forked from OSchip/llvm-project
1314 lines
41 KiB
C++
1314 lines
41 KiB
C++
//===--- HexagonCommonGEP.cpp ---------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "commgep"
|
|
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
#include <map>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include "HexagonTargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
|
|
cl::Hidden, cl::ZeroOrMore);
|
|
|
|
static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
|
|
cl::ZeroOrMore);
|
|
|
|
static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
|
|
cl::Hidden, cl::ZeroOrMore);
|
|
|
|
namespace llvm {
|
|
void initializeHexagonCommonGEPPass(PassRegistry&);
|
|
}
|
|
|
|
namespace {
|
|
struct GepNode;
|
|
typedef std::set<GepNode*> NodeSet;
|
|
typedef std::map<GepNode*,Value*> NodeToValueMap;
|
|
typedef std::vector<GepNode*> NodeVect;
|
|
typedef std::map<GepNode*,NodeVect> NodeChildrenMap;
|
|
typedef std::set<Use*> UseSet;
|
|
typedef std::map<GepNode*,UseSet> NodeToUsesMap;
|
|
|
|
// Numbering map for gep nodes. Used to keep track of ordering for
|
|
// gep nodes.
|
|
struct NodeOrdering {
|
|
NodeOrdering() : LastNum(0) {}
|
|
|
|
void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
|
|
void clear() { Map.clear(); }
|
|
|
|
bool operator()(const GepNode *N1, const GepNode *N2) const {
|
|
auto F1 = Map.find(N1), F2 = Map.find(N2);
|
|
assert(F1 != Map.end() && F2 != Map.end());
|
|
return F1->second < F2->second;
|
|
}
|
|
|
|
private:
|
|
std::map<const GepNode *, unsigned> Map;
|
|
unsigned LastNum;
|
|
};
|
|
|
|
class HexagonCommonGEP : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
HexagonCommonGEP() : FunctionPass(ID) {
|
|
initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
virtual bool runOnFunction(Function &F);
|
|
virtual const char *getPassName() const {
|
|
return "Hexagon Common GEP";
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
|
AU.addPreserved<PostDominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
typedef std::map<Value*,GepNode*> ValueToNodeMap;
|
|
typedef std::vector<Value*> ValueVect;
|
|
typedef std::map<GepNode*,ValueVect> NodeToValuesMap;
|
|
|
|
void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
|
|
bool isHandledGepForm(GetElementPtrInst *GepI);
|
|
void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
|
|
void collect();
|
|
void common();
|
|
|
|
BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
|
|
NodeToValueMap &Loc);
|
|
BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
|
|
NodeToValueMap &Loc);
|
|
bool isInvariantIn(Value *Val, Loop *L);
|
|
bool isInvariantIn(GepNode *Node, Loop *L);
|
|
bool isInMainPath(BasicBlock *B, Loop *L);
|
|
BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
|
|
NodeToValueMap &Loc);
|
|
void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
|
|
void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
|
|
NodeToValueMap &Loc);
|
|
void computeNodePlacement(NodeToValueMap &Loc);
|
|
|
|
Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
|
|
BasicBlock *LocB);
|
|
void getAllUsersForNode(GepNode *Node, ValueVect &Values,
|
|
NodeChildrenMap &NCM);
|
|
void materialize(NodeToValueMap &Loc);
|
|
|
|
void removeDeadCode();
|
|
|
|
NodeVect Nodes;
|
|
NodeToUsesMap Uses;
|
|
NodeOrdering NodeOrder; // Node ordering, for deterministic behavior.
|
|
SpecificBumpPtrAllocator<GepNode> *Mem;
|
|
LLVMContext *Ctx;
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
PostDominatorTree *PDT;
|
|
Function *Fn;
|
|
};
|
|
}
|
|
|
|
|
|
char HexagonCommonGEP::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
|
|
false, false)
|
|
|
|
namespace {
|
|
struct GepNode {
|
|
enum {
|
|
None = 0,
|
|
Root = 0x01,
|
|
Internal = 0x02,
|
|
Used = 0x04
|
|
};
|
|
|
|
uint32_t Flags;
|
|
union {
|
|
GepNode *Parent;
|
|
Value *BaseVal;
|
|
};
|
|
Value *Idx;
|
|
Type *PTy; // Type of the pointer operand.
|
|
|
|
GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {}
|
|
GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
|
|
if (Flags & Root)
|
|
BaseVal = N->BaseVal;
|
|
else
|
|
Parent = N->Parent;
|
|
}
|
|
friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
|
|
};
|
|
|
|
|
|
Type *next_type(Type *Ty, Value *Idx) {
|
|
// Advance the type.
