forked from OSchip/llvm-project
4002 lines
138 KiB
C++
4002 lines
138 KiB
C++
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
using namespace clang;
|
|
|
|
const Expr *Expr::getBestDynamicClassTypeExpr() const {
|
|
const Expr *E = this;
|
|
while (true) {
|
|
E = E->ignoreParenBaseCasts();
|
|
|
|
// Follow the RHS of a comma operator.
|
|
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
E = BO->getRHS();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Step into initializer for materialized temporaries.
|
|
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
E = MTE->GetTemporaryExpr();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
const CXXRecordDecl *Expr::getBestDynamicClassType() const {
|
|
const Expr *E = getBestDynamicClassTypeExpr();
|
|
QualType DerivedType = E->getType();
|
|
if (const PointerType *PTy = DerivedType->getAs<PointerType>())
|
|
DerivedType = PTy->getPointeeType();
|
|
|
|
if (DerivedType->isDependentType())
|
|
return nullptr;
|
|
|
|
const RecordType *Ty = DerivedType->castAs<RecordType>();
|
|
Decl *D = Ty->getDecl();
|
|
return cast<CXXRecordDecl>(D);
|
|
}
|
|
|
|
const Expr *Expr::skipRValueSubobjectAdjustments(
|
|
SmallVectorImpl<const Expr *> &CommaLHSs,
|
|
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
|
|
const Expr *E = this;
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if ((CE->getCastKind() == CK_DerivedToBase ||
|
|
CE->getCastKind() == CK_UncheckedDerivedToBase) &&
|
|
E->getType()->isRecordType()) {
|
|
E = CE->getSubExpr();
|
|
CXXRecordDecl *Derived
|
|
= cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
|
|
Adjustments.push_back(SubobjectAdjustment(CE, Derived));
|
|
continue;
|
|
}
|
|
|
|
if (CE->getCastKind() == CK_NoOp) {
|
|
E = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
if (!ME->isArrow()) {
|
|
assert(ME->getBase()->getType()->isRecordType());
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
|
|
if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
|
|
E = ME->getBase();
|
|
Adjustments.push_back(SubobjectAdjustment(Field));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
} else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->isPtrMemOp()) {
|
|
assert(BO->getRHS()->isRValue());
|
|
E = BO->getLHS();
|
|
const MemberPointerType *MPT =
|
|
BO->getRHS()->getType()->getAs<MemberPointerType>();
|
|
Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
|
|
continue;
|
|
} else if (BO->getOpcode() == BO_Comma) {
|
|
CommaLHSs.push_back(BO->getLHS());
|
|
E = BO->getRHS();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Nothing changed.
|
|
break;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
|
|
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
|
|
/// but also int expressions which are produced by things like comparisons in
|
|
/// C.
|
|
bool Expr::isKnownToHaveBooleanValue() const {
|
|
const Expr *E = IgnoreParens();
|
|
|
|
// If this value has _Bool type, it is obvious 0/1.
|
|
if (E->getType()->isBooleanType()) return true;
|
|
// If this is a non-scalar-integer type, we don't care enough to try.
|
|
if (!E->getType()->isIntegralOrEnumerationType()) return false;
|
|
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
switch (UO->getOpcode()) {
|
|
case UO_Plus:
|
|
return UO->getSubExpr()->isKnownToHaveBooleanValue();
|
|
case UO_LNot:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Only look through implicit casts. If the user writes
|
|
// '(int) (a && b)' treat it as an arbitrary int.
|
|
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
|
|
return CE->getSubExpr()->isKnownToHaveBooleanValue();
|
|
|
|
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
switch (BO->getOpcode()) {
|
|
default: return false;
|
|
case BO_LT: // Relational operators.
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ: // Equality operators.
|
|
case BO_NE:
|
|
case BO_LAnd: // AND operator.
|
|
case BO_LOr: // Logical OR operator.
|
|
return true;
|
|
|
|
case BO_And: // Bitwise AND operator.
|
|
case BO_Xor: // Bitwise XOR operator.
|
|
case BO_Or: // Bitwise OR operator.
|
|
// Handle things like (x==2)|(y==12).
|
|
return BO->getLHS()->isKnownToHaveBooleanValue() &&
|
|
BO->getRHS()->isKnownToHaveBooleanValue();
|
|
|
|
case BO_Comma:
|
|
case BO_Assign:
|
|
return BO->getRHS()->isKnownToHaveBooleanValue();
|
|
}
|
|
}
|
|
|
|
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
|
|
return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
|
|
CO->getFalseExpr()->isKnownToHaveBooleanValue();
|
|
|
|
return false;
|
|
}
|
|
|
|
// Amusing macro metaprogramming hack: check whether a class provides
|
|
// a more specific implementation of getExprLoc().
|
|
//
|
|
// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
|
|
namespace {
|
|
/// This implementation is used when a class provides a custom
|
|
/// implementation of getExprLoc.
|
|
template <class E, class T>
|
|
SourceLocation getExprLocImpl(const Expr *expr,
|
|
SourceLocation (T::*v)() const) {
|
|
return static_cast<const E*>(expr)->getExprLoc();
|
|
}
|
|
|
|
/// This implementation is used when a class doesn't provide
|
|
/// a custom implementation of getExprLoc. Overload resolution
|
|
/// should pick it over the implementation above because it's
|
|
/// more specialized according to function template partial ordering.
|
|
template <class E>
|
|
SourceLocation getExprLocImpl(const Expr *expr,
|
|
SourceLocation (Expr::*v)() const) {
|
|
return static_cast<const E*>(expr)->getLocStart();
|
|
}
|
|
}
|
|
|
|
SourceLocation Expr::getExprLoc() const {
|
|
switch (getStmtClass()) {
|
|
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
|
|
#define ABSTRACT_STMT(type)
|
|
#define STMT(type, base) \
|
|
case Stmt::type##Class: break;
|
|
#define EXPR(type, base) \
|
|
case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
|
|
#include "clang/AST/StmtNodes.inc"
|
|
}
|
|
llvm_unreachable("unknown expression kind");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primary Expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Compute the type-, value-, and instantiation-dependence of a
|
|
/// declaration reference
|
|
/// based on the declaration being referenced.
|
|
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
|
|
QualType T, bool &TypeDependent,
|
|
bool &ValueDependent,
|
|
bool &InstantiationDependent) {
|
|
TypeDependent = false;
|
|
ValueDependent = false;
|
|
InstantiationDependent = false;
|
|
|
|
// (TD) C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
//
|
|
// and
|
|
//
|
|
// (VD) C++ [temp.dep.constexpr]p2:
|
|
// An identifier is value-dependent if it is:
|
|
|
|
// (TD) - an identifier that was declared with dependent type
|
|
// (VD) - a name declared with a dependent type,
|
|
if (T->isDependentType()) {
|
|
TypeDependent = true;
|
|
ValueDependent = true;
|
|
InstantiationDependent = true;
|
|
return;
|
|
} else if (T->isInstantiationDependentType()) {
|
|
InstantiationDependent = true;
|
|
}
|
|
|
|
// (TD) - a conversion-function-id that specifies a dependent type
|
|
if (D->getDeclName().getNameKind()
|
|
== DeclarationName::CXXConversionFunctionName) {
|
|
QualType T = D->getDeclName().getCXXNameType();
|
|
if (T->isDependentType()) {
|
|
TypeDependent = true;
|
|
ValueDependent = true;
|
|
InstantiationDependent = true;
|
|
return;
|
|
}
|
|
|
|
if (T->isInstantiationDependentType())
|
|
InstantiationDependent = true;
|
|
}
|
|
|
|
// (VD) - the name of a non-type template parameter,
|
|
if (isa<NonTypeTemplateParmDecl>(D)) {
|
|
ValueDependent = true;
|
|
InstantiationDependent = true;
|
|
return;
|
|
}
|
|
|
|
// (VD) - a constant with integral or enumeration type and is
|
|
// initialized with an expression that is value-dependent.
|
|
// (VD) - a constant with literal type and is initialized with an
|
|
// expression that is value-dependent [C++11].
|
|
// (VD) - FIXME: Missing from the standard:
|
|
// - an entity with reference type and is initialized with an
|
|
// expression that is value-dependent [C++11]
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
if ((Ctx.getLangOpts().CPlusPlus11 ?
|
|
Var->getType()->isLiteralType(Ctx) :
|
|
Var->getType()->isIntegralOrEnumerationType()) &&
|
|
(Var->getType().isConstQualified() ||
|
|
Var->getType()->isReferenceType())) {
|
|
if (const Expr *Init = Var->getAnyInitializer())
|
|
if (Init->isValueDependent()) {
|
|
ValueDependent = true;
|
|
InstantiationDependent = true;
|
|
}
|
|
}
|
|
|
|
// (VD) - FIXME: Missing from the standard:
|
|
// - a member function or a static data member of the current
|
|
// instantiation
|
|
if (Var->isStaticDataMember() &&
|
|
Var->getDeclContext()->isDependentContext()) {
|
|
ValueDependent = true;
|
|
InstantiationDependent = true;
|
|
TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
|
|
if (TInfo->getType()->isIncompleteArrayType())
|
|
TypeDependent = true;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// (VD) - FIXME: Missing from the standard:
|
|
// - a member function or a static data member of the current
|
|
// instantiation
|
|
if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
|
|
ValueDependent = true;
|
|
InstantiationDependent = true;
|
|
}
|
|
}
|
|
|
|
void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
|
|
bool TypeDependent = false;
|
|
bool ValueDependent = false;
|
|
bool InstantiationDependent = false;
|
|
computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
|
|
ValueDependent, InstantiationDependent);
|
|
|
|
ExprBits.TypeDependent |= TypeDependent;
|
|
ExprBits.ValueDependent |= ValueDependent;
|
|
ExprBits.InstantiationDependent |= InstantiationDependent;
|
|
|
|
// Is the declaration a parameter pack?
|
|
if (getDecl()->isParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
}
|
|
|
|
DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
|
|
const DeclarationNameInfo &NameInfo,
|
|
NamedDecl *FoundD,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
QualType T, ExprValueKind VK)
|
|
: Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
|
|
D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
|
|
DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
|
|
if (QualifierLoc) {
|
|
new (getTrailingObjects<NestedNameSpecifierLoc>())
|
|
NestedNameSpecifierLoc(QualifierLoc);
|
|
auto *NNS = QualifierLoc.getNestedNameSpecifier();
|
|
if (NNS->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
if (NNS->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
}
|
|
DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
|
|
if (FoundD)
|
|
*getTrailingObjects<NamedDecl *>() = FoundD;
|
|
DeclRefExprBits.HasTemplateKWAndArgsInfo
|
|
= (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
|
|
DeclRefExprBits.RefersToEnclosingVariableOrCapture =
|
|
RefersToEnclosingVariableOrCapture;
|
|
if (TemplateArgs) {
|
|
bool Dependent = false;
|
|
bool InstantiationDependent = false;
|
|
bool ContainsUnexpandedParameterPack = false;
|
|
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
|
|
TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
|
|
Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
|
|
assert(!Dependent && "built a DeclRefExpr with dependent template args");
|
|
ExprBits.InstantiationDependent |= InstantiationDependent;
|
|
ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
|
|
} else if (TemplateKWLoc.isValid()) {
|
|
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
|
|
TemplateKWLoc);
|
|
}
|
|
DeclRefExprBits.HadMultipleCandidates = 0;
|
|
|
|
computeDependence(Ctx);
|
|
}
|
|
|
|
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
ValueDecl *D,
|
|
bool RefersToEnclosingVariableOrCapture,
|
|
SourceLocation NameLoc,
|
|
QualType T,
|
|
ExprValueKind VK,
|
|
NamedDecl *FoundD,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
return Create(Context, QualifierLoc, TemplateKWLoc, D,
|
|
RefersToEnclosingVariableOrCapture,
|
|
DeclarationNameInfo(D->getDeclName(), NameLoc),
|
|
T, VK, FoundD, TemplateArgs);
|
|
}
|
|
|
|
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
ValueDecl *D,
|
|
bool RefersToEnclosingVariableOrCapture,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T,
|
|
ExprValueKind VK,
|
|
NamedDecl *FoundD,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// Filter out cases where the found Decl is the same as the value refenenced.
|
|
if (D == FoundD)
|
|
FoundD = nullptr;
|
|
|
|
bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
|
|
std::size_t Size =
|
|
totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
|
|
ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
|
|
QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
|
|
HasTemplateKWAndArgsInfo ? 1 : 0,
|
|
TemplateArgs ? TemplateArgs->size() : 0);
|
|
|
|
void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
|
|
return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
|
|
RefersToEnclosingVariableOrCapture,
|
|
NameInfo, FoundD, TemplateArgs, T, VK);
|
|
}
|
|
|
|
DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
|
|
bool HasQualifier,
|
|
bool HasFoundDecl,
|
|
bool HasTemplateKWAndArgsInfo,
|
|
unsigned NumTemplateArgs) {
|
|
assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
|
|
std::size_t Size =
|
|
totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
|
|
ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
|
|
HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
|
|
NumTemplateArgs);
|
|
void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
|
|
return new (Mem) DeclRefExpr(EmptyShell());
|
|
}
|
|
|
|
SourceLocation DeclRefExpr::getLocStart() const {
|
|
if (hasQualifier())
|
|
return getQualifierLoc().getBeginLoc();
|
|
return getNameInfo().getLocStart();
|
|
}
|
|
SourceLocation DeclRefExpr::getLocEnd() const {
|
|
if (hasExplicitTemplateArgs())
|
|
return getRAngleLoc();
|
|
return getNameInfo().getLocEnd();
|
|
}
|
|
|
|
PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
|
|
StringLiteral *SL)
|
|
: Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
|
|
FNTy->isDependentType(), FNTy->isDependentType(),
|
|
FNTy->isInstantiationDependentType(),
|
|
/*ContainsUnexpandedParameterPack=*/false),
|
|
Loc(L), Type(IT), FnName(SL) {}
|
|
|
|
StringLiteral *PredefinedExpr::getFunctionName() {
|
|
return cast_or_null<StringLiteral>(FnName);
|
|
}
|
|
|
|
StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
|
|
switch (IT) {
|
|
case Func:
|
|
return "__func__";
|
|
case Function:
|
|
return "__FUNCTION__";
|
|
case FuncDName:
|
|
return "__FUNCDNAME__";
|
|
case LFunction:
|
|
return "L__FUNCTION__";
|
|
case PrettyFunction:
|
|
return "__PRETTY_FUNCTION__";
|
|
case FuncSig:
|
|
return "__FUNCSIG__";
|
|
case PrettyFunctionNoVirtual:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unknown ident type for PredefinedExpr");
|
|
}
|
|
|
|
// FIXME: Maybe this should use DeclPrinter with a special "print predefined
|
|
// expr" policy instead.
|
|
std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
|
|
ASTContext &Context = CurrentDecl->getASTContext();
|
|
|
|
if (IT == PredefinedExpr::FuncDName) {
|
|
if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
|
|
std::unique_ptr<MangleContext> MC;
|
|
MC.reset(Context.createMangleContext());
|
|
|
|
if (MC->shouldMangleDeclName(ND)) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
|
|
MC->mangleCXXCtor(CD, Ctor_Base, Out);
|
|
else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
|
|
MC->mangleCXXDtor(DD, Dtor_Base, Out);
|
|
else
|
|
MC->mangleName(ND, Out);
|
|
|
|
if (!Buffer.empty() && Buffer.front() == '\01')
|
|
return Buffer.substr(1);
|
|
return Buffer.str();
|
|
} else
|
|
return ND->getIdentifier()->getName();
|
|
}
|
|
return "";
|
|
}
|
|
if (isa<BlockDecl>(CurrentDecl)) {
|
|
// For blocks we only emit something if it is enclosed in a function
|
|
// For top-level block we'd like to include the name of variable, but we
|
|
// don't have it at this point.
|
|
auto DC = CurrentDecl->getDeclContext();
|
|
if (DC->isFileContext())
|
|
return "";
|
|
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
|
|
// For nested blocks, propagate up to the parent.
|
|
Out << ComputeName(IT, DCBlock);
|
|
else if (auto *DCDecl = dyn_cast<Decl>(DC))
|
|
Out << ComputeName(IT, DCDecl) << "_block_invoke";
|
|
return Out.str();
|
|
}
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
|
|
if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
|
|
return FD->getNameAsString();
|
|
|
|
SmallString<256> Name;
|
|
llvm::raw_svector_ostream Out(Name);
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
|
|
Out << "virtual ";
|
|
if (MD->isStatic())
|
|
Out << "static ";
|
|
}
|
|
|
|
PrintingPolicy Policy(Context.getLangOpts());
|
|
std::string Proto;
|
|
llvm::raw_string_ostream POut(Proto);
|
|
|
|
const FunctionDecl *Decl = FD;
|
|
if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
|
|
Decl = Pattern;
|
|
const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
|
|
const FunctionProtoType *FT = nullptr;
|
|
if (FD->hasWrittenPrototype())
|
|
FT = dyn_cast<FunctionProtoType>(AFT);
|
|
|
|
if (IT == FuncSig) {
|
|
switch (AFT->getCallConv()) {
|
|
case CC_C: POut << "__cdecl "; break;
|
|
case CC_X86StdCall: POut << "__stdcall "; break;
|
|
case CC_X86FastCall: POut << "__fastcall "; break;
|
|
case CC_X86ThisCall: POut << "__thiscall "; break;
|
|
case CC_X86VectorCall: POut << "__vectorcall "; break;
|
|
case CC_X86RegCall: POut << "__regcall "; break;
|
|
// Only bother printing the conventions that MSVC knows about.
