
Offset = FixedOff;
}
for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
if (FFI->isDeadObjectIndex(i))
continue;
Offset += FFI->getObjectSize(i);
unsigned Align = FFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset + Align - 1) / Align * Align;
}
// This does not include the 16 bytes used for fp and lr.
return (unsigned)Offset;
}
bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
if (!EnableRedZone)
return false;
// Don't use the red zone if the function explicitly asks us not to.
// This is typically used for kernel code.
if (MF.getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::NoRedZone))
return false;
const MachineFrameInfo *MFI = MF.getFrameInfo();
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
unsigned NumBytes = AFI->getLocalStackSize();
// Note: currently hasFP() is always true for hasCalls(), but that's an
// implementation detail of the current code, not a strict requirement,
// so stay safe here and check both.
if (MFI->hasCalls() || hasFP(MF) || NumBytes > 128)
return false;
return true;
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register.
bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
#ifndef NDEBUG
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
assert(!RegInfo->needsStackRealignment(MF) &&
"No stack realignment on AArch64!");
#endif
return (MFI->hasCalls() || MFI->hasVarSizedObjects() ||
MFI->isFrameAddressTaken() || MFI->hasStackMap() ||
MFI->hasPatchPoint());
}
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
/// not required, we reserve argument space for call sites in the function
/// immediately on entry to the current function. This eliminates the need for
/// add/sub sp brackets around call sites. Returns true if the call frame is
/// included as part of the stack frame.
bool
AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo()->hasVarSizedObjects();
}
void AArch64FrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const AArch64InstrInfo *TII =
static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
DebugLoc DL = I->getDebugLoc();
int Opc = I->getOpcode();
bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (!TFI->hasReservedCallFrame(MF)) {
unsigned Align = getStackAlignment();
int64_t Amount = I->getOperand(0).getImm();
Amount = RoundUpToAlignment(Amount, Align);
if (!IsDestroy)
Amount = -Amount;
// N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
// doesn't have to pop anything), then the first operand will be zero too so
// this adjustment is a no-op.
if (CalleePopAmount == 0) {
// FIXME: in-function stack adjustment for calls is limited to 24-bits
// because there's no guaranteed temporary register available.
//
// ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
// 1) For offset <= 12-bit, we use LSL #0
// 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
// LSL #0, and the other uses LSL #12.
//
// Mostly call frames will be allocated at the start of a function so
// this is OK, but it is a limitation that needs dealing with.
assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII);
}
} else if (CalleePopAmount != 0) {
// If the calling convention demands that the callee pops arguments from the
// stack, we want to add it back if we have a reserved call frame.
assert(CalleePopAmount < 0xffffff && "call frame too large");
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount,
TII);
}
MBB.erase(I);
}
void AArch64FrameLowering::emitCalleeSavedFrameMoves(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned FramePtr) const {
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
DebugLoc DL = MBB.findDebugLoc(MBBI);
// Add callee saved registers to move list.
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
if (CSI.empty())
return;
const DataLayout *TD = MF.getTarget().getDataLayout();
bool HasFP = hasFP(MF);
// Calculate amount of bytes used for return address storing.
int stackGrowth = -TD->getPointerSize(0);
// Calculate offsets.
int64_t saveAreaOffset = (HasFP ? 2 : 1) * stackGrowth;
unsigned TotalSkipped = 0;
for (const auto &Info : CSI) {
unsigned Reg = Info.getReg();
int64_t Offset = MFI->getObjectOffset(Info.getFrameIdx()) -
getOffsetOfLocalArea() + saveAreaOffset;
// Don't output a new CFI directive if we're re-saving the frame pointer or
// link register. This happens when the PrologEpilogInserter has inserted an
// extra "STP" of the frame pointer and link register -- the "emitPrologue"
// method automatically generates the directives when frame pointers are
// used. If we generate CFI directives for the extra "STP"s, the linker will
// lose track of the correct values for the frame pointer and link register.
if (HasFP && (FramePtr == Reg || Reg == AArch64::LR)) {
TotalSkipped += stackGrowth;
continue;
}
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
nullptr, DwarfReg, Offset - TotalSkipped));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
}
void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
MachineBasicBlock::iterator MBBI = MBB.begin();
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *Fn = MF.getFunction();
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
MachineModuleInfo &MMI = MF.getMMI();
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry();
bool HasFP = hasFP(MF);
DebugLoc DL = MBB.findDebugLoc(MBBI);
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
return;
int NumBytes = (int)MFI->getStackSize();
if (!AFI->hasStackFrame()) {
assert(!HasFP && "unexpected function without stack frame but with FP");
// All of the stack allocation is for locals.