|
|
if (!Ty->isStructTy()) {
|
|
Type *NexTy = cast<SequentialType>(Ty)->getElementType();
|
|
return NexTy;
|
|
}
|
|
// Otherwise it is a struct type.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
|
|
assert(CI && "Struct type with non-constant index");
|
|
int64_t i = CI->getValue().getSExtValue();
|
|
Type *NextTy = cast<StructType>(Ty)->getElementType(i);
|
|
return NextTy;
|
|
}
|
|
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
|
|
OS << "{ {";
|
|
bool Comma = false;
|
|
if (GN.Flags & GepNode::Root) {
|
|
OS << "root";
|
|
Comma = true;
|
|
}
|
|
if (GN.Flags & GepNode::Internal) {
|
|
if (Comma)
|
|
OS << ',';
|
|
OS << "internal";
|
|
Comma = true;
|
|
}
|
|
if (GN.Flags & GepNode::Used) {
|
|
if (Comma)
|
|
OS << ',';
|
|
OS << "used";
|
|
Comma = true;
|
|
}
|
|
OS << "} ";
|
|
if (GN.Flags & GepNode::Root)
|
|
OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
|
|
else
|
|
OS << "Parent:" << GN.Parent;
|
|
|
|
OS << " Idx:";
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
|
|
OS << CI->getValue().getSExtValue();
|
|
else if (GN.Idx->hasName())
|
|
OS << GN.Idx->getName();
|
|
else
|
|
OS << "<anon> =" << *GN.Idx;
|
|
|
|
OS << " PTy:";
|
|
if (GN.PTy->isStructTy()) {
|
|
StructType *STy = cast<StructType>(GN.PTy);
|
|
if (!STy->isLiteral())
|
|
OS << GN.PTy->getStructName();
|
|
else
|
|
OS << "<anon-struct>:" << *STy;
|
|
}
|
|
else
|
|
OS << *GN.PTy;
|
|
OS << " }";
|
|
return OS;
|
|
}
|
|
|
|
|
|
template <typename NodeContainer>
|
|
void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
|
|
typedef typename NodeContainer::const_iterator const_iterator;
|
|
for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
|
|
OS << *I << ' ' << **I << '\n';
|
|
}
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS,
|
|
const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
|
|
raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
|
|
dump_node_container(OS, S);
|
|
return OS;
|
|
}
|
|
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS,
|
|
const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
|
|
raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
|
|
typedef NodeToUsesMap::const_iterator const_iterator;
|
|
for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
const UseSet &Us = I->second;
|
|
OS << I->first << " -> #" << Us.size() << '{';
|
|
for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
|
|
User *R = (*J)->getUser();
|
|
if (R->hasName())
|
|
OS << ' ' << R->getName();
|
|
else
|
|
OS << " <?>(" << *R << ')';
|
|
}
|
|
OS << " }\n";
|
|
}
|
|
return OS;
|
|
}
|
|
|
|
|
|
struct in_set {
|
|
in_set(const NodeSet &S) : NS(S) {}
|
|
bool operator() (GepNode *N) const {
|
|
return NS.find(N) != NS.end();
|
|
}
|
|
private:
|
|
const NodeSet &NS;
|
|
};
|
|
}
|
|
|
|
|
|
inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
|
|
return A.Allocate();
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
|
|
ValueVect &Order) {
|
|
// Compute block ordering for a typical DT-based traversal of the flow
|
|
// graph: "before visiting a block, all of its dominators must have been
|
|
// visited".
|
|
|
|
Order.push_back(Root);
|
|
DomTreeNode *DTN = DT->getNode(Root);
|
|
typedef GraphTraits<DomTreeNode*> GTN;
|
|
typedef GTN::ChildIteratorType Iter;
|
|
for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I)
|
|
getBlockTraversalOrder((*I)->getBlock(), Order);
|
|
}
|
|
|
|
|
|
bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
|
|
// No vector GEPs.
|
|
if (!GepI->getType()->isPointerTy())
|
|
return false;
|
|
// No GEPs without any indices. (Is this possible?)
|
|
if (GepI->idx_begin() == GepI->idx_end())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
|
|
ValueToNodeMap &NM) {
|
|
DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
|
|
GepNode *N = new (*Mem) GepNode;
|
|
Value *PtrOp = GepI->getPointerOperand();
|
|
ValueToNodeMap::iterator F = NM.find(PtrOp);
|
|
if (F == NM.end()) {
|
|
N->BaseVal = PtrOp;
|
|
N->Flags |= GepNode::Root;
|
|
} else {
|
|
// If PtrOp was a GEP instruction, it must have already been processed.
|
|
// The ValueToNodeMap entry for it is the last gep node in the generated
|
|
// chain. Link to it here.
|
|
N->Parent = F->second;
|
|
}
|
|
N->PTy = PtrOp->getType();
|
|
N->Idx = *GepI->idx_begin();
|
|
|
|
// Collect the list of users of this GEP instruction. Will add it to the
|
|
// last node created for it.
|
|
UseSet Us;
|
|
for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
|
|
UI != UE; ++UI) {
|
|
// Check if this gep is used by anything other than other geps that
|
|
// we will process.
|
|
if (isa<GetElementPtrInst>(*UI)) {
|
|
GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
|
|
if (isHandledGepForm(UserG))
|
|
continue;
|
|
}
|
|
Us.insert(&UI.getUse());
|
|
}
|
|
Nodes.push_back(N);
|
|
NodeOrder.insert(N);
|
|
|
|
// Skip the first index operand, since we only handle 0. This dereferences
|
|
// the pointer operand.
|
|
GepNode *PN = N;
|
|
Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
|
|
for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
|
|
OI != OE; ++OI) {
|
|
Value *Op = *OI;
|
|
GepNode *Nx = new (*Mem) GepNode;
|
|
Nx->Parent = PN; // Link Nx to the previous node.
|
|
Nx->Flags |= GepNode::Internal;
|
|
Nx->PTy = PtrTy;
|
|
Nx->Idx = Op;
|
|
Nodes.push_back(Nx);
|
|
NodeOrder.insert(Nx);
|
|
PN = Nx;
|
|
|
|
PtrTy = next_type(PtrTy, Op);
|
|
}
|
|
|
|
// After last node has been created, update the use information.