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
FD->printQualifiedName(POut, Policy);
|
|
|
|
POut << "(";
|
|
if (FT) {
|
|
for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
|
|
if (i) POut << ", ";
|
|
POut << Decl->getParamDecl(i)->getType().stream(Policy);
|
|
}
|
|
|
|
if (FT->isVariadic()) {
|
|
if (FD->getNumParams()) POut << ", ";
|
|
POut << "...";
|
|
} else if ((IT == FuncSig || !Context.getLangOpts().CPlusPlus) &&
|
|
!Decl->getNumParams()) {
|
|
POut << "void";
|
|
}
|
|
}
|
|
POut << ")";
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
assert(FT && "We must have a written prototype in this case.");
|
|
if (FT->isConst())
|
|
POut << " const";
|
|
if (FT->isVolatile())
|
|
POut << " volatile";
|
|
RefQualifierKind Ref = MD->getRefQualifier();
|
|
if (Ref == RQ_LValue)
|
|
POut << " &";
|
|
else if (Ref == RQ_RValue)
|
|
POut << " &&";
|
|
}
|
|
|
|
typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
|
|
SpecsTy Specs;
|
|
const DeclContext *Ctx = FD->getDeclContext();
|
|
while (Ctx && isa<NamedDecl>(Ctx)) {
|
|
const ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
|
|
if (Spec && !Spec->isExplicitSpecialization())
|
|
Specs.push_back(Spec);
|
|
Ctx = Ctx->getParent();
|
|
}
|
|
|
|
std::string TemplateParams;
|
|
llvm::raw_string_ostream TOut(TemplateParams);
|
|
for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
|
|
I != E; ++I) {
|
|
const TemplateParameterList *Params
|
|
= (*I)->getSpecializedTemplate()->getTemplateParameters();
|
|
const TemplateArgumentList &Args = (*I)->getTemplateArgs();
|
|
assert(Params->size() == Args.size());
|
|
for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
|
|
StringRef Param = Params->getParam(i)->getName();
|
|
if (Param.empty()) continue;
|
|
TOut << Param << " = ";
|
|
Args.get(i).print(Policy, TOut);
|
|
TOut << ", ";
|
|
}
|
|
}
|
|
|
|
FunctionTemplateSpecializationInfo *FSI
|
|
= FD->getTemplateSpecializationInfo();
|
|
if (FSI && !FSI->isExplicitSpecialization()) {
|
|
const TemplateParameterList* Params
|
|
= FSI->getTemplate()->getTemplateParameters();
|
|
const TemplateArgumentList* Args = FSI->TemplateArguments;
|
|
assert(Params->size() == Args->size());
|
|
for (unsigned i = 0, e = Params->size(); i != e; ++i) {
|
|
StringRef Param = Params->getParam(i)->getName();
|
|
if (Param.empty()) continue;
|
|
TOut << Param << " = ";
|
|
Args->get(i).print(Policy, TOut);
|
|
TOut << ", ";
|
|
}
|
|
}
|
|
|
|
TOut.flush();
|
|
if (!TemplateParams.empty()) {
|
|
// remove the trailing comma and space
|
|
TemplateParams.resize(TemplateParams.size() - 2);
|
|
POut << " [" << TemplateParams << "]";
|
|
}
|
|
|
|
POut.flush();
|
|
|
|
// Print "auto" for all deduced return types. This includes C++1y return
|
|
// type deduction and lambdas. For trailing return types resolve the
|
|
// decltype expression. Otherwise print the real type when this is
|
|
// not a constructor or destructor.
|
|
if (isa<CXXMethodDecl>(FD) &&
|
|
cast<CXXMethodDecl>(FD)->getParent()->isLambda())
|
|
Proto = "auto " + Proto;
|
|
else if (FT && FT->getReturnType()->getAs<DecltypeType>())
|
|
FT->getReturnType()
|
|
->getAs<DecltypeType>()
|
|
->getUnderlyingType()
|
|
.getAsStringInternal(Proto, Policy);
|
|
else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
|
|
AFT->getReturnType().getAsStringInternal(Proto, Policy);
|
|
|
|
Out << Proto;
|
|
|
|
return Name.str().str();
|
|
}
|
|
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
|
|
for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
|
|
// Skip to its enclosing function or method, but not its enclosing
|
|
// CapturedDecl.
|
|
if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
|
|
const Decl *D = Decl::castFromDeclContext(DC);
|
|
return ComputeName(IT, D);
|
|
}
|
|
llvm_unreachable("CapturedDecl not inside a function or method");
|
|
}
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
|
|
SmallString<256> Name;
|
|
llvm::raw_svector_ostream Out(Name);
|
|
Out << (MD->isInstanceMethod() ? '-' : '+');
|
|
Out << '[';
|
|
|
|
// For incorrect code, there might not be an ObjCInterfaceDecl. Do
|
|
// a null check to avoid a crash.
|
|
if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
|
|
Out << *ID;
|
|
|
|
if (const ObjCCategoryImplDecl *CID =
|
|
dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
|
|
Out << '(' << *CID << ')';
|
|
|
|
Out << ' ';
|
|
MD->getSelector().print(Out);
|
|
Out << ']';
|
|
|
|
return Name.str().str();
|
|
}
|
|
if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
|
|
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
|
|
return "top level";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
void APNumericStorage::setIntValue(const ASTContext &C,
|
|
const llvm::APInt &Val) {
|
|
if (hasAllocation())
|
|
C.Deallocate(pVal);
|
|
|
|
BitWidth = Val.getBitWidth();
|
|
unsigned NumWords = Val.getNumWords();
|
|
const uint64_t* Words = Val.getRawData();
|
|
if (NumWords > 1) {
|
|
pVal = new (C) uint64_t[NumWords];
|
|
std::copy(Words, Words + NumWords, pVal);
|
|
} else if (NumWords == 1)
|
|
VAL = Words[0];
|
|
else
|
|
VAL = 0;
|
|
}
|
|
|
|
IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
|
|
QualType type, SourceLocation l)
|
|
: Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
|
|
false, false),
|
|
Loc(l) {
|
|
assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
|
|
assert(V.getBitWidth() == C.getIntWidth(type) &&
|
|
"Integer type is not the correct size for constant.");
|
|
setValue(C, V);
|
|
}
|
|
|
|
IntegerLiteral *
|
|
IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
|
|
QualType type, SourceLocation l) {
|
|
return new (C) IntegerLiteral(C, V, type, l);
|
|
}
|
|
|
|
IntegerLiteral *
|
|
IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
|
|
return new (C) IntegerLiteral(Empty);
|
|
}
|
|
|
|
FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
|
|
bool isexact, QualType Type, SourceLocation L)
|
|
: Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
|
|
false, false), Loc(L) {
|
|
setSemantics(V.getSemantics());
|
|
FloatingLiteralBits.IsExact = isexact;
|
|
setValue(C, V);
|
|
}
|
|
|
|
FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
|
|
: Expr(FloatingLiteralClass, Empty) {
|
|
setRawSemantics(IEEEhalf);
|
|
FloatingLiteralBits.IsExact = false;
|
|
}
|
|
|
|
FloatingLiteral *
|
|
FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
|
|
bool isexact, QualType Type, SourceLocation L) {
|
|
return new (C) FloatingLiteral(C, V, isexact, Type, L);
|
|
}
|
|
|
|
FloatingLiteral *
|
|
FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
|
|
return new (C) FloatingLiteral(C, Empty);
|
|
}
|
|
|
|
const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
|
|
switch(FloatingLiteralBits.Semantics) {
|
|
case IEEEhalf:
|
|
return llvm::APFloat::IEEEhalf();
|
|
case IEEEsingle:
|
|
return llvm::APFloat::IEEEsingle();
|
|
case IEEEdouble:
|
|
return llvm::APFloat::IEEEdouble();
|
|
case x87DoubleExtended:
|
|
return llvm::APFloat::x87DoubleExtended();
|
|
case IEEEquad:
|
|
return llvm::APFloat::IEEEquad();
|
|
case PPCDoubleDouble:
|
|
return llvm::APFloat::PPCDoubleDouble();
|
|
}
|
|
llvm_unreachable("Unrecognised floating semantics");
|
|
}
|
|
|
|
void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
|
|
if (&Sem == &llvm::APFloat::IEEEhalf())
|
|
FloatingLiteralBits.Semantics = IEEEhalf;
|
|
else if (&Sem == &llvm::APFloat::IEEEsingle())
|
|
FloatingLiteralBits.Semantics = IEEEsingle;
|
|
else if (&Sem == &llvm::APFloat::IEEEdouble())
|
|
FloatingLiteralBits.Semantics = IEEEdouble;
|
|
else if (&Sem == &llvm::APFloat::x87DoubleExtended())
|
|
FloatingLiteralBits.Semantics = x87DoubleExtended;
|
|
else if (&Sem == &llvm::APFloat::IEEEquad())
|
|
FloatingLiteralBits.Semantics = IEEEquad;
|
|
else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
|
|
FloatingLiteralBits.Semantics = PPCDoubleDouble;
|
|
else
|
|
llvm_unreachable("Unknown floating semantics");
|
|
}
|
|
|
|
/// getValueAsApproximateDouble - This returns the value as an inaccurate
|
|
/// double. Note that this may cause loss of precision, but is useful for
|
|
/// debugging dumps, etc.
|
|
double FloatingLiteral::getValueAsApproximateDouble() const {
|
|
llvm::APFloat V = getValue();
|
|
bool ignored;
|
|
V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
return V.convertToDouble();
|
|
}
|
|
|
|
int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
|
|
int CharByteWidth = 0;
|
|
switch(k) {
|
|
case Ascii:
|
|
case UTF8:
|
|
CharByteWidth = target.getCharWidth();
|
|
break;
|
|
case Wide:
|
|
CharByteWidth = target.getWCharWidth();
|
|
break;
|
|
case UTF16:
|
|
CharByteWidth = target.getChar16Width();
|
|
break;
|
|
case UTF32:
|
|
CharByteWidth = target.getChar32Width();
|
|
break;
|
|
}
|
|
assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
|
|
CharByteWidth /= 8;
|
|
assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
|
|
&& "character byte widths supported are 1, 2, and 4 only");
|
|
return CharByteWidth;
|
|
}
|
|
|
|
StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
|
|
StringKind Kind, bool Pascal, QualType Ty,
|
|
const SourceLocation *Loc,
|
|
unsigned NumStrs) {
|
|
assert(C.getAsConstantArrayType(Ty) &&
|
|
"StringLiteral must be of constant array type!");
|
|
|
|
// Allocate enough space for the StringLiteral plus an array of locations for
|
|
// any concatenated string tokens.
|
|
void *Mem =
|
|
C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1),
|
|
alignof(StringLiteral));
|
|
StringLiteral *SL = new (Mem) StringLiteral(Ty);
|
|
|
|
// OPTIMIZE: could allocate this appended to the StringLiteral.
|
|
SL->setString(C,Str,Kind,Pascal);
|
|
|
|
SL->TokLocs[0] = Loc[0];
|
|
SL->NumConcatenated = NumStrs;
|
|
|
|
if (NumStrs != 1)
|
|
memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
|
|
return SL;
|
|
}
|
|
|
|
StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
|
|
unsigned NumStrs) {
|
|
void *Mem =
|
|
C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1),
|
|
alignof(StringLiteral));
|
|
StringLiteral *SL = new (Mem) StringLiteral(QualType());
|
|
SL->CharByteWidth = 0;
|
|
SL->Length = 0;
|
|
SL->NumConcatenated = NumStrs;
|
|
return SL;
|
|
}
|
|
|
|
void StringLiteral::outputString(raw_ostream &OS) const {
|
|
switch (getKind()) {
|
|
case Ascii: break; // no prefix.
|
|
case Wide: OS << 'L'; break;
|
|
case UTF8: OS << "u8"; break;
|
|
case UTF16: OS << 'u'; break;
|
|
case UTF32: OS << 'U'; break;
|
|
}
|
|
OS << '"';
|
|
static const char Hex[] = "0123456789ABCDEF";
|
|
|
|
unsigned LastSlashX = getLength();
|
|
for (unsigned I = 0, N = getLength(); I != N; ++I) {
|
|
switch (uint32_t Char = getCodeUnit(I)) {
|
|
default:
|
|
// FIXME: Convert UTF-8 back to codepoints before rendering.
|
|
|
|
// Convert UTF-16 surrogate pairs back to codepoints before rendering.
|
|
// Leave invalid surrogates alone; we'll use \x for those.
|
|
if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
|
|
Char <= 0xdbff) {
|
|
uint32_t Trail = getCodeUnit(I + 1);
|
|
if (Trail >= 0xdc00 && Trail <= 0xdfff) {
|
|
Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
|
|
++I;
|
|
}
|
|
}
|
|
|
|
if (Char > 0xff) {
|
|
// If this is a wide string, output characters over 0xff using \x
|
|
// escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
|
|
// codepoint: use \x escapes for invalid codepoints.
|
|
if (getKind() == Wide ||
|
|
(Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
|
|
// FIXME: Is this the best way to print wchar_t?
|
|
OS << "\\x";
|
|
int Shift = 28;
|
|
while ((Char >> Shift) == 0)
|
|
Shift -= 4;
|
|
for (/**/; Shift >= 0; Shift -= 4)
|
|
OS << Hex[(Char >> Shift) & 15];
|
|
LastSlashX = I;
|
|
break;
|
|
}
|
|
|
|
if (Char > 0xffff)
|
|
OS << "\\U00"
|
|
<< Hex[(Char >> 20) & 15]
|
|
<< Hex[(Char >> 16) & 15];
|
|
else
|
|
OS << "\\u";
|
|
OS << Hex[(Char >> 12) & 15]
|
|
<< Hex[(Char >> 8) & 15]
|
|
<< Hex[(Char >> 4) & 15]
|
|
<< Hex[(Char >> 0) & 15];
|
|
break;
|
|
}
|
|
|
|
// If we used \x... for the previous character, and this character is a
|
|
// hexadecimal digit, prevent it being slurped as part of the \x.
|
|
if (LastSlashX + 1 == I) {
|
|
switch (Char) {
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
|
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
|
|
OS << "\"\"";
|
|
}
|
|
}
|
|
|
|
assert(Char <= 0xff &&
|
|
"Characters above 0xff should already have been handled.");
|
|
|
|
if (isPrintable(Char))
|
|
OS << (char)Char;
|
|
else // Output anything hard as an octal escape.
