forked from OSchip/llvm-project
2190 lines
76 KiB
C++
2190 lines
76 KiB
C++
//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the RecursiveASTVisitor interface, which recursively
|
|
// traverses the entire AST.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
|
|
#define LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
|
|
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclFriend.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/TemplateName.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
|
|
// The following three macros are used for meta programming. The code
|
|
// using them is responsible for defining macro OPERATOR().
|
|
|
|
// All unary operators.
|
|
#define UNARYOP_LIST() \
|
|
OPERATOR(PostInc) OPERATOR(PostDec) \
|
|
OPERATOR(PreInc) OPERATOR(PreDec) \
|
|
OPERATOR(AddrOf) OPERATOR(Deref) \
|
|
OPERATOR(Plus) OPERATOR(Minus) \
|
|
OPERATOR(Not) OPERATOR(LNot) \
|
|
OPERATOR(Real) OPERATOR(Imag) \
|
|
OPERATOR(Extension)
|
|
|
|
// All binary operators (excluding compound assign operators).
|
|
#define BINOP_LIST() \
|
|
OPERATOR(PtrMemD) OPERATOR(PtrMemI) \
|
|
OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) \
|
|
OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) \
|
|
OPERATOR(Shr) \
|
|
\
|
|
OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) \
|
|
OPERATOR(GE) OPERATOR(EQ) OPERATOR(NE) \
|
|
OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \
|
|
OPERATOR(LAnd) OPERATOR(LOr) \
|
|
\
|
|
OPERATOR(Assign) \
|
|
OPERATOR(Comma)
|
|
|
|
// All compound assign operators.
|
|
#define CAO_LIST() \
|
|
OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \
|
|
OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor)
|
|
|
|
namespace clang {
|
|
namespace cxindex {
|
|
|
|
// A helper macro to implement short-circuiting when recursing. It
|
|
// invokes CALL_EXPR, which must be a method call, on the derived
|
|
// object (s.t. a user of RecursiveASTVisitor can override the method
|
|
// in CALL_EXPR).
|
|
#define TRY_TO(CALL_EXPR) \
|
|
do { if (!getDerived().CALL_EXPR) return false; } while (0)
|
|
|
|
/// \brief A class that does preorder depth-first traversal on the
|
|
/// entire Clang AST and visits each node.
|
|
///
|
|
/// This class performs three distinct tasks:
|
|
/// 1. traverse the AST (i.e. go to each node);
|
|
/// 2. at a given node, walk up the class hierarchy, starting from
|
|
/// the node's dynamic type, until the top-most class (e.g. Stmt,
|
|
/// Decl, or Type) is reached.
|
|
/// 3. given a (node, class) combination, where 'class' is some base
|
|
/// class of the dynamic type of 'node', call a user-overridable
|
|
/// function to actually visit the node.
|
|
///
|
|
/// These tasks are done by three groups of methods, respectively:
|
|
/// 1. TraverseDecl(Decl *x) does task #1. It is the entry point
|
|
/// for traversing an AST rooted at x. This method simply
|
|
/// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo
|
|
/// is the dynamic type of *x, which calls WalkUpFromFoo(x) and
|
|
/// then recursively visits the child nodes of x.
|
|
/// TraverseStmt(Stmt *x) and TraverseType(QualType x) work
|
|
/// similarly.
|
|
/// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit
|
|
/// any child node of x. Instead, it first calls WalkUpFromBar(x)
|
|
/// where Bar is the direct parent class of Foo (unless Foo has
|
|
/// no parent), and then calls VisitFoo(x) (see the next list item).
|
|
/// 3. VisitFoo(Foo *x) does task #3.
|
|
///
|
|
/// These three method groups are tiered (Traverse* > WalkUpFrom* >
|
|
/// Visit*). A method (e.g. Traverse*) may call methods from the same
|
|
/// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*).
|
|
/// It may not call methods from a higher tier.
|
|
///
|
|
/// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar
|
|
/// is Foo's super class) before calling VisitFoo(), the result is
|
|
/// that the Visit*() methods for a given node are called in the
|
|
/// top-down order (e.g. for a node of type NamedDecl, the order will
|
|
/// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()).
|
|
///
|
|
/// This scheme guarantees that all Visit*() calls for the same AST
|
|
/// node are grouped together. In other words, Visit*() methods for
|
|
/// different nodes are never interleaved.
