forked from OSchip/llvm-project
2702 lines
100 KiB
C++
2702 lines
100 KiB
C++
//===- InstCombineCalls.cpp -----------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visitCall and visitInvoke functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NumSimplified, "Number of library calls simplified");
|
|
|
|
/// Return the specified type promoted as it would be to pass though a va_arg
|
|
/// area.
|
|
static Type *getPromotedType(Type *Ty) {
|
|
if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
|
|
if (ITy->getBitWidth() < 32)
|
|
return Type::getInt32Ty(Ty->getContext());
|
|
}
|
|
return Ty;
|
|
}
|
|
|
|
/// Given an aggregate type which ultimately holds a single scalar element,
|
|
/// like {{{type}}} or [1 x type], return type.
|
|
static Type *reduceToSingleValueType(Type *T) {
|
|
while (!T->isSingleValueType()) {
|
|
if (StructType *STy = dyn_cast<StructType>(T)) {
|
|
if (STy->getNumElements() == 1)
|
|
T = STy->getElementType(0);
|
|
else
|
|
break;
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
|
|
if (ATy->getNumElements() == 1)
|
|
T = ATy->getElementType();
|
|
else
|
|
break;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
/// Return a constant boolean vector that has true elements in all positions
|
|
/// where the input constant data vector has an element with the sign bit set.
|
|
static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
|
|
SmallVector<Constant *, 32> BoolVec;
|
|
IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
|
|
for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
|
|
Constant *Elt = V->getElementAsConstant(I);
|
|
assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
|
|
"Unexpected constant data vector element type");
|
|
bool Sign = V->getElementType()->isIntegerTy()
|
|
? cast<ConstantInt>(Elt)->isNegative()
|
|
: cast<ConstantFP>(Elt)->isNegative();
|
|
BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
|
|
}
|
|
return ConstantVector::get(BoolVec);
|
|
}
|
|
|
|
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
|
|
unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
|
|
unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
|
|
unsigned MinAlign = std::min(DstAlign, SrcAlign);
|
|
unsigned CopyAlign = MI->getAlignment();
|
|
|
|
if (CopyAlign < MinAlign) {
|
|
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
|
|
return MI;
|
|
}
|
|
|
|
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
|
|
// load/store.
|
|
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
|
|
if (!MemOpLength) return nullptr;
|
|
|
|
// Source and destination pointer types are always "i8*" for intrinsic. See
|
|
// if the size is something we can handle with a single primitive load/store.
|
|
// A single load+store correctly handles overlapping memory in the memmove
|
|
// case.
|
|
uint64_t Size = MemOpLength->getLimitedValue();
|
|
assert(Size && "0-sized memory transferring should be removed already.");
|
|
|
|
if (Size > 8 || (Size&(Size-1)))
|
|
return nullptr; // If not 1/2/4/8 bytes, exit.
|
|
|
|
// Use an integer load+store unless we can find something better.
|
|
unsigned SrcAddrSp =
|
|
cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
|
|
unsigned DstAddrSp =
|
|
cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
|
|
|
|
IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
|
|
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
|
|
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
|
|
|
|
// Memcpy forces the use of i8* for the source and destination. That means
|
|
// that if you're using memcpy to move one double around, you'll get a cast
|
|
// from double* to i8*. We'd much rather use a double load+store rather than
|
|
// an i64 load+store, here because this improves the odds that the source or
|
|
// dest address will be promotable. See if we can find a better type than the
|
|
// integer datatype.
|
|
Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
|
|
MDNode *CopyMD = nullptr;
|
|
if (StrippedDest != MI->getArgOperand(0)) {
|
|
Type *SrcETy = cast<PointerType>(StrippedDest->getType())
|
|
->getElementType();
|
|
if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
|
|
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
|
|
// down through these levels if so.
|
|
SrcETy = reduceToSingleValueType(SrcETy);
|
|
|
|
if (SrcETy->isSingleValueType()) {
|
|
NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
|
|
NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
|
|
|
|
// If the memcpy has metadata describing the members, see if we can
|
|
// get the TBAA tag describing our copy.
|
|
if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
|
|
if (M->getNumOperands() == 3 && M->getOperand(0) &&
|
|
mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
|
|
mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
|
|
M->getOperand(1) &&
|
|
mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
|
|
mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
|
|
Size &&
|
|
M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
|
|
CopyMD = cast<MDNode>(M->getOperand(2));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the memcpy/memmove provides better alignment info than we can
|
|
// infer, use it.
|
|
SrcAlign = std::max(SrcAlign, CopyAlign);
|
|
DstAlign = std::max(DstAlign, CopyAlign);
|
|
|
|
Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
|
|
Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
|
|
LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
|
|
L->setAlignment(SrcAlign);
|
|
if (CopyMD)
|
|
L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
|
|
StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
|
|
S->setAlignment(DstAlign);
|
|
if (CopyMD)
|
|
S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
|
|
|
|
// Set the size of the copy to 0, it will be deleted on the next iteration.
|
|
MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
|
|
return MI;
|
|
}
|
|
|
|
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
|
|
unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
|
|
if (MI->getAlignment() < Alignment) {
|
|
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
|
|
Alignment, false));
|
|
return MI;
|
|
}
|
|
|
|
// Extract the length and alignment and fill if they are constant.
|
|
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
|
|
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
|
|
if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
|
|
return nullptr;
|
|
uint64_t Len = LenC->getLimitedValue();
|
|
Alignment = MI->getAlignment();
|
|
assert(Len && "0-sized memory setting should be removed already.");
|
|
|
|
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
|
|
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
|
|
Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
|
|
|
|
Value *Dest = MI->getDest();
|
|
unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
|
|
Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
|
|
Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
|
|
|
|
// Alignment 0 is identity for alignment 1 for memset, but not store.
|
|
if (Alignment == 0) Alignment = 1;
|
|
|
|
// Extract the fill value and store.
|
|
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
|
|
StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
|
|
MI->isVolatile());
|
|
S->setAlignment(Alignment);
|
|
|
|
// Set the size of the copy to 0, it will be deleted on the next iteration.
|
|
MI->setLength(Constant::getNullValue(LenC->getType()));
|
|
return MI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *simplifyX86immShift(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
bool LogicalShift = false;
|
|
bool ShiftLeft = false;
|
|
|
|
switch (II.getIntrinsicID()) {
|
|
default:
|
|
return nullptr;
|
|
case Intrinsic::x86_sse2_psra_d:
|
|
case Intrinsic::x86_sse2_psra_w:
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_avx2_psra_d:
|
|
case Intrinsic::x86_avx2_psra_w:
|
|
case Intrinsic::x86_avx2_psrai_d:
|
|
case Intrinsic::x86_avx2_psrai_w:
|
|
LogicalShift = false; ShiftLeft = false;
|
|
break;
|
|
case Intrinsic::x86_sse2_psrl_d:
|
|
case Intrinsic::x86_sse2_psrl_q:
|
|
case Intrinsic::x86_sse2_psrl_w:
|
|
case Intrinsic::x86_sse2_psrli_d:
|
|
case Intrinsic::x86_sse2_psrli_q:
|
|
case Intrinsic::x86_sse2_psrli_w:
|
|
case Intrinsic::x86_avx2_psrl_d:
|
|
case Intrinsic::x86_avx2_psrl_q:
|
|
case Intrinsic::x86_avx2_psrl_w:
|
|
case Intrinsic::x86_avx2_psrli_d:
|
|
case Intrinsic::x86_avx2_psrli_q:
|
|
case Intrinsic::x86_avx2_psrli_w:
|
|
LogicalShift = true; ShiftLeft = false;
|
|
break;
|
|
case Intrinsic::x86_sse2_psll_d:
|
|
case Intrinsic::x86_sse2_psll_q:
|
|
case Intrinsic::x86_sse2_psll_w:
|
|
case Intrinsic::x86_sse2_pslli_d:
|
|
case Intrinsic::x86_sse2_pslli_q:
|
|
case Intrinsic::x86_sse2_pslli_w:
|
|
case Intrinsic::x86_avx2_psll_d:
|
|
case Intrinsic::x86_avx2_psll_q:
|
|
case Intrinsic::x86_avx2_psll_w:
|
|
case Intrinsic::x86_avx2_pslli_d:
|
|
case Intrinsic::x86_avx2_pslli_q:
|
|
case Intrinsic::x86_avx2_pslli_w:
|
|
LogicalShift = true; ShiftLeft = true;
|
|
break;
|
|
}
|
|
assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
|
|
|
|
// Simplify if count is constant.
|
|
auto Arg1 = II.getArgOperand(1);
|
|
auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
|
|
auto CDV = dyn_cast<ConstantDataVector>(Arg1);
|
|
auto CInt = dyn_cast<ConstantInt>(Arg1);
|
|
if (!CAZ && !CDV && !CInt)
|
|
return nullptr;
|
|
|
|
APInt Count(64, 0);
|
|
if (CDV) {
|
|
// SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
|
|
// operand to compute the shift amount.
|
|
auto VT = cast<VectorType>(CDV->getType());
|
|
unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
|
|
assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
|
|
unsigned NumSubElts = 64 / BitWidth;
|
|
|
|
// Concatenate the sub-elements to create the 64-bit value.
|
|
for (unsigned i = 0; i != NumSubElts; ++i) {
|
|
unsigned SubEltIdx = (NumSubElts - 1) - i;
|
|
auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
|
|
Count = Count.shl(BitWidth);
|
|
Count |= SubElt->getValue().zextOrTrunc(64);
|
|
}
|
|
}
|
|
else if (CInt)
|
|
Count = CInt->getValue();
|
|
|
|
auto Vec = II.getArgOperand(0);
|
|
auto VT = cast<VectorType>(Vec->getType());
|
|
auto SVT = VT->getElementType();
|
|
unsigned VWidth = VT->getNumElements();
|
|
unsigned BitWidth = SVT->getPrimitiveSizeInBits();
|
|
|
|
// If shift-by-zero then just return the original value.
|
|
if (Count == 0)
|
|
return Vec;
|
|
|
|
// Handle cases when Shift >= BitWidth.
|
|
if (Count.uge(BitWidth)) {
|
|
// If LogicalShift - just return zero.
|
|
if (LogicalShift)
|
|
return ConstantAggregateZero::get(VT);
|
|
|
|
// If ArithmeticShift - clamp Shift to (BitWidth - 1).
|
|
Count = APInt(64, BitWidth - 1);
|
|
}
|
|
|
|
// Get a constant vector of the same type as the first operand.
|
|
auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
|
|
auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
|
|
|
|
if (ShiftLeft)
|
|
return Builder.CreateShl(Vec, ShiftVec);
|
|
|
|
if (LogicalShift)
|
|
return Builder.CreateLShr(Vec, ShiftVec);
|
|
|
|
return Builder.CreateAShr(Vec, ShiftVec);
|
|
}
|
|
|
|
static Value *simplifyX86extend(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder,
|
|
bool SignExtend) {
|
|
VectorType *SrcTy = cast<VectorType>(II.getArgOperand(0)->getType());
|
|
VectorType *DstTy = cast<VectorType>(II.getType());
|
|
unsigned NumDstElts = DstTy->getNumElements();
|
|
|
|
// Extract a subvector of the first NumDstElts lanes and sign/zero extend.