|
|
OS << '\\'
|
|
<< (char)('0' + ((Char >> 6) & 7))
|
|
<< (char)('0' + ((Char >> 3) & 7))
|
|
<< (char)('0' + ((Char >> 0) & 7));
|
|
break;
|
|
// Handle some common non-printable cases to make dumps prettier.
|
|
case '\\': OS << "\\\\"; break;
|
|
case '"': OS << "\\\""; break;
|
|
case '\a': OS << "\\a"; break;
|
|
case '\b': OS << "\\b"; break;
|
|
case '\f': OS << "\\f"; break;
|
|
case '\n': OS << "\\n"; break;
|
|
case '\r': OS << "\\r"; break;
|
|
case '\t': OS << "\\t"; break;
|
|
case '\v': OS << "\\v"; break;
|
|
}
|
|
}
|
|
OS << '"';
|
|
}
|
|
|
|
void StringLiteral::setString(const ASTContext &C, StringRef Str,
|
|
StringKind Kind, bool IsPascal) {
|
|
//FIXME: we assume that the string data comes from a target that uses the same
|
|
// code unit size and endianness for the type of string.
|
|
this->Kind = Kind;
|
|
this->IsPascal = IsPascal;
|
|
|
|
CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
|
|
assert((Str.size()%CharByteWidth == 0)
|
|
&& "size of data must be multiple of CharByteWidth");
|
|
Length = Str.size()/CharByteWidth;
|
|
|
|
switch(CharByteWidth) {
|
|
case 1: {
|
|
char *AStrData = new (C) char[Length];
|
|
std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
|
|
StrData.asChar = AStrData;
|
|
break;
|
|
}
|
|
case 2: {
|
|
uint16_t *AStrData = new (C) uint16_t[Length];
|
|
std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
|
|
StrData.asUInt16 = AStrData;
|
|
break;
|
|
}
|
|
case 4: {
|
|
uint32_t *AStrData = new (C) uint32_t[Length];
|
|
std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
|
|
StrData.asUInt32 = AStrData;
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("unsupported CharByteWidth");
|
|
}
|
|
}
|
|
|
|
/// getLocationOfByte - Return a source location that points to the specified
|
|
/// byte of this string literal.
|
|
///
|
|
/// Strings are amazingly complex. They can be formed from multiple tokens and
|
|
/// can have escape sequences in them in addition to the usual trigraph and
|
|
/// escaped newline business. This routine handles this complexity.
|
|
///
|
|
/// The *StartToken sets the first token to be searched in this function and
|
|
/// the *StartTokenByteOffset is the byte offset of the first token. Before
|
|
/// returning, it updates the *StartToken to the TokNo of the token being found
|
|
/// and sets *StartTokenByteOffset to the byte offset of the token in the
|
|
/// string.
|
|
/// Using these two parameters can reduce the time complexity from O(n^2) to
|
|
/// O(n) if one wants to get the location of byte for all the tokens in a
|
|
/// string.
|
|
///
|
|
SourceLocation
|
|
StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
|
|
const LangOptions &Features,
|
|
const TargetInfo &Target, unsigned *StartToken,
|
|
unsigned *StartTokenByteOffset) const {
|
|
assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
|
|
"Only narrow string literals are currently supported");
|
|
|
|
// Loop over all of the tokens in this string until we find the one that
|
|
// contains the byte we're looking for.
|
|
unsigned TokNo = 0;
|
|
unsigned StringOffset = 0;
|
|
if (StartToken)
|
|
TokNo = *StartToken;
|
|
if (StartTokenByteOffset) {
|
|
StringOffset = *StartTokenByteOffset;
|
|
ByteNo -= StringOffset;
|
|
}
|
|
while (1) {
|
|
assert(TokNo < getNumConcatenated() && "Invalid byte number!");
|
|
SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
|
|
|
|
// Get the spelling of the string so that we can get the data that makes up
|
|
// the string literal, not the identifier for the macro it is potentially
|
|
// expanded through.
|
|
SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
|
|
|
|
// Re-lex the token to get its length and original spelling.
|
|
std::pair<FileID, unsigned> LocInfo =
|
|
SM.getDecomposedLoc(StrTokSpellingLoc);
|
|
bool Invalid = false;
|
|
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
|
|
if (Invalid) {
|
|
if (StartTokenByteOffset != nullptr)
|
|
*StartTokenByteOffset = StringOffset;
|
|
if (StartToken != nullptr)
|
|
*StartToken = TokNo;
|
|
return StrTokSpellingLoc;
|
|
}
|
|
|
|
const char *StrData = Buffer.data()+LocInfo.second;
|
|
|
|
// Create a lexer starting at the beginning of this token.
|
|
Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
|
|
Buffer.begin(), StrData, Buffer.end());
|
|
Token TheTok;
|
|
TheLexer.LexFromRawLexer(TheTok);
|
|
|
|
// Use the StringLiteralParser to compute the length of the string in bytes.
|
|
StringLiteralParser SLP(TheTok, SM, Features, Target);
|
|
unsigned TokNumBytes = SLP.GetStringLength();
|
|
|
|
// If the byte is in this token, return the location of the byte.
|
|
if (ByteNo < TokNumBytes ||
|
|
(ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
|
|
unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
|
|
|
|
// Now that we know the offset of the token in the spelling, use the
|
|
// preprocessor to get the offset in the original source.
|
|
if (StartTokenByteOffset != nullptr)
|
|
*StartTokenByteOffset = StringOffset;
|
|
if (StartToken != nullptr)
|
|
*StartToken = TokNo;
|
|
return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
|
|
}
|
|
|
|
// Move to the next string token.
|
|
StringOffset += TokNumBytes;
|
|
++TokNo;
|
|
ByteNo -= TokNumBytes;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "sizeof" or "[pre]++".
|
|
StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
|
|
#include "clang/AST/OperationKinds.def"
|
|
}
|
|
llvm_unreachable("Unknown unary operator");
|
|
}
|
|
|
|
UnaryOperatorKind
|
|
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
|
|
switch (OO) {
|
|
default: llvm_unreachable("No unary operator for overloaded function");
|
|
case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
|
|
case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
|
|
case OO_Amp: return UO_AddrOf;
|
|
case OO_Star: return UO_Deref;
|
|
case OO_Plus: return UO_Plus;
|
|
case OO_Minus: return UO_Minus;
|
|
case OO_Tilde: return UO_Not;
|
|
case OO_Exclaim: return UO_LNot;
|
|
case OO_Coawait: return UO_Coawait;
|
|
}
|
|
}
|
|
|
|
OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
|
|
switch (Opc) {
|
|
case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
|
|
case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
|
|
case UO_AddrOf: return OO_Amp;
|
|
case UO_Deref: return OO_Star;
|
|
case UO_Plus: return OO_Plus;
|
|
case UO_Minus: return OO_Minus;
|
|
case UO_Not: return OO_Tilde;
|
|
case UO_LNot: return OO_Exclaim;
|
|
case UO_Coawait: return OO_Coawait;
|
|
default: return OO_None;
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Postfix Operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
|
|
ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
|
|
ExprValueKind VK, SourceLocation rparenloc)
|
|
: Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
|
|
fn->isValueDependent(), fn->isInstantiationDependent(),
|
|
fn->containsUnexpandedParameterPack()),
|
|
NumArgs(args.size()) {
|
|
|
|
unsigned NumPreArgs = preargs.size();
|
|
SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs];
|
|
SubExprs[FN] = fn;
|
|
for (unsigned i = 0; i != NumPreArgs; ++i) {
|
|
updateDependenciesFromArg(preargs[i]);
|
|
SubExprs[i+PREARGS_START] = preargs[i];
|
|
}
|
|
for (unsigned i = 0; i != args.size(); ++i) {
|
|
updateDependenciesFromArg(args[i]);
|
|
SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
|
|
}
|
|
|
|
CallExprBits.NumPreArgs = NumPreArgs;
|
|
RParenLoc = rparenloc;
|
|
}
|
|
|
|
CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
|
|
ArrayRef<Expr *> args, QualType t, ExprValueKind VK,
|
|
SourceLocation rparenloc)
|
|
: CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {}
|
|
|
|
CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
|
|
QualType t, ExprValueKind VK, SourceLocation rparenloc)
|
|
: CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {
|
|
}
|
|
|
|
CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
|
|
: CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
|
|
|
|
CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
|
|
EmptyShell Empty)
|
|
: Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
|
|
// FIXME: Why do we allocate this?
|
|
SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]();
|
|
CallExprBits.NumPreArgs = NumPreArgs;
|
|
}
|
|
|
|
void CallExpr::updateDependenciesFromArg(Expr *Arg) {
|
|
if (Arg->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (Arg->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (Arg->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
if (Arg->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
}
|
|
|
|
FunctionDecl *CallExpr::getDirectCallee() {
|
|
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
|
|
}
|
|
|
|
Decl *CallExpr::getCalleeDecl() {
|
|
return getCallee()->getReferencedDeclOfCallee();
|
|
}
|
|
|
|
Decl *Expr::getReferencedDeclOfCallee() {
|
|
Expr *CEE = IgnoreParenImpCasts();
|
|
|
|
while (SubstNonTypeTemplateParmExpr *NTTP
|
|
= dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
|
|
CEE = NTTP->getReplacement()->IgnoreParenCasts();
|
|
}
|
|
|
|
// If we're calling a dereference, look at the pointer instead.
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
|
|
if (BO->isPtrMemOp())
|
|
CEE = BO->getRHS()->IgnoreParenCasts();
|
|
} else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
|
|
if (UO->getOpcode() == UO_Deref)
|
|
CEE = UO->getSubExpr()->IgnoreParenCasts();
|
|
}
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
|
|
return DRE->getDecl();
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
|
|
return ME->getMemberDecl();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// setNumArgs - This changes the number of arguments present in this call.
|
|
/// Any orphaned expressions are deleted by this, and any new operands are set
|
|
/// to null.
|
|
void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
|
|
// No change, just return.
|
|
if (NumArgs == getNumArgs()) return;
|
|
|
|
// If shrinking # arguments, just delete the extras and forgot them.
|
|
if (NumArgs < getNumArgs()) {
|
|
this->NumArgs = NumArgs;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are growing the # arguments. New an bigger argument array.
|
|
unsigned NumPreArgs = getNumPreArgs();
|
|
Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
|
|
// Copy over args.
|
|
for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
|
|
NewSubExprs[i] = SubExprs[i];
|
|
// Null out new args.
|
|
for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
|
|
i != NumArgs+PREARGS_START+NumPreArgs; ++i)
|
|
NewSubExprs[i] = nullptr;
|
|
|
|
if (SubExprs) C.Deallocate(SubExprs);
|
|
SubExprs = NewSubExprs;
|
|
this->NumArgs = NumArgs;
|
|
}
|
|
|
|
/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
|
|
/// not, return 0.
|
|
unsigned CallExpr::getBuiltinCallee() const {
|
|
// All simple function calls (e.g. func()) are implicitly cast to pointer to
|
|
// function. As a result, we try and obtain the DeclRefExpr from the
|
|
// ImplicitCastExpr.
|
|
const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
|
|
if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
|
|
return 0;
|
|
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
|
|
if (!DRE)
|
|
return 0;
|
|
|
|
const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
|
|
if (!FDecl)
|
|
return 0;
|
|
|
|
if (!FDecl->getIdentifier())
|
|
return 0;
|
|
|
|
return FDecl->getBuiltinID();
|
|
}
|
|
|
|
bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
|
|
if (unsigned BI = getBuiltinCallee())
|
|
return Ctx.BuiltinInfo.isUnevaluated(BI);
|
|
return false;
|
|
}
|
|
|
|
QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
|
|
const Expr *Callee = getCallee();
|
|
QualType CalleeType = Callee->getType();
|
|
if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
|
|
CalleeType = FnTypePtr->getPointeeType();
|
|
} else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
|
|
CalleeType = BPT->getPointeeType();
|
|
} else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
|
|
if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
|
|
return Ctx.VoidTy;
|
|
|
|
// This should never be overloaded and so should never return null.
|
|
CalleeType = Expr::findBoundMemberType(Callee);
|
|
}
|
|
|
|
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
|
|
return FnType->getReturnType();
|
|
}
|
|
|
|
SourceLocation CallExpr::getLocStart() const {
|
|
if (isa<CXXOperatorCallExpr>(this))
|
|
return cast<CXXOperatorCallExpr>(this)->getLocStart();
|
|
|
|
SourceLocation begin = getCallee()->getLocStart();
|
|
if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
|
|
begin = getArg(0)->getLocStart();
|
|
return begin;
|
|
}
|
|
SourceLocation CallExpr::getLocEnd() const {
|
|
if (isa<CXXOperatorCallExpr>(this))
|
|
return cast<CXXOperatorCallExpr>(this)->getLocEnd();
|
|
|
|
SourceLocation end = getRParenLoc();
|
|
if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
|
|
end = getArg(getNumArgs() - 1)->getLocEnd();
|
|
return end;
|
|
}
|
|
|
|
OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
|
|
SourceLocation OperatorLoc,
|
|
TypeSourceInfo *tsi,
|
|
ArrayRef<OffsetOfNode> comps,
|
|
ArrayRef<Expr*> exprs,
|
|
SourceLocation RParenLoc) {
|
|
void *Mem = C.Allocate(
|
|
totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
|
|
|
|
return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
|
|
RParenLoc);
|
|
}
|
|
|
|
OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
|
|
unsigned numComps, unsigned numExprs) {
|
|
void *Mem =
|
|
C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
|
|
return new (Mem) OffsetOfExpr(numComps, numExprs);
|
|
}
|
|
|
|
OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
|
|
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
|
|
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
|
|
SourceLocation RParenLoc)
|
|
: Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
|
|
/*TypeDependent=*/false,
|
|
/*ValueDependent=*/tsi->getType()->isDependentType(),
|
|
tsi->getType()->isInstantiationDependentType(),
|
|
tsi->getType()->containsUnexpandedParameterPack()),
|
|
OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
|
|
NumComps(comps.size()), NumExprs(exprs.size())
|
|
{
|
|
for (unsigned i = 0; i != comps.size(); ++i) {
|
|
setComponent(i, comps[i]);
|
|
}
|
|
|
|
for (unsigned i = 0; i != exprs.size(); ++i) {
|
|
if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (exprs[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
setIndexExpr(i, exprs[i]);
|
|
}
|
|
}
|
|
|
|
IdentifierInfo *OffsetOfNode::getFieldName() const {
|
|
assert(getKind() == Field || getKind() == Identifier);
|
|
if (getKind() == Field)
|
|
return getField()->getIdentifier();
|
|
|
|
return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
|
|
}
|
|
|
|
UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
|
|
UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
|
|
SourceLocation op, SourceLocation rp)
|
|
: Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
|
|
false, // Never type-dependent (C++ [temp.dep.expr]p3).
|
|
// Value-dependent if the argument is type-dependent.
|
|
E->isTypeDependent(), E->isInstantiationDependent(),
|
|
E->containsUnexpandedParameterPack()),
|
|
OpLoc(op), RParenLoc(rp) {
|
|
UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
|
|
UnaryExprOrTypeTraitExprBits.IsType = false;
|
|
Argument.Ex = E;
|
|
|
|
// Check to see if we are in the situation where alignof(decl) should be
|
|
// dependent because decl's alignment is dependent.
|
|
if (ExprKind == UETT_AlignOf) {
|
|
if (!isValueDependent() || !isInstantiationDependent()) {
|
|
E = E->IgnoreParens();
|
|
|
|
const ValueDecl *D = nullptr;
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
D = DRE->getDecl();
|
|
else if (const auto *ME = dyn_cast<MemberExpr>(E))
|
|
D = ME->getMemberDecl();
|
|
|
|
if (D) {
|
|
for (const auto *I : D->specific_attrs<AlignedAttr>()) {
|
|
if (I->isAlignmentDependent()) {
|
|
setValueDependent(true);
|
|
setInstantiationDependent(true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MemberExpr *MemberExpr::Create(
|
|
const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
|
|
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
|
|
ValueDecl *memberdecl, DeclAccessPair founddecl,
|
|
DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
|
|
QualType ty, ExprValueKind vk, ExprObjectKind ok) {
|
|
|
|
bool hasQualOrFound = (QualifierLoc ||
|
|
founddecl.getDecl() != memberdecl ||
|
|
founddecl.getAccess() != memberdecl->getAccess());
|
|
|
|
bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
|
|
std::size_t Size =
|
|
totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
|
|
TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
|
|
HasTemplateKWAndArgsInfo ? 1 : 0,
|
|
targs ? targs->size() : 0);
|
|
|
|
void *Mem = C.Allocate(Size, alignof(MemberExpr));
|
|
MemberExpr *E = new (Mem)
|
|
MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
|
|
|
|
if (hasQualOrFound) {
|
|
// FIXME: Wrong. We should be looking at the member declaration we found.