|
|
///
|
|
/// Stmts are traversed internally using a data queue to avoid a stack overflow
|
|
/// with hugely nested ASTs.
|
|
///
|
|
/// Clients of this visitor should subclass the visitor (providing
|
|
/// themselves as the template argument, using the curiously recurring
|
|
/// template pattern) and override any of the Traverse*, WalkUpFrom*,
|
|
/// and Visit* methods for declarations, types, statements,
|
|
/// expressions, or other AST nodes where the visitor should customize
|
|
/// behavior. Most users only need to override Visit*. Advanced
|
|
/// users may override Traverse* and WalkUpFrom* to implement custom
|
|
/// traversal strategies. Returning false from one of these overridden
|
|
/// functions will abort the entire traversal.
|
|
///
|
|
/// By default, this visitor tries to visit every part of the explicit
|
|
/// source code exactly once. The default policy towards templates
|
|
/// is to descend into the 'pattern' class or function body, not any
|
|
/// explicit or implicit instantiations. Explicit specializations
|
|
/// are still visited, and the patterns of partial specializations
|
|
/// are visited separately. This behavior can be changed by
|
|
/// overriding shouldVisitTemplateInstantiations() in the derived class
|
|
/// to return true, in which case all known implicit and explicit
|
|
/// instantiations will be visited at the same time as the pattern
|
|
/// from which they were produced.
|
|
template<typename Derived>
|
|
class RecursiveASTVisitor {
|
|
public:
|
|
/// \brief Return a reference to the derived class.
|
|
Derived &getDerived() { return *static_cast<Derived*>(this); }
|
|
|
|
/// \brief Return whether this visitor should recurse into
|
|
/// template instantiations.
|
|
bool shouldVisitTemplateInstantiations() const { return false; }
|
|
|
|
/// \brief Return whether this visitor should recurse into the types of
|
|
/// TypeLocs.
|
|
bool shouldWalkTypesOfTypeLocs() const { return true; }
|
|
|
|
/// \brief Recursively visit a statement or expression, by
|
|
/// dispatching to Traverse*() based on the argument's dynamic type.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true
|
|
/// otherwise (including when the argument is NULL).
|
|
bool TraverseStmt(Stmt *S);
|
|
|
|
/// \brief Recursively visit a type, by dispatching to
|
|
/// Traverse*Type() based on the argument's getTypeClass() property.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true
|
|
/// otherwise (including when the argument is a Null type).
|
|
bool TraverseType(QualType T);
|
|
|
|
/// \brief Recursively visit a type with location, by dispatching to
|
|
/// Traverse*TypeLoc() based on the argument type's getTypeClass() property.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true
|
|
/// otherwise (including when the argument is a Null type location).
|
|
bool TraverseTypeLoc(TypeLoc TL);
|
|
|
|
/// \brief Recursively visit a declaration, by dispatching to
|
|
/// Traverse*Decl() based on the argument's dynamic type.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true
|
|
/// otherwise (including when the argument is NULL).
|
|
bool TraverseDecl(Decl *D);
|
|
|
|
/// \brief Recursively visit a C++ nested-name-specifier.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
|
|
|
|
/// \brief Recursively visit a C++ nested-name-specifier with location
|
|
/// information.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
|
|
|
|
/// \brief Recursively visit a name with its location information.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo);
|
|
|
|
/// \brief Recursively visit a template name and dispatch to the
|
|
/// appropriate method.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
bool TraverseTemplateName(TemplateName Template);
|
|
|
|
/// \brief Recursively visit a template argument and dispatch to the
|
|
/// appropriate method for the argument type.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
// FIXME: migrate callers to TemplateArgumentLoc instead.
|
|
bool TraverseTemplateArgument(const TemplateArgument &Arg);
|
|
|
|
/// \brief Recursively visit a template argument location and dispatch to the
|
|
/// appropriate method for the argument type.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc);
|
|
|
|
/// \brief Recursively visit a set of template arguments.
|
|
/// This can be overridden by a subclass, but it's not expected that
|
|
/// will be needed -- this visitor always dispatches to another.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
// FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead.
|
|
bool TraverseTemplateArguments(const TemplateArgument *Args,
|
|
unsigned NumArgs);
|
|
|
|
/// \brief Recursively visit a constructor initializer. This
|
|
/// automatically dispatches to another visitor for the initializer
|
|
/// expression, but not for the name of the initializer, so may
|
|
/// be overridden for clients that need access to the name.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
bool TraverseConstructorInitializer(CXXCtorInitializer *Init);
|
|
|
|
/// \brief Recursively visit a lambda capture.