|
|
if (!Us.empty()) {
|
|
PN->Flags |= GepNode::Used;
|
|
Uses[PN].insert(Us.begin(), Us.end());
|
|
}
|
|
|
|
// Link the last node with the originating GEP instruction. This is to
|
|
// help with linking chained GEP instructions.
|
|
NM.insert(std::make_pair(GepI, PN));
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::collect() {
|
|
// Establish depth-first traversal order of the dominator tree.
|
|
ValueVect BO;
|
|
getBlockTraversalOrder(&Fn->front(), BO);
|
|
|
|
// The creation of gep nodes requires DT-traversal. When processing a GEP
|
|
// instruction that uses another GEP instruction as the base pointer, the
|
|
// gep node for the base pointer should already exist.
|
|
ValueToNodeMap NM;
|
|
for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
|
|
BasicBlock *B = cast<BasicBlock>(*I);
|
|
for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
|
|
if (!isa<GetElementPtrInst>(J))
|
|
continue;
|
|
GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
|
|
if (isHandledGepForm(GepI))
|
|
processGepInst(GepI, NM);
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
|
|
}
|
|
|
|
|
|
namespace {
|
|
void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
|
|
NodeVect &Roots) {
|
|
typedef NodeVect::const_iterator const_iterator;
|
|
for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
|
|
GepNode *N = *I;
|
|
if (N->Flags & GepNode::Root) {
|
|
Roots.push_back(N);
|
|
continue;
|
|
}
|
|
GepNode *PN = N->Parent;
|
|
NCM[PN].push_back(N);
|
|
}
|
|
}
|
|
|
|
void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) {
|
|
NodeVect Work;
|
|
Work.push_back(Root);
|
|
Nodes.insert(Root);
|
|
|
|
while (!Work.empty()) {
|
|
NodeVect::iterator First = Work.begin();
|
|
GepNode *N = *First;
|
|
Work.erase(First);
|
|
NodeChildrenMap::iterator CF = NCM.find(N);
|
|
if (CF != NCM.end()) {
|
|
Work.insert(Work.end(), CF->second.begin(), CF->second.end());
|
|
Nodes.insert(CF->second.begin(), CF->second.end());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
typedef std::set<NodeSet> NodeSymRel;
|
|
typedef std::pair<GepNode*,GepNode*> NodePair;
|
|
typedef std::set<NodePair> NodePairSet;
|
|
|
|
const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
|
|
for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
|
|
if (I->count(N))
|
|
return &*I;
|
|
return 0;
|
|
}
|
|
|
|
// Create an ordered pair of GepNode pointers. The pair will be used in
|
|
// determining equality. The only purpose of the ordering is to eliminate
|
|
// duplication due to the commutativity of equality/non-equality.
|
|
NodePair node_pair(GepNode *N1, GepNode *N2) {
|
|
uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
|
|
if (P1 <= P2)
|
|
return std::make_pair(N1, N2);
|
|
return std::make_pair(N2, N1);
|
|
}
|
|
|
|
unsigned node_hash(GepNode *N) {
|
|
// Include everything except flags and parent.
|
|
FoldingSetNodeID ID;
|
|
ID.AddPointer(N->Idx);
|
|
ID.AddPointer(N->PTy);
|
|
return ID.ComputeHash();
|
|
}
|
|
|
|
bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) {
|
|
// Don't cache the result for nodes with different hashes. The hash
|
|
// comparison is fast enough.
|
|
if (node_hash(N1) != node_hash(N2))
|
|
return false;
|
|
|
|
NodePair NP = node_pair(N1, N2);
|
|
NodePairSet::iterator FEq = Eq.find(NP);
|
|
if (FEq != Eq.end())
|
|
return true;
|
|
NodePairSet::iterator FNe = Ne.find(NP);
|
|
if (FNe != Ne.end())
|
|
return false;
|
|
// Not previously compared.
|
|
bool Root1 = N1->Flags & GepNode::Root;
|
|
bool Root2 = N2->Flags & GepNode::Root;
|
|
NodePair P = node_pair(N1, N2);
|
|
// If the Root flag has different values, the nodes are different.
|
|
// If both nodes are root nodes, but their base pointers differ,
|
|
// they are different.
|
|
if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
|
|
Ne.insert(P);
|
|
return false;
|
|
}
|
|
// Here the root flags are identical, and for root nodes the
|
|
// base pointers are equal, so the root nodes are equal.
|
|
// For non-root nodes, compare their parent nodes.
|
|
if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
|
|
Eq.insert(P);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::common() {
|
|
// The essence of this commoning is finding gep nodes that are equal.
|
|
// To do this we need to compare all pairs of nodes. To save time,
|
|
// first, partition the set of all nodes into sets of potentially equal
|
|
// nodes, and then compare pairs from within each partition.
|
|
typedef std::map<unsigned,NodeSet> NodeSetMap;
|
|
NodeSetMap MaybeEq;
|
|
|
|
for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
|
|
GepNode *N = *I;
|
|
unsigned H = node_hash(N);
|
|
MaybeEq[H].insert(N);
|
|
}
|
|
|
|
// Compute the equivalence relation for the gep nodes. Use two caches,
|
|
// one for equality and the other for non-equality.
|
|
NodeSymRel EqRel; // Equality relation (as set of equivalence classes).