|
|
SmallVector<int, 8> ShuffleMask;
|
|
for (int i = 0; i != (int)NumDstElts; ++i)
|
|
ShuffleMask.push_back(i);
|
|
|
|
Value *SV = Builder.CreateShuffleVector(II.getArgOperand(0),
|
|
UndefValue::get(SrcTy), ShuffleMask);
|
|
return SignExtend ? Builder.CreateSExt(SV, DstTy)
|
|
: Builder.CreateZExt(SV, DstTy);
|
|
}
|
|
|
|
static Value *simplifyX86insertps(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
|
|
if (!CInt)
|
|
return nullptr;
|
|
|
|
VectorType *VecTy = cast<VectorType>(II.getType());
|
|
assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
|
|
|
|
// The immediate permute control byte looks like this:
|
|
// [3:0] - zero mask for each 32-bit lane
|
|
// [5:4] - select one 32-bit destination lane
|
|
// [7:6] - select one 32-bit source lane
|
|
|
|
uint8_t Imm = CInt->getZExtValue();
|
|
uint8_t ZMask = Imm & 0xf;
|
|
uint8_t DestLane = (Imm >> 4) & 0x3;
|
|
uint8_t SourceLane = (Imm >> 6) & 0x3;
|
|
|
|
ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
|
|
|
|
// If all zero mask bits are set, this was just a weird way to
|
|
// generate a zero vector.
|
|
if (ZMask == 0xf)
|
|
return ZeroVector;
|
|
|
|
// Initialize by passing all of the first source bits through.
|
|
int ShuffleMask[4] = { 0, 1, 2, 3 };
|
|
|
|
// We may replace the second operand with the zero vector.
|
|
Value *V1 = II.getArgOperand(1);
|
|
|
|
if (ZMask) {
|
|
// If the zero mask is being used with a single input or the zero mask
|
|
// overrides the destination lane, this is a shuffle with the zero vector.
|
|
if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
|
|
(ZMask & (1 << DestLane))) {
|
|
V1 = ZeroVector;
|
|
// We may still move 32-bits of the first source vector from one lane
|
|
// to another.
|
|
ShuffleMask[DestLane] = SourceLane;
|
|
// The zero mask may override the previous insert operation.
|
|
for (unsigned i = 0; i < 4; ++i)
|
|
if ((ZMask >> i) & 0x1)
|
|
ShuffleMask[i] = i + 4;
|
|
} else {
|
|
// TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// Replace the selected destination lane with the selected source lane.
|
|
ShuffleMask[DestLane] = SourceLane + 4;
|
|
}
|
|
|
|
return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
|
|
}
|
|
|
|
/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
|
|
/// or conversion to a shuffle vector.
|
|
static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
|
|
ConstantInt *CILength, ConstantInt *CIIndex,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto LowConstantHighUndef = [&](uint64_t Val) {
|
|
Type *IntTy64 = Type::getInt64Ty(II.getContext());
|
|
Constant *Args[] = {ConstantInt::get(IntTy64, Val),
|
|
UndefValue::get(IntTy64)};
|
|
return ConstantVector::get(Args);
|
|
};
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C0 = dyn_cast<Constant>(Op0);
|
|
ConstantInt *CI0 =
|
|
C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
|
|
// Attempt to constant fold.
|
|
if (CILength && CIIndex) {
|
|
// From AMD documentation: "The bit index and field length are each six
|
|
// bits in length other bits of the field are ignored."
|
|
APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
|
|
APInt APLength = CILength->getValue().zextOrTrunc(6);
|
|
|
|
unsigned Index = APIndex.getZExtValue();
|
|
|
|
// From AMD documentation: "a value of zero in the field length is
|
|
// defined as length of 64".
|
|
unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
|
|
|
|
// From AMD documentation: "If the sum of the bit index + length field
|
|
// is greater than 64, the results are undefined".
|
|
unsigned End = Index + Length;
|
|
|
|
// Note that both field index and field length are 8-bit quantities.
|
|
// Since variables 'Index' and 'Length' are unsigned values
|
|
// obtained from zero-extending field index and field length
|
|
// respectively, their sum should never wrap around.
|
|
if (End > 64)
|
|
return UndefValue::get(II.getType());
|
|
|
|
// If we are inserting whole bytes, we can convert this to a shuffle.
|
|
// Lowering can recognize EXTRQI shuffle masks.
|
|
if ((Length % 8) == 0 && (Index % 8) == 0) {
|
|
// Convert bit indices to byte indices.
|
|
Length /= 8;
|
|
Index /= 8;
|
|
|
|
Type *IntTy8 = Type::getInt8Ty(II.getContext());
|
|
Type *IntTy32 = Type::getInt32Ty(II.getContext());
|
|
VectorType *ShufTy = VectorType::get(IntTy8, 16);
|
|
|
|
SmallVector<Constant *, 16> ShuffleMask;
|
|
for (int i = 0; i != (int)Length; ++i)
|
|
ShuffleMask.push_back(
|
|
Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
|
|
for (int i = Length; i != 8; ++i)
|
|
ShuffleMask.push_back(
|
|
Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
|
|
for (int i = 8; i != 16; ++i)
|
|
ShuffleMask.push_back(UndefValue::get(IntTy32));
|
|
|
|
Value *SV = Builder.CreateShuffleVector(
|
|
Builder.CreateBitCast(Op0, ShufTy),
|
|
ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
|
|
return Builder.CreateBitCast(SV, II.getType());
|
|
}
|
|
|
|
// Constant Fold - shift Index'th bit to lowest position and mask off
|
|
// Length bits.
|
|
if (CI0) {
|
|
APInt Elt = CI0->getValue();
|
|
Elt = Elt.lshr(Index).zextOrTrunc(Length);
|
|
return LowConstantHighUndef(Elt.getZExtValue());
|
|
}
|
|
|
|
// If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
|
|
if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
|
|
Value *Args[] = {Op0, CILength, CIIndex};
|
|
Module *M = II.getModule();
|
|
Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
|
|
return Builder.CreateCall(F, Args);
|
|
}
|
|
}
|
|
|
|
// Constant Fold - extraction from zero is always {zero, undef}.
|
|
if (CI0 && CI0->equalsInt(0))
|
|
return LowConstantHighUndef(0);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
|
|
/// folding or conversion to a shuffle vector.
|
|
static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
|
|
APInt APLength, APInt APIndex,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
|
|
// From AMD documentation: "The bit index and field length are each six bits
|
|
// in length other bits of the field are ignored."
|
|
APIndex = APIndex.zextOrTrunc(6);
|
|
APLength = APLength.zextOrTrunc(6);
|
|
|
|
// Attempt to constant fold.
|
|
unsigned Index = APIndex.getZExtValue();
|
|
|
|
// From AMD documentation: "a value of zero in the field length is
|
|
// defined as length of 64".
|
|
unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
|
|
|
|
// From AMD documentation: "If the sum of the bit index + length field
|
|
// is greater than 64, the results are undefined".
|
|
unsigned End = Index + Length;
|
|
|
|
// Note that both field index and field length are 8-bit quantities.
|
|
// Since variables 'Index' and 'Length' are unsigned values
|
|
// obtained from zero-extending field index and field length
|
|
// respectively, their sum should never wrap around.
|
|
if (End > 64)
|
|
return UndefValue::get(II.getType());
|
|
|
|
// If we are inserting whole bytes, we can convert this to a shuffle.
|
|
// Lowering can recognize INSERTQI shuffle masks.
|
|
if ((Length % 8) == 0 && (Index % 8) == 0) {
|
|
// Convert bit indices to byte indices.
|
|
Length /= 8;
|
|
Index /= 8;
|
|
|
|
Type *IntTy8 = Type::getInt8Ty(II.getContext());
|
|
Type *IntTy32 = Type::getInt32Ty(II.getContext());
|
|
VectorType *ShufTy = VectorType::get(IntTy8, 16);
|
|
|
|
SmallVector<Constant *, 16> ShuffleMask;
|
|
for (int i = 0; i != (int)Index; ++i)
|
|
ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
|
|
for (int i = 0; i != (int)Length; ++i)
|
|
ShuffleMask.push_back(
|
|
Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
|
|
for (int i = Index + Length; i != 8; ++i)
|
|
ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
|
|
for (int i = 8; i != 16; ++i)
|
|
ShuffleMask.push_back(UndefValue::get(IntTy32));
|
|
|
|
Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
|
|
Builder.CreateBitCast(Op1, ShufTy),
|
|
ConstantVector::get(ShuffleMask));
|
|
return Builder.CreateBitCast(SV, II.getType());
|
|
}
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C0 = dyn_cast<Constant>(Op0);
|
|
Constant *C1 = dyn_cast<Constant>(Op1);
|
|
ConstantInt *CI00 =
|
|
C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
ConstantInt *CI10 =
|
|
C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
|
|
// Constant Fold - insert bottom Length bits starting at the Index'th bit.
|
|
if (CI00 && CI10) {
|
|
APInt V00 = CI00->getValue();
|
|
APInt V10 = CI10->getValue();
|
|
APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
|
|
V00 = V00 & ~Mask;
|
|
V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
|
|
APInt Val = V00 | V10;
|
|
Type *IntTy64 = Type::getInt64Ty(II.getContext());
|
|
Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
|
|
UndefValue::get(IntTy64)};
|
|
return ConstantVector::get(Args);
|
|
}
|
|
|
|
// If we were an INSERTQ call, we'll save demanded elements if we convert to
|
|
// INSERTQI.
|
|
if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
|
|
Type *IntTy8 = Type::getInt8Ty(II.getContext());
|
|
Constant *CILength = ConstantInt::get(IntTy8, Length, false);
|
|
Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
|
|
|
|
Value *Args[] = {Op0, Op1, CILength, CIIndex};
|
|
Module *M = II.getModule();
|
|
Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
|
|
return Builder.CreateCall(F, Args);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
|
|
/// source vectors, unless a zero bit is set. If a zero bit is set,
|
|
/// then ignore that half of the mask and clear that half of the vector.
|
|
static Value *simplifyX86vperm2(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
|
|
if (!CInt)
|
|
return nullptr;
|
|
|
|
VectorType *VecTy = cast<VectorType>(II.getType());
|
|
ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
|
|
|
|
// The immediate permute control byte looks like this:
|
|
// [1:0] - select 128 bits from sources for low half of destination
|
|
// [2] - ignore
|
|
// [3] - zero low half of destination
|
|
// [5:4] - select 128 bits from sources for high half of destination
|
|
// [6] - ignore
|
|
// [7] - zero high half of destination
|
|
|
|
uint8_t Imm = CInt->getZExtValue();
|
|
|
|
bool LowHalfZero = Imm & 0x08;
|
|
bool HighHalfZero = Imm & 0x80;
|
|
|
|
// If both zero mask bits are set, this was just a weird way to
|
|
// generate a zero vector.
|
|
if (LowHalfZero && HighHalfZero)
|
|
return ZeroVector;
|
|
|
|
// If 0 or 1 zero mask bits are set, this is a simple shuffle.
|
|
unsigned NumElts = VecTy->getNumElements();
|
|
unsigned HalfSize = NumElts / 2;
|
|
SmallVector<int, 8> ShuffleMask(NumElts);
|
|
|
|
// The high bit of the selection field chooses the 1st or 2nd operand.
|
|
bool LowInputSelect = Imm & 0x02;
|
|
bool HighInputSelect = Imm & 0x20;
|
|
|
|
// The low bit of the selection field chooses the low or high half
|
|
// of the selected operand.
|
|
bool LowHalfSelect = Imm & 0x01;
|
|
bool HighHalfSelect = Imm & 0x10;
|
|
|
|
// Determine which operand(s) are actually in use for this instruction.
|
|
Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
|
|
Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
|
|
|
|
// If needed, replace operands based on zero mask.
|
|
V0 = LowHalfZero ? ZeroVector : V0;
|
|
V1 = HighHalfZero ? ZeroVector : V1;
|
|
|
|
// Permute low half of result.
|
|
unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
|
|
for (unsigned i = 0; i < HalfSize; ++i)
|
|
ShuffleMask[i] = StartIndex + i;
|
|
|
|
// Permute high half of result.
|
|
StartIndex = HighHalfSelect ? HalfSize : 0;
|
|
StartIndex += NumElts;
|
|
for (unsigned i = 0; i < HalfSize; ++i)
|
|
ShuffleMask[i + HalfSize] = StartIndex + i;
|
|
|
|
return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
|
|
}
|
|
|
|
/// Decode XOP integer vector comparison intrinsics.