|
|
///
|
|
/// \returns false if the visitation was terminated early, true otherwise.
|
|
bool TraverseLambdaCapture(LambdaExpr::Capture C);
|
|
|
|
// ---- Methods on Stmts ----
|
|
|
|
// Declare Traverse*() for all concrete Stmt classes.
|
|
#define ABSTRACT_STMT(STMT)
|
|
#define STMT(CLASS, PARENT) \
|
|
bool Traverse##CLASS(CLASS *S);
|
|
#include "clang/AST/StmtNodes.inc"
|
|
// The above header #undefs ABSTRACT_STMT and STMT upon exit.
|
|
|
|
// Define WalkUpFrom*() and empty Visit*() for all Stmt classes.
|
|
bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); }
|
|
bool VisitStmt(Stmt *S) { return true; }
|
|
#define STMT(CLASS, PARENT) \
|
|
bool WalkUpFrom##CLASS(CLASS *S) { \
|
|
TRY_TO(WalkUpFrom##PARENT(S)); \
|
|
TRY_TO(Visit##CLASS(S)); \
|
|
return true; \
|
|
} \
|
|
bool Visit##CLASS(CLASS *S) { return true; }
|
|
#include "clang/AST/StmtNodes.inc"
|
|
|
|
// Define Traverse*(), WalkUpFrom*(), and Visit*() for unary
|
|
// operator methods. Unary operators are not classes in themselves
|
|
// (they're all opcodes in UnaryOperator) but do have visitors.
|
|
#define OPERATOR(NAME) \
|
|
bool TraverseUnary##NAME(UnaryOperator *S) { \
|
|
TRY_TO(WalkUpFromUnary##NAME(S)); \
|
|
StmtQueueAction StmtQueue(*this); \
|
|
StmtQueue.queue(S->getSubExpr()); \
|
|
return true; \
|
|
} \
|
|
bool WalkUpFromUnary##NAME(UnaryOperator *S) { \
|
|
TRY_TO(WalkUpFromUnaryOperator(S)); \
|
|
TRY_TO(VisitUnary##NAME(S)); \
|
|
return true; \
|
|
} \
|
|
bool VisitUnary##NAME(UnaryOperator *S) { return true; }
|
|
|
|
UNARYOP_LIST()
|
|
#undef OPERATOR
|
|
|
|
// Define Traverse*(), WalkUpFrom*(), and Visit*() for binary
|
|
// operator methods. Binary operators are not classes in themselves
|
|
// (they're all opcodes in BinaryOperator) but do have visitors.
|
|
#define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \
|
|
bool TraverseBin##NAME(BINOP_TYPE *S) { \
|
|
TRY_TO(WalkUpFromBin##NAME(S)); \
|
|
StmtQueueAction StmtQueue(*this); \
|
|
StmtQueue.queue(S->getLHS()); \
|
|
StmtQueue.queue(S->getRHS()); \
|
|
return true; \
|
|
} \
|
|
bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \
|
|
TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \
|
|
TRY_TO(VisitBin##NAME(S)); \
|
|
return true; \
|
|
} \
|
|
bool VisitBin##NAME(BINOP_TYPE *S) { return true; }
|
|
|
|
#define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator)
|
|
BINOP_LIST()
|
|
#undef OPERATOR
|
|
|
|
// Define Traverse*(), WalkUpFrom*(), and Visit*() for compound
|
|
// assignment methods. Compound assignment operators are not
|
|
// classes in themselves (they're all opcodes in
|
|
// CompoundAssignOperator) but do have visitors.
|
|
#define OPERATOR(NAME) \
|
|
GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator)
|
|
|
|
CAO_LIST()
|
|
#undef OPERATOR
|
|
#undef GENERAL_BINOP_FALLBACK
|
|
|
|
// ---- Methods on Types ----
|
|
// FIXME: revamp to take TypeLoc's rather than Types.
|
|
|
|
// Declare Traverse*() for all concrete Type classes.
|
|
#define ABSTRACT_TYPE(CLASS, BASE)
|
|
#define TYPE(CLASS, BASE) \
|
|
bool Traverse##CLASS##Type(CLASS##Type *T);
|
|
#include "clang/AST/TypeNodes.def"
|
|
// The above header #undefs ABSTRACT_TYPE and TYPE upon exit.