|
|
NodePairSet Eq, Ne; // Caches.
|
|
for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
|
|
I != E; ++I) {
|
|
NodeSet &S = I->second;
|
|
for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
|
|
GepNode *N = *NI;
|
|
// If node already has a class, then the class must have been created
|
|
// in a prior iteration of this loop. Since equality is transitive,
|
|
// nothing more will be added to that class, so skip it.
|
|
if (node_class(N, EqRel))
|
|
continue;
|
|
|
|
// Create a new class candidate now.
|
|
NodeSet C;
|
|
for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
|
|
if (node_eq(N, *NJ, Eq, Ne))
|
|
C.insert(*NJ);
|
|
// If Tmp is empty, N would be the only element in it. Don't bother
|
|
// creating a class for it then.
|
|
if (!C.empty()) {
|
|
C.insert(N); // Finalize the set before adding it to the relation.
|
|
std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
|
|
(void)Ins;
|
|
assert(Ins.second && "Cannot add a class");
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "Gep node equality:\n";
|
|
for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
|
|
dbgs() << "{ " << I->first << ", " << I->second << " }\n";
|
|
|
|
dbgs() << "Gep equivalence classes:\n";
|
|
for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
|
|
dbgs() << '{';
|
|
const NodeSet &S = *I;
|
|
for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
|
|
if (J != S.begin())
|
|
dbgs() << ',';
|
|
dbgs() << ' ' << *J;
|
|
}
|
|
dbgs() << " }\n";
|
|
}
|
|
});
|
|
|
|
|
|
// Create a projection from a NodeSet to the minimal element in it.
|
|
typedef std::map<const NodeSet*,GepNode*> ProjMap;
|
|
ProjMap PM;
|
|
for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
|
|
const NodeSet &S = *I;
|
|
GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
|
|
std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
|
|
(void)Ins;
|
|
assert(Ins.second && "Cannot add minimal element");
|
|
|
|
// Update the min element's flags, and user list.
|
|
uint32_t Flags = 0;
|
|
UseSet &MinUs = Uses[Min];
|
|
for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
|
|
GepNode *N = *J;
|
|
uint32_t NF = N->Flags;
|
|
// If N is used, append all original values of N to the list of
|
|
// original values of Min.
|
|
if (NF & GepNode::Used)
|
|
MinUs.insert(Uses[N].begin(), Uses[N].end());
|
|
Flags |= NF;
|
|
}
|
|
if (MinUs.empty())
|
|
Uses.erase(Min);
|
|
|
|
// The collected flags should include all the flags from the min element.
|
|
assert((Min->Flags & Flags) == Min->Flags);
|
|
Min->Flags = Flags;
|
|
}
|
|
|
|
// Commoning: for each non-root gep node, replace "Parent" with the
|
|
// selected (minimum) node from the corresponding equivalence class.
|
|
// If a given parent does not have an equivalence class, leave it
|
|
// unchanged (it means that it's the only element in its class).
|
|
for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
|
|
GepNode *N = *I;
|
|
if (N->Flags & GepNode::Root)
|
|
continue;
|
|
const NodeSet *PC = node_class(N->Parent, EqRel);
|
|
if (!PC)
|
|
continue;
|
|
ProjMap::iterator F = PM.find(PC);
|
|
if (F == PM.end())
|
|
continue;
|
|
// Found a replacement, use it.
|
|
GepNode *Rep = F->second;
|
|
N->Parent = Rep;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
|
|
|
|
// Finally, erase the nodes that are no longer used.
|
|
NodeSet Erase;
|
|
for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
|
|
GepNode *N = *I;
|
|
const NodeSet *PC = node_class(N, EqRel);
|
|
if (!PC)
|
|
continue;
|
|
ProjMap::iterator F = PM.find(PC);
|
|
if (F == PM.end())
|
|
continue;
|
|
if (N == F->second)
|
|
continue;
|
|
// Node for removal.
|
|
Erase.insert(*I);
|
|
}
|
|
NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(),
|
|
in_set(Erase));
|
|
Nodes.resize(std::distance(Nodes.begin(), NewE));
|
|
|
|
DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
|
|
}
|
|
|
|
|
|
namespace {
|
|
template <typename T>
|
|
BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
|
|
DEBUG({
|
|
dbgs() << "NCD of {";
|
|
for (typename T::iterator I = Blocks.begin(), E = Blocks.end();
|
|
I != E; ++I) {
|
|
if (!*I)
|
|
continue;
|
|
BasicBlock *B = cast<BasicBlock>(*I);
|
|
dbgs() << ' ' << B->getName();
|
|
}
|
|
dbgs() << " }\n";
|
|
});
|
|
|
|
// Allow null basic blocks in Blocks. In such cases, return 0.
|
|
typename T::iterator I = Blocks.begin(), E = Blocks.end();
|
|
if (I == E || !*I)
|
|
return 0;
|
|
BasicBlock *Dom = cast<BasicBlock>(*I);
|
|
while (++I != E) {
|
|
BasicBlock *B = cast_or_null<BasicBlock>(*I);
|
|
Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0;
|
|
if (!Dom)
|
|
return 0;
|
|
}
|
|
DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
|
|
return Dom;
|
|
}
|
|
|
|
template <typename T>
|
|
BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
|
|
// If two blocks, A and B, dominate a block C, then A dominates B,
|
|
// or B dominates A.
|
|
typename T::iterator I = Blocks.begin(), E = Blocks.end();
|
|
// Find the first non-null block.
