llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp

268 lines
9.8 KiB
C++

//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements a register stacking pass.
///
/// This pass reorders instructions to put register uses and defs in an order
/// such that they form single-use expression trees. Registers fitting this form
/// are then marked as "stackified", meaning references to them are replaced by
/// "push" and "pop" from the stack.
///
/// This is primarily a code size optimization, since temporary values on the
/// expression don't need to be named.
///
//===----------------------------------------------------------------------===//
#include "WebAssembly.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
#include "WebAssemblyMachineFunctionInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-reg-stackify"
namespace {
class WebAssemblyRegStackify final : public MachineFunctionPass {
const char *getPassName() const override {
return "WebAssembly Register Stackify";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addPreservedID(MachineDominatorsID);
AU.addPreservedID(LiveVariablesID);
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
public:
static char ID; // Pass identification, replacement for typeid
WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
};
} // end anonymous namespace
char WebAssemblyRegStackify::ID = 0;
FunctionPass *llvm::createWebAssemblyRegStackify() {
return new WebAssemblyRegStackify();
}
// Decorate the given instruction with implicit operands that enforce the
// expression stack ordering constraints for an instruction which is on
// the expression stack.
static void ImposeStackOrdering(MachineInstr *MI) {
// Write the opaque EXPR_STACK register.
if (!MI->definesRegister(WebAssembly::EXPR_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
/*isDef=*/true,
/*isImp=*/true));
// Also read the opaque EXPR_STACK register.
if (!MI->readsRegister(WebAssembly::EXPR_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
/*isDef=*/false,
/*isImp=*/true));
}
// Test whether it's safe to move Def to just before Insert.
// TODO: Compute memory dependencies in a way that doesn't require always
// walking the block.
// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
// more precise.
static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
AliasAnalysis &AA, LiveIntervals &LIS,
MachineRegisterInfo &MRI) {
assert(Def->getParent() == Insert->getParent());
bool SawStore = false, SawSideEffects = false;
MachineBasicBlock::const_iterator D(Def), I(Insert);
// Check for register dependencies.
for (const MachineOperand &MO : Def->operands()) {
if (!MO.isReg() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
// If the register is dead here and at Insert, ignore it.
if (MO.isDead() && Insert->definesRegister(Reg) &&
!Insert->readsRegister(Reg))
continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// If the physical register is never modified, ignore it.
if (!MRI.isPhysRegModified(Reg))
continue;
// Otherwise, it's a physical register with unknown liveness.
return false;
}
// Ask LiveIntervals whether moving this virtual register use or def to
// Insert will change value numbers are seen.
const LiveInterval &LI = LIS.getInterval(Reg);
VNInfo *DefVNI = MO.isDef() ?
LI.getVNInfoAt(LIS.getInstructionIndex(Def).getRegSlot()) :
LI.getVNInfoBefore(LIS.getInstructionIndex(Def));
assert(DefVNI && "Instruction input missing value number");
VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(Insert));
if (InsVNI && DefVNI != InsVNI)
return false;
}
// Check for memory dependencies and side effects.
for (--I; I != D; --I)
SawSideEffects |= I->isSafeToMove(&AA, SawStore);
return !(SawStore && Def->mayLoad() && !Def->isInvariantLoad(&AA)) &&
!(SawSideEffects && !Def->isSafeToMove(&AA, SawStore));
}
bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********** Register Stackifying **********\n"
"********** Function: "
<< MF.getName() << '\n');
bool Changed = false;
MachineRegisterInfo &MRI = MF.getRegInfo();
WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
LiveIntervals &LIS = getAnalysis<LiveIntervals>();
// Walk the instructions from the bottom up. Currently we don't look past
// block boundaries, and the blocks aren't ordered so the block visitation
// order isn't significant, but we may want to change this in the future.
for (MachineBasicBlock &MBB : MF) {
// Don't use a range-based for loop, because we modify the list as we're
// iterating over it and the end iterator may change.
for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
MachineInstr *Insert = &*MII;
// Don't nest anything inside a phi.
if (Insert->getOpcode() == TargetOpcode::PHI)
break;
// Don't nest anything inside an inline asm, because we don't have
// constraints for $push inputs.
if (Insert->getOpcode() == TargetOpcode::INLINEASM)
break;
// Iterate through the inputs in reverse order, since we'll be pulling
// operands off the stack in LIFO order.
bool AnyStackified = false;
for (MachineOperand &Op : reverse(Insert->uses())) {
// We're only interested in explicit virtual register operands.
if (!Op.isReg() || Op.isImplicit() || !Op.isUse())
continue;
unsigned Reg = Op.getReg();
// Only consider registers with a single definition.
// TODO: Eventually we may relax this, to stackify phi transfers.
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
if (!Def)
continue;
// There's no use in nesting implicit defs inside anything.
if (Def->getOpcode() == TargetOpcode::IMPLICIT_DEF)
continue;
// Don't nest an INLINE_ASM def into anything, because we don't have
// constraints for $pop outputs.
if (Def->getOpcode() == TargetOpcode::INLINEASM)
continue;
// Don't nest PHIs inside of anything.
if (Def->getOpcode() == TargetOpcode::PHI)
continue;
// Argument instructions represent live-in registers and not real
// instructions.
if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 ||
Def->getOpcode() == WebAssembly::ARGUMENT_I64 ||
Def->getOpcode() == WebAssembly::ARGUMENT_F32 ||
Def->getOpcode() == WebAssembly::ARGUMENT_F64)
continue;
// Single-use expression trees require defs that have one use.
// TODO: Eventually we'll relax this, to take advantage of set_local
// returning its result.
if (!MRI.hasOneUse(Reg))
continue;
// For now, be conservative and don't look across block boundaries.
// TODO: Be more aggressive?
if (Def->getParent() != &MBB)
continue;
// Don't move instructions that have side effects or memory dependencies
// or other complications.
if (!IsSafeToMove(Def, Insert, AA, LIS, MRI))
continue;
Changed = true;
AnyStackified = true;
// Move the def down and nest it in the current instruction.
MBB.splice(Insert, &MBB, Def);
LIS.handleMove(Def);
MFI.stackifyVReg(Reg);
ImposeStackOrdering(Def);
Insert = Def;
}
if (AnyStackified)
ImposeStackOrdering(&*MII);
}
}
// If we used EXPR_STACK anywhere, add it to the live-in sets everywhere
// so that it never looks like a use-before-def.
if (Changed) {
MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK);
for (MachineBasicBlock &MBB : MF)
MBB.addLiveIn(WebAssembly::EXPR_STACK);
}
#ifndef NDEBUG
// Verify that pushes and pops are performed in FIFO order.
SmallVector<unsigned, 0> Stack;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
for (MachineOperand &MO : reverse(MI.explicit_operands())) {
if (!MO.isReg())
continue;
unsigned VReg = MO.getReg();
// Don't stackify physregs like SP or FP.
if (!TargetRegisterInfo::isVirtualRegister(VReg))
continue;
if (MFI.isVRegStackified(VReg)) {
if (MO.isDef())
Stack.push_back(VReg);
else
assert(Stack.pop_back_val() == VReg);
}
}
}
// TODO: Generalize this code to support keeping values on the stack across
// basic block boundaries.
assert(Stack.empty());
}
#endif
return Changed;
}