|
|
if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
|
|
E->setValueDependent(true);
|
|
E->setTypeDependent(true);
|
|
E->setInstantiationDependent(true);
|
|
}
|
|
else if (QualifierLoc &&
|
|
QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
|
|
E->setInstantiationDependent(true);
|
|
|
|
E->HasQualifierOrFoundDecl = true;
|
|
|
|
MemberExprNameQualifier *NQ =
|
|
E->getTrailingObjects<MemberExprNameQualifier>();
|
|
NQ->QualifierLoc = QualifierLoc;
|
|
NQ->FoundDecl = founddecl;
|
|
}
|
|
|
|
E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
|
|
|
|
if (targs) {
|
|
bool Dependent = false;
|
|
bool InstantiationDependent = false;
|
|
bool ContainsUnexpandedParameterPack = false;
|
|
E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
|
|
TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
|
|
Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
|
|
if (InstantiationDependent)
|
|
E->setInstantiationDependent(true);
|
|
} else if (TemplateKWLoc.isValid()) {
|
|
E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
|
|
TemplateKWLoc);
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
SourceLocation MemberExpr::getLocStart() const {
|
|
if (isImplicitAccess()) {
|
|
if (hasQualifier())
|
|
return getQualifierLoc().getBeginLoc();
|
|
return MemberLoc;
|
|
}
|
|
|
|
// FIXME: We don't want this to happen. Rather, we should be able to
|
|
// detect all kinds of implicit accesses more cleanly.
|
|
SourceLocation BaseStartLoc = getBase()->getLocStart();
|
|
if (BaseStartLoc.isValid())
|
|
return BaseStartLoc;
|
|
return MemberLoc;
|
|
}
|
|
SourceLocation MemberExpr::getLocEnd() const {
|
|
SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
|
|
if (hasExplicitTemplateArgs())
|
|
EndLoc = getRAngleLoc();
|
|
else if (EndLoc.isInvalid())
|
|
EndLoc = getBase()->getLocEnd();
|
|
return EndLoc;
|
|
}
|
|
|
|
bool CastExpr::CastConsistency() const {
|
|
switch (getCastKind()) {
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_BaseToDerived:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
assert(!path_empty() && "Cast kind should have a base path!");
|
|
break;
|
|
|
|
case CK_CPointerToObjCPointerCast:
|
|
assert(getType()->isObjCObjectPointerType());
|
|
assert(getSubExpr()->getType()->isPointerType());
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
assert(getType()->isObjCObjectPointerType());
|
|
assert(getSubExpr()->getType()->isBlockPointerType());
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_ReinterpretMemberPointer:
|
|
assert(getType()->isMemberPointerType());
|
|
assert(getSubExpr()->getType()->isMemberPointerType());
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_BitCast:
|
|
// Arbitrary casts to C pointer types count as bitcasts.
|
|
// Otherwise, we should only have block and ObjC pointer casts
|
|
// here if they stay within the type kind.
|
|
if (!getType()->isPointerType()) {
|
|
assert(getType()->isObjCObjectPointerType() ==
|
|
getSubExpr()->getType()->isObjCObjectPointerType());
|
|
assert(getType()->isBlockPointerType() ==
|
|
getSubExpr()->getType()->isBlockPointerType());
|
|
}
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
assert(getType()->isBlockPointerType());
|
|
assert(getSubExpr()->getType()->isAnyPointerType() &&
|
|
!getSubExpr()->getType()->isBlockPointerType());
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_CopyAndAutoreleaseBlockObject:
|
|
assert(getType()->isBlockPointerType());
|
|
assert(getSubExpr()->getType()->isBlockPointerType());
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_FunctionToPointerDecay:
|
|
assert(getType()->isPointerType());
|
|
assert(getSubExpr()->getType()->isFunctionType());
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_AddressSpaceConversion:
|
|
assert(getType()->isPointerType() || getType()->isBlockPointerType());
|
|
assert(getSubExpr()->getType()->isPointerType() ||
|
|
getSubExpr()->getType()->isBlockPointerType());
|
|
assert(getType()->getPointeeType().getAddressSpace() !=
|
|
getSubExpr()->getType()->getPointeeType().getAddressSpace());
|
|
// These should not have an inheritance path.
|
|
case CK_Dynamic:
|
|
case CK_ToUnion:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_NullToMemberPointer:
|
|
case CK_NullToPointer:
|
|
case CK_ConstructorConversion:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_ToVoid:
|
|
case CK_VectorSplat:
|
|
case CK_IntegralCast:
|
|
case CK_BooleanToSignedIntegral:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingCast:
|
|
case CK_ObjCObjectLValueCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject:
|
|
case CK_ZeroToOCLEvent:
|
|
case CK_ZeroToOCLQueue:
|
|
case CK_IntToOCLSampler:
|
|
assert(!getType()->isBooleanType() && "unheralded conversion to bool");
|
|
goto CheckNoBasePath;
|
|
|
|
case CK_Dependent:
|
|
case CK_LValueToRValue:
|
|
case CK_NoOp:
|
|
case CK_AtomicToNonAtomic:
|
|
case CK_NonAtomicToAtomic:
|
|
case CK_PointerToBoolean:
|
|
case CK_IntegralToBoolean:
|
|
case CK_FloatingToBoolean:
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_LValueBitCast: // -> bool&
|
|
case CK_UserDefinedConversion: // operator bool()
|
|
case CK_BuiltinFnToFnPtr:
|
|
CheckNoBasePath:
|
|
assert(path_empty() && "Cast kind should not have a base path!");
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const char *CastExpr::getCastKindName() const {
|
|
switch (getCastKind()) {
|
|
#define CAST_OPERATION(Name) case CK_##Name: return #Name;
|
|
#include "clang/AST/OperationKinds.def"
|
|
}
|
|
llvm_unreachable("Unhandled cast kind!");
|
|
}
|
|
|
|
Expr *CastExpr::getSubExprAsWritten() {
|
|
Expr *SubExpr = nullptr;
|
|
CastExpr *E = this;
|
|
do {
|
|
SubExpr = E->getSubExpr();
|
|
|
|
// Skip through reference binding to temporary.
|
|
if (MaterializeTemporaryExpr *Materialize
|
|
= dyn_cast<MaterializeTemporaryExpr>(SubExpr))
|
|
SubExpr = Materialize->GetTemporaryExpr();
|
|
|
|
// Skip any temporary bindings; they're implicit.
|
|
if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
|
|
SubExpr = Binder->getSubExpr();
|
|
|
|
// Conversions by constructor and conversion functions have a
|
|
// subexpression describing the call; strip it off.
|
|
if (E->getCastKind() == CK_ConstructorConversion)
|
|
SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
|
|
else if (E->getCastKind() == CK_UserDefinedConversion) {
|
|
assert((isa<CXXMemberCallExpr>(SubExpr) ||
|
|
isa<BlockExpr>(SubExpr)) &&
|
|
"Unexpected SubExpr for CK_UserDefinedConversion.");
|
|
if (isa<CXXMemberCallExpr>(SubExpr))
|
|
SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
|
|
}
|
|
|
|
// If the subexpression we're left with is an implicit cast, look
|
|
// through that, too.
|
|
} while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
|
|
|
|
return SubExpr;
|
|
}
|
|
|
|
CXXBaseSpecifier **CastExpr::path_buffer() {
|
|
switch (getStmtClass()) {
|
|
#define ABSTRACT_STMT(x)
|
|
#define CASTEXPR(Type, Base) \
|
|
case Stmt::Type##Class: \
|
|
return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
|
|
#define STMT(Type, Base)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
default:
|
|
llvm_unreachable("non-cast expressions not possible here");
|
|
}
|
|
}
|
|
|
|
ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
|
|
CastKind Kind, Expr *Operand,
|
|
const CXXCastPath *BasePath,
|
|
ExprValueKind VK) {
|
|
unsigned PathSize = (BasePath ? BasePath->size() : 0);
|
|
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
|
|
ImplicitCastExpr *E =
|
|
new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
|
|
if (PathSize)
|
|
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
|
|
E->getTrailingObjects<CXXBaseSpecifier *>());
|
|
return E;
|
|
}
|
|
|
|
ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
|
|
unsigned PathSize) {
|
|
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
|
|
return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
|
|
}
|
|
|
|
|
|
CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
|
|
ExprValueKind VK, CastKind K, Expr *Op,
|
|
const CXXCastPath *BasePath,
|
|
TypeSourceInfo *WrittenTy,
|
|
SourceLocation L, SourceLocation R) {
|
|
unsigned PathSize = (BasePath ? BasePath->size() : 0);
|
|
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
|
|
CStyleCastExpr *E =
|
|
new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
|
|
if (PathSize)
|
|
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
|
|
E->getTrailingObjects<CXXBaseSpecifier *>());
|
|
return E;
|
|
}
|
|
|
|
CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
|
|
unsigned PathSize) {
|
|
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
|
|
return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "<<=".
|
|
StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
|
|
#include "clang/AST/OperationKinds.def"
|
|
}
|
|
llvm_unreachable("Invalid OpCode!");
|
|
}
|
|
|
|
BinaryOperatorKind
|
|
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
|
|
switch (OO) {
|
|
default: llvm_unreachable("Not an overloadable binary operator");
|
|
case OO_Plus: return BO_Add;
|
|
case OO_Minus: return BO_Sub;
|
|
case OO_Star: return BO_Mul;
|
|
case OO_Slash: return BO_Div;
|
|
case OO_Percent: return BO_Rem;
|
|
case OO_Caret: return BO_Xor;
|
|
case OO_Amp: return BO_And;
|
|
case OO_Pipe: return BO_Or;
|
|
case OO_Equal: return BO_Assign;
|
|
case OO_Less: return BO_LT;
|
|
case OO_Greater: return BO_GT;
|
|
case OO_PlusEqual: return BO_AddAssign;
|
|
case OO_MinusEqual: return BO_SubAssign;
|
|
case OO_StarEqual: return BO_MulAssign;
|
|
case OO_SlashEqual: return BO_DivAssign;
|
|
case OO_PercentEqual: return BO_RemAssign;
|
|
case OO_CaretEqual: return BO_XorAssign;
|
|
case OO_AmpEqual: return BO_AndAssign;
|
|
case OO_PipeEqual: return BO_OrAssign;
|
|
case OO_LessLess: return BO_Shl;
|
|
case OO_GreaterGreater: return BO_Shr;
|
|
case OO_LessLessEqual: return BO_ShlAssign;
|
|
case OO_GreaterGreaterEqual: return BO_ShrAssign;
|
|
case OO_EqualEqual: return BO_EQ;
|
|
case OO_ExclaimEqual: return BO_NE;
|
|
case OO_LessEqual: return BO_LE;
|
|
case OO_GreaterEqual: return BO_GE;
|
|
case OO_AmpAmp: return BO_LAnd;
|
|
case OO_PipePipe: return BO_LOr;
|
|
case OO_Comma: return BO_Comma;
|
|
case OO_ArrowStar: return BO_PtrMemI;
|
|
}
|
|
}
|
|
|
|
OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
|
|
static const OverloadedOperatorKind OverOps[] = {
|
|
/* .* Cannot be overloaded */OO_None, OO_ArrowStar,
|
|
OO_Star, OO_Slash, OO_Percent,
|
|
OO_Plus, OO_Minus,
|
|
OO_LessLess, OO_GreaterGreater,
|
|
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
|
|
OO_EqualEqual, OO_ExclaimEqual,
|
|
OO_Amp,
|
|
OO_Caret,
|
|
OO_Pipe,
|
|
OO_AmpAmp,
|
|
OO_PipePipe,
|
|
OO_Equal, OO_StarEqual,
|
|
OO_SlashEqual, OO_PercentEqual,
|
|
OO_PlusEqual, OO_MinusEqual,
|
|
OO_LessLessEqual, OO_GreaterGreaterEqual,
|
|
OO_AmpEqual, OO_CaretEqual,
|
|
OO_PipeEqual,
|
|
OO_Comma
|
|
};
|
|
return OverOps[Opc];
|
|
}
|
|
|
|
InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
|
|
ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
|
|
: Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
|
|
false, false),
|
|
InitExprs(C, initExprs.size()),
|
|
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
|
|
{
|
|
sawArrayRangeDesignator(false);
|
|
for (unsigned I = 0; I != initExprs.size(); ++I) {
|
|
if (initExprs[I]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (initExprs[I]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (initExprs[I]->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
if (initExprs[I]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
}
|
|
|
|
InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
|
|
}
|
|
|
|
void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
|
|
if (NumInits > InitExprs.size())
|
|
InitExprs.reserve(C, NumInits);
|
|
}
|
|
|
|
void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
|
|
InitExprs.resize(C, NumInits, nullptr);
|
|
}
|
|
|
|
Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
|
|
if (Init >= InitExprs.size()) {
|
|
InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
|
|
setInit(Init, expr);
|
|
return nullptr;
|
|
}
|
|
|
|
Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
|
|
setInit(Init, expr);
|
|
return Result;
|
|
}
|
|
|
|
void InitListExpr::setArrayFiller(Expr *filler) {
|
|
assert(!hasArrayFiller() && "Filler already set!");
|
|
ArrayFillerOrUnionFieldInit = filler;
|
|
// Fill out any "holes" in the array due to designated initializers.
|
|
Expr **inits = getInits();
|
|
for (unsigned i = 0, e = getNumInits(); i != e; ++i)
|
|
if (inits[i] == nullptr)
|
|
inits[i] = filler;
|
|
}
|
|
|
|
bool InitListExpr::isStringLiteralInit() const {
|
|
if (getNumInits() != 1)
|
|
return false;
|
|
const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
|
|
if (!AT || !AT->getElementType()->isIntegerType())
|
|
return false;
|
|
// It is possible for getInit() to return null.
|
|
const Expr *Init = getInit(0);
|
|
if (!Init)
|
|
return false;
|
|
Init = Init->IgnoreParens();
|
|
return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
|
|
}
|
|
|
|
bool InitListExpr::isTransparent() const {
|
|
assert(isSemanticForm() && "syntactic form never semantically transparent");
|
|
|
|
// A glvalue InitListExpr is always just sugar.
|
|
if (isGLValue()) {
|
|
assert(getNumInits() == 1 && "multiple inits in glvalue init list");
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we're sugar if and only if we have exactly one initializer that
|
|
// is of the same type.
|
|
if (getNumInits() != 1 || !getInit(0))
|
|
return false;
|
|
|
|
// Don't confuse aggregate initialization of a struct X { X &x; }; with a
|
|
// transparent struct copy.
|
|
if (!getInit(0)->isRValue() && getType()->isRecordType())
|
|
return false;
|
|
|
|
return getType().getCanonicalType() ==
|
|
getInit(0)->getType().getCanonicalType();
|
|
}
|
|
|
|
SourceLocation InitListExpr::getLocStart() const {
|
|
if (InitListExpr *SyntacticForm = getSyntacticForm())
|
|
return SyntacticForm->getLocStart();
|
|
SourceLocation Beg = LBraceLoc;
|
|
if (Beg.isInvalid()) {
|
|
// Find the first non-null initializer.
|
|
for (InitExprsTy::const_iterator I = InitExprs.begin(),
|
|
E = InitExprs.end();
|
|
I != E; ++I) {
|
|
if (Stmt *S = *I) {
|
|
Beg = S->getLocStart();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Beg;
|
|
}
|
|
|
|
SourceLocation InitListExpr::getLocEnd() const {
|
|
if (InitListExpr *SyntacticForm = getSyntacticForm())
|
|
return SyntacticForm->getLocEnd();
|
|
SourceLocation End = RBraceLoc;
|
|
if (End.isInvalid()) {
|
|
// Find the first non-null initializer from the end.