|
|
while (I != E && !*I)
|
|
++I;
|
|
if (I == E)
|
|
return DT->getRoot();
|
|
BasicBlock *DomB = cast<BasicBlock>(*I);
|
|
while (++I != E) {
|
|
if (!*I)
|
|
continue;
|
|
BasicBlock *B = cast<BasicBlock>(*I);
|
|
if (DT->dominates(B, DomB))
|
|
continue;
|
|
if (!DT->dominates(DomB, B))
|
|
return 0;
|
|
DomB = B;
|
|
}
|
|
return DomB;
|
|
}
|
|
|
|
// Find the first use in B of any value from Values. If no such use,
|
|
// return B->end().
|
|
template <typename T>
|
|
BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
|
|
BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
|
|
typedef typename T::iterator iterator;
|
|
for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
|
|
Value *V = *I;
|
|
// If V is used in a PHI node, the use belongs to the incoming block,
|
|
// not the block with the PHI node. In the incoming block, the use
|
|
// would be considered as being at the end of it, so it cannot
|
|
// influence the position of the first use (which is assumed to be
|
|
// at the end to start with).
|
|
if (isa<PHINode>(V))
|
|
continue;
|
|
if (!isa<Instruction>(V))
|
|
continue;
|
|
Instruction *In = cast<Instruction>(V);
|
|
if (In->getParent() != B)
|
|
continue;
|
|
BasicBlock::iterator It = In->getIterator();
|
|
if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
|
|
FirstUse = It;
|
|
}
|
|
return FirstUse;
|
|
}
|
|
|
|
bool is_empty(const BasicBlock *B) {
|
|
return B->empty() || (&*B->begin() == B->getTerminator());
|
|
}
|
|
}
|
|
|
|
|
|
BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
|
|
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
|
|
DEBUG(dbgs() << "Loc for node:" << Node << '\n');
|
|
// Recalculate the placement for Node, assuming that the locations of
|
|
// its children in Loc are valid.
|
|
// Return 0 if there is no valid placement for Node (for example, it
|
|
// uses an index value that is not available at the location required
|
|
// to dominate all children, etc.).
|
|
|
|
// Find the nearest common dominator for:
|
|
// - all users, if the node is used, and
|
|
// - all children.
|
|
ValueVect Bs;
|
|
if (Node->Flags & GepNode::Used) {
|
|
// Append all blocks with uses of the original values to the
|
|
// block vector Bs.
|
|
NodeToUsesMap::iterator UF = Uses.find(Node);
|
|
assert(UF != Uses.end() && "Used node with no use information");
|
|
UseSet &Us = UF->second;
|
|
for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
|
|
Use *U = *I;
|
|
User *R = U->getUser();
|
|
if (!isa<Instruction>(R))
|
|
continue;
|
|
BasicBlock *PB = isa<PHINode>(R)
|
|
? cast<PHINode>(R)->getIncomingBlock(*U)
|
|
: cast<Instruction>(R)->getParent();
|
|
Bs.push_back(PB);
|
|
}
|
|
}
|
|
// Append the location of each child.
|
|
NodeChildrenMap::iterator CF = NCM.find(Node);
|
|
if (CF != NCM.end()) {
|
|
NodeVect &Cs = CF->second;
|
|
for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
|
|
GepNode *CN = *I;
|
|
NodeToValueMap::iterator LF = Loc.find(CN);
|
|
// If the child is only used in GEP instructions (i.e. is not used in
|
|
// non-GEP instructions), the nearest dominator computed for it may
|
|
// have been null. In such case it won't have a location available.
|
|
if (LF == Loc.end())
|
|
continue;
|
|
Bs.push_back(LF->second);
|
|
}
|
|
}
|
|
|
|
BasicBlock *DomB = nearest_common_dominator(DT, Bs);
|
|
if (!DomB)
|
|
return 0;
|
|
// Check if the index used by Node dominates the computed dominator.
|
|
Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
|
|
if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
|
|
return 0;
|
|
|
|
// Avoid putting nodes into empty blocks.
|
|
while (is_empty(DomB)) {
|
|
DomTreeNode *N = (*DT)[DomB]->getIDom();
|
|
if (!N)
|
|
break;
|
|
DomB = N->getBlock();
|
|
}
|
|
|
|
// Otherwise, DomB is fine. Update the location map.
|
|
Loc[Node] = DomB;
|
|
return DomB;
|
|
}
|
|
|
|
|
|
BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
|
|
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
|
|
DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
|
|
// Recalculate the placement of Node, after recursively recalculating the
|
|
// placements of all its children.
|
|
NodeChildrenMap::iterator CF = NCM.find(Node);
|
|
if (CF != NCM.end()) {
|
|
NodeVect &Cs = CF->second;
|
|
for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
|
|
recalculatePlacementRec(*I, NCM, Loc);
|
|
}
|
|
BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
|
|
DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
|
|
return LB;
|
|
}
|
|
|
|
|
|
bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
|
|
if (isa<Constant>(Val) || isa<Argument>(Val))
|
|
return true;
|
|
Instruction *In = dyn_cast<Instruction>(Val);
|
|
if (!In)
|
|
return false;
|
|
BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
|
|
return DT->properlyDominates(DefB, HdrB);
|
|
}
|
|
|
|
|
|
bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
|
|
if (Node->Flags & GepNode::Root)
|
|
if (!isInvariantIn(Node->BaseVal, L))
|
|
return false;
|
|
return isInvariantIn(Node->Idx, L);
|
|
}
|
|
|
|
|
|
bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
|
|
BasicBlock *HB = L->getHeader();
|
|
BasicBlock *LB = L->getLoopLatch();
|
|
// B must post-dominate the loop header or dominate the loop latch.
