llvm-project/llvm/lib/Target/Lanai/LanaiDelaySlotFiller.cpp

263 lines
8.9 KiB
C++

//===-- LanaiDelaySlotFiller.cpp - Lanai delay slot filler ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Simple pass to fills delay slots with useful instructions.
//
//===----------------------------------------------------------------------===//
#include "Lanai.h"
#include "LanaiTargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
#define DEBUG_TYPE "delay-slot-filler"
STATISTIC(FilledSlots, "Number of delay slots filled");
static cl::opt<bool>
NopDelaySlotFiller("lanai-nop-delay-filler", cl::init(false),
cl::desc("Fill Lanai delay slots with NOPs."),
cl::Hidden);
namespace {
struct Filler : public MachineFunctionPass {
// Target machine description which we query for reg. names, data
// layout, etc.
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineBasicBlock::instr_iterator LastFiller;
static char ID;
explicit Filler() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "Lanai Delay Slot Filler"; }
bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
bool runOnMachineFunction(MachineFunction &MF) override {
const LanaiSubtarget &Subtarget = MF.getSubtarget<LanaiSubtarget>();
TII = Subtarget.getInstrInfo();
TRI = Subtarget.getRegisterInfo();
bool Changed = false;
for (MachineFunction::iterator FI = MF.begin(), FE = MF.end(); FI != FE;
++FI)
Changed |= runOnMachineBasicBlock(*FI);
return Changed;
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
void insertDefsUses(MachineBasicBlock::instr_iterator MI,
SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses);
bool isRegInSet(SmallSet<unsigned, 32> &RegSet, unsigned Reg);
bool delayHasHazard(MachineBasicBlock::instr_iterator MI, bool &SawLoad,
bool &SawStore, SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses);
bool findDelayInstr(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator Slot,
MachineBasicBlock::instr_iterator &Filler);
};
char Filler::ID = 0;
} // end of anonymous namespace
// createLanaiDelaySlotFillerPass - Returns a pass that fills in delay
// slots in Lanai MachineFunctions
FunctionPass *
llvm::createLanaiDelaySlotFillerPass(const LanaiTargetMachine & /*tm*/) {
return new Filler();
}
// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
// There is one or two delay slot per delayed instruction.
bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
bool Changed = false;
LastFiller = MBB.instr_end();
for (MachineBasicBlock::instr_iterator I = MBB.instr_begin();
I != MBB.instr_end(); ++I) {
if (I->getDesc().hasDelaySlot()) {
MachineBasicBlock::instr_iterator InstrWithSlot = I;
MachineBasicBlock::instr_iterator J = I;
// Treat RET specially as it is only instruction with 2 delay slots
// generated while all others generated have 1 delay slot.
if (I->getOpcode() == Lanai::RET) {
// RET is generated as part of epilogue generation and hence we know
// what the two instructions preceding it are and that it is safe to
// insert RET above them.
MachineBasicBlock::reverse_instr_iterator RI = ++I.getReverse();
assert(RI->getOpcode() == Lanai::LDW_RI && RI->getOperand(0).isReg() &&
RI->getOperand(0).getReg() == Lanai::FP &&
RI->getOperand(1).isReg() &&
RI->getOperand(1).getReg() == Lanai::FP &&
RI->getOperand(2).isImm() && RI->getOperand(2).getImm() == -8);
++RI;
assert(RI->getOpcode() == Lanai::ADD_I_LO &&
RI->getOperand(0).isReg() &&
RI->getOperand(0).getReg() == Lanai::SP &&
RI->getOperand(1).isReg() &&
RI->getOperand(1).getReg() == Lanai::FP);
MachineBasicBlock::instr_iterator FI = RI.getReverse();
MBB.splice(std::next(I), &MBB, FI, I);
FilledSlots += 2;
} else {
if (!NopDelaySlotFiller && findDelayInstr(MBB, I, J)) {
MBB.splice(std::next(I), &MBB, J);
} else {
BuildMI(MBB, std::next(I), DebugLoc(), TII->get(Lanai::NOP));
}
++FilledSlots;
}
Changed = true;
// Record the filler instruction that filled the delay slot.