|
|
for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
|
|
E = InitExprs.rend();
|
|
I != E; ++I) {
|
|
if (Stmt *S = *I) {
|
|
End = S->getLocEnd();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return End;
|
|
}
|
|
|
|
/// getFunctionType - Return the underlying function type for this block.
|
|
///
|
|
const FunctionProtoType *BlockExpr::getFunctionType() const {
|
|
// The block pointer is never sugared, but the function type might be.
|
|
return cast<BlockPointerType>(getType())
|
|
->getPointeeType()->castAs<FunctionProtoType>();
|
|
}
|
|
|
|
SourceLocation BlockExpr::getCaretLocation() const {
|
|
return TheBlock->getCaretLocation();
|
|
}
|
|
const Stmt *BlockExpr::getBody() const {
|
|
return TheBlock->getBody();
|
|
}
|
|
Stmt *BlockExpr::getBody() {
|
|
return TheBlock->getBody();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Expression Routines
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isUnusedResultAWarning - Return true if this immediate expression should
|
|
/// be warned about if the result is unused. If so, fill in Loc and Ranges
|
|
/// with location to warn on and the source range[s] to report with the
|
|
/// warning.
|
|
bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
|
|
SourceRange &R1, SourceRange &R2,
|
|
ASTContext &Ctx) const {
|
|
// Don't warn if the expr is type dependent. The type could end up
|
|
// instantiating to void.
|
|
if (isTypeDependent())
|
|
return false;
|
|
|
|
switch (getStmtClass()) {
|
|
default:
|
|
if (getType()->isVoidType())
|
|
return false;
|
|
WarnE = this;
|
|
Loc = getExprLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->
|
|
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
case GenericSelectionExprClass:
|
|
return cast<GenericSelectionExpr>(this)->getResultExpr()->
|
|
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
case ChooseExprClass:
|
|
return cast<ChooseExpr>(this)->getChosenSubExpr()->
|
|
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(this);
|
|
|
|
switch (UO->getOpcode()) {
|
|
case UO_Plus:
|
|
case UO_Minus:
|
|
case UO_AddrOf:
|
|
case UO_Not:
|
|
case UO_LNot:
|
|
case UO_Deref:
|
|
break;
|
|
case UO_Coawait:
|
|
// This is just the 'operator co_await' call inside the guts of a
|
|
// dependent co_await call.
|
|
case UO_PostInc:
|
|
case UO_PostDec:
|
|
case UO_PreInc:
|
|
case UO_PreDec: // ++/--
|
|
return false; // Not a warning.
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
// accessing a piece of a volatile complex is a side-effect.
|
|
if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
|
|
.isVolatileQualified())
|
|
return false;
|
|
break;
|
|
case UO_Extension:
|
|
return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
}
|
|
WarnE = this;
|
|
Loc = UO->getOperatorLoc();
|
|
R1 = UO->getSubExpr()->getSourceRange();
|
|
return true;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(this);
|
|
switch (BO->getOpcode()) {
|
|
default:
|
|
break;
|
|
// Consider the RHS of comma for side effects. LHS was checked by
|
|
// Sema::CheckCommaOperands.
|
|
case BO_Comma:
|
|
// ((foo = <blah>), 0) is an idiom for hiding the result (and
|
|
// lvalue-ness) of an assignment written in a macro.
|
|
if (IntegerLiteral *IE =
|
|
dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
|
|
if (IE->getValue() == 0)
|
|
return false;
|
|
return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
// Consider '||', '&&' to have side effects if the LHS or RHS does.
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
|
|
!BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
|
|
return false;
|
|
break;
|
|
}
|
|
if (BO->isAssignmentOp())
|
|
return false;
|
|
WarnE = this;
|
|
Loc = BO->getOperatorLoc();
|
|
R1 = BO->getLHS()->getSourceRange();
|
|
R2 = BO->getRHS()->getSourceRange();
|
|
return true;
|
|
}
|
|
case CompoundAssignOperatorClass:
|
|
case VAArgExprClass:
|
|
case AtomicExprClass:
|
|
return false;
|
|
|
|
case ConditionalOperatorClass: {
|
|
// If only one of the LHS or RHS is a warning, the operator might
|
|
// be being used for control flow. Only warn if both the LHS and
|
|
// RHS are warnings.
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
|
|
if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
|
|
return false;
|
|
if (!Exp->getLHS())
|
|
return true;
|
|
return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
}
|
|
|
|
case MemberExprClass:
|
|
WarnE = this;
|
|
Loc = cast<MemberExpr>(this)->getMemberLoc();
|
|
R1 = SourceRange(Loc, Loc);
|
|
R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
|
|
return true;
|
|
|
|
case ArraySubscriptExprClass:
|
|
WarnE = this;
|
|
Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
|
|
R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
|
|
R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
|
|
return true;
|
|
|
|
case CXXOperatorCallExprClass: {
|
|
// Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
|
|
// overloads as there is no reasonable way to define these such that they
|
|
// have non-trivial, desirable side-effects. See the -Wunused-comparison
|
|
// warning: operators == and != are commonly typo'ed, and so warning on them
|
|
// provides additional value as well. If this list is updated,
|
|
// DiagnoseUnusedComparison should be as well.
|
|
const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
|
|
switch (Op->getOperator()) {
|
|
default:
|
|
break;
|
|
case OO_EqualEqual:
|
|
case OO_ExclaimEqual:
|
|
case OO_Less:
|
|
case OO_Greater:
|
|
case OO_GreaterEqual:
|
|
case OO_LessEqual:
|
|
if (Op->getCallReturnType(Ctx)->isReferenceType() ||
|
|
Op->getCallReturnType(Ctx)->isVoidType())
|
|
break;
|
|
WarnE = this;
|
|
Loc = Op->getOperatorLoc();
|
|
R1 = Op->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Fallthrough for generic call handling.
|
|
}
|
|
case CallExprClass:
|
|
case CXXMemberCallExprClass:
|
|
case UserDefinedLiteralClass: {
|
|
// If this is a direct call, get the callee.
|
|
const CallExpr *CE = cast<CallExpr>(this);
|
|
if (const Decl *FD = CE->getCalleeDecl()) {
|
|
const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
|
|
bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
|
|
: FD->hasAttr<WarnUnusedResultAttr>();
|
|
|
|
// If the callee has attribute pure, const, or warn_unused_result, warn
|
|
// about it. void foo() { strlen("bar"); } should warn.
|
|
//
|
|
// Note: If new cases are added here, DiagnoseUnusedExprResult should be
|
|
// updated to match for QoI.
|
|
if (HasWarnUnusedResultAttr ||
|
|
FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
|
|
WarnE = this;
|
|
Loc = CE->getCallee()->getLocStart();
|
|
R1 = CE->getCallee()->getSourceRange();
|
|
|
|
if (unsigned NumArgs = CE->getNumArgs())
|
|
R2 = SourceRange(CE->getArg(0)->getLocStart(),
|
|
CE->getArg(NumArgs-1)->getLocEnd());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If we don't know precisely what we're looking at, let's not warn.
|
|
case UnresolvedLookupExprClass:
|
|
case CXXUnresolvedConstructExprClass:
|
|
return false;
|
|
|
|
case CXXTemporaryObjectExprClass:
|
|
case CXXConstructExprClass: {
|
|
if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
|
|
if (Type->hasAttr<WarnUnusedAttr>()) {
|
|
WarnE = this;
|
|
Loc = getLocStart();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case ObjCMessageExprClass: {
|
|
const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
|
|
if (Ctx.getLangOpts().ObjCAutoRefCount &&
|
|
ME->isInstanceMessage() &&
|
|
!ME->getType()->isVoidType() &&
|
|
ME->getMethodFamily() == OMF_init) {
|
|
WarnE = this;
|
|
Loc = getExprLoc();
|
|
R1 = ME->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (const ObjCMethodDecl *MD = ME->getMethodDecl())
|
|
if (MD->hasAttr<WarnUnusedResultAttr>()) {
|
|
WarnE = this;
|
|
Loc = getExprLoc();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
case ObjCPropertyRefExprClass:
|
|
WarnE = this;
|
|
Loc = getExprLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
|
|
case PseudoObjectExprClass: {
|
|
const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
|
|
|
|
// Only complain about things that have the form of a getter.
|
|
if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
|
|
isa<BinaryOperator>(PO->getSyntacticForm()))
|
|
return false;
|
|
|
|
WarnE = this;
|
|
Loc = getExprLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
case StmtExprClass: {
|
|
// Statement exprs don't logically have side effects themselves, but are
|
|
// sometimes used in macros in ways that give them a type that is unused.
|
|
// For example ({ blah; foo(); }) will end up with a type if foo has a type.
|
|
// however, if the result of the stmt expr is dead, we don't want to emit a
|
|
// warning.
|
|
const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
|
|
if (!CS->body_empty()) {
|
|
if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
|
|
return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
|
|
if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
|
|
return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
}
|
|
|
|
if (getType()->isVoidType())
|
|
return false;
|
|
WarnE = this;
|
|
Loc = cast<StmtExpr>(this)->getLParenLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
}
|
|
case CXXFunctionalCastExprClass:
|
|
case CStyleCastExprClass: {
|
|
// Ignore an explicit cast to void unless the operand is a non-trivial
|
|
// volatile lvalue.
|
|
const CastExpr *CE = cast<CastExpr>(this);
|
|
if (CE->getCastKind() == CK_ToVoid) {
|
|
if (CE->getSubExpr()->isGLValue() &&
|
|
CE->getSubExpr()->getType().isVolatileQualified()) {
|
|
const DeclRefExpr *DRE =
|
|
dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
|
|
if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
|
|
cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
|
|
return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
|
|
R1, R2, Ctx);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If this is a cast to a constructor conversion, check the operand.
|
|
// Otherwise, the result of the cast is unused.
|
|
if (CE->getCastKind() == CK_ConstructorConversion)
|
|
return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
|
|
WarnE = this;
|
|
if (const CXXFunctionalCastExpr *CXXCE =
|
|
dyn_cast<CXXFunctionalCastExpr>(this)) {
|
|
Loc = CXXCE->getLocStart();
|
|
R1 = CXXCE->getSubExpr()->getSourceRange();
|
|
} else {
|
|
const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
|
|
Loc = CStyleCE->getLParenLoc();
|
|
R1 = CStyleCE->getSubExpr()->getSourceRange();
|
|
}
|
|
return true;
|
|
}
|
|
case ImplicitCastExprClass: {
|
|
const CastExpr *ICE = cast<ImplicitCastExpr>(this);
|
|
|
|
// lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
|
|
if (ICE->getCastKind() == CK_LValueToRValue &&
|
|
ICE->getSubExpr()->getType().isVolatileQualified())
|
|
return false;
|
|
|
|
return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
}
|
|
case CXXDefaultArgExprClass:
|
|
return (cast<CXXDefaultArgExpr>(this)
|
|
->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
|
|
case CXXDefaultInitExprClass:
|
|
return (cast<CXXDefaultInitExpr>(this)
|
|
->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
|
|
|
|
case CXXNewExprClass:
|
|
// FIXME: In theory, there might be new expressions that don't have side
|
|
// effects (e.g. a placement new with an uninitialized POD).
|
|
case CXXDeleteExprClass:
|
|
return false;
|
|
case MaterializeTemporaryExprClass:
|
|
return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
|
|
->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
case CXXBindTemporaryExprClass:
|
|
return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
|
|
->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
case ExprWithCleanupsClass:
|
|
return cast<ExprWithCleanups>(this)->getSubExpr()
|
|
->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
|
|
}
|
|
}
|
|
|
|
/// isOBJCGCCandidate - Check if an expression is objc gc'able.
|
|
/// returns true, if it is; false otherwise.
|
|
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
|
|
const Expr *E = IgnoreParens();
|
|
switch (E->getStmtClass()) {
|
|
default:
|
|
return false;
|
|
case ObjCIvarRefExprClass:
|
|
return true;
|
|
case Expr::UnaryOperatorClass:
|
|
return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
|
|
case ImplicitCastExprClass:
|
|
return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
|
|
case MaterializeTemporaryExprClass:
|
|
return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
|
|
->isOBJCGCCandidate(Ctx);
|
|
case CStyleCastExprClass:
|
|
return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
|
|
case DeclRefExprClass: {
|
|
const Decl *D = cast<DeclRefExpr>(E)->getDecl();
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->hasGlobalStorage())
|
|
return true;
|
|
QualType T = VD->getType();
|
|
// dereferencing to a pointer is always a gc'able candidate,
|
|
// unless it is __weak.
|
|
return T->isPointerType() &&
|
|
(Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
|
|
}
|
|
return false;
|
|
}
|
|
case MemberExprClass: {
|
|
const MemberExpr *M = cast<MemberExpr>(E);
|
|
return M->getBase()->isOBJCGCCandidate(Ctx);
|
|
}
|
|
case ArraySubscriptExprClass:
|
|
return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
|
|
}
|
|
}
|
|
|
|
bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
|
|
if (isTypeDependent())
|
|
return false;
|
|
return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
|
|
}
|
|
|
|
QualType Expr::findBoundMemberType(const Expr *expr) {
|
|
assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
|
|
|
|
// Bound member expressions are always one of these possibilities:
|
|
// x->m x.m x->*y x.*y
|
|
// (possibly parenthesized)
|
|
|
|
expr = expr->IgnoreParens();
|
|
if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
|
|
assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
|
|
return mem->getMemberDecl()->getType();
|
|
}
|
|
|
|
if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
|
|
QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
|
|
->getPointeeType();
|
|
assert(type->isFunctionType());
|
|
return type;
|
|
}
|
|
|
|
assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
|
|
return QualType();
|
|
}
|
|
|
|
Expr* Expr::IgnoreParens() {
|
|
Expr* E = this;
|
|
while (true) {
|
|
if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
|
|
if (P->getOpcode() == UO_Extension) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
|
|
if (!P->isResultDependent()) {
|
|
E = P->getResultExpr();
|
|
continue;
|
|
}
|
|
}
|
|
if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
|
|
if (!P->isConditionDependent()) {
|
|
E = P->getChosenSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
|
|
/// or CastExprs or ImplicitCastExprs, returning their operand.
|
|
Expr *Expr::IgnoreParenCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (MaterializeTemporaryExpr *Materialize
|
|
= dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
E = Materialize->GetTemporaryExpr();
|
|
continue;
|
|
}
|
|
if (SubstNonTypeTemplateParmExpr *NTTP
|
|
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
|
|
E = NTTP->getReplacement();
|
|
continue;
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
Expr *Expr::IgnoreCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (MaterializeTemporaryExpr *Materialize
|
|
= dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
E = Materialize->GetTemporaryExpr();
|
|
continue;
|
|
}
|
|
if (SubstNonTypeTemplateParmExpr *NTTP
|
|
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
|
|
E = NTTP->getReplacement();
|
|
continue;
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
|
|
/// casts. This is intended purely as a temporary workaround for code
|
|
/// that hasn't yet been rewritten to do the right thing about those
|
|
/// casts, and may disappear along with the last internal use.
|
|
Expr *Expr::IgnoreParenLValueCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
|
|
if (P->getCastKind() == CK_LValueToRValue) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
} else if (MaterializeTemporaryExpr *Materialize
|
|
= dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
E = Materialize->GetTemporaryExpr();
|
|
continue;
|
|
} else if (SubstNonTypeTemplateParmExpr *NTTP
|
|
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
|
|
E = NTTP->getReplacement();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
Expr *Expr::ignoreParenBaseCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if (CE->getCastKind() == CK_DerivedToBase ||
|
|
CE->getCastKind() == CK_UncheckedDerivedToBase ||
|
|
CE->getCastKind() == CK_NoOp) {
|
|
E = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return E;
|
|
}
|
|
}
|
|
|
|
Expr *Expr::IgnoreParenImpCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (MaterializeTemporaryExpr *Materialize
|
|
= dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
E = Materialize->GetTemporaryExpr();
|
|
continue;
|
|
}
|
|
if (SubstNonTypeTemplateParmExpr *NTTP
|
|
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
|
|
E = NTTP->getReplacement();
|
|
continue;
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
Expr *Expr::IgnoreConversionOperator() {
|
|
if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
|
|
if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
|
|
return MCE->getImplicitObjectArgument();
|
|
}
|
|
return this;
|
|
}
|
|
|
|
/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
|
|
/// value (including ptr->int casts of the same size). Strip off any
|
|
/// ParenExpr or CastExprs, returning their operand.