|
|
if (PDT->dominates(B, HB))
|
|
return true;
|
|
if (LB && DT->dominates(B, LB))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
namespace {
|
|
BasicBlock *preheader(DominatorTree *DT, Loop *L) {
|
|
if (BasicBlock *PH = L->getLoopPreheader())
|
|
return PH;
|
|
if (!OptSpeculate)
|
|
return 0;
|
|
DomTreeNode *DN = DT->getNode(L->getHeader());
|
|
if (!DN)
|
|
return 0;
|
|
return DN->getIDom()->getBlock();
|
|
}
|
|
}
|
|
|
|
|
|
BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
|
|
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
|
|
// Find the "topmost" location for Node: it must be dominated by both,
|
|
// its parent (or the BaseVal, if it's a root node), and by the index
|
|
// value.
|
|
ValueVect Bs;
|
|
if (Node->Flags & GepNode::Root) {
|
|
if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
|
|
Bs.push_back(PIn->getParent());
|
|
} else {
|
|
Bs.push_back(Loc[Node->Parent]);
|
|
}
|
|
if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
|
|
Bs.push_back(IIn->getParent());
|
|
BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
|
|
|
|
// Traverse the loop nest upwards until we find a loop in which Node
|
|
// is no longer invariant, or until we get to the upper limit of Node's
|
|
// placement. The traversal will also stop when a suitable "preheader"
|
|
// cannot be found for a given loop. The "preheader" may actually be
|
|
// a regular block outside of the loop (i.e. not guarded), in which case
|
|
// the Node will be speculated.
|
|
// For nodes that are not in the main path of the containing loop (i.e.
|
|
// are not executed in each iteration), do not move them out of the loop.
|
|
BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
|
|
if (LocB) {
|
|
Loop *Lp = LI->getLoopFor(LocB);
|
|
while (Lp) {
|
|
if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
|
|
break;
|
|
BasicBlock *NewLoc = preheader(DT, Lp);
|
|
if (!NewLoc || !DT->dominates(TopB, NewLoc))
|
|
break;
|
|
Lp = Lp->getParentLoop();
|
|
LocB = NewLoc;
|
|
}
|
|
}
|
|
Loc[Node] = LocB;
|
|
|
|
// Recursively compute the locations of all children nodes.
|
|
NodeChildrenMap::iterator CF = NCM.find(Node);
|
|
if (CF != NCM.end()) {
|
|
NodeVect &Cs = CF->second;
|
|
for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
|
|
adjustForInvariance(*I, NCM, Loc);
|
|
}
|
|
return LocB;
|
|
}
|
|
|
|
|
|
namespace {
|
|
struct LocationAsBlock {
|
|
LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
|
|
const NodeToValueMap ⤅
|
|
};
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS,
|
|
const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
|
|
raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
|
|
for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
|
|
I != E; ++I) {
|
|
OS << I->first << " -> ";
|
|
BasicBlock *B = cast<BasicBlock>(I->second);
|
|
OS << B->getName() << '(' << B << ')';
|
|
OS << '\n';
|
|
}
|
|
return OS;
|
|
}
|
|
|
|
inline bool is_constant(GepNode *N) {
|
|
return isa<ConstantInt>(N->Idx);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
|
|
NodeToValueMap &Loc) {
|
|
User *R = U->getUser();
|
|
DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: "
|
|
<< *R << '\n');
|
|
BasicBlock *PB = cast<Instruction>(R)->getParent();
|
|
|
|
GepNode *N = Node;
|
|
GepNode *C = 0, *NewNode = 0;
|
|
while (is_constant(N) && !(N->Flags & GepNode::Root)) {
|
|
// XXX if (single-use) dont-replicate;
|
|
GepNode *NewN = new (*Mem) GepNode(N);
|
|
Nodes.push_back(NewN);
|
|
Loc[NewN] = PB;
|
|
|
|
if (N == Node)
|
|
NewNode = NewN;
|
|
NewN->Flags &= ~GepNode::Used;
|
|
if (C)
|
|
C->Parent = NewN;
|
|
C = NewN;
|
|
N = N->Parent;
|
|
}
|
|
if (!NewNode)
|
|
return;
|
|
|
|
// Move over all uses that share the same user as U from Node to NewNode.
|
|
NodeToUsesMap::iterator UF = Uses.find(Node);
|
|
assert(UF != Uses.end());
|
|
UseSet &Us = UF->second;
|
|
UseSet NewUs;
|
|
for (UseSet::iterator I = Us.begin(); I != Us.end(); ) {
|
|
User *S = (*I)->getUser();
|
|
UseSet::iterator Nx = std::next(I);
|
|
if (S == R) {
|
|
NewUs.insert(*I);
|
|
Us.erase(I);
|
|
}
|
|
I = Nx;
|
|
}
|
|
if (Us.empty()) {
|
|
Node->Flags &= ~GepNode::Used;
|
|
Uses.erase(UF);
|
|
}
|
|
|
|
// Should at least have U in NewUs.