|
|
|
|
// Define WalkUpFrom*() and empty Visit*() for all Type classes.
|
|
bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); }
|
|
bool VisitType(Type *T) { return true; }
|
|
#define TYPE(CLASS, BASE) \
|
|
bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \
|
|
TRY_TO(WalkUpFrom##BASE(T)); \
|
|
TRY_TO(Visit##CLASS##Type(T)); \
|
|
return true; \
|
|
} \
|
|
bool Visit##CLASS##Type(CLASS##Type *T) { return true; }
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
// ---- Methods on TypeLocs ----
|
|
// FIXME: this currently just calls the matching Type methods
|
|
|
|
// Declare Traverse*() for all concrete Type classes.
|
|
#define ABSTRACT_TYPELOC(CLASS, BASE)
|
|
#define TYPELOC(CLASS, BASE) \
|
|
bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL);
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
// The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit.
|
|
|
|
// Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes.
|
|
bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); }
|
|
bool VisitTypeLoc(TypeLoc TL) { return true; }
|
|
|
|
// QualifiedTypeLoc and UnqualTypeLoc are not declared in
|
|
// TypeNodes.def and thus need to be handled specially.
|
|
bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
|
|
}
|
|
bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; }
|
|
bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) {
|
|
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
|
|
}
|
|
bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; }
|
|
|
|
// Note that BASE includes trailing 'Type' which CLASS doesn't.
|
|
#define TYPE(CLASS, BASE) \
|
|
bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
|
|
TRY_TO(WalkUpFrom##BASE##Loc(TL)); \
|
|
TRY_TO(Visit##CLASS##TypeLoc(TL)); \
|
|
return true; \
|
|
} \
|
|
bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; }
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
// ---- Methods on Decls ----
|
|
|
|
// Declare Traverse*() for all concrete Decl classes.
|
|
#define ABSTRACT_DECL(DECL)
|
|
#define DECL(CLASS, BASE) \
|
|
bool Traverse##CLASS##Decl(CLASS##Decl *D);
|
|
#include "clang/AST/DeclNodes.inc"
|
|
// The above header #undefs ABSTRACT_DECL and DECL upon exit.
|
|
|
|
// Define WalkUpFrom*() and empty Visit*() for all Decl classes.
|
|
bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); }
|
|
bool VisitDecl(Decl *D) { return true; }
|
|
#define DECL(CLASS, BASE) \
|
|
bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \
|
|
TRY_TO(WalkUpFrom##BASE(D)); \
|
|
TRY_TO(Visit##CLASS##Decl(D)); \
|
|
return true; \
|
|
} \
|
|
bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; }
|
|
#include "clang/AST/DeclNodes.inc"
|
|
|
|
private:
|
|
// These are helper methods used by more than one Traverse* method.
|
|
bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL);
|
|
bool TraverseClassInstantiations(ClassTemplateDecl *D);
|
|
bool TraverseFunctionInstantiations(FunctionTemplateDecl *D) ;
|
|
bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL,
|
|
unsigned Count);
|
|
bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL);
|
|
bool TraverseRecordHelper(RecordDecl *D);
|
|
bool TraverseCXXRecordHelper(CXXRecordDecl *D);
|
|
bool TraverseDeclaratorHelper(DeclaratorDecl *D);
|
|
bool TraverseDeclContextHelper(DeclContext *DC);
|
|
bool TraverseFunctionHelper(FunctionDecl *D);
|
|
bool TraverseVarHelper(VarDecl *D);
|
|
|
|
typedef SmallVector<Stmt *, 16> StmtsTy;
|
|