AFI->setLocalStackSize(NumBytes);
// Label used to tie together the PROLOG_LABEL and the MachineMoves.
MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
// REDZONE: If the stack size is less than 128 bytes, we don't need
// to actually allocate.
if (NumBytes && !canUseRedZone(MF)) {
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
MachineInstr::FrameSetup);
// Encode the stack size of the leaf function.
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
} else if (NumBytes) {
++NumRedZoneFunctions;
}
return;
}
// Only set up FP if we actually need to.
int FPOffset = 0;
if (HasFP) {
// First instruction must a) allocate the stack and b) have an immediate
// that is a multiple of -2.
assert((MBBI->getOpcode() == AArch64::STPXpre ||
MBBI->getOpcode() == AArch64::STPDpre) &&
MBBI->getOperand(3).getReg() == AArch64::SP &&
MBBI->getOperand(4).getImm() < 0 &&
(MBBI->getOperand(4).getImm() & 1) == 0);
// Frame pointer is fp = sp - 16. Since the STPXpre subtracts the space
// required for the callee saved register area we get the frame pointer
// by addding that offset - 16 = -getImm()*8 - 2*8 = -(getImm() + 2) * 8.
FPOffset = -(MBBI->getOperand(4).getImm() + 2) * 8;
assert(FPOffset >= 0 && "Bad Framepointer Offset");
}
// Move past the saves of the callee-saved registers.
while (MBBI->getOpcode() == AArch64::STPXi ||
MBBI->getOpcode() == AArch64::STPDi ||
MBBI->getOpcode() == AArch64::STPXpre ||
MBBI->getOpcode() == AArch64::STPDpre) {
++MBBI;
NumBytes -= 16;
}
assert(NumBytes >= 0 && "Negative stack allocation size!?");
if (HasFP) {
// Issue sub fp, sp, FPOffset or
// mov fp,sp when FPOffset is zero.
// Note: All stores of callee-saved registers are marked as "FrameSetup".
// This code marks the instruction(s) that set the FP also.
emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII,
MachineInstr::FrameSetup);
}
// All of the remaining stack allocations are for locals.
AFI->setLocalStackSize(NumBytes);
// Allocate space for the rest of the frame.
if (NumBytes) {
// If we're a leaf function, try using the red zone.
if (!canUseRedZone(MF))
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
MachineInstr::FrameSetup);
}
// If we need a base pointer, set it up here. It's whatever the value of the
// stack pointer is at this point. Any variable size objects will be allocated
// after this, so we can still use the base pointer to reference locals.
//
// FIXME: Clarify FrameSetup flags here.
// Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
// needed.
//
if (RegInfo->hasBasePointer(MF))
TII->copyPhysReg(MBB, MBBI, DL, AArch64::X19, AArch64::SP, false);
if (needsFrameMoves) {
const DataLayout *TD = MF.getTarget().getDataLayout();
const int StackGrowth = -TD->getPointerSize(0);
unsigned FramePtr = RegInfo->getFrameRegister(MF);
// An example of the prologue:
//
// .globl __foo
// .align 2
// __foo:
// Ltmp0:
// .cfi_startproc
// .cfi_personality 155, ___gxx_personality_v0
// Leh_func_begin:
// .cfi_lsda 16, Lexception33
//
// stp xa,bx, [sp, -#offset]!
// ...