|
|
static Value *simplifyX86vpcom(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder,
|
|
bool IsSigned) {
|
|
if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
|
|
uint64_t Imm = CInt->getZExtValue() & 0x7;
|
|
VectorType *VecTy = cast<VectorType>(II.getType());
|
|
CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
|
|
|
|
switch (Imm) {
|
|
case 0x0:
|
|
Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
break;
|
|
case 0x1:
|
|
Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
|
|
break;
|
|
case 0x2:
|
|
Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
break;
|
|
case 0x3:
|
|
Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
|
|
break;
|
|
case 0x4:
|
|
Pred = ICmpInst::ICMP_EQ; break;
|
|
case 0x5:
|
|
Pred = ICmpInst::ICMP_NE; break;
|
|
case 0x6:
|
|
return ConstantInt::getSigned(VecTy, 0); // FALSE
|
|
case 0x7:
|
|
return ConstantInt::getSigned(VecTy, -1); // TRUE
|
|
}
|
|
|
|
if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
|
|
II.getArgOperand(1)))
|
|
return Builder.CreateSExtOrTrunc(Cmp, VecTy);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
|
|
Value *Arg0 = II.getArgOperand(0);
|
|
Value *Arg1 = II.getArgOperand(1);
|
|
|
|
// fmin(x, x) -> x
|
|
if (Arg0 == Arg1)
|
|
return Arg0;
|
|
|
|
const auto *C1 = dyn_cast<ConstantFP>(Arg1);
|
|
|
|
// fmin(x, nan) -> x
|
|
if (C1 && C1->isNaN())
|
|
return Arg0;
|
|
|
|
// This is the value because if undef were NaN, we would return the other
|
|
// value and cannot return a NaN unless both operands are.
|
|
//
|
|
// fmin(undef, x) -> x
|
|
if (isa<UndefValue>(Arg0))
|
|
return Arg1;
|
|
|
|
// fmin(x, undef) -> x
|
|
if (isa<UndefValue>(Arg1))
|
|
return Arg0;
|
|
|
|
Value *X = nullptr;
|
|
Value *Y = nullptr;
|
|
if (II.getIntrinsicID() == Intrinsic::minnum) {
|
|
// fmin(x, fmin(x, y)) -> fmin(x, y)
|
|
// fmin(y, fmin(x, y)) -> fmin(x, y)
|
|
if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
|
|
if (Arg0 == X || Arg0 == Y)
|
|
return Arg1;
|
|
}
|
|
|
|
// fmin(fmin(x, y), x) -> fmin(x, y)
|
|
// fmin(fmin(x, y), y) -> fmin(x, y)
|
|
if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
|
|
if (Arg1 == X || Arg1 == Y)
|
|
return Arg0;
|
|
}
|
|
|
|
// TODO: fmin(nnan x, inf) -> x
|
|
// TODO: fmin(nnan ninf x, flt_max) -> x
|
|
if (C1 && C1->isInfinity()) {
|
|
// fmin(x, -inf) -> -inf
|
|
if (C1->isNegative())
|
|
return Arg1;
|
|
}
|
|
} else {
|
|
assert(II.getIntrinsicID() == Intrinsic::maxnum);
|
|
// fmax(x, fmax(x, y)) -> fmax(x, y)
|
|
// fmax(y, fmax(x, y)) -> fmax(x, y)
|
|
if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
|
|
if (Arg0 == X || Arg0 == Y)
|
|
return Arg1;
|
|
}
|
|
|
|
// fmax(fmax(x, y), x) -> fmax(x, y)
|
|
// fmax(fmax(x, y), y) -> fmax(x, y)
|
|
if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
|
|
if (Arg1 == X || Arg1 == Y)
|
|
return Arg0;
|
|
}
|
|
|
|
// TODO: fmax(nnan x, -inf) -> x
|
|
// TODO: fmax(nnan ninf x, -flt_max) -> x
|
|
if (C1 && C1->isInfinity()) {
|
|
// fmax(x, inf) -> inf
|
|
if (!C1->isNegative())
|
|
return Arg1;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *simplifyMaskedLoad(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
|
|
if (!ConstMask)
|
|
return nullptr;
|
|
|
|
// If the mask is all zeros, the "passthru" argument is the result.
|
|
if (ConstMask->isNullValue())
|
|
return II.getArgOperand(3);
|
|
|
|
// If the mask is all ones, this is a plain vector load of the 1st argument.
|
|
if (ConstMask->isAllOnesValue()) {
|
|
Value *LoadPtr = II.getArgOperand(0);
|
|
unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
|
|
return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
|
|
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
|
|
if (!ConstMask)
|
|
return nullptr;
|
|
|
|
// If the mask is all zeros, this instruction does nothing.
|
|
if (ConstMask->isNullValue())
|
|
return IC.eraseInstFromFunction(II);
|
|
|
|
// If the mask is all ones, this is a plain vector store of the 1st argument.
|
|
if (ConstMask->isAllOnesValue()) {
|
|
Value *StorePtr = II.getArgOperand(1);
|
|
unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
|
|
return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
|
|
// If the mask is all zeros, return the "passthru" argument of the gather.
|
|
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
|
|
if (ConstMask && ConstMask->isNullValue())
|
|
return IC.replaceInstUsesWith(II, II.getArgOperand(3));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
|
|
// If the mask is all zeros, a scatter does nothing.
|
|
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
|
|
if (ConstMask && ConstMask->isNullValue())
|
|
return IC.eraseInstFromFunction(II);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO: If the x86 backend knew how to convert a bool vector mask back to an
|
|
// XMM register mask efficiently, we could transform all x86 masked intrinsics
|
|
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
|
|
static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
|
|
Value *Ptr = II.getOperand(0);
|
|
Value *Mask = II.getOperand(1);
|
|
|
|
// Special case a zero mask since that's not a ConstantDataVector.
|
|
// This masked load instruction does nothing, so return an undef.
|
|
if (isa<ConstantAggregateZero>(Mask))
|
|
return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
|
|
|
|
auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
|
|
if (!ConstMask)
|
|
return nullptr;
|
|
|
|
// The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
|
|
// to allow target-independent optimizations.
|
|
|
|
// First, cast the x86 intrinsic scalar pointer to a vector pointer to match
|
|
// the LLVM intrinsic definition for the pointer argument.
|
|
unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
|
|
PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
|
|
Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
|
|
|
|
// Second, convert the x86 XMM integer vector mask to a vector of bools based
|
|
// on each element's most significant bit (the sign bit).
|
|
Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
|
|
|
|
CallInst *NewMaskedLoad = IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask);
|
|
return IC.replaceInstUsesWith(II, NewMaskedLoad);
|
|
}
|
|
|
|
// TODO: If the x86 backend knew how to convert a bool vector mask back to an
|
|
// XMM register mask efficiently, we could transform all x86 masked intrinsics
|
|
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
|
|
static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
|
|
Value *Ptr = II.getOperand(0);
|
|
Value *Mask = II.getOperand(1);
|
|
Value *Vec = II.getOperand(2);
|
|
|
|
// Special case a zero mask since that's not a ConstantDataVector:
|
|
// this masked store instruction does nothing.
|
|
if (isa<ConstantAggregateZero>(Mask)) {
|
|
IC.eraseInstFromFunction(II);
|
|
return true;
|
|
}
|
|
|
|
// The SSE2 version is too weird (eg, unaligned but non-temporal) to do
|
|
// anything else at this level.
|
|
if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
|
|
return false;
|
|
|
|
auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
|
|
if (!ConstMask)
|
|
return false;
|
|
|
|
// The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
|
|
// to allow target-independent optimizations.
|
|
|
|
// First, cast the x86 intrinsic scalar pointer to a vector pointer to match
|
|
// the LLVM intrinsic definition for the pointer argument.
|
|
unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
|
|
PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
|
|
Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
|
|
|
|
// Second, convert the x86 XMM integer vector mask to a vector of bools based
|
|
// on each element's most significant bit (the sign bit).
|
|
Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
|
|
|
|
IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
|
|
|
|
// 'Replace uses' doesn't work for stores. Erase the original masked store.
|
|
IC.eraseInstFromFunction(II);
|
|
return true;
|
|
}
|
|
|
|
/// CallInst simplification. This mostly only handles folding of intrinsic
|
|
/// instructions. For normal calls, it allows visitCallSite to do the heavy
|
|
/// lifting.
|
|
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
|
auto Args = CI.arg_operands();
|
|
if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
|
|
TLI, DT, AC))
|
|
return replaceInstUsesWith(CI, V);
|
|
|
|
if (isFreeCall(&CI, TLI))
|
|
return visitFree(CI);
|
|
|
|
// If the caller function is nounwind, mark the call as nounwind, even if the
|
|
// callee isn't.
|
|
if (CI.getParent()->getParent()->doesNotThrow() &&
|
|
!CI.doesNotThrow()) {
|
|
CI.setDoesNotThrow();
|
|
return &CI;
|
|
}
|
|
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
|
|
if (!II) return visitCallSite(&CI);
|
|
|
|
// Intrinsics cannot occur in an invoke, so handle them here instead of in
|
|
// visitCallSite.
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
|
|
bool Changed = false;
|
|
|
|
// memmove/cpy/set of zero bytes is a noop.
|
|
if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
|
|
if (NumBytes->isNullValue())
|
|
return eraseInstFromFunction(CI);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
|
|
if (CI->getZExtValue() == 1) {
|
|
// Replace the instruction with just byte operations. We would
|
|
// transform other cases to loads/stores, but we don't know if
|
|
// alignment is sufficient.
|
|
}
|
|
}
|
|
|
|
// No other transformations apply to volatile transfers.
|
|
if (MI->isVolatile())
|
|
return nullptr;
|
|
|
|
// If we have a memmove and the source operation is a constant global,
|
|
// then the source and dest pointers can't alias, so we can change this
|
|
// into a call to memcpy.
|
|
if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
|
|
if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
|
|
if (GVSrc->isConstant()) {
|
|
Module *M = CI.getModule();
|
|
Intrinsic::ID MemCpyID = Intrinsic::memcpy;
|
|
Type *Tys[3] = { CI.getArgOperand(0)->getType(),
|
|
CI.getArgOperand(1)->getType(),
|
|
CI.getArgOperand(2)->getType() };
|
|
CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
|
|
// memmove(x,x,size) -> noop.
|
|
if (MTI->getSource() == MTI->getDest())
|
|
return eraseInstFromFunction(CI);
|
|
}
|
|
|
|
// If we can determine a pointer alignment that is bigger than currently
|
|
// set, update the alignment.
|
|
if (isa<MemTransferInst>(MI)) {
|
|
if (Instruction *I = SimplifyMemTransfer(MI))
|
|
return I;
|
|
} else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
|
|
if (Instruction *I = SimplifyMemSet(MSI))
|
|
return I;
|
|
}
|
|
|
|
if (Changed) return II;
|
|
}
|
|
|
|
auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
|
|
unsigned DemandedWidth) {
|
|
APInt UndefElts(Width, 0);
|
|
APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
|
|
return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
|
|
};
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
default: break;
|
|
case Intrinsic::objectsize: {
|
|
uint64_t Size;
|
|
if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
|
|
return replaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
|
|
return nullptr;
|
|
}
|
|
case Intrinsic::bswap: {
|
|
Value *IIOperand = II->getArgOperand(0);
|
|
Value *X = nullptr;
|
|
|
|
// bswap(bswap(x)) -> x
|
|
if (match(IIOperand, m_BSwap(m_Value(X))))
|
|
return replaceInstUsesWith(CI, X);
|
|
|
|
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
|
|
if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
|
|
unsigned C = X->getType()->getPrimitiveSizeInBits() -
|
|
IIOperand->getType()->getPrimitiveSizeInBits();
|
|
Value *CV = ConstantInt::get(X->getType(), C);
|
|
Value *V = Builder->CreateLShr(X, CV);
|
|
return new TruncInst(V, IIOperand->getType());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::bitreverse: {
|
|
Value *IIOperand = II->getArgOperand(0);
|
|
Value *X = nullptr;
|
|
|
|
// bitreverse(bitreverse(x)) -> x
|
|
if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
|
|
return replaceInstUsesWith(CI, X);
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::masked_load:
|
|
if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder))
|
|
return replaceInstUsesWith(CI, SimplifiedMaskedOp);
|
|
break;
|
|
case Intrinsic::masked_store:
|
|
return simplifyMaskedStore(*II, *this);
|
|
case Intrinsic::masked_gather:
|
|
return simplifyMaskedGather(*II, *this);
|
|
case Intrinsic::masked_scatter:
|
|
return simplifyMaskedScatter(*II, *this);
|
|
|
|
case Intrinsic::powi:
|
|
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
|
// powi(x, 0) -> 1.0
|
|
if (Power->isZero())
|
|
return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
|
|
// powi(x, 1) -> x
|
|
if (Power->isOne())
|
|
return replaceInstUsesWith(CI, II->getArgOperand(0));
|
|
// powi(x, -1) -> 1/x
|
|
if (Power->isAllOnesValue())
|
|
return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
|
|
II->getArgOperand(0));
|
|
}
|
|
break;
|
|
case Intrinsic::cttz: {
|
|
// If all bits below the first known one are known zero,
|
|
// this value is constant.