typedef SmallVector<StmtsTy *, 4> QueuesTy;
|
|
|
|
QueuesTy Queues;
|
|
|
|
class NewQueueRAII {
|
|
RecursiveASTVisitor &RAV;
|
|
public:
|
|
NewQueueRAII(StmtsTy &queue, RecursiveASTVisitor &RAV) : RAV(RAV) {
|
|
RAV.Queues.push_back(&queue);
|
|
}
|
|
~NewQueueRAII() {
|
|
RAV.Queues.pop_back();
|
|
}
|
|
};
|
|
|
|
StmtsTy &getCurrentQueue() {
|
|
assert(!Queues.empty() && "base TraverseStmt was never called?");
|
|
return *Queues.back();
|
|
}
|
|
|
|
public:
|
|
class StmtQueueAction {
|
|
StmtsTy &CurrQueue;
|
|
public:
|
|
explicit StmtQueueAction(RecursiveASTVisitor &RAV)
|
|
: CurrQueue(RAV.getCurrentQueue()) { }
|
|
|
|
void queue(Stmt *S) {
|
|
CurrQueue.push_back(S);
|
|
}
|
|
};
|
|
};
|
|
|
|
#define DISPATCH(NAME, CLASS, VAR) \
|
|
return getDerived().Traverse##NAME(static_cast<CLASS*>(VAR))
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S) {
|
|
if (!S)
|
|
return true;
|
|
|
|
StmtsTy Queue, StmtsToEnqueu;
|
|
Queue.push_back(S);
|
|
NewQueueRAII NQ(StmtsToEnqueu, *this);
|
|
|
|
while (!Queue.empty()) {
|
|
S = Queue.pop_back_val();
|
|
if (!S)
|
|
continue;
|
|
|
|
StmtsToEnqueu.clear();
|
|
|
|
#define DISPATCH_STMT(NAME, CLASS, VAR) \
|
|
TRY_TO(Traverse##NAME(static_cast<CLASS*>(VAR))); break
|
|
|
|
// If we have a binary expr, dispatch to the subcode of the binop. A smart
|
|
// optimizer (e.g. LLVM) will fold this comparison into the switch stmt
|
|
// below.
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
|
|
switch (BinOp->getOpcode()) {
|
|
#define OPERATOR(NAME) \
|
|
case BO_##NAME: DISPATCH_STMT(Bin##NAME, BinaryOperator, S);
|
|
|
|
BINOP_LIST()
|
|
#undef OPERATOR
|
|
#undef BINOP_LIST
|
|
|
|
#define OPERATOR(NAME) \
|
|
case BO_##NAME##Assign: \
|
|
DISPATCH_STMT(Bin##NAME##Assign, CompoundAssignOperator, S);
|
|
|
|
CAO_LIST()
|
|
#undef OPERATOR
|
|
#undef CAO_LIST
|
|
}
|
|
} else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) {
|
|
switch (UnOp->getOpcode()) {
|
|
#define OPERATOR(NAME) \
|
|
case UO_##NAME: DISPATCH_STMT(Unary##NAME, UnaryOperator, S);
|
|
|
|
UNARYOP_LIST()
|
|
#undef OPERATOR
|
|
#undef UNARYOP_LIST
|
|
}
|
|
} else {
|
|
|
|
// Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt.
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::NoStmtClass: break;
|
|
#define ABSTRACT_STMT(STMT)
|
|
#define STMT(CLASS, PARENT) \
|
|
case Stmt::CLASS##Class: DISPATCH_STMT(CLASS, CLASS, S);
|
|
#include "clang/AST/StmtNodes.inc"
|
|
}
|
|
}
|
|
|
|
for (SmallVector<Stmt *, 8>::reverse_iterator
|
|
RI = StmtsToEnqueu.rbegin(),
|
|
RE = StmtsToEnqueu.rend(); RI != RE; ++RI)
|
|
Queue.push_back(*RI);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) {
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
switch (T->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(CLASS, BASE)
|
|
#define TYPE(CLASS, BASE) \
|
|
case Type::CLASS: DISPATCH(CLASS##Type, CLASS##Type, \
|
|
const_cast<Type*>(T.getTypePtr()));
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) {
|
|
if (TL.isNull())
|
|
return true;
|
|
|
|
switch (TL.getTypeLocClass()) {
|
|
#define ABSTRACT_TYPELOC(CLASS, BASE)
|
|
#define TYPELOC(CLASS, BASE) \
|
|
case TypeLoc::CLASS: \
|
|
return getDerived().Traverse##CLASS##TypeLoc(TL.castAs<CLASS##TypeLoc>());
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) {
|
|
if (!D)
|
|
return true;
|
|
|
|
// As a syntax visitor, we want to ignore declarations for
|
|
// implicitly-defined declarations (ones not typed explicitly by the
|
|
// user).