// The instruction after it will be visited in the next iteration.
LastFiller = ++I;
// Bundle the delay slot filler to InstrWithSlot so that the machine
// verifier doesn't expect this instruction to be a terminator.
MIBundleBuilder(MBB, InstrWithSlot, std::next(LastFiller));
}
}
return Changed;
}
bool Filler::findDelayInstr(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator Slot,
MachineBasicBlock::instr_iterator &Filler) {
SmallSet<unsigned, 32> RegDefs;
SmallSet<unsigned, 32> RegUses;
insertDefsUses(Slot, RegDefs, RegUses);
bool SawLoad = false;
bool SawStore = false;
for (MachineBasicBlock::reverse_instr_iterator I = ++Slot.getReverse();
I != MBB.instr_rend(); ++I) {
// skip debug value
if (I->isDebugValue())
continue;
// Convert to forward iterator.
MachineBasicBlock::instr_iterator FI = I.getReverse();
if (I->hasUnmodeledSideEffects() || I->isInlineAsm() || I->isLabel() ||
FI == LastFiller || I->isPseudo())
break;
if (delayHasHazard(FI, SawLoad, SawStore, RegDefs, RegUses)) {
insertDefsUses(FI, RegDefs, RegUses);
continue;
}
Filler = FI;
return true;
}
return false;
}
bool Filler::delayHasHazard(MachineBasicBlock::instr_iterator MI, bool &SawLoad,
bool &SawStore, SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses) {
if (MI->isImplicitDef() || MI->isKill())
return true;
// Loads or stores cannot be moved past a store to the delay slot
// and stores cannot be moved past a load.
if (MI->mayLoad()) {
if (SawStore)
return true;
SawLoad = true;
}
if (MI->mayStore()) {
if (SawStore)
return true;
SawStore = true;
if (SawLoad)
return true;
}
assert((!MI->isCall() && !MI->isReturn()) &&
"Cannot put calls or returns in delay slot.");
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI->getOperand(I);
unsigned Reg;
if (!MO.isReg() || !(Reg = MO.getReg()))
continue; // skip
if (MO.isDef()) {
// check whether Reg is defined or used before delay slot.
if (isRegInSet(RegDefs, Reg) || isRegInSet(RegUses, Reg))
return true;
}
if (MO.isUse()) {
// check whether Reg is defined before delay slot.
if (isRegInSet(RegDefs, Reg))
return true;
}
}
return false;
}
// Insert Defs and Uses of MI into the sets RegDefs and RegUses.
void Filler::insertDefsUses(MachineBasicBlock::instr_iterator MI,
SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses) {
// If MI is a call or return, just examine the explicit non-variadic operands.
MCInstrDesc MCID = MI->getDesc();
unsigned E = MI->isCall() || MI->isReturn() ? MCID.getNumOperands()
: MI->getNumOperands();
for (unsigned I = 0; I != E; ++I) {
const MachineOperand &MO = MI->getOperand(I);
unsigned Reg;
if (!MO.isReg() || !(Reg = MO.getReg()))
continue;
if (MO.isDef())
RegDefs.insert(Reg);
else if (MO.isUse())
RegUses.insert(Reg);
}
// Call & return instructions defines SP implicitly. Implicit defines are not
// included in the RegDefs set of calls but instructions modifying SP cannot
// be inserted in the delay slot of a call/return as these instructions are
// expanded to multiple instructions with SP modified before the branch that
// has the delay slot.
if (MI->isCall() || MI->isReturn())
RegDefs.insert(Lanai::SP);
}
// Returns true if the Reg or its alias is in the RegSet.
bool Filler::isRegInSet(SmallSet<unsigned, 32> &RegSet, unsigned Reg) {
// Check Reg and all aliased Registers.
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
if (RegSet.count(*AI))
return true;
return false;
}