|
|
NewNode->Flags |= GepNode::Used;
|
|
DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n');
|
|
assert(!NewUs.empty());
|
|
Uses[NewNode] = NewUs;
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::separateConstantChains(GepNode *Node,
|
|
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
|
|
// First approximation: extract all chains.
|
|
NodeSet Ns;
|
|
nodes_for_root(Node, NCM, Ns);
|
|
|
|
DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
|
|
// Collect all used nodes together with the uses from loads and stores,
|
|
// where the GEP node could be folded into the load/store instruction.
|
|
NodeToUsesMap FNs; // Foldable nodes.
|
|
for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
|
|
GepNode *N = *I;
|
|
if (!(N->Flags & GepNode::Used))
|
|
continue;
|
|
NodeToUsesMap::iterator UF = Uses.find(N);
|
|
assert(UF != Uses.end());
|
|
UseSet &Us = UF->second;
|
|
// Loads/stores that use the node N.
|
|
UseSet LSs;
|
|
for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
|
|
Use *U = *J;
|
|
User *R = U->getUser();
|
|
// We're interested in uses that provide the address. It can happen
|
|
// that the value may also be provided via GEP, but we won't handle
|
|
// those cases here for now.
|
|
if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
|
|
unsigned PtrX = LoadInst::getPointerOperandIndex();
|
|
if (&Ld->getOperandUse(PtrX) == U)
|
|
LSs.insert(U);
|
|
} else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
|
|
unsigned PtrX = StoreInst::getPointerOperandIndex();
|
|
if (&St->getOperandUse(PtrX) == U)
|
|
LSs.insert(U);
|
|
}
|
|
}
|
|
// Even if the total use count is 1, separating the chain may still be
|
|
// beneficial, since the constant chain may be longer than the GEP alone
|
|
// would be (e.g. if the parent node has a constant index and also has
|
|
// other children).
|
|
if (!LSs.empty())
|
|
FNs.insert(std::make_pair(N, LSs));
|
|
}
|
|
|
|
DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
|
|
|
|
for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
|
|
GepNode *N = I->first;
|
|
UseSet &Us = I->second;
|
|
for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
|
|
separateChainForNode(N, *J, Loc);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
|
|
// Compute the inverse of the Node.Parent links. Also, collect the set
|
|
// of root nodes.
|
|
NodeChildrenMap NCM;
|
|
NodeVect Roots;
|
|
invert_find_roots(Nodes, NCM, Roots);
|
|
|
|
// Compute the initial placement determined by the users' locations, and
|
|
// the locations of the child nodes.
|
|
for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
|
|
recalculatePlacementRec(*I, NCM, Loc);
|
|
|
|
DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
|
|
|
|
if (OptEnableInv) {
|
|
for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
|
|
adjustForInvariance(*I, NCM, Loc);
|
|
|
|
DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
|
|
<< LocationAsBlock(Loc));
|
|
}
|
|
if (OptEnableConst) {
|
|
for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
|
|
separateConstantChains(*I, NCM, Loc);
|
|
}
|
|
DEBUG(dbgs() << "Node use information:\n" << Uses);
|
|
|
|
// At the moment, there is no further refinement of the initial placement.
|
|
// Such a refinement could include splitting the nodes if they are placed
|
|
// too far from some of its users.
|
|
|
|
DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
|
|
}
|
|
|
|
|
|
Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
|
|
BasicBlock *LocB) {
|
|
DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
|
|
<< " for nodes:\n" << NA);
|
|
unsigned Num = NA.size();
|
|
GepNode *RN = NA[0];
|
|
assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
|
|
|
|
Value *NewInst = 0;
|
|
Value *Input = RN->BaseVal;
|
|
Value **IdxList = new Value*[Num+1];
|
|
unsigned nax = 0;
|
|
do {
|
|
unsigned IdxC = 0;
|
|
// If the type of the input of the first node is not a pointer,
|
|
// we need to add an artificial i32 0 to the indices (because the
|
|
// actual input in the IR will be a pointer).
|
|
if (!NA[nax]->PTy->isPointerTy()) {
|
|
Type *Int32Ty = Type::getInt32Ty(*Ctx);
|
|
IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
|
|
}
|
|
|
|
// Keep adding indices from NA until we have to stop and generate
|
|
// an "intermediate" GEP.
|
|
while (++nax <= Num) {
|
|
GepNode *N = NA[nax-1];
|
|
IdxList[IdxC++] = N->Idx;
|
|
if (nax < Num) {
|
|
// We have to stop, if the expected type of the output of this node
|
|
// is not the same as the input type of the next node.
|
|
Type *NextTy = next_type(N->PTy, N->Idx);
|
|
if (NextTy != NA[nax]->PTy)
|
|
break;
|
|
}
|
|
}
|
|
ArrayRef<Value*> A(IdxList, IdxC);
|
|
Type *InpTy = Input->getType();
|
|
Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
|
|
NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
|
|
DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
|
|
Input = NewInst;
|
|
} while (nax <= Num);
|
|
|
|
delete[] IdxList;
|
|
return NewInst;
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
|
|
NodeChildrenMap &NCM) {
|
|
NodeVect Work;
|
|
Work.push_back(Node);
|
|
|
|
while (!Work.empty()) {
|
|
NodeVect::iterator First = Work.begin();
|
|
GepNode *N = *First;
|
|
Work.erase(First);
|
|
if (N->Flags & GepNode::Used) {
|
|
NodeToUsesMap::iterator UF = Uses.find(N);
|
|
assert(UF != Uses.end() && "No use information for used node");
|
|
UseSet &Us = UF->second;
|
|
for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
|
|
Values.push_back((*I)->getUser());
|
|
}
|
|
NodeChildrenMap::iterator CF = NCM.find(N);
|
|
if (CF != NCM.end()) {
|
|
NodeVect &Cs = CF->second;
|
|
Work.insert(Work.end(), Cs.begin(), Cs.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
|
|
DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
|
|
NodeChildrenMap NCM;
|
|
NodeVect Roots;
|
|
// Compute the inversion again, since computing placement could alter
|
|
// "parent" relation between nodes.