|
|
IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
|
|
// FIXME: Try to simplify vectors of integers.
|
|
if (!IT) break;
|
|
uint32_t BitWidth = IT->getBitWidth();
|
|
APInt KnownZero(BitWidth, 0);
|
|
APInt KnownOne(BitWidth, 0);
|
|
computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
|
|
unsigned TrailingZeros = KnownOne.countTrailingZeros();
|
|
APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
|
|
if ((Mask & KnownZero) == Mask)
|
|
return replaceInstUsesWith(CI, ConstantInt::get(IT,
|
|
APInt(BitWidth, TrailingZeros)));
|
|
|
|
}
|
|
break;
|
|
case Intrinsic::ctlz: {
|
|
// If all bits above the first known one are known zero,
|
|
// this value is constant.
|
|
IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
|
|
// FIXME: Try to simplify vectors of integers.
|
|
if (!IT) break;
|
|
uint32_t BitWidth = IT->getBitWidth();
|
|
APInt KnownZero(BitWidth, 0);
|
|
APInt KnownOne(BitWidth, 0);
|
|
computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
|
|
unsigned LeadingZeros = KnownOne.countLeadingZeros();
|
|
APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
|
|
if ((Mask & KnownZero) == Mask)
|
|
return replaceInstUsesWith(CI, ConstantInt::get(IT,
|
|
APInt(BitWidth, LeadingZeros)));
|
|
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
if (isa<Constant>(II->getArgOperand(0)) &&
|
|
!isa<Constant>(II->getArgOperand(1))) {
|
|
// Canonicalize constants into the RHS.
|
|
Value *LHS = II->getArgOperand(0);
|
|
II->setArgOperand(0, II->getArgOperand(1));
|
|
II->setArgOperand(1, LHS);
|
|
return II;
|
|
}
|
|
// fall through
|
|
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::ssub_with_overflow: {
|
|
OverflowCheckFlavor OCF =
|
|
IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
|
|
assert(OCF != OCF_INVALID && "unexpected!");
|
|
|
|
Value *OperationResult = nullptr;
|
|
Constant *OverflowResult = nullptr;
|
|
if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
|
|
*II, OperationResult, OverflowResult))
|
|
return CreateOverflowTuple(II, OperationResult, OverflowResult);
|
|
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::minnum:
|
|
case Intrinsic::maxnum: {
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
// Canonicalize constants to the RHS.
|
|
if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
|
|
II->setArgOperand(0, Arg1);
|
|
II->setArgOperand(1, Arg0);
|
|
return II;
|
|
}
|
|
if (Value *V = simplifyMinnumMaxnum(*II))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
}
|
|
case Intrinsic::ppc_altivec_lvx:
|
|
case Intrinsic::ppc_altivec_lvxl:
|
|
// Turn PPC lvx -> load if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
|
|
16) {
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(II->getType()));
|
|
return new LoadInst(Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_vsx_lxvw4x:
|
|
case Intrinsic::ppc_vsx_lxvd2x: {
|
|
// Turn PPC VSX loads into normal loads.
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(II->getType()));
|
|
return new LoadInst(Ptr, Twine(""), false, 1);
|
|
}
|
|
case Intrinsic::ppc_altivec_stvx:
|
|
case Intrinsic::ppc_altivec_stvxl:
|
|
// Turn stvx -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
|
|
16) {
|
|
Type *OpPtrTy =
|
|
PointerType::getUnqual(II->getArgOperand(0)->getType());
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II->getArgOperand(0), Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_vsx_stxvw4x:
|
|
case Intrinsic::ppc_vsx_stxvd2x: {
|
|
// Turn PPC VSX stores into normal stores.
|
|
Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
|
|
}
|
|
case Intrinsic::ppc_qpx_qvlfs:
|
|
// Turn PPC QPX qvlfs -> load if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
|
|
16) {
|
|
Type *VTy = VectorType::get(Builder->getFloatTy(),
|
|
II->getType()->getVectorNumElements());
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(VTy));
|
|
Value *Load = Builder->CreateLoad(Ptr);
|
|
return new FPExtInst(Load, II->getType());
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_qpx_qvlfd:
|
|
// Turn PPC QPX qvlfd -> load if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
|
|
32) {
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(II->getType()));
|
|
return new LoadInst(Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_qpx_qvstfs:
|
|
// Turn PPC QPX qvstfs -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
|
|
16) {
|
|
Type *VTy = VectorType::get(Builder->getFloatTy(),
|
|
II->getArgOperand(0)->getType()->getVectorNumElements());
|
|
Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
|
|
Type *OpPtrTy = PointerType::getUnqual(VTy);
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(TOp, Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_qpx_qvstfd:
|
|
// Turn PPC QPX qvstfd -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
|
|
32) {
|
|
Type *OpPtrTy =
|
|
PointerType::getUnqual(II->getArgOperand(0)->getType());
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II->getArgOperand(0), Ptr);
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::x86_sse_storeu_ps:
|
|
case Intrinsic::x86_sse2_storeu_pd:
|
|
case Intrinsic::x86_sse2_storeu_dq:
|
|
// Turn X86 storeu -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
|
|
16) {
|
|
Type *OpPtrTy =
|
|
PointerType::getUnqual(II->getArgOperand(1)->getType());
|
|
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
|
|
return new StoreInst(II->getArgOperand(1), Ptr);
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::x86_vcvtph2ps_128:
|
|
case Intrinsic::x86_vcvtph2ps_256: {
|
|
auto Arg = II->getArgOperand(0);
|
|
auto ArgType = cast<VectorType>(Arg->getType());
|
|
auto RetType = cast<VectorType>(II->getType());
|
|
unsigned ArgWidth = ArgType->getNumElements();
|
|
unsigned RetWidth = RetType->getNumElements();
|
|
assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
|
|
assert(ArgType->isIntOrIntVectorTy() &&
|
|
ArgType->getScalarSizeInBits() == 16 &&
|
|
"CVTPH2PS input type should be 16-bit integer vector");
|
|
assert(RetType->getScalarType()->isFloatTy() &&
|
|
"CVTPH2PS output type should be 32-bit float vector");
|
|
|
|
// Constant folding: Convert to generic half to single conversion.
|
|
if (isa<ConstantAggregateZero>(Arg))
|
|
return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
|
|
|
|
if (isa<ConstantDataVector>(Arg)) {
|
|
auto VectorHalfAsShorts = Arg;
|
|
if (RetWidth < ArgWidth) {
|
|
SmallVector<int, 8> SubVecMask;
|
|
for (unsigned i = 0; i != RetWidth; ++i)
|
|
SubVecMask.push_back((int)i);
|
|
VectorHalfAsShorts = Builder->CreateShuffleVector(
|
|
Arg, UndefValue::get(ArgType), SubVecMask);
|
|
}
|
|
|
|
auto VectorHalfType =
|
|
VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
|
|
auto VectorHalfs =
|
|
Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
|
|
auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
|
|
return replaceInstUsesWith(*II, VectorFloats);
|
|
}
|
|
|
|
// We only use the lowest lanes of the argument.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse_cvtss2si:
|
|
case Intrinsic::x86_sse_cvtss2si64:
|
|
case Intrinsic::x86_sse_cvttss2si:
|
|
case Intrinsic::x86_sse_cvttss2si64:
|
|
case Intrinsic::x86_sse2_cvtsd2si:
|
|
case Intrinsic::x86_sse2_cvtsd2si64:
|
|
case Intrinsic::x86_sse2_cvttsd2si:
|
|
case Intrinsic::x86_sse2_cvttsd2si64: {
|
|
// These intrinsics only demand the 0th element of their input vectors. If
|
|
// we can simplify the input based on that, do so now.
|
|
Value *Arg = II->getArgOperand(0);
|
|
unsigned VWidth = Arg->getType()->getVectorNumElements();
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse_comieq_ss:
|
|
case Intrinsic::x86_sse_comige_ss:
|
|
case Intrinsic::x86_sse_comigt_ss:
|
|
case Intrinsic::x86_sse_comile_ss:
|
|
case Intrinsic::x86_sse_comilt_ss:
|
|
case Intrinsic::x86_sse_comineq_ss:
|
|
case Intrinsic::x86_sse_ucomieq_ss:
|
|
case Intrinsic::x86_sse_ucomige_ss:
|
|
case Intrinsic::x86_sse_ucomigt_ss:
|
|
case Intrinsic::x86_sse_ucomile_ss:
|
|
case Intrinsic::x86_sse_ucomilt_ss:
|
|
case Intrinsic::x86_sse_ucomineq_ss:
|
|
case Intrinsic::x86_sse2_comieq_sd:
|
|
case Intrinsic::x86_sse2_comige_sd:
|
|
case Intrinsic::x86_sse2_comigt_sd:
|
|
case Intrinsic::x86_sse2_comile_sd:
|
|
case Intrinsic::x86_sse2_comilt_sd:
|
|
case Intrinsic::x86_sse2_comineq_sd:
|
|
case Intrinsic::x86_sse2_ucomieq_sd:
|
|
case Intrinsic::x86_sse2_ucomige_sd:
|
|
case Intrinsic::x86_sse2_ucomigt_sd:
|
|
case Intrinsic::x86_sse2_ucomile_sd:
|
|
case Intrinsic::x86_sse2_ucomilt_sd:
|
|
case Intrinsic::x86_sse2_ucomineq_sd: {
|
|
// These intrinsics only demand the 0th element of their input vectors. If
|
|
// we can simplify the input based on that, do so now.
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
unsigned VWidth = Arg0->getType()->getVectorNumElements();
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
|
|
II->setArgOperand(1, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Constant fold ashr( <A x Bi>, Ci ).
|
|
// Constant fold lshr( <A x Bi>, Ci ).
|
|
// Constant fold shl( <A x Bi>, Ci ).