// stp x28, x27, [sp, #offset-32]
// stp fp, lr, [sp, #offset-16]
// add fp, sp, #offset - 16
// sub sp, sp, #1360
//
// The Stack:
// +-------------------------------------------+
// 10000 | ........ | ........ | ........ | ........ |
// 10004 | ........ | ........ | ........ | ........ |
// +-------------------------------------------+
// 10008 | ........ | ........ | ........ | ........ |
// 1000c | ........ | ........ | ........ | ........ |
// +===========================================+
// 10010 | X28 Register |
// 10014 | X28 Register |
// +-------------------------------------------+
// 10018 | X27 Register |
// 1001c | X27 Register |
// +===========================================+
// 10020 | Frame Pointer |
// 10024 | Frame Pointer |
// +-------------------------------------------+
// 10028 | Link Register |
// 1002c | Link Register |
// +===========================================+
// 10030 | ........ | ........ | ........ | ........ |
// 10034 | ........ | ........ | ........ | ........ |
// +-------------------------------------------+
// 10038 | ........ | ........ | ........ | ........ |
// 1003c | ........ | ........ | ........ | ........ |
// +-------------------------------------------+
//
// [sp] = 10030 :: >>initial value<<
// sp = 10020 :: stp fp, lr, [sp, #-16]!
// fp = sp == 10020 :: mov fp, sp
// [sp] == 10020 :: stp x28, x27, [sp, #-16]!
// sp == 10010 :: >>final value<<
//
// The frame pointer (w29) points to address 10020. If we use an offset of
// '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
// for w27, and -32 for w28:
//
// Ltmp1:
// .cfi_def_cfa w29, 16
// Ltmp2:
// .cfi_offset w30, -8
// Ltmp3:
// .cfi_offset w29, -16
// Ltmp4:
// .cfi_offset w27, -24
// Ltmp5:
// .cfi_offset w28, -32
if (HasFP) {
// Define the current CFA rule to use the provided FP.
unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
// Record the location of the stored LR
unsigned LR = RegInfo->getDwarfRegNum(AArch64::LR, true);
CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, LR, StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
// Record the location of the stored FP
CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, Reg, 2 * StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
} else {
// Encode the stack size of the leaf function.
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, -MFI->getStackSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
// Now emit the moves for whatever callee saved regs we have.
emitCalleeSavedFrameMoves(MBB, MBBI, FramePtr);
}
}
static bool isCalleeSavedRegister(unsigned Reg, const MCPhysReg *CSRegs) {
for (unsigned i = 0; CSRegs[i]; ++i)
if (Reg == CSRegs[i])
return true;
return false;
}
static bool isCSRestore(MachineInstr *MI, const MCPhysReg *CSRegs) {
unsigned RtIdx = 0;
if (MI->getOpcode() == AArch64::LDPXpost ||
MI->getOpcode() == AArch64::LDPDpost)
RtIdx = 1;
if (MI->getOpcode() == AArch64::LDPXpost ||
MI->getOpcode() == AArch64::LDPDpost ||
MI->getOpcode() == AArch64::LDPXi || MI->getOpcode() == AArch64::LDPDi) {
if (!isCalleeSavedRegister(MI->getOperand(RtIdx).getReg(), CSRegs) ||
!isCalleeSavedRegister(MI->getOperand(RtIdx + 1).getReg(), CSRegs) ||
MI->getOperand(RtIdx + 2).getReg() != AArch64::SP)
return false;
return true;
}
return false;
}
void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->isReturn() && "Can only insert epilog into returning blocks");
MachineFrameInfo *MFI = MF.getFrameInfo();
const AArch64InstrInfo *TII =
static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
DebugLoc DL = MBBI->getDebugLoc();
unsigned RetOpcode = MBBI->getOpcode();
int NumBytes = MFI->getStackSize();
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
return;
// Initial and residual are named for consitency with the prologue. Note that
// in the epilogue, the residual adjustment is executed first.
uint64_t ArgumentPopSize = 0;
if (RetOpcode == AArch64::TCRETURNdi || RetOpcode == AArch64::TCRETURNri) {
MachineOperand &StackAdjust = MBBI->getOperand(1);
// For a tail-call in a callee-pops-arguments environment, some or all of
// the stack may actually be in use for the call's arguments, this is
// calculated during LowerCall and consumed here...