|
|
if (D->isImplicit())
|
|
return true;
|
|
|
|
switch (D->getKind()) {
|
|
#define ABSTRACT_DECL(DECL)
|
|
#define DECL(CLASS, BASE) \
|
|
case Decl::CLASS: DISPATCH(CLASS##Decl, CLASS##Decl, D);
|
|
#include "clang/AST/DeclNodes.inc"
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#undef DISPATCH
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier(
|
|
NestedNameSpecifier *NNS) {
|
|
if (!NNS)
|
|
return true;
|
|
|
|
if (NNS->getPrefix())
|
|
TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix()));
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
return true;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
TRY_TO(TraverseType(QualType(NNS->getAsType(), 0)));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc(
|
|
NestedNameSpecifierLoc NNS) {
|
|
if (!NNS)
|
|
return true;
|
|
|
|
if (NestedNameSpecifierLoc Prefix = NNS.getPrefix())
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(Prefix));
|
|
|
|
switch (NNS.getNestedNameSpecifier()->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
return true;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
TRY_TO(TraverseTypeLoc(NNS.getTypeLoc()));
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo(
|
|
DeclarationNameInfo NameInfo) {
|
|
switch (NameInfo.getName().getNameKind()) {
|
|
case DeclarationName::CXXConstructorName:
|
|
case DeclarationName::CXXDestructorName:
|
|
case DeclarationName::CXXConversionFunctionName:
|
|
if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
|
|
TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc()));
|
|
|
|
break;
|
|
|
|
case DeclarationName::Identifier:
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
case DeclarationName::CXXOperatorName:
|
|
case DeclarationName::CXXLiteralOperatorName:
|
|
case DeclarationName::CXXUsingDirective:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) {
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
|
|
TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier()));
|
|
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
|
|
TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier()));
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument(
|
|
const TemplateArgument &Arg) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::NullPtr:
|
|
return true;
|
|
|
|
case TemplateArgument::Type:
|
|
return getDerived().TraverseType(Arg.getAsType());
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
return getDerived().TraverseTemplateName(
|
|
Arg.getAsTemplateOrTemplatePattern());
|
|
|
|
case TemplateArgument::Expression:
|
|
return getDerived().TraverseStmt(Arg.getAsExpr());
|
|
|
|
case TemplateArgument::Pack:
|
|
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
|
|
Arg.pack_size());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME: no template name location?
|
|
// FIXME: no source locations for a template argument pack?
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc(
|
|
const TemplateArgumentLoc &ArgLoc) {
|
|
const TemplateArgument &Arg = ArgLoc.getArgument();
|
|
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::NullPtr:
|
|
return true;
|
|
|
|
case TemplateArgument::Type: {
|
|
// FIXME: how can TSI ever be NULL?
|
|
if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo())
|
|
return getDerived().TraverseTypeLoc(TSI->getTypeLoc());
|
|
else
|
|
return getDerived().TraverseType(Arg.getAsType());
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (ArgLoc.getTemplateQualifierLoc())
|
|
TRY_TO(getDerived().TraverseNestedNameSpecifierLoc(
|
|
ArgLoc.getTemplateQualifierLoc()));
|
|
return getDerived().TraverseTemplateName(
|
|
Arg.getAsTemplateOrTemplatePattern());
|
|
|
|
case TemplateArgument::Expression:
|
|
return getDerived().TraverseStmt(ArgLoc.getSourceExpression());
|
|
|
|
case TemplateArgument::Pack:
|
|
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
|
|
Arg.pack_size());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments(
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs) {
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
TRY_TO(TraverseTemplateArgument(Args[I]));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer(
|
|
CXXCtorInitializer *Init) {
|
|
if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo())
|
|
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
|
|
|
|
if (Init->isWritten())
|
|
TRY_TO(TraverseStmt(Init->getInit()));
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr::Capture C){
|
|
return true;
|
|
}
|
|
|
|
// ----------------- Type traversal -----------------
|
|
|
|
// This macro makes available a variable T, the passed-in type.
