llvm-project/compiler-rt/lib/tsan/rtl/tsan_atomic.h

141 lines
3.8 KiB
C++

//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Atomic operations. For now implies IA-32/Intel64.
//===----------------------------------------------------------------------===//
#ifndef TSAN_ATOMIC_H
#define TSAN_ATOMIC_H
#include "tsan_defs.h"
namespace __tsan {
const int kCacheLineSize = 64;
enum memory_order {
memory_order_relaxed = 1 << 0,
memory_order_consume = 1 << 1,
memory_order_acquire = 1 << 2,
memory_order_release = 1 << 3,
memory_order_acq_rel = 1 << 4,
memory_order_seq_cst = 1 << 5,
};
struct atomic_uint32_t {
typedef u32 Type;
volatile Type val_dont_use;
};
struct atomic_uint64_t {
typedef u64 Type;
volatile Type val_dont_use;
};
struct atomic_uintptr_t {
typedef uptr Type;
volatile Type val_dont_use;
};
INLINE void atomic_signal_fence(memory_order) {
__asm__ __volatile__("" ::: "memory");
}
INLINE void atomic_thread_fence(memory_order) {
__asm__ __volatile__("mfence" ::: "memory");
}
INLINE void proc_yield(int cnt) {
__asm__ __volatile__("" ::: "memory");
for (int i = 0; i < cnt; i++)
__asm__ __volatile__("pause");
__asm__ __volatile__("" ::: "memory");
}
template<typename T>
INLINE typename T::Type atomic_load(
const volatile T *a, memory_order mo) {
DCHECK(mo & (memory_order_relaxed | memory_order_consume
| memory_order_acquire | memory_order_seq_cst));
DCHECK(!((uptr)a % sizeof(*a)));
typename T::Type v;
if (mo == memory_order_relaxed) {
v = a->val_dont_use;
} else {
atomic_signal_fence(memory_order_seq_cst);
v = a->val_dont_use;
atomic_signal_fence(memory_order_seq_cst);
}
return v;
}
template<typename T>
INLINE void atomic_store(volatile T *a, typename T::Type v, memory_order mo) {
DCHECK(mo & (memory_order_relaxed | memory_order_release
| memory_order_seq_cst));
DCHECK(!((uptr)a % sizeof(*a)));
if (mo == memory_order_relaxed) {
a->val_dont_use = v;
} else {
atomic_signal_fence(memory_order_seq_cst);
a->val_dont_use = v;
atomic_signal_fence(memory_order_seq_cst);
}
if (mo == memory_order_seq_cst)
atomic_thread_fence(memory_order_seq_cst);
}
template<typename T>
INLINE typename T::Type atomic_fetch_add(volatile T *a,
typename T::Type v, memory_order mo) {
(void)mo;
DCHECK(!((uptr)a % sizeof(*a)));
return __sync_fetch_and_add(&a->val_dont_use, v);
}
template<typename T>
INLINE typename T::Type atomic_fetch_sub(volatile T *a,
typename T::Type v, memory_order mo) {
(void)mo;
DCHECK(!((uptr)a % sizeof(*a)));
return __sync_fetch_and_add(&a->val_dont_use, -v);
}
INLINE uptr atomic_exchange(volatile atomic_uintptr_t *a, uptr v,
memory_order mo) {
__asm__ __volatile__("xchg %1, %0" : "+r"(v), "+m"(*a) : : "memory", "cc");
return v;
}
template<typename T>
INLINE bool atomic_compare_exchange_strong(volatile T *a,
typename T::Type *cmp,
typename T::Type xchg,
memory_order mo) {
typedef typename T::Type Type;
Type cmpv = *cmp;
Type prev = __sync_val_compare_and_swap(&a->val_dont_use, cmpv, xchg);
if (prev == cmpv)
return true;
*cmp = prev;
return false;
}
INLINE bool atomic_compare_exchange_weak(volatile atomic_uintptr_t *a,
uptr *cmp, uptr xchg,
memory_order mo) {
return atomic_compare_exchange_strong(a, cmp, xchg, mo);
}
} // namespace __tsan
#endif // TSAN_ATOMIC_H