ArgumentPopSize = StackAdjust.getImm();
} else {
// ... otherwise the amount to pop is *all* of the argument space,
// conveniently stored in the MachineFunctionInfo by
// LowerFormalArguments. This will, of course, be zero for the C calling
// convention.
ArgumentPopSize = AFI->getArgumentStackToRestore();
}
// The stack frame should be like below,
//
// ---------------------- ---
// | | |
// | BytesInStackArgArea| CalleeArgStackSize
// | (NumReusableBytes) | (of tail call)
// | | ---
// | | |
// ---------------------| --- |
// | | | |
// | CalleeSavedReg | | |
// | (NumRestores * 16) | | |
// | | | |
// ---------------------| | NumBytes
// | | StackSize (StackAdjustUp)
// | LocalStackSize | | |
// | (covering callee | | |
// | args) | | |
// | | | |
// ---------------------- --- ---
//
// So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
// = StackSize + ArgumentPopSize
//
// AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
// it as the 2nd argument of AArch64ISD::TC_RETURN.
NumBytes += ArgumentPopSize;
unsigned NumRestores = 0;
// Move past the restores of the callee-saved registers.
MachineBasicBlock::iterator LastPopI = MBBI;
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
if (LastPopI != MBB.begin()) {
do {
++NumRestores;
--LastPopI;
} while (LastPopI != MBB.begin() && isCSRestore(LastPopI, CSRegs));
if (!isCSRestore(LastPopI, CSRegs)) {
++LastPopI;
--NumRestores;
}
}
NumBytes -= NumRestores * 16;
assert(NumBytes >= 0 && "Negative stack allocation size!?");
if (!hasFP(MF)) {
// If this was a redzone leaf function, we don't need to restore the
// stack pointer.
if (!canUseRedZone(MF))
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes,
TII);
return;
}
// Restore the original stack pointer.
// FIXME: Rather than doing the math here, we should instead just use
// non-post-indexed loads for the restores if we aren't actually going to
// be able to save any instructions.
if (NumBytes || MFI->hasVarSizedObjects())
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
-(NumRestores - 1) * 16, TII, MachineInstr::NoFlags);
}
/// getFrameIndexOffset - Returns the displacement from the frame register to
/// the stack frame of the specified index.
int AArch64FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
int FI) const {
unsigned FrameReg;
return getFrameIndexReference(MF, FI, FrameReg);
}
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
/// debug info. It's the same as what we use for resolving the code-gen
/// references for now. FIXME: This can go wrong when references are
/// SP-relative and simple call frames aren't used.
int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
int FI,
unsigned &FrameReg) const {
return resolveFrameIndexReference(MF, FI, FrameReg);
}
int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
int FI, unsigned &FrameReg,
bool PreferFP) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
int FPOffset = MFI->getObjectOffset(FI) + 16;
int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
bool isFixed = MFI->isFixedObjectIndex(FI);
// Use frame pointer to reference fixed objects. Use it for locals if
// there are VLAs (and thus the SP isn't reliable as a base).
// Make sure useFPForScavengingIndex() does the right thing for the emergency
// spill slot.
bool UseFP = false;
if (AFI->hasStackFrame()) {
// Note: Keeping the following as multiple 'if' statements rather than
// merging to a single expression for readability.
//
// Argument access should always use the FP.
if (isFixed) {
UseFP = hasFP(MF);
} else if (hasFP(MF) && !RegInfo->hasBasePointer(MF)) {
// Use SP or FP, whichever gives us the best chance of the offset
// being in range for direct access. If the FPOffset is positive,
// that'll always be best, as the SP will be even further away.
