llvm-project/mlir/examples/standalone
Mehdi Amini f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
..
include [MLIR] Continue renaming of "SideEffects" 2020-05-15 14:37:09 -07:00
lib Revisit Dialect registration: require and store a TypeID on dialects 2020-08-07 15:57:08 +00:00
standalone-opt Separate the Registration from Loading dialects in the Context 2020-08-19 01:19:03 +00:00
standalone-translate [mlir] Extend standalone example by standalone-translate 2020-05-28 14:07:55 -07:00
test Separate the Registration from Loading dialects in the Context 2020-08-19 01:19:03 +00:00
CMakeLists.txt Revert "[CMake] Simplify CMake handling for zlib" 2020-08-05 12:31:44 +02:00
README.md [mlir] Extend standalone example by standalone-translate 2020-05-28 14:07:55 -07:00

README.md

An out-of-tree MLIR dialect

This is an example of an out-of-tree MLIR dialect along with a standalone opt-like tool to operate on that dialect.

Building

This setup assumes that you have built LLVM and MLIR in $BUILD_DIR and installed them to $PREFIX. To build and launch the tests, run

mkdir build && cd build
cmake -G Ninja .. -DMLIR_DIR=$PREFIX/lib/cmake/mlir -DLLVM_EXTERNAL_LIT=$BUILD_DIR/bin/llvm-lit
cmake --build . --target check-standalone

To build the documentation from the TableGen description of the dialect operations, run

cmake --build . --target mlir-doc

Note: Make sure to pass -DLLVM_INSTALL_UTILS=ON when building LLVM with CMake in order to install FileCheck to the chosen installation prefix.