|
|
#define DEF_TRAVERSE_TYPE(TYPE, CODE) \
|
|
template<typename Derived> \
|
|
bool RecursiveASTVisitor<Derived>::Traverse##TYPE (TYPE *T) { \
|
|
TRY_TO(WalkUpFrom##TYPE (T)); \
|
|
{ CODE; } \
|
|
return true; \
|
|
}
|
|
|
|
DEF_TRAVERSE_TYPE(BuiltinType, { })
|
|
|
|
DEF_TRAVERSE_TYPE(ComplexType, {
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(PointerType, {
|
|
TRY_TO(TraverseType(T->getPointeeType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(BlockPointerType, {
|
|
TRY_TO(TraverseType(T->getPointeeType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(LValueReferenceType, {
|
|
TRY_TO(TraverseType(T->getPointeeType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(RValueReferenceType, {
|
|
TRY_TO(TraverseType(T->getPointeeType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(MemberPointerType, {
|
|
TRY_TO(TraverseType(QualType(T->getClass(), 0)));
|
|
TRY_TO(TraverseType(T->getPointeeType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(ConstantArrayType, {
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(IncompleteArrayType, {
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(VariableArrayType, {
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
TRY_TO(TraverseStmt(T->getSizeExpr()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(DependentSizedArrayType, {
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
if (T->getSizeExpr())
|
|
TRY_TO(TraverseStmt(T->getSizeExpr()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, {
|
|
if (T->getSizeExpr())
|
|
TRY_TO(TraverseStmt(T->getSizeExpr()));
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(VectorType, {
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(ExtVectorType, {
|
|
TRY_TO(TraverseType(T->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(FunctionNoProtoType, {
|
|
TRY_TO(TraverseType(T->getResultType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(FunctionProtoType, {
|
|
TRY_TO(TraverseType(T->getResultType()));
|
|
|
|
for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
|
|
AEnd = T->arg_type_end();
|
|
A != AEnd; ++A) {
|
|
TRY_TO(TraverseType(*A));
|
|
}
|
|
|
|
for (FunctionProtoType::exception_iterator E = T->exception_begin(),
|
|
EEnd = T->exception_end();
|
|
E != EEnd; ++E) {
|
|
TRY_TO(TraverseType(*E));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(UnresolvedUsingType, { })
|
|
DEF_TRAVERSE_TYPE(TypedefType, { })
|
|
|
|
DEF_TRAVERSE_TYPE(TypeOfExprType, {
|
|
TRY_TO(TraverseStmt(T->getUnderlyingExpr()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(TypeOfType, {
|
|
TRY_TO(TraverseType(T->getUnderlyingType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(DecltypeType, {
|
|
TRY_TO(TraverseStmt(T->getUnderlyingExpr()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(UnaryTransformType, {
|
|
TRY_TO(TraverseType(T->getBaseType()));
|
|
TRY_TO(TraverseType(T->getUnderlyingType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(AutoType, {
|
|
TRY_TO(TraverseType(T->getDeducedType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(RecordType, { })
|
|
DEF_TRAVERSE_TYPE(EnumType, { })
|
|
DEF_TRAVERSE_TYPE(TemplateTypeParmType, { })
|
|
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { })
|
|
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { })
|
|
|
|
DEF_TRAVERSE_TYPE(TemplateSpecializationType, {
|
|
TRY_TO(TraverseTemplateName(T->getTemplateName()));
|
|
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(InjectedClassNameType, { })
|
|
|
|
DEF_TRAVERSE_TYPE(AttributedType, {
|
|
TRY_TO(TraverseType(T->getModifiedType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(ParenType, {
|
|
TRY_TO(TraverseType(T->getInnerType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(ElaboratedType, {
|
|
if (T->getQualifier()) {
|
|
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
|
|
}
|
|
TRY_TO(TraverseType(T->getNamedType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(DependentNameType, {
|
|
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, {
|
|
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
|
|
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(PackExpansionType, {
|
|
TRY_TO(TraverseType(T->getPattern()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(ObjCInterfaceType, { })
|
|
|
|
DEF_TRAVERSE_TYPE(ObjCObjectType, {
|
|
// We have to watch out here because an ObjCInterfaceType's base
|
|
// type is itself.
|
|
if (T->getBaseType().getTypePtr() != T)
|
|
TRY_TO(TraverseType(T->getBaseType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(ObjCObjectPointerType, {
|
|
TRY_TO(TraverseType(T->getPointeeType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPE(AtomicType, {
|
|
TRY_TO(TraverseType(T->getValueType()));
|
|
})
|
|
|
|
#undef DEF_TRAVERSE_TYPE
|
|
|
|
// ----------------- TypeLoc traversal -----------------
|
|
|
|
// This macro makes available a variable TL, the passed-in TypeLoc.