// If the FPOffset is negative, we have to keep in mind that the
// available offset range for negative offsets is smaller than for
// positive ones. If we have variable sized objects, we're stuck with
// using the FP regardless, though, as the SP offset is unknown
// and we don't have a base pointer available. If an offset is
// available via the FP and the SP, use whichever is closest.
if (PreferFP || MFI->hasVarSizedObjects() || FPOffset >= 0 ||
(FPOffset >= -256 && Offset > -FPOffset))
UseFP = true;
}
}
if (UseFP) {
FrameReg = RegInfo->getFrameRegister(MF);
return FPOffset;
}
// Use the base pointer if we have one.
if (RegInfo->hasBasePointer(MF))
FrameReg = RegInfo->getBaseRegister();
else {
FrameReg = AArch64::SP;
// If we're using the red zone for this function, the SP won't actually
// be adjusted, so the offsets will be negative. They're also all
// within range of the signed 9-bit immediate instructions.
if (canUseRedZone(MF))
Offset -= AFI->getLocalStackSize();
}
return Offset;
}
static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
if (Reg != AArch64::LR)
return getKillRegState(true);
// LR maybe referred to later by an @llvm.returnaddress intrinsic.
bool LRLiveIn = MF.getRegInfo().isLiveIn(AArch64::LR);
bool LRKill = !(LRLiveIn && MF.getFrameInfo()->isReturnAddressTaken());
return getKillRegState(LRKill);
}
bool AArch64FrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned Count = CSI.size();
DebugLoc DL;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
if (MI != MBB.end())
DL = MI->getDebugLoc();
for (unsigned i = 0; i < Count; i += 2) {
unsigned idx = Count - i - 2;
unsigned Reg1 = CSI[idx].getReg();
unsigned Reg2 = CSI[idx + 1].getReg();
// GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
// list to come in sorted by frame index so that we can issue the store
// pair instructions directly. Assert if we see anything otherwise.
//
// The order of the registers in the list is controlled by
// getCalleeSavedRegs(), so they will always be in-order, as well.
assert(CSI[idx].getFrameIdx() + 1 == CSI[idx + 1].getFrameIdx() &&
"Out of order callee saved regs!");
unsigned StrOpc;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
// Issue sequence of non-sp increment and pi sp spills for cs regs. The
// first spill is a pre-increment that allocates the stack.
// For example:
// stp x22, x21, [sp, #-48]! // addImm(-6)
// stp x20, x19, [sp, #16] // addImm(+2)
// stp fp, lr, [sp, #32] // addImm(+4)
// Rationale: This sequence saves uop updates compared to a sequence of
// pre-increment spills like stp xi,xj,[sp,#-16]!
// Note: Similar rational and sequence for restores in epilog.
if (AArch64::GPR64RegClass.contains(Reg1)) {
assert(AArch64::GPR64RegClass.contains(Reg2) &&
"Expected GPR64 callee-saved register pair!");
// For first spill use pre-increment store.
if (i == 0)
StrOpc = AArch64::STPXpre;
else
StrOpc = AArch64::STPXi;
} else if (AArch64::FPR64RegClass.contains(Reg1)) {
assert(AArch64::FPR64RegClass.contains(Reg2) &&
"Expected FPR64 callee-saved register pair!");
// For first spill use pre-increment store.
if (i == 0)
StrOpc = AArch64::STPDpre;
else
StrOpc = AArch64::STPDi;
} else
llvm_unreachable("Unexpected callee saved register!");
DEBUG(dbgs() << "CSR spill: (" << TRI->getName(Reg1) << ", "
<< TRI->getName(Reg2) << ") -> fi#(" << CSI[idx].getFrameIdx()
<< ", " << CSI[idx + 1].getFrameIdx() << ")\n");
// Compute offset: i = 0 => offset = -Count;
// i = 2 => offset = -(Count - 2) + Count = 2 = i; etc.
const int Offset = (i == 0) ? -Count : i;
assert((Offset >= -64 && Offset <= 63) &&
"Offset out of bounds for STP immediate");
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
if (StrOpc == AArch64::STPDpre || StrOpc == AArch64::STPXpre)
MIB.addReg(AArch64::SP, RegState::Define);
MIB.addReg(Reg2, getPrologueDeath(MF, Reg2))
.addReg(Reg1, getPrologueDeath(MF, Reg1))
.addReg(AArch64::SP)
.addImm(Offset) // [sp, #offset * 8], where factor * 8 is implicit
.setMIFlag(MachineInstr::FrameSetup);
}
return true;
}
bool AArch64FrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned Count = CSI.size();
DebugLoc DL;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
if (MI != MBB.end())
DL = MI->getDebugLoc();
for (unsigned i = 0; i < Count; i += 2) {
unsigned Reg1 = CSI[i].getReg();
unsigned Reg2 = CSI[i + 1].getReg();
// GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
// list to come in sorted by frame index so that we can issue the store
// pair instructions directly. Assert if we see anything otherwise.