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_avx2_psrai_d:
|
|
case Intrinsic::x86_avx2_psrai_w:
|
|
case Intrinsic::x86_sse2_psrli_d:
|
|
case Intrinsic::x86_sse2_psrli_q:
|
|
case Intrinsic::x86_sse2_psrli_w:
|
|
case Intrinsic::x86_avx2_psrli_d:
|
|
case Intrinsic::x86_avx2_psrli_q:
|
|
case Intrinsic::x86_avx2_psrli_w:
|
|
case Intrinsic::x86_sse2_pslli_d:
|
|
case Intrinsic::x86_sse2_pslli_q:
|
|
case Intrinsic::x86_sse2_pslli_w:
|
|
case Intrinsic::x86_avx2_pslli_d:
|
|
case Intrinsic::x86_avx2_pslli_q:
|
|
case Intrinsic::x86_avx2_pslli_w:
|
|
if (Value *V = simplifyX86immShift(*II, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_psra_d:
|
|
case Intrinsic::x86_sse2_psra_w:
|
|
case Intrinsic::x86_avx2_psra_d:
|
|
case Intrinsic::x86_avx2_psra_w:
|
|
case Intrinsic::x86_sse2_psrl_d:
|
|
case Intrinsic::x86_sse2_psrl_q:
|
|
case Intrinsic::x86_sse2_psrl_w:
|
|
case Intrinsic::x86_avx2_psrl_d:
|
|
case Intrinsic::x86_avx2_psrl_q:
|
|
case Intrinsic::x86_avx2_psrl_w:
|
|
case Intrinsic::x86_sse2_psll_d:
|
|
case Intrinsic::x86_sse2_psll_q:
|
|
case Intrinsic::x86_sse2_psll_w:
|
|
case Intrinsic::x86_avx2_psll_d:
|
|
case Intrinsic::x86_avx2_psll_q:
|
|
case Intrinsic::x86_avx2_psll_w: {
|
|
if (Value *V = simplifyX86immShift(*II, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
|
|
// SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
|
|
// operand to compute the shift amount.
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
"Unexpected packed shift size");
|
|
unsigned VWidth = Arg1->getType()->getVectorNumElements();
|
|
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
|
|
II->setArgOperand(1, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_avx2_pmovsxbd:
|
|
case Intrinsic::x86_avx2_pmovsxbq:
|
|
case Intrinsic::x86_avx2_pmovsxbw:
|
|
case Intrinsic::x86_avx2_pmovsxdq:
|
|
case Intrinsic::x86_avx2_pmovsxwd:
|
|
case Intrinsic::x86_avx2_pmovsxwq:
|
|
if (Value *V = simplifyX86extend(*II, *Builder, true))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse41_pmovzxbd:
|
|
case Intrinsic::x86_sse41_pmovzxbq:
|
|
case Intrinsic::x86_sse41_pmovzxbw:
|
|
case Intrinsic::x86_sse41_pmovzxdq:
|
|
case Intrinsic::x86_sse41_pmovzxwd:
|
|
case Intrinsic::x86_sse41_pmovzxwq:
|
|
case Intrinsic::x86_avx2_pmovzxbd:
|
|
case Intrinsic::x86_avx2_pmovzxbq:
|
|
case Intrinsic::x86_avx2_pmovzxbw:
|
|
case Intrinsic::x86_avx2_pmovzxdq:
|
|
case Intrinsic::x86_avx2_pmovzxwd:
|
|
case Intrinsic::x86_avx2_pmovzxwq:
|
|
if (Value *V = simplifyX86extend(*II, *Builder, false))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse41_insertps:
|
|
if (Value *V = simplifyX86insertps(*II, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse4a_extrq: {
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
unsigned VWidth0 = Op0->getType()->getVectorNumElements();
|
|
unsigned VWidth1 = Op1->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
|
|
VWidth1 == 16 && "Unexpected operand sizes");
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C1 = dyn_cast<Constant>(Op1);
|
|
ConstantInt *CILength =
|
|
C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
ConstantInt *CIIndex =
|
|
C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
|
|
: nullptr;
|
|
|
|
// Attempt to simplify to a constant, shuffle vector or EXTRQI call.
|
|
if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
|
|
// EXTRQ only uses the lowest 64-bits of the first 128-bit vector
|
|
// operands and the lowest 16-bits of the second.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
|
|
II->setArgOperand(1, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse4a_extrqi: {
|
|
// EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
|
|
// bits of the lower 64-bits. The upper 64-bits are undefined.
|
|
Value *Op0 = II->getArgOperand(0);
|
|
unsigned VWidth = Op0->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
|
|
"Unexpected operand size");
|
|
|
|
// See if we're dealing with constant values.
|
|
ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
|
|
ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
|
|
|
|
// Attempt to simplify to a constant or shuffle vector.
|
|
if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
|
|
// EXTRQI only uses the lowest 64-bits of the first 128-bit vector
|
|
// operand.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse4a_insertq: {
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
unsigned VWidth = Op0->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
|
|
Op1->getType()->getVectorNumElements() == 2 &&
|
|
"Unexpected operand size");
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C1 = dyn_cast<Constant>(Op1);
|
|
ConstantInt *CI11 =
|
|
C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
|
|
: nullptr;
|
|
|
|
// Attempt to simplify to a constant, shuffle vector or INSERTQI call.
|
|
if (CI11) {
|
|
APInt V11 = CI11->getValue();
|
|
APInt Len = V11.zextOrTrunc(6);
|
|
APInt Idx = V11.lshr(8).zextOrTrunc(6);
|
|
if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
}
|
|
|
|
// INSERTQ only uses the lowest 64-bits of the first 128-bit vector
|
|
// operand.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse4a_insertqi: {
|
|
// INSERTQI: Extract lowest Length bits from lower half of second source and
|
|
// insert over first source starting at Index bit. The upper 64-bits are
|
|
// undefined.
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
unsigned VWidth0 = Op0->getType()->getVectorNumElements();
|
|
unsigned VWidth1 = Op1->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
|
|
VWidth1 == 2 && "Unexpected operand sizes");
|
|
|
|
// See if we're dealing with constant values.
|
|
ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
|
|
ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
|
|
|
|
// Attempt to simplify to a constant or shuffle vector.
|
|
if (CILength && CIIndex) {
|
|
APInt Len = CILength->getValue().zextOrTrunc(6);
|
|
APInt Idx = CIIndex->getValue().zextOrTrunc(6);
|
|
if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
}
|
|
|
|
// INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
|
|
// operands.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
|
|
II->setArgOperand(1, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse41_pblendvb:
|
|
case Intrinsic::x86_sse41_blendvps:
|
|
case Intrinsic::x86_sse41_blendvpd:
|
|
case Intrinsic::x86_avx_blendv_ps_256:
|
|
case Intrinsic::x86_avx_blendv_pd_256:
|
|
case Intrinsic::x86_avx2_pblendvb: {
|
|
// Convert blendv* to vector selects if the mask is constant.
|
|
// This optimization is convoluted because the intrinsic is defined as
|
|
// getting a vector of floats or doubles for the ps and pd versions.
|
|
// FIXME: That should be changed.
|
|
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
Value *Mask = II->getArgOperand(2);
|
|
|
|
// fold (blend A, A, Mask) -> A
|
|
if (Op0 == Op1)
|
|
return replaceInstUsesWith(CI, Op0);
|
|
|
|
// Zero Mask - select 1st argument.
|
|
if (isa<ConstantAggregateZero>(Mask))
|
|
return replaceInstUsesWith(CI, Op0);
|
|
|
|
// Constant Mask - select 1st/2nd argument lane based on top bit of mask.
|
|
if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
|
|
Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
|
|
return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_ssse3_pshuf_b_128:
|
|
case Intrinsic::x86_avx2_pshuf_b: {
|
|
// Turn pshufb(V1,mask) -> shuffle(V1,Zero,mask) if mask is a constant.
|
|
auto *V = II->getArgOperand(1);
|
|
auto *VTy = cast<VectorType>(V->getType());
|
|
unsigned NumElts = VTy->getNumElements();
|
|
assert((NumElts == 16 || NumElts == 32) &&
|
|
"Unexpected number of elements in shuffle mask!");
|
|
// Initialize the resulting shuffle mask to all zeroes.
|
|
uint32_t Indexes[32] = {0};
|
|
|
|
if (auto *Mask = dyn_cast<ConstantDataVector>(V)) {
|
|
// Each byte in the shuffle control mask forms an index to permute the
|
|
// corresponding byte in the destination operand.
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
int8_t Index = Mask->getElementAsInteger(I);
|
|
// If the most significant bit (bit[7]) of each byte of the shuffle
|
|
// control mask is set, then zero is written in the result byte.
|
|
// The zero vector is in the right-hand side of the resulting
|
|
// shufflevector.
|
|
|
|
// The value of each index is the least significant 4 bits of the
|
|
// shuffle control byte.
|
|
Indexes[I] = (Index < 0) ? NumElts : Index & 0xF;
|
|
}
|
|
} else if (!isa<ConstantAggregateZero>(V))
|
|
break;
|
|
|
|
// The value of each index for the high 128-bit lane is the least
|
|
// significant 4 bits of the respective shuffle control byte.
|
|
for (unsigned I = 16; I < NumElts; ++I)
|
|
Indexes[I] += I & 0xF0;
|
|
|
|
auto NewC = ConstantDataVector::get(V->getContext(),
|
|
makeArrayRef(Indexes, NumElts));
|
|
auto V1 = II->getArgOperand(0);
|
|
auto V2 = Constant::getNullValue(II->getType());
|
|
auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
|
|
return replaceInstUsesWith(CI, Shuffle);
|
|
}
|
|
|
|
case Intrinsic::x86_avx_vpermilvar_ps:
|
|
case Intrinsic::x86_avx_vpermilvar_ps_256:
|
|
case Intrinsic::x86_avx_vpermilvar_pd:
|
|
case Intrinsic::x86_avx_vpermilvar_pd_256: {
|
|
// Convert vpermil* to shufflevector if the mask is constant.
|
|
Value *V = II->getArgOperand(1);
|
|
unsigned Size = cast<VectorType>(V->getType())->getNumElements();
|
|
assert(Size == 8 || Size == 4 || Size == 2);
|
|
uint32_t Indexes[8];
|
|
if (auto C = dyn_cast<ConstantDataVector>(V)) {
|
|
// The intrinsics only read one or two bits, clear the rest.
|
|
for (unsigned I = 0; I < Size; ++I) {
|
|
uint32_t Index = C->getElementAsInteger(I) & 0x3;
|
|
if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
|
|
II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
|
|
Index >>= 1;
|
|
Indexes[I] = Index;
|
|
}
|
|
} else if (isa<ConstantAggregateZero>(V)) {
|
|
for (unsigned I = 0; I < Size; ++I)
|
|
Indexes[I] = 0;
|
|
} else {
|
|
break;
|
|
}
|
|
// The _256 variants are a bit trickier since the mask bits always index
|
|
// into the corresponding 128 half. In order to convert to a generic
|
|
// shuffle, we have to make that explicit.
|
|
if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
|
|
II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
|
|
for (unsigned I = Size / 2; I < Size; ++I)
|
|
Indexes[I] += Size / 2;
|
|
}
|
|
auto NewC =
|
|
ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
|
|
auto V1 = II->getArgOperand(0);
|
|
auto V2 = UndefValue::get(V1->getType());
|
|
auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
|
|
return replaceInstUsesWith(CI, Shuffle);
|
|
}
|
|
|
|
case Intrinsic::x86_avx_vperm2f128_pd_256:
|
|
case Intrinsic::x86_avx_vperm2f128_ps_256:
|
|
case Intrinsic::x86_avx_vperm2f128_si_256:
|
|
case Intrinsic::x86_avx2_vperm2i128:
|
|
if (Value *V = simplifyX86vperm2(*II, *Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_avx_maskload_ps:
|
|
case Intrinsic::x86_avx_maskload_pd:
|
|
case Intrinsic::x86_avx_maskload_ps_256:
|
|
case Intrinsic::x86_avx_maskload_pd_256:
|
|
case Intrinsic::x86_avx2_maskload_d:
|
|
case Intrinsic::x86_avx2_maskload_q:
|
|
case Intrinsic::x86_avx2_maskload_d_256:
|
|
case Intrinsic::x86_avx2_maskload_q_256:
|
|
if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
|
|
return I;
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_maskmov_dqu:
|
|
case Intrinsic::x86_avx_maskstore_ps:
|
|
case Intrinsic::x86_avx_maskstore_pd:
|
|
case Intrinsic::x86_avx_maskstore_ps_256:
|
|
case Intrinsic::x86_avx_maskstore_pd_256:
|
|
case Intrinsic::x86_avx2_maskstore_d:
|
|
case Intrinsic::x86_avx2_maskstore_q:
|
|
case Intrinsic::x86_avx2_maskstore_d_256:
|
|
case Intrinsic::x86_avx2_maskstore_q_256:
|
|
if (simplifyX86MaskedStore(*II, *this))
|
|
return nullptr;
|
|
break;
|
|
|
|
case Intrinsic::x86_xop_vpcomb:
|
|
case Intrinsic::x86_xop_vpcomd:
|
|
case Intrinsic::x86_xop_vpcomq:
|
|
case Intrinsic::x86_xop_vpcomw:
|
|
if (Value *V = simplifyX86vpcom(*II, *Builder, true))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_xop_vpcomub:
|
|
case Intrinsic::x86_xop_vpcomud:
|
|
case Intrinsic::x86_xop_vpcomuq:
|
|
case Intrinsic::x86_xop_vpcomuw:
|
|
if (Value *V = simplifyX86vpcom(*II, *Builder, false))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::ppc_altivec_vperm:
|
|
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
|
|
// Note that ppc_altivec_vperm has a big-endian bias, so when creating
|
|
// a vectorshuffle for little endian, we must undo the transformation
|
|
// performed on vec_perm in altivec.h. That is, we must complement
|
|
// the permutation mask with respect to 31 and reverse the order of
|
|
// V1 and V2.