|
|
invert_find_roots(Nodes, NCM, Roots);
|
|
|
|
while (!Roots.empty()) {
|
|
NodeVect::iterator First = Roots.begin();
|
|
GepNode *Root = *First, *Last = *First;
|
|
Roots.erase(First);
|
|
|
|
NodeVect NA; // Nodes to assemble.
|
|
// Append to NA all child nodes up to (and including) the first child
|
|
// that:
|
|
// (1) has more than 1 child, or
|
|
// (2) is used, or
|
|
// (3) has a child located in a different block.
|
|
bool LastUsed = false;
|
|
unsigned LastCN = 0;
|
|
// The location may be null if the computation failed (it can legitimately
|
|
// happen for nodes created from dead GEPs).
|
|
Value *LocV = Loc[Last];
|
|
if (!LocV)
|
|
continue;
|
|
BasicBlock *LastB = cast<BasicBlock>(LocV);
|
|
do {
|
|
NA.push_back(Last);
|
|
LastUsed = (Last->Flags & GepNode::Used);
|
|
if (LastUsed)
|
|
break;
|
|
NodeChildrenMap::iterator CF = NCM.find(Last);
|
|
LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
|
|
if (LastCN != 1)
|
|
break;
|
|
GepNode *Child = CF->second.front();
|
|
BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
|
|
if (ChildB != 0 && LastB != ChildB)
|
|
break;
|
|
Last = Child;
|
|
} while (true);
|
|
|
|
BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
|
|
if (LastUsed || LastCN > 0) {
|
|
ValueVect Urs;
|
|
getAllUsersForNode(Root, Urs, NCM);
|
|
BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
|
|
if (FirstUse != LastB->end())
|
|
InsertAt = FirstUse;
|
|
}
|
|
|
|
// Generate a new instruction for NA.
|
|
Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
|
|
|
|
// Convert all the children of Last node into roots, and append them
|
|
// to the Roots list.
|
|
if (LastCN > 0) {
|
|
NodeVect &Cs = NCM[Last];
|
|
for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
|
|
GepNode *CN = *I;
|
|
CN->Flags &= ~GepNode::Internal;
|
|
CN->Flags |= GepNode::Root;
|
|
CN->BaseVal = NewInst;
|
|
Roots.push_back(CN);
|
|
}
|
|
}
|
|
|
|
// Lastly, if the Last node was used, replace all uses with the new GEP.
|
|
// The uses reference the original GEP values.
|
|
if (LastUsed) {
|
|
NodeToUsesMap::iterator UF = Uses.find(Last);
|
|
assert(UF != Uses.end() && "No use information found");
|
|
UseSet &Us = UF->second;
|
|
for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
|
|
Use *U = *I;
|
|
U->set(NewInst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonCommonGEP::removeDeadCode() {
|
|
ValueVect BO;
|
|
BO.push_back(&Fn->front());
|
|
|
|
for (unsigned i = 0; i < BO.size(); ++i) {
|
|
BasicBlock *B = cast<BasicBlock>(BO[i]);
|
|
DomTreeNode *N = DT->getNode(B);
|
|
typedef GraphTraits<DomTreeNode*> GTN;
|
|
typedef GTN::ChildIteratorType Iter;
|
|
for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
|
|
BO.push_back((*I)->getBlock());
|
|
}
|
|
|
|
for (unsigned i = BO.size(); i > 0; --i) {
|
|
BasicBlock *B = cast<BasicBlock>(BO[i-1]);
|
|
BasicBlock::InstListType &IL = B->getInstList();
|
|
typedef BasicBlock::InstListType::reverse_iterator reverse_iterator;
|
|
ValueVect Ins;
|
|
for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
|
|
Ins.push_back(&*I);
|
|
for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
|
|
Instruction *In = cast<Instruction>(*I);
|
|
if (isInstructionTriviallyDead(In))
|
|
In->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonCommonGEP::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
// For now bail out on C++ exception handling.
|
|
for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
|
|
for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
|
|
if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
|
|
return false;
|
|
|
|
Fn = &F;
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
Ctx = &F.getContext();
|
|
|
|
Nodes.clear();
|
|
Uses.clear();
|
|
NodeOrder.clear();
|
|
|
|
SpecificBumpPtrAllocator<GepNode> Allocator;
|
|
Mem = &Allocator;
|
|
|
|
collect();
|
|
common();
|
|
|
|
NodeToValueMap Loc;
|
|
computeNodePlacement(Loc);
|
|
materialize(Loc);
|
|
removeDeadCode();
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
// Run this only when expensive checks are enabled.
|
|
verifyFunction(F);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
|
|
namespace llvm {
|
|
FunctionPass *createHexagonCommonGEP() {
|
|
return new HexagonCommonGEP();
|
|
}
|
|
}
|