|
|
Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
|
|
Expr *E = this;
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
|
|
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
|
|
// We ignore integer <-> casts that are of the same width, ptr<->ptr and
|
|
// ptr<->int casts of the same width. We also ignore all identity casts.
|
|
Expr *SE = P->getSubExpr();
|
|
|
|
if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
|
|
E = SE;
|
|
continue;
|
|
}
|
|
|
|
if ((E->getType()->isPointerType() ||
|
|
E->getType()->isIntegralType(Ctx)) &&
|
|
(SE->getType()->isPointerType() ||
|
|
SE->getType()->isIntegralType(Ctx)) &&
|
|
Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
|
|
E = SE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (SubstNonTypeTemplateParmExpr *NTTP
|
|
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
|
|
E = NTTP->getReplacement();
|
|
continue;
|
|
}
|
|
|
|
return E;
|
|
}
|
|
}
|
|
|
|
bool Expr::isDefaultArgument() const {
|
|
const Expr *E = this;
|
|
if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
|
|
E = M->GetTemporaryExpr();
|
|
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
|
|
E = ICE->getSubExprAsWritten();
|
|
|
|
return isa<CXXDefaultArgExpr>(E);
|
|
}
|
|
|
|
/// \brief Skip over any no-op casts and any temporary-binding
|
|
/// expressions.
|
|
static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
|
|
if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
|
|
E = M->GetTemporaryExpr();
|
|
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_NoOp)
|
|
E = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
|
|
E = BE->getSubExpr();
|
|
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_NoOp)
|
|
E = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
return E->IgnoreParens();
|
|
}
|
|
|
|
/// isTemporaryObject - Determines if this expression produces a
|
|
/// temporary of the given class type.
|
|
bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
|
|
if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
|
|
return false;
|
|
|
|
const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
|
|
|
|
// Temporaries are by definition pr-values of class type.
|
|
if (!E->Classify(C).isPRValue()) {
|
|
// In this context, property reference is a message call and is pr-value.
|
|
if (!isa<ObjCPropertyRefExpr>(E))
|
|
return false;
|
|
}
|
|
|
|
// Black-list a few cases which yield pr-values of class type that don't
|
|
// refer to temporaries of that type:
|
|
|
|
// - implicit derived-to-base conversions
|
|
if (isa<ImplicitCastExpr>(E)) {
|
|
switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// - member expressions (all)
|
|
if (isa<MemberExpr>(E))
|
|
return false;
|
|
|
|
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
|
|
if (BO->isPtrMemOp())
|
|
return false;
|
|
|
|
// - opaque values (all)
|
|
if (isa<OpaqueValueExpr>(E))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Expr::isImplicitCXXThis() const {
|
|
const Expr *E = this;
|
|
|
|
// Strip away parentheses and casts we don't care about.
|
|
while (true) {
|
|
if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
|
|
E = Paren->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_NoOp ||
|
|
ICE->getCastKind() == CK_LValueToRValue ||
|
|
ICE->getCastKind() == CK_DerivedToBase ||
|
|
ICE->getCastKind() == CK_UncheckedDerivedToBase) {
|
|
E = ICE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
|
|
if (UnOp->getOpcode() == UO_Extension) {
|
|
E = UnOp->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (const MaterializeTemporaryExpr *M
|
|
= dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
E = M->GetTemporaryExpr();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
|
|
return This->isImplicit();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasAnyTypeDependentArguments - Determines if any of the expressions
|
|
/// in Exprs is type-dependent.
|
|
bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
|
|
for (unsigned I = 0; I < Exprs.size(); ++I)
|
|
if (Exprs[I]->isTypeDependent())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
|
|
const Expr **Culprit) const {
|
|
// This function is attempting whether an expression is an initializer
|
|
// which can be evaluated at compile-time. It very closely parallels
|
|
// ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
|
|
// will lead to unexpected results. Like ConstExprEmitter, it falls back
|
|
// to isEvaluatable most of the time.
|
|
//
|
|
// If we ever capture reference-binding directly in the AST, we can
|
|
// kill the second parameter.
|
|
|
|
if (IsForRef) {
|
|
EvalResult Result;
|
|
if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
|
|
return true;
|
|
if (Culprit)
|
|
*Culprit = this;
|
|
return false;
|
|
}
|
|
|
|
switch (getStmtClass()) {
|
|
default: break;
|
|
case StringLiteralClass:
|
|
case ObjCEncodeExprClass:
|
|
return true;
|
|
case CXXTemporaryObjectExprClass:
|
|
case CXXConstructExprClass: {
|
|
const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
|
|
|
|
if (CE->getConstructor()->isTrivial() &&
|
|
CE->getConstructor()->getParent()->hasTrivialDestructor()) {
|
|
// Trivial default constructor
|
|
if (!CE->getNumArgs()) return true;
|
|
|
|
// Trivial copy constructor
|
|
assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
|
|
return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case CompoundLiteralExprClass: {
|
|
// This handles gcc's extension that allows global initializers like
|
|
// "struct x {int x;} x = (struct x) {};".
|
|
// FIXME: This accepts other cases it shouldn't!
|
|
const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
|
|
return Exp->isConstantInitializer(Ctx, false, Culprit);
|
|
}
|
|
case DesignatedInitUpdateExprClass: {
|
|
const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
|
|
return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
|
|
DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
|
|
}
|
|
case InitListExprClass: {
|
|
const InitListExpr *ILE = cast<InitListExpr>(this);
|
|
if (ILE->getType()->isArrayType()) {
|
|
unsigned numInits = ILE->getNumInits();
|
|
for (unsigned i = 0; i < numInits; i++) {
|
|
if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (ILE->getType()->isRecordType()) {
|
|
unsigned ElementNo = 0;
|
|
RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
|
|
for (const auto *Field : RD->fields()) {
|
|
// If this is a union, skip all the fields that aren't being initialized.
|
|
if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
|
|
continue;
|
|
|
|
// Don't emit anonymous bitfields, they just affect layout.
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
if (ElementNo < ILE->getNumInits()) {
|
|
const Expr *Elt = ILE->getInit(ElementNo++);
|
|
if (Field->isBitField()) {
|
|
// Bitfields have to evaluate to an integer.
|
|
llvm::APSInt ResultTmp;
|
|
if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
|
|
if (Culprit)
|
|
*Culprit = Elt;
|
|
return false;
|
|
}
|
|
} else {
|
|
bool RefType = Field->getType()->isReferenceType();
|
|
if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case ImplicitValueInitExprClass:
|
|
case NoInitExprClass:
|
|
return true;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()
|
|
->isConstantInitializer(Ctx, IsForRef, Culprit);
|
|
case GenericSelectionExprClass:
|
|
return cast<GenericSelectionExpr>(this)->getResultExpr()
|
|
->isConstantInitializer(Ctx, IsForRef, Culprit);
|
|
case ChooseExprClass:
|
|
if (cast<ChooseExpr>(this)->isConditionDependent()) {
|
|
if (Culprit)
|
|
*Culprit = this;
|
|
return false;
|
|
}
|
|
return cast<ChooseExpr>(this)->getChosenSubExpr()
|
|
->isConstantInitializer(Ctx, IsForRef, Culprit);
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator* Exp = cast<UnaryOperator>(this);
|
|
if (Exp->getOpcode() == UO_Extension)
|
|
return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
|
|
break;
|
|
}
|
|
case CXXFunctionalCastExprClass:
|
|
case CXXStaticCastExprClass:
|
|
case ImplicitCastExprClass:
|
|
case CStyleCastExprClass:
|
|
case ObjCBridgedCastExprClass:
|
|
case CXXDynamicCastExprClass:
|
|
case CXXReinterpretCastExprClass:
|
|
case CXXConstCastExprClass: {
|
|
const CastExpr *CE = cast<CastExpr>(this);
|
|
|
|
// Handle misc casts we want to ignore.
|
|
if (CE->getCastKind() == CK_NoOp ||
|
|
CE->getCastKind() == CK_LValueToRValue ||
|
|
CE->getCastKind() == CK_ToUnion ||
|
|
CE->getCastKind() == CK_ConstructorConversion ||
|
|
CE->getCastKind() == CK_NonAtomicToAtomic ||
|
|
CE->getCastKind() == CK_AtomicToNonAtomic ||
|
|
CE->getCastKind() == CK_IntToOCLSampler)
|
|
return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
|
|
|
|
break;
|
|
}
|
|
case MaterializeTemporaryExprClass:
|
|
return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
|
|
->isConstantInitializer(Ctx, false, Culprit);
|
|
|
|
case SubstNonTypeTemplateParmExprClass:
|
|
return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
|
|
->isConstantInitializer(Ctx, false, Culprit);
|
|
case CXXDefaultArgExprClass:
|
|
return cast<CXXDefaultArgExpr>(this)->getExpr()
|
|
->isConstantInitializer(Ctx, false, Culprit);
|
|
case CXXDefaultInitExprClass:
|
|
return cast<CXXDefaultInitExpr>(this)->getExpr()
|
|
->isConstantInitializer(Ctx, false, Culprit);
|
|
}
|
|
// Allow certain forms of UB in constant initializers: signed integer
|
|
// overflow and floating-point division by zero. We'll give a warning on
|
|
// these, but they're common enough that we have to accept them.
|
|
if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
|
|
return true;
|
|
if (Culprit)
|
|
*Culprit = this;
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Look for any side effects within a Stmt.
|
|
class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
|
|
typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
|
|
const bool IncludePossibleEffects;
|
|
bool HasSideEffects;
|
|
|
|
public:
|
|
explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
|
|
: Inherited(Context),
|
|
IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
|
|
|
|
bool hasSideEffects() const { return HasSideEffects; }
|
|
|
|
void VisitExpr(const Expr *E) {
|
|
if (!HasSideEffects &&
|
|
E->HasSideEffects(Context, IncludePossibleEffects))
|
|
HasSideEffects = true;
|
|
}
|
|
};
|
|
}
|
|
|
|
bool Expr::HasSideEffects(const ASTContext &Ctx,
|
|
bool IncludePossibleEffects) const {
|
|
// In circumstances where we care about definite side effects instead of
|
|
// potential side effects, we want to ignore expressions that are part of a
|
|
// macro expansion as a potential side effect.
|
|
if (!IncludePossibleEffects && getExprLoc().isMacroID())
|
|
return false;
|
|
|
|
if (isInstantiationDependent())
|
|
return IncludePossibleEffects;
|
|
|
|
switch (getStmtClass()) {
|
|
case NoStmtClass:
|
|
#define ABSTRACT_STMT(Type)
|
|
#define STMT(Type, Base) case Type##Class:
|
|
#define EXPR(Type, Base)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
llvm_unreachable("unexpected Expr kind");
|
|
|
|
case DependentScopeDeclRefExprClass:
|
|
case CXXUnresolvedConstructExprClass:
|
|
case CXXDependentScopeMemberExprClass:
|
|
case UnresolvedLookupExprClass:
|
|
case UnresolvedMemberExprClass:
|
|
case PackExpansionExprClass:
|
|
case SubstNonTypeTemplateParmPackExprClass:
|
|
case FunctionParmPackExprClass:
|
|
case TypoExprClass:
|
|
case CXXFoldExprClass:
|
|
llvm_unreachable("shouldn't see dependent / unresolved nodes here");
|
|
|
|
case DeclRefExprClass:
|
|
case ObjCIvarRefExprClass:
|
|
case PredefinedExprClass:
|
|
case IntegerLiteralClass:
|
|
case FloatingLiteralClass:
|
|
case ImaginaryLiteralClass:
|
|
case StringLiteralClass:
|
|
case CharacterLiteralClass:
|
|
case OffsetOfExprClass:
|
|
case ImplicitValueInitExprClass:
|
|
case UnaryExprOrTypeTraitExprClass:
|
|
case AddrLabelExprClass:
|
|
case GNUNullExprClass:
|
|
case ArrayInitIndexExprClass:
|
|
case NoInitExprClass:
|
|
case CXXBoolLiteralExprClass:
|
|
case CXXNullPtrLiteralExprClass:
|
|
case CXXThisExprClass:
|
|
case CXXScalarValueInitExprClass:
|
|
case TypeTraitExprClass:
|
|
case ArrayTypeTraitExprClass:
|
|
case ExpressionTraitExprClass:
|
|
case CXXNoexceptExprClass:
|
|
case SizeOfPackExprClass:
|
|
case ObjCStringLiteralClass:
|
|
case ObjCEncodeExprClass:
|
|
case ObjCBoolLiteralExprClass:
|
|
case ObjCAvailabilityCheckExprClass:
|
|
case CXXUuidofExprClass:
|
|
case OpaqueValueExprClass:
|
|
// These never have a side-effect.
|
|
return false;
|
|
|
|
case CallExprClass:
|
|
case CXXOperatorCallExprClass:
|
|
case CXXMemberCallExprClass:
|
|
case CUDAKernelCallExprClass:
|
|
case UserDefinedLiteralClass: {
|
|
// We don't know a call definitely has side effects, except for calls
|
|
// to pure/const functions that definitely don't.
|
|
// If the call itself is considered side-effect free, check the operands.
|
|
const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
|
|
bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
|
|
if (IsPure || !IncludePossibleEffects)
|
|
break;
|
|
return true;
|
|
}
|
|
|
|
case BlockExprClass:
|
|
case CXXBindTemporaryExprClass:
|
|
if (!IncludePossibleEffects)
|
|
break;
|
|
return true;
|
|
|
|
case MSPropertyRefExprClass:
|
|
case MSPropertySubscriptExprClass:
|
|
case CompoundAssignOperatorClass:
|
|
case VAArgExprClass:
|
|
case AtomicExprClass:
|
|
case CXXThrowExprClass:
|
|
case CXXNewExprClass:
|
|
case CXXDeleteExprClass:
|
|
case CoawaitExprClass:
|
|
case DependentCoawaitExprClass:
|
|
case CoyieldExprClass:
|
|
// These always have a side-effect.
|
|
return true;
|
|
|
|
case StmtExprClass: {
|
|
// StmtExprs have a side-effect if any substatement does.
|
|
SideEffectFinder Finder(Ctx, IncludePossibleEffects);
|
|
Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
|
|
return Finder.hasSideEffects();
|
|
}
|
|
|
|
case ExprWithCleanupsClass:
|
|
if (IncludePossibleEffects)
|
|
if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
|
|
return true;
|
|
break;
|
|
|
|
case ParenExprClass:
|
|
case ArraySubscriptExprClass:
|
|
case OMPArraySectionExprClass:
|
|
case MemberExprClass:
|
|
case ConditionalOperatorClass:
|
|
case BinaryConditionalOperatorClass:
|
|
case CompoundLiteralExprClass:
|
|
case ExtVectorElementExprClass:
|
|
case DesignatedInitExprClass:
|
|
case DesignatedInitUpdateExprClass:
|
|
case ArrayInitLoopExprClass:
|
|
case ParenListExprClass:
|
|
case CXXPseudoDestructorExprClass:
|
|
case CXXStdInitializerListExprClass:
|
|
case SubstNonTypeTemplateParmExprClass:
|
|
case MaterializeTemporaryExprClass:
|
|
case ShuffleVectorExprClass:
|
|
case ConvertVectorExprClass:
|
|
case AsTypeExprClass:
|
|
// These have a side-effect if any subexpression does.
|
|
break;
|
|
|
|
case UnaryOperatorClass:
|
|
if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
|
|
return true;
|
|
break;
|
|
|
|
case BinaryOperatorClass:
|
|
if (cast<BinaryOperator>(this)->isAssignmentOp())
|
|
return true;
|
|
break;
|
|
|
|
case InitListExprClass:
|
|
// FIXME: The children for an InitListExpr doesn't include the array filler.