assert(CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx() &&
"Out of order callee saved regs!");
// Issue sequence of non-sp increment and sp-pi restores for cs regs. Only
// the last load is sp-pi post-increment and de-allocates the stack:
// For example:
// ldp fp, lr, [sp, #32] // addImm(+4)
// ldp x20, x19, [sp, #16] // addImm(+2)
// ldp x22, x21, [sp], #48 // addImm(+6)
// Note: see comment in spillCalleeSavedRegisters()
unsigned LdrOpc;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
if (AArch64::GPR64RegClass.contains(Reg1)) {
assert(AArch64::GPR64RegClass.contains(Reg2) &&
"Expected GPR64 callee-saved register pair!");
if (i == Count - 2)
LdrOpc = AArch64::LDPXpost;
else
LdrOpc = AArch64::LDPXi;
} else if (AArch64::FPR64RegClass.contains(Reg1)) {
assert(AArch64::FPR64RegClass.contains(Reg2) &&
"Expected FPR64 callee-saved register pair!");
if (i == Count - 2)
LdrOpc = AArch64::LDPDpost;
else
LdrOpc = AArch64::LDPDi;
} else
llvm_unreachable("Unexpected callee saved register!");
DEBUG(dbgs() << "CSR restore: (" << TRI->getName(Reg1) << ", "
<< TRI->getName(Reg2) << ") -> fi#(" << CSI[i].getFrameIdx()
<< ", " << CSI[i + 1].getFrameIdx() << ")\n");
// Compute offset: i = 0 => offset = Count - 2; i = 2 => offset = Count - 4;
// etc.
const int Offset = (i == Count - 2) ? Count : Count - i - 2;
assert((Offset >= -64 && Offset <= 63) &&
"Offset out of bounds for LDP immediate");
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
if (LdrOpc == AArch64::LDPXpost || LdrOpc == AArch64::LDPDpost)
MIB.addReg(AArch64::SP, RegState::Define);
MIB.addReg(Reg2, getDefRegState(true))
.addReg(Reg1, getDefRegState(true))
.addReg(AArch64::SP)
.addImm(Offset); // [sp], #offset * 8 or [sp, #offset * 8]
// where the factor * 8 is implicit
}
return true;
}
void AArch64FrameLowering::processFunctionBeforeCalleeSavedScan(
MachineFunction &MF, RegScavenger *RS) const {
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
MachineRegisterInfo *MRI = &MF.getRegInfo();
SmallVector<unsigned, 4> UnspilledCSGPRs;
SmallVector<unsigned, 4> UnspilledCSFPRs;
// The frame record needs to be created by saving the appropriate registers
if (hasFP(MF)) {
MRI->setPhysRegUsed(AArch64::FP);
MRI->setPhysRegUsed(AArch64::LR);
}
// Spill the BasePtr if it's used. Do this first thing so that the
// getCalleeSavedRegs() below will get the right answer.
if (RegInfo->hasBasePointer(MF))
MRI->setPhysRegUsed(RegInfo->getBaseRegister());
// If any callee-saved registers are used, the frame cannot be eliminated.
unsigned NumGPRSpilled = 0;
unsigned NumFPRSpilled = 0;
bool ExtraCSSpill = false;
bool CanEliminateFrame = true;
DEBUG(dbgs() << "*** processFunctionBeforeCalleeSavedScan\nUsed CSRs:");
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
// Check pairs of consecutive callee-saved registers.