|
|
if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
|
|
assert(Mask->getType()->getVectorNumElements() == 16 &&
|
|
"Bad type for intrinsic!");
|
|
|
|
// Check that all of the elements are integer constants or undefs.
|
|
bool AllEltsOk = true;
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
Constant *Elt = Mask->getAggregateElement(i);
|
|
if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
|
|
AllEltsOk = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (AllEltsOk) {
|
|
// Cast the input vectors to byte vectors.
|
|
Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
|
|
Mask->getType());
|
|
Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
|
|
Mask->getType());
|
|
Value *Result = UndefValue::get(Op0->getType());
|
|
|
|
// Only extract each element once.
|
|
Value *ExtractedElts[32];
|
|
memset(ExtractedElts, 0, sizeof(ExtractedElts));
|
|
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
if (isa<UndefValue>(Mask->getAggregateElement(i)))
|
|
continue;
|
|
unsigned Idx =
|
|
cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
|
|
Idx &= 31; // Match the hardware behavior.
|
|
if (DL.isLittleEndian())
|
|
Idx = 31 - Idx;
|
|
|
|
if (!ExtractedElts[Idx]) {
|
|
Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
|
|
Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
|
|
ExtractedElts[Idx] =
|
|
Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
|
|
Builder->getInt32(Idx&15));
|
|
}
|
|
|
|
// Insert this value into the result vector.
|
|
Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
|
|
Builder->getInt32(i));
|
|
}
|
|
return CastInst::Create(Instruction::BitCast, Result, CI.getType());
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane:
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
|
|
unsigned AlignArg = II->getNumArgOperands() - 1;
|
|
ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
|
|
if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
|
|
II->setArgOperand(AlignArg,
|
|
ConstantInt::get(Type::getInt32Ty(II->getContext()),
|
|
MemAlign, false));
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vmulls:
|
|
case Intrinsic::arm_neon_vmullu:
|
|
case Intrinsic::aarch64_neon_smull:
|
|
case Intrinsic::aarch64_neon_umull: {
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
|
|
// Handle mul by zero first:
|
|
if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
|
|
return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
|
|
}
|
|
|
|
// Check for constant LHS & RHS - in this case we just simplify.
|
|
bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
|
|
II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
|
|
VectorType *NewVT = cast<VectorType>(II->getType());
|
|
if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
|
|
if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
|
|
CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
|
|
CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
|
|
|
|
return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
|
|
}
|
|
|
|
// Couldn't simplify - canonicalize constant to the RHS.
|
|
std::swap(Arg0, Arg1);
|
|
}
|
|
|
|
// Handle mul by one:
|
|
if (Constant *CV1 = dyn_cast<Constant>(Arg1))
|
|
if (ConstantInt *Splat =
|
|
dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
|
|
if (Splat->isOne())
|
|
return CastInst::CreateIntegerCast(Arg0, II->getType(),
|
|
/*isSigned=*/!Zext);
|
|
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::amdgcn_rcp: {
|
|
if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
|
|
const APFloat &ArgVal = C->getValueAPF();
|
|
APFloat Val(ArgVal.getSemantics(), 1.0);
|
|
APFloat::opStatus Status = Val.divide(ArgVal,
|
|
APFloat::rmNearestTiesToEven);
|
|
// Only do this if it was exact and therefore not dependent on the
|
|
// rounding mode.
|
|
if (Status == APFloat::opOK)
|
|
return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
|
|
}
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::stackrestore: {
|
|
// If the save is right next to the restore, remove the restore. This can
|
|
// happen when variable allocas are DCE'd.
|
|
if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
|
|
if (SS->getIntrinsicID() == Intrinsic::stacksave) {
|
|
if (&*++SS->getIterator() == II)
|
|
return eraseInstFromFunction(CI);
|
|
}
|
|
}
|
|
|
|
// Scan down this block to see if there is another stack restore in the
|
|
// same block without an intervening call/alloca.
|
|
BasicBlock::iterator BI(II);
|
|
TerminatorInst *TI = II->getParent()->getTerminator();
|
|
bool CannotRemove = false;
|
|
for (++BI; &*BI != TI; ++BI) {
|
|
if (isa<AllocaInst>(BI)) {
|
|
CannotRemove = true;
|
|
break;
|
|
}
|
|
if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
|
|
// If there is a stackrestore below this one, remove this one.
|
|
if (II->getIntrinsicID() == Intrinsic::stackrestore)
|
|
return eraseInstFromFunction(CI);
|
|
|
|
// Bail if we cross over an intrinsic with side effects, such as
|
|
// llvm.stacksave, llvm.read_register, or llvm.setjmp.
|
|
if (II->mayHaveSideEffects()) {
|
|
CannotRemove = true;
|
|
break;
|
|
}
|
|
} else {
|
|
// If we found a non-intrinsic call, we can't remove the stack
|
|
// restore.
|
|
CannotRemove = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the stack restore is in a return, resume, or unwind block and if there
|
|
// are no allocas or calls between the restore and the return, nuke the
|
|
// restore.
|
|
if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
|
|
return eraseInstFromFunction(CI);
|
|
break;
|
|
}
|
|
case Intrinsic::lifetime_start: {
|
|
// Remove trivially empty lifetime_start/end ranges, i.e. a start
|
|
// immediately followed by an end (ignoring debuginfo or other
|
|
// lifetime markers in between).
|
|
BasicBlock::iterator BI = II->getIterator(), BE = II->getParent()->end();
|
|
for (++BI; BI != BE; ++BI) {
|
|
if (IntrinsicInst *LTE = dyn_cast<IntrinsicInst>(BI)) {
|
|
if (isa<DbgInfoIntrinsic>(LTE) ||
|
|
LTE->getIntrinsicID() == Intrinsic::lifetime_start)
|
|
continue;
|
|
if (LTE->getIntrinsicID() == Intrinsic::lifetime_end) {
|
|
if (II->getOperand(0) == LTE->getOperand(0) &&
|
|
II->getOperand(1) == LTE->getOperand(1)) {
|
|
eraseInstFromFunction(*LTE);
|
|
return eraseInstFromFunction(*II);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::assume: {
|
|
// Canonicalize assume(a && b) -> assume(a); assume(b);
|
|
// Note: New assumption intrinsics created here are registered by
|
|
// the InstCombineIRInserter object.
|
|
Value *IIOperand = II->getArgOperand(0), *A, *B,
|
|
*AssumeIntrinsic = II->getCalledValue();
|
|
if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
|
|
Builder->CreateCall(AssumeIntrinsic, A, II->getName());
|
|
Builder->CreateCall(AssumeIntrinsic, B, II->getName());
|
|
return eraseInstFromFunction(*II);
|
|
}
|
|
// assume(!(a || b)) -> assume(!a); assume(!b);
|
|
if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
|
|
Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
|
|
II->getName());
|
|
Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
|
|
II->getName());
|
|
return eraseInstFromFunction(*II);
|
|
}
|
|
|
|
// assume( (load addr) != null ) -> add 'nonnull' metadata to load
|
|
// (if assume is valid at the load)
|
|
if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
|
|
Value *LHS = ICmp->getOperand(0);
|
|
Value *RHS = ICmp->getOperand(1);
|
|
if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
|
|
isa<LoadInst>(LHS) &&
|
|
isa<Constant>(RHS) &&
|
|
RHS->getType()->isPointerTy() &&
|
|
cast<Constant>(RHS)->isNullValue()) {
|
|
LoadInst* LI = cast<LoadInst>(LHS);
|
|
if (isValidAssumeForContext(II, LI, DT)) {
|
|
MDNode *MD = MDNode::get(II->getContext(), None);
|
|
LI->setMetadata(LLVMContext::MD_nonnull, MD);
|
|
return eraseInstFromFunction(*II);
|
|
}
|
|
}
|
|
// TODO: apply nonnull return attributes to calls and invokes
|
|
// TODO: apply range metadata for range check patterns?
|
|
}
|
|
// If there is a dominating assume with the same condition as this one,
|
|
// then this one is redundant, and should be removed.
|
|
APInt KnownZero(1, 0), KnownOne(1, 0);
|
|
computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
|
|
if (KnownOne.isAllOnesValue())
|
|
return eraseInstFromFunction(*II);
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::experimental_gc_relocate: {
|
|
// Translate facts known about a pointer before relocating into
|
|
// facts about the relocate value, while being careful to
|
|
// preserve relocation semantics.
|
|
Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
|
|
|
|
// Remove the relocation if unused, note that this check is required
|
|
// to prevent the cases below from looping forever.
|
|
if (II->use_empty())
|
|
return eraseInstFromFunction(*II);
|
|
|
|
// Undef is undef, even after relocation.
|
|
// TODO: provide a hook for this in GCStrategy. This is clearly legal for
|
|
// most practical collectors, but there was discussion in the review thread
|
|
// about whether it was legal for all possible collectors.
|
|
if (isa<UndefValue>(DerivedPtr))
|
|
// Use undef of gc_relocate's type to replace it.
|
|
return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
|
|
|
|
if (auto *PT = dyn_cast<PointerType>(II->getType())) {
|
|
// The relocation of null will be null for most any collector.
|
|
// TODO: provide a hook for this in GCStrategy. There might be some
|
|
// weird collector this property does not hold for.
|
|
if (isa<ConstantPointerNull>(DerivedPtr))
|
|
// Use null-pointer of gc_relocate's type to replace it.
|
|
return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
|
|
|
|
// isKnownNonNull -> nonnull attribute
|
|
if (isKnownNonNullAt(DerivedPtr, II, DT, TLI))
|
|
II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
|
|
}
|
|
|
|
// TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
|
|
// Canonicalize on the type from the uses to the defs
|
|
|
|
// TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return visitCallSite(II);
|
|
}
|
|
|
|
// InvokeInst simplification
|
|
//
|
|
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
|
|
return visitCallSite(&II);
|
|
}
|
|
|
|
/// If this cast does not affect the value passed through the varargs area, we
|
|
/// can eliminate the use of the cast.
|
|
static bool isSafeToEliminateVarargsCast(const CallSite CS,
|
|
const DataLayout &DL,
|
|
const CastInst *const CI,
|
|
const int ix) {
|
|
if (!CI->isLosslessCast())
|
|
return false;
|
|
|
|
// If this is a GC intrinsic, avoid munging types. We need types for
|
|
// statepoint reconstruction in SelectionDAG.
|
|
// TODO: This is probably something which should be expanded to all
|
|
// intrinsics since the entire point of intrinsics is that
|
|
// they are understandable by the optimizer.
|
|
if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
|
|
return false;
|
|
|
|
// The size of ByVal or InAlloca arguments is derived from the type, so we
|
|
// can't change to a type with a different size. If the size were
|
|
// passed explicitly we could avoid this check.