|
|
if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
|
|
if (E->HasSideEffects(Ctx, IncludePossibleEffects))
|
|
return true;
|
|
break;
|
|
|
|
case GenericSelectionExprClass:
|
|
return cast<GenericSelectionExpr>(this)->getResultExpr()->
|
|
HasSideEffects(Ctx, IncludePossibleEffects);
|
|
|
|
case ChooseExprClass:
|
|
return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
|
|
Ctx, IncludePossibleEffects);
|
|
|
|
case CXXDefaultArgExprClass:
|
|
return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
|
|
Ctx, IncludePossibleEffects);
|
|
|
|
case CXXDefaultInitExprClass: {
|
|
const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
|
|
if (const Expr *E = FD->getInClassInitializer())
|
|
return E->HasSideEffects(Ctx, IncludePossibleEffects);
|
|
// If we've not yet parsed the initializer, assume it has side-effects.
|
|
return true;
|
|
}
|
|
|
|
case CXXDynamicCastExprClass: {
|
|
// A dynamic_cast expression has side-effects if it can throw.
|
|
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
|
|
if (DCE->getTypeAsWritten()->isReferenceType() &&
|
|
DCE->getCastKind() == CK_Dynamic)
|
|
return true;
|
|
} // Fall through.
|
|
case ImplicitCastExprClass:
|
|
case CStyleCastExprClass:
|
|
case CXXStaticCastExprClass:
|
|
case CXXReinterpretCastExprClass:
|
|
case CXXConstCastExprClass:
|
|
case CXXFunctionalCastExprClass: {
|
|
// While volatile reads are side-effecting in both C and C++, we treat them
|
|
// as having possible (not definite) side-effects. This allows idiomatic
|
|
// code to behave without warning, such as sizeof(*v) for a volatile-
|
|
// qualified pointer.
|
|
if (!IncludePossibleEffects)
|
|
break;
|
|
|
|
const CastExpr *CE = cast<CastExpr>(this);
|
|
if (CE->getCastKind() == CK_LValueToRValue &&
|
|
CE->getSubExpr()->getType().isVolatileQualified())
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
case CXXTypeidExprClass:
|
|
// typeid might throw if its subexpression is potentially-evaluated, so has
|
|
// side-effects in that case whether or not its subexpression does.
|
|
return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
|
|
|
|
case CXXConstructExprClass:
|
|
case CXXTemporaryObjectExprClass: {
|
|
const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
|
|
if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
|
|
return true;
|
|
// A trivial constructor does not add any side-effects of its own. Just look
|
|
// at its arguments.
|
|
break;
|
|
}
|
|
|
|
case CXXInheritedCtorInitExprClass: {
|
|
const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
|
|
if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
case LambdaExprClass: {
|
|
const LambdaExpr *LE = cast<LambdaExpr>(this);
|
|
for (LambdaExpr::capture_iterator I = LE->capture_begin(),
|
|
E = LE->capture_end(); I != E; ++I)
|
|
if (I->getCaptureKind() == LCK_ByCopy)
|
|
// FIXME: Only has a side-effect if the variable is volatile or if
|
|
// the copy would invoke a non-trivial copy constructor.
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
case PseudoObjectExprClass: {
|
|
// Only look for side-effects in the semantic form, and look past
|
|
// OpaqueValueExpr bindings in that form.
|
|
const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
|
|
for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
|
|
E = PO->semantics_end();
|
|
I != E; ++I) {
|
|
const Expr *Subexpr = *I;
|
|
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
|
|
Subexpr = OVE->getSourceExpr();
|
|
if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case ObjCBoxedExprClass:
|
|
case ObjCArrayLiteralClass:
|
|
case ObjCDictionaryLiteralClass:
|
|
case ObjCSelectorExprClass:
|
|
case ObjCProtocolExprClass:
|
|
case ObjCIsaExprClass:
|
|
case ObjCIndirectCopyRestoreExprClass:
|
|
case ObjCSubscriptRefExprClass:
|
|
case ObjCBridgedCastExprClass:
|
|
case ObjCMessageExprClass:
|
|
case ObjCPropertyRefExprClass:
|
|
// FIXME: Classify these cases better.
|
|
if (IncludePossibleEffects)
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
// Recurse to children.
|
|
for (const Stmt *SubStmt : children())
|
|
if (SubStmt &&
|
|
cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Look for a call to a non-trivial function within an expression.
|
|
class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
|
|
{
|
|
typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
|
|
|
|
bool NonTrivial;
|
|
|
|
public:
|
|
explicit NonTrivialCallFinder(const ASTContext &Context)
|
|
: Inherited(Context), NonTrivial(false) { }
|
|
|
|
bool hasNonTrivialCall() const { return NonTrivial; }
|
|
|
|
void VisitCallExpr(const CallExpr *E) {
|
|
if (const CXXMethodDecl *Method
|
|
= dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
|
|
if (Method->isTrivial()) {
|
|
// Recurse to children of the call.
|
|
Inherited::VisitStmt(E);
|
|
return;
|
|
}
|
|
}
|
|
|
|
NonTrivial = true;
|
|
}
|
|
|
|
void VisitCXXConstructExpr(const CXXConstructExpr *E) {
|
|
if (E->getConstructor()->isTrivial()) {
|
|
// Recurse to children of the call.
|
|
Inherited::VisitStmt(E);
|
|
return;
|
|
}
|
|
|
|
NonTrivial = true;
|
|
}
|
|
|
|
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
|
|
if (E->getTemporary()->getDestructor()->isTrivial()) {
|
|
Inherited::VisitStmt(E);
|
|
return;
|
|
}
|
|
|
|
NonTrivial = true;
|
|
}
|
|
};
|
|
}
|
|
|
|
bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
|
|
NonTrivialCallFinder Finder(Ctx);
|
|
Finder.Visit(this);
|
|
return Finder.hasNonTrivialCall();
|
|
}
|
|
|
|
/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
|
|
/// pointer constant or not, as well as the specific kind of constant detected.
|
|
/// Null pointer constants can be integer constant expressions with the
|
|
/// value zero, casts of zero to void*, nullptr (C++0X), or __null
|
|
/// (a GNU extension).
|
|
Expr::NullPointerConstantKind
|
|
Expr::isNullPointerConstant(ASTContext &Ctx,
|
|
NullPointerConstantValueDependence NPC) const {
|
|
if (isValueDependent() &&
|
|
(!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
|
|
switch (NPC) {
|
|
case NPC_NeverValueDependent:
|
|
llvm_unreachable("Unexpected value dependent expression!");
|
|
case NPC_ValueDependentIsNull:
|
|
if (isTypeDependent() || getType()->isIntegralType(Ctx))
|
|
return NPCK_ZeroExpression;
|
|
else
|
|
return NPCK_NotNull;
|
|
|
|
case NPC_ValueDependentIsNotNull:
|
|
return NPCK_NotNull;
|
|
}
|
|
}
|
|
|
|
// Strip off a cast to void*, if it exists. Except in C++.
|
|
if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
|
|
if (!Ctx.getLangOpts().CPlusPlus) {
|
|
// Check that it is a cast to void*.
|
|
if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
|
|
QualType Pointee = PT->getPointeeType();
|
|
Qualifiers Q = Pointee.getQualifiers();
|
|
// In OpenCL v2.0 generic address space acts as a placeholder
|
|
// and should be ignored.
|
|
bool IsASValid = true;
|
|
if (Ctx.getLangOpts().OpenCLVersion >= 200) {
|
|
if (Pointee.getAddressSpace() == LangAS::opencl_generic)
|
|
Q.removeAddressSpace();
|
|
else
|
|
IsASValid = false;
|
|
}
|
|
|
|
if (IsASValid && !Q.hasQualifiers() &&
|
|
Pointee->isVoidType() && // to void*
|
|
CE->getSubExpr()->getType()->isIntegerType()) // from int.
|
|
return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
|
|
}
|
|
}
|
|
} else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
|
|
// Ignore the ImplicitCastExpr type entirely.
|
|
return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
|
|
// Accept ((void*)0) as a null pointer constant, as many other
|
|
// implementations do.
|
|
return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const GenericSelectionExpr *GE =
|
|
dyn_cast<GenericSelectionExpr>(this)) {
|
|
if (GE->isResultDependent())
|
|
return NPCK_NotNull;
|
|
return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
|
|
if (CE->isConditionDependent())
|
|
return NPCK_NotNull;
|
|
return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const CXXDefaultArgExpr *DefaultArg
|
|
= dyn_cast<CXXDefaultArgExpr>(this)) {
|
|
// See through default argument expressions.
|
|
return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const CXXDefaultInitExpr *DefaultInit
|
|
= dyn_cast<CXXDefaultInitExpr>(this)) {
|
|
// See through default initializer expressions.
|
|
return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (isa<GNUNullExpr>(this)) {
|
|
// The GNU __null extension is always a null pointer constant.
|
|
return NPCK_GNUNull;
|
|
} else if (const MaterializeTemporaryExpr *M
|
|
= dyn_cast<MaterializeTemporaryExpr>(this)) {
|
|
return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
|
|
if (const Expr *Source = OVE->getSourceExpr())
|
|
return Source->isNullPointerConstant(Ctx, NPC);
|
|
}
|
|
|
|
// C++11 nullptr_t is always a null pointer constant.
|
|
if (getType()->isNullPtrType())
|
|
return NPCK_CXX11_nullptr;
|
|
|
|
if (const RecordType *UT = getType()->getAsUnionType())
|
|
if (!Ctx.getLangOpts().CPlusPlus11 &&
|
|
UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
|
|
const Expr *InitExpr = CLE->getInitializer();
|
|
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
|
|
return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
|
|
}
|
|
// This expression must be an integer type.
|
|
if (!getType()->isIntegerType() ||
|
|
(Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
|
|
return NPCK_NotNull;
|
|
|
|
if (Ctx.getLangOpts().CPlusPlus11) {
|
|
// C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
|
|
// value zero or a prvalue of type std::nullptr_t.
|
|
// Microsoft mode permits C++98 rules reflecting MSVC behavior.
|
|
const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
|
|
if (Lit && !Lit->getValue())
|
|
return NPCK_ZeroLiteral;
|
|
else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
|
|
return NPCK_NotNull;
|
|
} else {
|
|
// If we have an integer constant expression, we need to *evaluate* it and
|
|
// test for the value 0.
|
|
if (!isIntegerConstantExpr(Ctx))
|
|
return NPCK_NotNull;
|
|
}
|
|
|
|
if (EvaluateKnownConstInt(Ctx) != 0)
|
|
return NPCK_NotNull;
|
|
|
|
if (isa<IntegerLiteral>(this))
|
|
return NPCK_ZeroLiteral;
|
|
return NPCK_ZeroExpression;
|
|
}
|
|
|
|
/// \brief If this expression is an l-value for an Objective C
|
|
/// property, find the underlying property reference expression.
|
|
const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
|
|
const Expr *E = this;
|
|
while (true) {
|
|
assert((E->getValueKind() == VK_LValue &&
|
|
E->getObjectKind() == OK_ObjCProperty) &&
|
|
"expression is not a property reference");
|
|
E = E->IgnoreParenCasts();
|
|
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
E = BO->getRHS();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return cast<ObjCPropertyRefExpr>(E);
|
|
}
|
|
|
|
bool Expr::isObjCSelfExpr() const {
|
|
const Expr *E = IgnoreParenImpCasts();
|
|
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
|
|
if (!DRE)
|
|
return false;
|
|
|
|
const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
|
|
if (!Param)
|
|
return false;
|
|
|
|
const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
|
|
if (!M)
|
|
return false;
|
|
|
|
return M->getSelfDecl() == Param;
|
|
}
|
|
|
|
FieldDecl *Expr::getSourceBitField() {
|
|
Expr *E = this->IgnoreParens();
|
|
|
|
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_LValueToRValue ||
|
|
(ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
|
|
E = ICE->getSubExpr()->IgnoreParens();
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
|
|
if (Field->isBitField())
|
|
return Field;
|
|
|
|
if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
|
|
if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
|
|
if (Ivar->isBitField())
|
|
return Ivar;
|
|
|
|
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
|
|
if (Field->isBitField())
|
|
return Field;
|
|
|
|
if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
|
|
if (Expr *E = BD->getBinding())
|
|
return E->getSourceBitField();
|
|
}
|
|
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
|
|
if (BinOp->isAssignmentOp() && BinOp->getLHS())
|
|
return BinOp->getLHS()->getSourceBitField();
|
|
|
|
if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
|
|
return BinOp->getRHS()->getSourceBitField();
|
|
}
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
|
|
if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
|
|
return UnOp->getSubExpr()->getSourceBitField();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool Expr::refersToVectorElement() const {
|
|
// FIXME: Why do we not just look at the ObjectKind here?
|
|
const Expr *E = this->IgnoreParens();
|
|
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getValueKind() != VK_RValue &&
|
|
ICE->getCastKind() == CK_NoOp)
|
|
E = ICE->getSubExpr()->IgnoreParens();
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
|
|
return ASE->getBase()->getType()->isVectorType();
|
|
|
|
if (isa<ExtVectorElementExpr>(E))
|
|
return true;
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
|
|
if (auto *E = BD->getBinding())
|
|
return E->refersToVectorElement();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Expr::refersToGlobalRegisterVar() const {
|
|
const Expr *E = this->IgnoreParenImpCasts();
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
|
if (VD->getStorageClass() == SC_Register &&
|
|
VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isArrow - Return true if the base expression is a pointer to vector,
|
|
/// return false if the base expression is a vector.
|
|
bool ExtVectorElementExpr::isArrow() const {
|
|
return getBase()->getType()->isPointerType();
|
|
}
|
|
|
|
unsigned ExtVectorElementExpr::getNumElements() const {
|
|
if (const VectorType *VT = getType()->getAs<VectorType>())
|
|
return VT->getNumElements();
|
|
return 1;
|
|
}
|
|
|
|
/// containsDuplicateElements - Return true if any element access is repeated.
|
|
bool ExtVectorElementExpr::containsDuplicateElements() const {
|
|
// FIXME: Refactor this code to an accessor on the AST node which returns the
|
|
// "type" of component access, and share with code below and in Sema.
|
|
StringRef Comp = Accessor->getName();
|
|
|
|
// Halving swizzles do not contain duplicate elements.
|
|
if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
|
|
return false;
|
|
|
|
// Advance past s-char prefix on hex swizzles.