for (unsigned i = 0; CSRegs[i]; i += 2) {
assert(CSRegs[i + 1] && "Odd number of callee-saved registers!");
const unsigned OddReg = CSRegs[i];
const unsigned EvenReg = CSRegs[i + 1];
assert((AArch64::GPR64RegClass.contains(OddReg) &&
AArch64::GPR64RegClass.contains(EvenReg)) ^
(AArch64::FPR64RegClass.contains(OddReg) &&
AArch64::FPR64RegClass.contains(EvenReg)) &&
"Register class mismatch!");
const bool OddRegUsed = MRI->isPhysRegUsed(OddReg);
const bool EvenRegUsed = MRI->isPhysRegUsed(EvenReg);
// Early exit if none of the registers in the register pair is actually
// used.
if (!OddRegUsed && !EvenRegUsed) {
if (AArch64::GPR64RegClass.contains(OddReg)) {
UnspilledCSGPRs.push_back(OddReg);
UnspilledCSGPRs.push_back(EvenReg);
} else {
UnspilledCSFPRs.push_back(OddReg);
UnspilledCSFPRs.push_back(EvenReg);
}
continue;
}
unsigned Reg = AArch64::NoRegister;
// If only one of the registers of the register pair is used, make sure to
// mark the other one as used as well.
if (OddRegUsed ^ EvenRegUsed) {
// Find out which register is the additional spill.
Reg = OddRegUsed ? EvenReg : OddReg;
MRI->setPhysRegUsed(Reg);
}
DEBUG(dbgs() << ' ' << PrintReg(OddReg, RegInfo));
DEBUG(dbgs() << ' ' << PrintReg(EvenReg, RegInfo));
assert(((OddReg == AArch64::LR && EvenReg == AArch64::FP) ||
(RegInfo->getEncodingValue(OddReg) + 1 ==
RegInfo->getEncodingValue(EvenReg))) &&
"Register pair of non-adjacent registers!");
if (AArch64::GPR64RegClass.contains(OddReg)) {
NumGPRSpilled += 2;
// If it's not a reserved register, we can use it in lieu of an
// emergency spill slot for the register scavenger.
// FIXME: It would be better to instead keep looking and choose another
// unspilled register that isn't reserved, if there is one.
if (Reg != AArch64::NoRegister && !RegInfo->isReservedReg(MF, Reg))
ExtraCSSpill = true;
} else
NumFPRSpilled += 2;
CanEliminateFrame = false;
}
// FIXME: Set BigStack if any stack slot references may be out of range.
// For now, just conservatively guestimate based on unscaled indexing
// range. We'll end up allocating an unnecessary spill slot a lot, but
// realistically that's not a big deal at this stage of the game.
// The CSR spill slots have not been allocated yet, so estimateStackSize
// won't include them.
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned CFSize = estimateStackSize(MF) + 8 * (NumGPRSpilled + NumFPRSpilled);
DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
bool BigStack = (CFSize >= 256);
if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
AFI->setHasStackFrame(true);
// Estimate if we might need to scavenge a register at some point in order
// to materialize a stack offset. If so, either spill one additional
// callee-saved register or reserve a special spill slot to facilitate
// register scavenging. If we already spilled an extra callee-saved register
// above to keep the number of spills even, we don't need to do anything else
// here.
if (BigStack && !ExtraCSSpill) {
// If we're adding a register to spill here, we have to add two of them
// to keep the number of regs to spill even.
assert(((UnspilledCSGPRs.size() & 1) == 0) && "Odd number of registers!");
unsigned Count = 0;
while (!UnspilledCSGPRs.empty() && Count < 2) {
unsigned Reg = UnspilledCSGPRs.back();
UnspilledCSGPRs.pop_back();
DEBUG(dbgs() << "Spilling " << PrintReg(Reg, RegInfo)
<< " to get a scratch register.\n");
MRI->setPhysRegUsed(Reg);
ExtraCSSpill = true;
++Count;
}
// If we didn't find an extra callee-saved register to spill, create
// an emergency spill slot.
if (!ExtraCSSpill) {
const TargetRegisterClass *RC = &AArch64::GPR64RegClass;
int FI = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false);
RS->addScavengingFrameIndex(FI);
DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
<< " as the emergency spill slot.\n");
}
}
}