|
|
if (!CS.isByValOrInAllocaArgument(ix))
|
|
return true;
|
|
|
|
Type* SrcTy =
|
|
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
|
|
Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
|
|
if (!SrcTy->isSized() || !DstTy->isSized())
|
|
return false;
|
|
if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
|
|
if (!CI->getCalledFunction()) return nullptr;
|
|
|
|
auto InstCombineRAUW = [this](Instruction *From, Value *With) {
|
|
replaceInstUsesWith(*From, With);
|
|
};
|
|
LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
|
|
if (Value *With = Simplifier.optimizeCall(CI)) {
|
|
++NumSimplified;
|
|
return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
|
|
// Strip off at most one level of pointer casts, looking for an alloca. This
|
|
// is good enough in practice and simpler than handling any number of casts.
|
|
Value *Underlying = TrampMem->stripPointerCasts();
|
|
if (Underlying != TrampMem &&
|
|
(!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
|
|
return nullptr;
|
|
if (!isa<AllocaInst>(Underlying))
|
|
return nullptr;
|
|
|
|
IntrinsicInst *InitTrampoline = nullptr;
|
|
for (User *U : TrampMem->users()) {
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
|
|
if (!II)
|
|
return nullptr;
|
|
if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
|
|
if (InitTrampoline)
|
|
// More than one init_trampoline writes to this value. Give up.
|
|
return nullptr;
|
|
InitTrampoline = II;
|
|
continue;
|
|
}
|
|
if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
|
|
// Allow any number of calls to adjust.trampoline.
|
|
continue;
|
|
return nullptr;
|
|
}
|
|
|
|
// No call to init.trampoline found.
|
|
if (!InitTrampoline)
|
|
return nullptr;
|
|
|
|
// Check that the alloca is being used in the expected way.
|
|
if (InitTrampoline->getOperand(0) != TrampMem)
|
|
return nullptr;
|
|
|
|
return InitTrampoline;
|
|
}
|
|
|
|
static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
|
|
Value *TrampMem) {
|
|
// Visit all the previous instructions in the basic block, and try to find a
|
|
// init.trampoline which has a direct path to the adjust.trampoline.
|
|
for (BasicBlock::iterator I = AdjustTramp->getIterator(),
|
|
E = AdjustTramp->getParent()->begin();
|
|
I != E;) {
|
|
Instruction *Inst = &*--I;
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
|
|
II->getOperand(0) == TrampMem)
|
|
return II;
|
|
if (Inst->mayWriteToMemory())
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Given a call to llvm.adjust.trampoline, find and return the corresponding
|
|
// call to llvm.init.trampoline if the call to the trampoline can be optimized
|
|
// to a direct call to a function. Otherwise return NULL.
|
|
//
|
|
static IntrinsicInst *findInitTrampoline(Value *Callee) {
|
|
Callee = Callee->stripPointerCasts();
|
|
IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
|
|
if (!AdjustTramp ||
|
|
AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
|
|
return nullptr;
|
|
|
|
Value *TrampMem = AdjustTramp->getOperand(0);
|
|
|
|
if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
|
|
return IT;
|
|
if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
|
|
return IT;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Improvements for call and invoke instructions.
|
|
Instruction *InstCombiner::visitCallSite(CallSite CS) {
|
|
|
|
if (isAllocLikeFn(CS.getInstruction(), TLI))
|
|
return visitAllocSite(*CS.getInstruction());
|
|
|
|
bool Changed = false;
|
|
|
|
// Mark any parameters that are known to be non-null with the nonnull
|
|
// attribute. This is helpful for inlining calls to functions with null
|
|
// checks on their arguments.
|
|
SmallVector<unsigned, 4> Indices;
|
|
unsigned ArgNo = 0;
|
|
|
|
for (Value *V : CS.args()) {
|
|
if (V->getType()->isPointerTy() &&
|
|
!CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
|
|
isKnownNonNullAt(V, CS.getInstruction(), DT, TLI))
|
|
Indices.push_back(ArgNo + 1);
|
|
ArgNo++;
|
|
}
|
|
|
|
assert(ArgNo == CS.arg_size() && "sanity check");
|
|
|
|
if (!Indices.empty()) {
|
|
AttributeSet AS = CS.getAttributes();
|
|
LLVMContext &Ctx = CS.getInstruction()->getContext();
|
|
AS = AS.addAttribute(Ctx, Indices,
|
|
Attribute::get(Ctx, Attribute::NonNull));
|
|
CS.setAttributes(AS);
|
|
Changed = true;
|
|
}
|
|
|
|
// If the callee is a pointer to a function, attempt to move any casts to the
|
|
// arguments of the call/invoke.
|
|
Value *Callee = CS.getCalledValue();
|
|
if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
|
|
return nullptr;
|
|
|
|
if (Function *CalleeF = dyn_cast<Function>(Callee))
|
|
// If the call and callee calling conventions don't match, this call must
|
|
// be unreachable, as the call is undefined.
|
|
if (CalleeF->getCallingConv() != CS.getCallingConv() &&
|
|
// Only do this for calls to a function with a body. A prototype may
|
|
// not actually end up matching the implementation's calling conv for a
|
|
// variety of reasons (e.g. it may be written in assembly).
|
|
!CalleeF->isDeclaration()) {
|
|
Instruction *OldCall = CS.getInstruction();
|
|
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
|
|
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
|
|
OldCall);
|
|
// If OldCall does not return void then replaceAllUsesWith undef.
|
|
// This allows ValueHandlers and custom metadata to adjust itself.
|
|
if (!OldCall->getType()->isVoidTy())
|
|
replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
|
|
if (isa<CallInst>(OldCall))
|
|
return eraseInstFromFunction(*OldCall);
|
|
|
|
// We cannot remove an invoke, because it would change the CFG, just
|
|
// change the callee to a null pointer.
|
|
cast<InvokeInst>(OldCall)->setCalledFunction(
|
|
Constant::getNullValue(CalleeF->getType()));
|
|
return nullptr;
|
|
}
|
|
|
|
if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
|
|
// If CS does not return void then replaceAllUsesWith undef.
|
|
// This allows ValueHandlers and custom metadata to adjust itself.
|
|
if (!CS.getInstruction()->getType()->isVoidTy())
|
|
replaceInstUsesWith(*CS.getInstruction(),
|
|
UndefValue::get(CS.getInstruction()->getType()));
|
|
|
|
if (isa<InvokeInst>(CS.getInstruction())) {
|
|
// Can't remove an invoke because we cannot change the CFG.
|
|
return nullptr;
|
|
}
|
|
|
|
// This instruction is not reachable, just remove it. We insert a store to
|
|
// undef so that we know that this code is not reachable, despite the fact
|
|
// that we can't modify the CFG here.
|
|
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
|
|
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
|
|
CS.getInstruction());
|
|
|
|
return eraseInstFromFunction(*CS.getInstruction());
|
|
}
|
|
|
|
if (IntrinsicInst *II = findInitTrampoline(Callee))
|
|
return transformCallThroughTrampoline(CS, II);
|
|
|
|
PointerType *PTy = cast<PointerType>(Callee->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
if (FTy->isVarArg()) {
|
|
int ix = FTy->getNumParams();
|
|
// See if we can optimize any arguments passed through the varargs area of
|
|
// the call.
|
|
for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
|
|
E = CS.arg_end(); I != E; ++I, ++ix) {
|
|
CastInst *CI = dyn_cast<CastInst>(*I);
|
|
if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
|
|
*I = CI->getOperand(0);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
|
|
// Inline asm calls cannot throw - mark them 'nounwind'.
|
|
CS.setDoesNotThrow();
|
|
Changed = true;
|
|
}
|
|
|
|
// Try to optimize the call if possible, we require DataLayout for most of
|
|
// this. None of these calls are seen as possibly dead so go ahead and
|
|
// delete the instruction now.
|
|
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
|
|
Instruction *I = tryOptimizeCall(CI);
|
|
// If we changed something return the result, etc. Otherwise let
|
|
// the fallthrough check.
|
|
if (I) return eraseInstFromFunction(*I);
|
|
}
|
|
|
|
return Changed ? CS.getInstruction() : nullptr;
|
|
}
|
|
|
|
/// If the callee is a constexpr cast of a function, attempt to move the cast to
|
|
/// the arguments of the call/invoke.
|
|
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
|
|
Function *Callee =
|
|
dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
|
|
if (!Callee)
|
|
return false;
|
|
// The prototype of thunks are a lie, don't try to directly call such
|
|
// functions.
|
|
if (Callee->hasFnAttribute("thunk"))
|
|
return false;
|
|
Instruction *Caller = CS.getInstruction();
|
|
const AttributeSet &CallerPAL = CS.getAttributes();
|
|
|
|
// Okay, this is a cast from a function to a different type. Unless doing so
|
|
// would cause a type conversion of one of our arguments, change this call to
|
|
// be a direct call with arguments casted to the appropriate types.
|
|
//
|
|
FunctionType *FT = Callee->getFunctionType();
|
|
Type *OldRetTy = Caller->getType();
|
|
Type *NewRetTy = FT->getReturnType();
|
|
|
|
// Check to see if we are changing the return type...
|
|
if (OldRetTy != NewRetTy) {
|
|
|
|
if (NewRetTy->isStructTy())
|
|
return false; // TODO: Handle multiple return values.
|
|
|
|
if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
|
|
if (Callee->isDeclaration())
|
|
return false; // Cannot transform this return value.
|
|
|
|
if (!Caller->use_empty() &&
|
|
// void -> non-void is handled specially
|
|
!NewRetTy->isVoidTy())
|
|
return false; // Cannot transform this return value.
|
|
}
|
|
|
|
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
|
|
AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
|
|
if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
|
|
return false; // Attribute not compatible with transformed value.
|
|
}
|
|
|
|
// If the callsite is an invoke instruction, and the return value is used by
|
|
// a PHI node in a successor, we cannot change the return type of the call
|
|
// because there is no place to put the cast instruction (without breaking
|
|
// the critical edge). Bail out in this case.
|
|
if (!Caller->use_empty())
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
|
|
for (User *U : II->users())
|
|
if (PHINode *PN = dyn_cast<PHINode>(U))
|
|
if (PN->getParent() == II->getNormalDest() ||
|
|
PN->getParent() == II->getUnwindDest())
|
|
return false;
|
|
}
|
|
|
|
unsigned NumActualArgs = CS.arg_size();
|
|
unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
|
|
|
|
// Prevent us turning:
|
|
// declare void @takes_i32_inalloca(i32* inalloca)
|
|
// call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
|
|
//
|
|
// into:
|
|
// call void @takes_i32_inalloca(i32* null)
|
|
//
|
|
// Similarly, avoid folding away bitcasts of byval calls.
|
|
if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
|
|
Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
|
|
return false;
|
|
|
|
CallSite::arg_iterator AI = CS.arg_begin();
|
|
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
|
|
Type *ParamTy = FT->getParamType(i);
|
|
Type *ActTy = (*AI)->getType();
|
|
|
|
if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
|
|
return false; // Cannot transform this parameter value.
|
|
|
|
if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
|
|
overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
|
|
return false; // Attribute not compatible with transformed value.
|
|
|
|
if (CS.isInAllocaArgument(i))
|
|
return false; // Cannot transform to and from inalloca.
|
|
|
|
// If the parameter is passed as a byval argument, then we have to have a
|
|
// sized type and the sized type has to have the same size as the old type.
|
|
if (ParamTy != ActTy &&
|
|
CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
|
|
Attribute::ByVal)) {
|
|
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
|
|
if (!ParamPTy || !ParamPTy->getElementType()->isSized())
|
|
return false;
|
|
|
|
Type *CurElTy = ActTy->getPointerElementType();
|
|
if (DL.getTypeAllocSize(CurElTy) !=
|
|
DL.getTypeAllocSize(ParamPTy->getElementType()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Callee->isDeclaration()) {
|
|
// Do not delete arguments unless we have a function body.