|
|
if (Comp[0] == 's' || Comp[0] == 'S')
|
|
Comp = Comp.substr(1);
|
|
|
|
for (unsigned i = 0, e = Comp.size(); i != e; ++i)
|
|
if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
|
|
void ExtVectorElementExpr::getEncodedElementAccess(
|
|
SmallVectorImpl<uint32_t> &Elts) const {
|
|
StringRef Comp = Accessor->getName();
|
|
bool isNumericAccessor = false;
|
|
if (Comp[0] == 's' || Comp[0] == 'S') {
|
|
Comp = Comp.substr(1);
|
|
isNumericAccessor = true;
|
|
}
|
|
|
|
bool isHi = Comp == "hi";
|
|
bool isLo = Comp == "lo";
|
|
bool isEven = Comp == "even";
|
|
bool isOdd = Comp == "odd";
|
|
|
|
for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
|
|
uint64_t Index;
|
|
|
|
if (isHi)
|
|
Index = e + i;
|
|
else if (isLo)
|
|
Index = i;
|
|
else if (isEven)
|
|
Index = 2 * i;
|
|
else if (isOdd)
|
|
Index = 2 * i + 1;
|
|
else
|
|
Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
|
|
|
|
Elts.push_back(Index);
|
|
}
|
|
}
|
|
|
|
ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
|
|
QualType Type, SourceLocation BLoc,
|
|
SourceLocation RP)
|
|
: Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
|
|
Type->isDependentType(), Type->isDependentType(),
|
|
Type->isInstantiationDependentType(),
|
|
Type->containsUnexpandedParameterPack()),
|
|
BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
|
|
{
|
|
SubExprs = new (C) Stmt*[args.size()];
|
|
for (unsigned i = 0; i != args.size(); i++) {
|
|
if (args[i]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (args[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (args[i]->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
if (args[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
SubExprs[i] = args[i];
|
|
}
|
|
}
|
|
|
|
void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
|
|
if (SubExprs) C.Deallocate(SubExprs);
|
|
|
|
this->NumExprs = Exprs.size();
|
|
SubExprs = new (C) Stmt*[NumExprs];
|
|
memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
|
|
}
|
|
|
|
GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
|
|
SourceLocation GenericLoc, Expr *ControllingExpr,
|
|
ArrayRef<TypeSourceInfo*> AssocTypes,
|
|
ArrayRef<Expr*> AssocExprs,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
bool ContainsUnexpandedParameterPack,
|
|
unsigned ResultIndex)
|
|
: Expr(GenericSelectionExprClass,
|
|
AssocExprs[ResultIndex]->getType(),
|
|
AssocExprs[ResultIndex]->getValueKind(),
|
|
AssocExprs[ResultIndex]->getObjectKind(),
|
|
AssocExprs[ResultIndex]->isTypeDependent(),
|
|
AssocExprs[ResultIndex]->isValueDependent(),
|
|
AssocExprs[ResultIndex]->isInstantiationDependent(),
|
|
ContainsUnexpandedParameterPack),
|
|
AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
|
|
SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
|
|
NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
|
|
GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
|
|
SubExprs[CONTROLLING] = ControllingExpr;
|
|
assert(AssocTypes.size() == AssocExprs.size());
|
|
std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
|
|
std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
|
|
}
|
|
|
|
GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
|
|
SourceLocation GenericLoc, Expr *ControllingExpr,
|
|
ArrayRef<TypeSourceInfo*> AssocTypes,
|
|
ArrayRef<Expr*> AssocExprs,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
bool ContainsUnexpandedParameterPack)
|
|
: Expr(GenericSelectionExprClass,
|
|
Context.DependentTy,
|
|
VK_RValue,
|
|
OK_Ordinary,
|
|
/*isTypeDependent=*/true,
|
|
/*isValueDependent=*/true,
|
|
/*isInstantiationDependent=*/true,
|
|
ContainsUnexpandedParameterPack),
|
|
AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
|
|
SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
|
|
NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
|
|
DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
|
|
SubExprs[CONTROLLING] = ControllingExpr;
|
|
assert(AssocTypes.size() == AssocExprs.size());
|
|
std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
|
|
std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DesignatedInitExpr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
|
|
assert(Kind == FieldDesignator && "Only valid on a field designator");
|
|
if (Field.NameOrField & 0x01)
|
|
return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
|
|
else
|
|
return getField()->getIdentifier();
|
|
}
|
|
|
|
DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
|
|
llvm::ArrayRef<Designator> Designators,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool GNUSyntax,
|
|
ArrayRef<Expr*> IndexExprs,
|
|
Expr *Init)
|
|
: Expr(DesignatedInitExprClass, Ty,
|
|
Init->getValueKind(), Init->getObjectKind(),
|
|
Init->isTypeDependent(), Init->isValueDependent(),
|
|
Init->isInstantiationDependent(),
|
|
Init->containsUnexpandedParameterPack()),
|
|
EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
|
|
NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
|
|
this->Designators = new (C) Designator[NumDesignators];
|
|
|
|
// Record the initializer itself.
|
|
child_iterator Child = child_begin();
|
|
*Child++ = Init;
|
|
|
|
// Copy the designators and their subexpressions, computing
|
|
// value-dependence along the way.
|
|
unsigned IndexIdx = 0;
|
|
for (unsigned I = 0; I != NumDesignators; ++I) {
|
|
this->Designators[I] = Designators[I];
|
|
|
|
if (this->Designators[I].isArrayDesignator()) {
|
|
// Compute type- and value-dependence.
|
|
Expr *Index = IndexExprs[IndexIdx];
|
|
if (Index->isTypeDependent() || Index->isValueDependent())
|
|
ExprBits.TypeDependent = ExprBits.ValueDependent = true;
|
|
if (Index->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
// Propagate unexpanded parameter packs.
|
|
if (Index->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
// Copy the index expressions into permanent storage.
|
|
*Child++ = IndexExprs[IndexIdx++];
|
|
} else if (this->Designators[I].isArrayRangeDesignator()) {
|
|
// Compute type- and value-dependence.
|
|
Expr *Start = IndexExprs[IndexIdx];
|
|
Expr *End = IndexExprs[IndexIdx + 1];
|
|
if (Start->isTypeDependent() || Start->isValueDependent() ||
|
|
End->isTypeDependent() || End->isValueDependent()) {
|
|
ExprBits.TypeDependent = ExprBits.ValueDependent = true;
|
|
ExprBits.InstantiationDependent = true;
|
|
} else if (Start->isInstantiationDependent() ||
|
|
End->isInstantiationDependent()) {
|
|
ExprBits.InstantiationDependent = true;
|
|
}
|
|
|
|
// Propagate unexpanded parameter packs.
|
|
if (Start->containsUnexpandedParameterPack() ||
|
|
End->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
// Copy the start/end expressions into permanent storage.
|
|
*Child++ = IndexExprs[IndexIdx++];
|
|
*Child++ = IndexExprs[IndexIdx++];
|
|
}
|
|
}
|
|
|
|
assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
|
|
}
|
|
|
|
DesignatedInitExpr *
|
|
DesignatedInitExpr::Create(const ASTContext &C,
|
|
llvm::ArrayRef<Designator> Designators,
|
|
ArrayRef<Expr*> IndexExprs,
|
|
SourceLocation ColonOrEqualLoc,
|
|
bool UsesColonSyntax, Expr *Init) {
|
|
void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
|
|
alignof(DesignatedInitExpr));
|
|
return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
|
|
ColonOrEqualLoc, UsesColonSyntax,
|
|
IndexExprs, Init);
|
|
}
|
|
|
|
DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
|
|
unsigned NumIndexExprs) {
|
|
void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
|
|
alignof(DesignatedInitExpr));
|
|
return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
|
|
}
|
|
|
|
void DesignatedInitExpr::setDesignators(const ASTContext &C,
|
|
const Designator *Desigs,
|
|
unsigned NumDesigs) {
|
|
Designators = new (C) Designator[NumDesigs];
|
|
NumDesignators = NumDesigs;
|
|
for (unsigned I = 0; I != NumDesigs; ++I)
|
|
Designators[I] = Desigs[I];
|
|
}
|
|
|
|
SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
|
|
DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
|
|
if (size() == 1)
|
|
return DIE->getDesignator(0)->getSourceRange();
|
|
return SourceRange(DIE->getDesignator(0)->getLocStart(),
|
|
DIE->getDesignator(size()-1)->getLocEnd());
|
|
}
|
|
|
|
SourceLocation DesignatedInitExpr::getLocStart() const {
|
|
SourceLocation StartLoc;
|
|
auto *DIE = const_cast<DesignatedInitExpr *>(this);
|
|
Designator &First = *DIE->getDesignator(0);
|
|
if (First.isFieldDesignator()) {
|
|
if (GNUSyntax)
|
|
StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
|
|
else
|
|
StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
|
|
} else
|
|
StartLoc =
|
|
SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
|
|
return StartLoc;
|
|
}
|
|
|
|
SourceLocation DesignatedInitExpr::getLocEnd() const {
|
|
return getInit()->getLocEnd();
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
|
|
assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
|
|
return getSubExpr(D.ArrayOrRange.Index + 1);
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
|
|
assert(D.Kind == Designator::ArrayRangeDesignator &&
|
|
"Requires array range designator");
|
|
return getSubExpr(D.ArrayOrRange.Index + 1);
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
|
|
assert(D.Kind == Designator::ArrayRangeDesignator &&
|
|
"Requires array range designator");
|
|
return getSubExpr(D.ArrayOrRange.Index + 2);
|
|
}
|
|
|
|
/// \brief Replaces the designator at index @p Idx with the series
|
|
/// of designators in [First, Last).
|
|
void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
|
|
const Designator *First,
|
|
const Designator *Last) {
|
|
unsigned NumNewDesignators = Last - First;
|
|
if (NumNewDesignators == 0) {
|
|
std::copy_backward(Designators + Idx + 1,
|
|
Designators + NumDesignators,
|
|
Designators + Idx);
|
|
--NumNewDesignators;
|
|
return;
|
|
} else if (NumNewDesignators == 1) {
|
|
Designators[Idx] = *First;
|
|
return;
|
|
}
|
|
|
|
Designator *NewDesignators
|
|
= new (C) Designator[NumDesignators - 1 + NumNewDesignators];
|
|
std::copy(Designators, Designators + Idx, NewDesignators);
|
|
std::copy(First, Last, NewDesignators + Idx);
|
|
std::copy(Designators + Idx + 1, Designators + NumDesignators,
|
|
NewDesignators + Idx + NumNewDesignators);
|
|
Designators = NewDesignators;
|
|
NumDesignators = NumDesignators - 1 + NumNewDesignators;
|
|
}
|
|
|
|
DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
|
|
SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
|
|
: Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
|
|
OK_Ordinary, false, false, false, false) {
|
|
BaseAndUpdaterExprs[0] = baseExpr;
|
|
|
|
InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
|
|
ILE->setType(baseExpr->getType());
|
|
BaseAndUpdaterExprs[1] = ILE;
|
|
}
|
|
|
|
SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
|
|
return getBase()->getLocStart();
|
|
}
|
|
|
|
SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
|
|
return getBase()->getLocEnd();
|
|
}
|
|
|
|
ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
|
|
ArrayRef<Expr*> exprs,
|
|
SourceLocation rparenloc)
|
|
: Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
|
|
false, false, false, false),
|
|
NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
|
|
Exprs = new (C) Stmt*[exprs.size()];
|
|
for (unsigned i = 0; i != exprs.size(); ++i) {
|
|
if (exprs[i]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (exprs[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (exprs[i]->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
if (exprs[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
Exprs[i] = exprs[i];
|
|
}
|
|
}
|
|
|
|
const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
|
|
if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
|
|
e = ewc->getSubExpr();
|
|
if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
|
|
e = m->GetTemporaryExpr();
|
|
e = cast<CXXConstructExpr>(e)->getArg(0);
|
|
while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
|
|
e = ice->getSubExpr();
|
|
return cast<OpaqueValueExpr>(e);
|
|
}
|
|
|
|
PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
|
|
EmptyShell sh,
|
|
unsigned numSemanticExprs) {
|
|
void *buffer =
|
|
Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
|
|
alignof(PseudoObjectExpr));
|
|
return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
|
|
}
|
|
|
|
PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
|
|
: Expr(PseudoObjectExprClass, shell) {
|
|
PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
|
|
}
|
|
|
|
PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
|
|
ArrayRef<Expr*> semantics,
|
|
unsigned resultIndex) {
|
|
assert(syntax && "no syntactic expression!");
|
|
assert(semantics.size() && "no semantic expressions!");
|
|
|
|
QualType type;
|
|
ExprValueKind VK;
|
|
if (resultIndex == NoResult) {
|
|
type = C.VoidTy;
|
|
VK = VK_RValue;
|
|
} else {
|
|
assert(resultIndex < semantics.size());
|
|
type = semantics[resultIndex]->getType();
|
|
VK = semantics[resultIndex]->getValueKind();
|
|
assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
|
|
}
|
|
|
|
void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
|
|
alignof(PseudoObjectExpr));
|
|
return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
|
|
resultIndex);
|
|
}
|
|
|
|
PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
|
|
Expr *syntax, ArrayRef<Expr*> semantics,
|
|
unsigned resultIndex)
|
|
: Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
|
|
/*filled in at end of ctor*/ false, false, false, false) {
|
|
PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
|
|
PseudoObjectExprBits.ResultIndex = resultIndex + 1;
|
|
|
|
for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
|
|
Expr *E = (i == 0 ? syntax : semantics[i-1]);
|
|
getSubExprsBuffer()[i] = E;
|
|
|
|
if (E->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (E->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (E->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
if (E->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
if (isa<OpaqueValueExpr>(E))
|
|
assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
|
|
"opaque-value semantic expressions for pseudo-object "
|
|
"operations must have sources");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Child Iterators for iterating over subexpressions/substatements
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// UnaryExprOrTypeTraitExpr
|
|
Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
|
|
const_child_range CCR =
|
|
const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
|
|
return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
|
|
}
|
|
|
|
Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
|
|
// If this is of a type and the type is a VLA type (and not a typedef), the
|
|
// size expression of the VLA needs to be treated as an executable expression.
|
|
// Why isn't this weirdness documented better in StmtIterator?
|
|
if (isArgumentType()) {
|
|
if (const VariableArrayType *T =
|
|
dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
|
|
return const_child_range(const_child_iterator(T), const_child_iterator());
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
return const_child_range(&Argument.Ex, &Argument.Ex + 1);
|
|
}
|
|
|
|
AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
|
|
QualType t, AtomicOp op, SourceLocation RP)
|
|
: Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
|
|
false, false, false, false),
|
|
NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
|
|
{
|
|
assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
|
|
for (unsigned i = 0; i != args.size(); i++) {
|
|
if (args[i]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (args[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (args[i]->isInstantiationDependent())
|
|
ExprBits.InstantiationDependent = true;
|
|
if (args[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
SubExprs[i] = args[i];
|
|
}
|
|
}
|
|
|
|
unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
|
|
switch (Op) {
|
|
case AO__c11_atomic_init:
|
|
case AO__c11_atomic_load:
|
|
case AO__atomic_load_n:
|
|
return 2;
|
|
|
|
case AO__c11_atomic_store:
|
|
case AO__c11_atomic_exchange:
|
|
case AO__atomic_load:
|
|
case AO__atomic_store:
|
|
case AO__atomic_store_n:
|
|
case AO__atomic_exchange_n:
|
|
case AO__c11_atomic_fetch_add:
|
|
case AO__c11_atomic_fetch_sub:
|
|
case AO__c11_atomic_fetch_and:
|
|
case AO__c11_atomic_fetch_or:
|
|
case AO__c11_atomic_fetch_xor:
|
|
case AO__atomic_fetch_add:
|
|
case AO__atomic_fetch_sub:
|
|
case AO__atomic_fetch_and:
|
|
case AO__atomic_fetch_or:
|
|
case AO__atomic_fetch_xor:
|
|
case AO__atomic_fetch_nand:
|
|
case AO__atomic_add_fetch:
|
|
case AO__atomic_sub_fetch:
|
|
case AO__atomic_and_fetch:
|
|
case AO__atomic_or_fetch:
|
|
case AO__atomic_xor_fetch:
|
|
case AO__atomic_nand_fetch:
|
|
return 3;
|
|
|
|
case AO__atomic_exchange:
|
|
return 4;
|
|
|
|
case AO__c11_atomic_compare_exchange_strong:
|
|
case AO__c11_atomic_compare_exchange_weak:
|
|
return 5;
|
|
|
|
case AO__atomic_compare_exchange:
|
|
case AO__atomic_compare_exchange_n:
|
|
return 6;
|
|
}
|
|
llvm_unreachable("unknown atomic op");
|
|
}
|
|
|
|
QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
|
|
unsigned ArraySectionCount = 0;
|
|
while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
|
|
Base = OASE->getBase();
|
|
++ArraySectionCount;
|
|
}
|
|
while (auto *ASE =
|
|
dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
|
|
Base = ASE->getBase();
|
|
++ArraySectionCount;
|
|
}
|
|
Base = Base->IgnoreParenImpCasts();
|
|
auto OriginalTy = Base->getType();
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
|
|
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
|
|
OriginalTy = PVD->getOriginalType().getNonReferenceType();
|
|
|
|
for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
|
|
if (OriginalTy->isAnyPointerType())
|
|
OriginalTy = OriginalTy->getPointeeType();
|
|
else {
|
|
assert (OriginalTy->isArrayType());
|
|
OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
|
|
}
|
|
}
|
|
return OriginalTy;
|
|
}
|