|
|
if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
|
|
return false;
|
|
|
|
// If the callee is just a declaration, don't change the varargsness of the
|
|
// call. We don't want to introduce a varargs call where one doesn't
|
|
// already exist.
|
|
PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
|
|
if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
|
|
return false;
|
|
|
|
// If both the callee and the cast type are varargs, we still have to make
|
|
// sure the number of fixed parameters are the same or we have the same
|
|
// ABI issues as if we introduce a varargs call.
|
|
if (FT->isVarArg() &&
|
|
cast<FunctionType>(APTy->getElementType())->isVarArg() &&
|
|
FT->getNumParams() !=
|
|
cast<FunctionType>(APTy->getElementType())->getNumParams())
|
|
return false;
|
|
}
|
|
|
|
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
|
|
!CallerPAL.isEmpty())
|
|
// In this case we have more arguments than the new function type, but we
|
|
// won't be dropping them. Check that these extra arguments have attributes
|
|
// that are compatible with being a vararg call argument.
|
|
for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
|
|
unsigned Index = CallerPAL.getSlotIndex(i - 1);
|
|
if (Index <= FT->getNumParams())
|
|
break;
|
|
|
|
// Check if it has an attribute that's incompatible with varargs.
|
|
AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
|
|
if (PAttrs.hasAttribute(Index, Attribute::StructRet))
|
|
return false;
|
|
}
|
|
|
|
|
|
// Okay, we decided that this is a safe thing to do: go ahead and start
|
|
// inserting cast instructions as necessary.
|
|
std::vector<Value*> Args;
|
|
Args.reserve(NumActualArgs);
|
|
SmallVector<AttributeSet, 8> attrVec;
|
|
attrVec.reserve(NumCommonArgs);
|
|
|
|
// Get any return attributes.
|
|
AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
|
|
|
|
// If the return value is not being used, the type may not be compatible
|
|
// with the existing attributes. Wipe out any problematic attributes.
|
|
RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
|
|
|
|
// Add the new return attributes.
|
|
if (RAttrs.hasAttributes())
|
|
attrVec.push_back(AttributeSet::get(Caller->getContext(),
|
|
AttributeSet::ReturnIndex, RAttrs));
|
|
|
|
AI = CS.arg_begin();
|
|
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
|
|
Type *ParamTy = FT->getParamType(i);
|
|
|
|
if ((*AI)->getType() == ParamTy) {
|
|
Args.push_back(*AI);
|
|
} else {
|
|
Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
|
|
}
|
|
|
|
// Add any parameter attributes.
|
|
AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
|
|
if (PAttrs.hasAttributes())
|
|
attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
|
|
PAttrs));
|
|
}
|
|
|
|
// If the function takes more arguments than the call was taking, add them
|
|
// now.
|
|
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
|
|
Args.push_back(Constant::getNullValue(FT->getParamType(i)));
|
|
|
|
// If we are removing arguments to the function, emit an obnoxious warning.
|
|
if (FT->getNumParams() < NumActualArgs) {
|
|
// TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
|
|
if (FT->isVarArg()) {
|
|
// Add all of the arguments in their promoted form to the arg list.
|
|
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
|
|
Type *PTy = getPromotedType((*AI)->getType());
|
|
if (PTy != (*AI)->getType()) {
|
|
// Must promote to pass through va_arg area!
|
|
Instruction::CastOps opcode =
|
|
CastInst::getCastOpcode(*AI, false, PTy, false);
|
|
Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
|
|
} else {
|
|
Args.push_back(*AI);
|
|
}
|
|
|
|
// Add any parameter attributes.
|
|
AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
|
|
if (PAttrs.hasAttributes())
|
|
attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
|
|
PAttrs));
|
|
}
|
|
}
|
|
}
|
|
|
|
AttributeSet FnAttrs = CallerPAL.getFnAttributes();
|
|
if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
|
|
attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
|
|
|
|
if (NewRetTy->isVoidTy())
|
|
Caller->setName(""); // Void type should not have a name.
|
|
|
|
const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
|
|
attrVec);
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
CS.getOperandBundlesAsDefs(OpBundles);
|
|
|
|
Instruction *NC;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
|
|
NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(),
|
|
Args, OpBundles);
|
|
NC->takeName(II);
|
|
cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
|
|
cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
|
|
} else {
|
|
CallInst *CI = cast<CallInst>(Caller);
|
|
NC = Builder->CreateCall(Callee, Args, OpBundles);
|
|
NC->takeName(CI);
|
|
if (CI->isTailCall())
|
|
cast<CallInst>(NC)->setTailCall();
|
|
cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
|
|
cast<CallInst>(NC)->setAttributes(NewCallerPAL);
|
|
}
|
|
|
|
// Insert a cast of the return type as necessary.
|
|
Value *NV = NC;
|
|
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
|
|
if (!NV->getType()->isVoidTy()) {
|
|
NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
|
|
NC->setDebugLoc(Caller->getDebugLoc());
|
|
|
|
// If this is an invoke instruction, we should insert it after the first
|
|
// non-phi, instruction in the normal successor block.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
|
|
BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
|
|
InsertNewInstBefore(NC, *I);
|
|
} else {
|
|
// Otherwise, it's a call, just insert cast right after the call.
|
|
InsertNewInstBefore(NC, *Caller);
|
|
}
|
|
Worklist.AddUsersToWorkList(*Caller);
|
|
} else {
|
|
NV = UndefValue::get(Caller->getType());
|
|
}
|
|
}
|
|
|
|
if (!Caller->use_empty())
|
|
replaceInstUsesWith(*Caller, NV);
|
|
else if (Caller->hasValueHandle()) {
|
|
if (OldRetTy == NV->getType())
|
|
ValueHandleBase::ValueIsRAUWd(Caller, NV);
|
|
else
|
|
// We cannot call ValueIsRAUWd with a different type, and the
|
|
// actual tracked value will disappear.
|
|
ValueHandleBase::ValueIsDeleted(Caller);
|
|
}
|
|
|
|
eraseInstFromFunction(*Caller);
|
|
return true;
|
|
}
|
|
|
|
/// Turn a call to a function created by init_trampoline / adjust_trampoline
|
|
/// intrinsic pair into a direct call to the underlying function.
|
|
Instruction *
|
|
InstCombiner::transformCallThroughTrampoline(CallSite CS,
|
|
IntrinsicInst *Tramp) {
|
|
Value *Callee = CS.getCalledValue();
|
|
PointerType *PTy = cast<PointerType>(Callee->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
const AttributeSet &Attrs = CS.getAttributes();
|
|
|
|
// If the call already has the 'nest' attribute somewhere then give up -
|
|
// otherwise 'nest' would occur twice after splicing in the chain.
|
|
if (Attrs.hasAttrSomewhere(Attribute::Nest))
|
|
return nullptr;
|
|
|
|
assert(Tramp &&
|
|
"transformCallThroughTrampoline called with incorrect CallSite.");
|
|
|
|
Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
|
|
FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
|
|
|
|
const AttributeSet &NestAttrs = NestF->getAttributes();
|
|
if (!NestAttrs.isEmpty()) {
|
|
unsigned NestIdx = 1;
|
|
Type *NestTy = nullptr;
|
|
AttributeSet NestAttr;
|
|
|
|
// Look for a parameter marked with the 'nest' attribute.
|
|
for (FunctionType::param_iterator I = NestFTy->param_begin(),
|
|
E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
|
|
if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
|
|
// Record the parameter type and any other attributes.
|
|
NestTy = *I;
|
|
NestAttr = NestAttrs.getParamAttributes(NestIdx);
|
|
break;
|
|
}
|
|
|
|
if (NestTy) {
|
|
Instruction *Caller = CS.getInstruction();
|
|
std::vector<Value*> NewArgs;
|
|
NewArgs.reserve(CS.arg_size() + 1);
|
|
|
|
SmallVector<AttributeSet, 8> NewAttrs;
|
|
NewAttrs.reserve(Attrs.getNumSlots() + 1);
|
|
|
|
// Insert the nest argument into the call argument list, which may
|
|
// mean appending it. Likewise for attributes.
|
|
|
|
// Add any result attributes.
|
|
if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
|
|
NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
|
|
Attrs.getRetAttributes()));
|
|
|
|
{
|
|
unsigned Idx = 1;
|
|
CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
|
do {
|
|
if (Idx == NestIdx) {
|
|
// Add the chain argument and attributes.
|
|
Value *NestVal = Tramp->getArgOperand(2);
|
|
if (NestVal->getType() != NestTy)
|
|
NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
|
|
NewArgs.push_back(NestVal);
|
|
NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
|
|
NestAttr));
|
|
}
|
|
|
|
if (I == E)
|
|
break;
|
|
|
|
// Add the original argument and attributes.
|
|
NewArgs.push_back(*I);
|
|
AttributeSet Attr = Attrs.getParamAttributes(Idx);
|
|
if (Attr.hasAttributes(Idx)) {
|
|
AttrBuilder B(Attr, Idx);
|
|
NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
|
|
Idx + (Idx >= NestIdx), B));
|
|
}
|
|
|
|
++Idx;
|
|
++I;
|
|
} while (1);
|
|
}
|
|
|
|
// Add any function attributes.
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
|
|
Attrs.getFnAttributes()));
|
|
|
|
// The trampoline may have been bitcast to a bogus type (FTy).
|
|
// Handle this by synthesizing a new function type, equal to FTy
|
|
// with the chain parameter inserted.
|
|
|
|
std::vector<Type*> NewTypes;
|
|
NewTypes.reserve(FTy->getNumParams()+1);
|
|
|
|
// Insert the chain's type into the list of parameter types, which may
|
|
// mean appending it.
|
|
{
|
|
unsigned Idx = 1;
|
|
FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end();
|
|
|
|
do {
|
|
if (Idx == NestIdx)
|
|
// Add the chain's type.
|
|
NewTypes.push_back(NestTy);
|
|
|
|
if (I == E)
|
|
break;
|
|
|
|
// Add the original type.
|
|
NewTypes.push_back(*I);
|
|
|
|
++Idx;
|
|
++I;
|
|
} while (1);
|
|
}
|
|
|
|
// Replace the trampoline call with a direct call. Let the generic
|
|
// code sort out any function type mismatches.
|
|
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
|
|
FTy->isVarArg());
|
|
Constant *NewCallee =
|
|
NestF->getType() == PointerType::getUnqual(NewFTy) ?
|
|
NestF : ConstantExpr::getBitCast(NestF,
|
|
PointerType::getUnqual(NewFTy));
|
|
const AttributeSet &NewPAL =
|
|
AttributeSet::get(FTy->getContext(), NewAttrs);
|
|
|
|
Instruction *NewCaller;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
|
|
NewCaller = InvokeInst::Create(NewCallee,
|
|
II->getNormalDest(), II->getUnwindDest(),
|
|
NewArgs);
|
|
cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
|
|
cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
|
|
} else {
|
|
NewCaller = CallInst::Create(NewCallee, NewArgs);
|
|
if (cast<CallInst>(Caller)->isTailCall())
|
|
cast<CallInst>(NewCaller)->setTailCall();
|
|
cast<CallInst>(NewCaller)->
|
|
setCallingConv(cast<CallInst>(Caller)->getCallingConv());
|
|
cast<CallInst>(NewCaller)->setAttributes(NewPAL);
|
|
}
|
|
|
|
return NewCaller;
|
|
}
|
|
}
|
|
|
|
// Replace the trampoline call with a direct call. Since there is no 'nest'
|
|
// parameter, there is no need to adjust the argument list. Let the generic
|
|
// code sort out any function type mismatches.
|
|
Constant *NewCallee =
|
|
NestF->getType() == PTy ? NestF :
|
|
ConstantExpr::getBitCast(NestF, PTy);
|
|
CS.setCalledFunction(NewCallee);
|
|
return CS.getInstruction();
|
|
}
|