|
|
// If requested, it calls WalkUpFrom* for the Type in the given TypeLoc,
|
|
// in addition to WalkUpFrom* for the TypeLoc itself, such that existing
|
|
// clients that override the WalkUpFrom*Type() and/or Visit*Type() methods
|
|
// continue to work.
|
|
#define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \
|
|
template<typename Derived> \
|
|
bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \
|
|
if (getDerived().shouldWalkTypesOfTypeLocs()) \
|
|
TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE*>(TL.getTypePtr()))); \
|
|
TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \
|
|
{ CODE; } \
|
|
return true; \
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc(
|
|
QualifiedTypeLoc TL) {
|
|
// Move this over to the 'main' typeloc tree. Note that this is a
|
|
// move -- we pretend that we were really looking at the unqualified
|
|
// typeloc all along -- rather than a recursion, so we don't follow
|
|
// the normal CRTP plan of going through
|
|
// getDerived().TraverseTypeLoc. If we did, we'd be traversing
|
|
// twice for the same type (once as a QualifiedTypeLoc version of
|
|
// the type, once as an UnqualifiedTypeLoc version of the type),
|
|
// which in effect means we'd call VisitTypeLoc twice with the
|
|
// 'same' type. This solves that problem, at the cost of never
|
|
// seeing the qualified version of the type (unless the client
|
|
// subclasses TraverseQualifiedTypeLoc themselves). It's not a
|
|
// perfect solution. A perfect solution probably requires making
|
|
// QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a
|
|
// wrapper around Type* -- rather than being its own class in the
|
|
// type hierarchy.
|
|
return TraverseTypeLoc(TL.getUnqualifiedLoc());
|
|
}
|
|
|
|
DEF_TRAVERSE_TYPELOC(BuiltinType, { })
|
|
|
|
// FIXME: ComplexTypeLoc is unfinished
|
|
DEF_TRAVERSE_TYPELOC(ComplexType, {
|
|
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(PointerType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(BlockPointerType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(LValueReferenceType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(RValueReferenceType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
|
|
})
|
|
|
|
// FIXME: location of base class?
|
|
// We traverse this in the type case as well, but how is it not reached through
|
|
// the pointee type?
|
|
DEF_TRAVERSE_TYPELOC(MemberPointerType, {
|
|
TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0)));
|
|
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
|
|
})
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) {
|
|
// This isn't available for ArrayType, but is for the ArrayTypeLoc.
|
|
TRY_TO(TraverseStmt(TL.getSizeExpr()));
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_TYPELOC(ConstantArrayType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
|
|
return TraverseArrayTypeLocHelper(TL);
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(IncompleteArrayType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
|
|
return TraverseArrayTypeLocHelper(TL);
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(VariableArrayType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
|
|
return TraverseArrayTypeLocHelper(TL);
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
|
|
return TraverseArrayTypeLocHelper(TL);
|
|
})
|
|
|
|
// FIXME: order? why not size expr first?
|
|
// FIXME: base VectorTypeLoc is unfinished
|
|
DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, {
|
|
if (TL.getTypePtr()->getSizeExpr())
|
|
TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
|
|
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
|
|
})
|
|
|
|
// FIXME: VectorTypeLoc is unfinished
|
|
DEF_TRAVERSE_TYPELOC(VectorType, {
|
|
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
|
|
})
|
|
|
|
// FIXME: size and attributes
|
|
// FIXME: base VectorTypeLoc is unfinished
|
|
DEF_TRAVERSE_TYPELOC(ExtVectorType, {
|
|
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getResultLoc()));
|
|
})
|
|
|
|
// FIXME: location of exception specifications (attributes?)
|
|
DEF_TRAVERSE_TYPELOC(FunctionProtoType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getResultLoc()));
|
|
|
|
const FunctionProtoType *T = TL.getTypePtr();
|
|
|
|
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
|
|
if (TL.getArg(I)) {
|
|
TRY_TO(TraverseDecl(TL.getArg(I)));
|
|
} else if (I < T->getNumArgs()) {
|
|
TRY_TO(TraverseType(T->getArgType(I)));
|
|
}
|
|
}
|
|
|
|
for (FunctionProtoType::exception_iterator E = T->exception_begin(),
|
|
EEnd = T->exception_end();
|
|
E != EEnd; ++E) {
|
|
TRY_TO(TraverseType(*E));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, { })
|
|
DEF_TRAVERSE_TYPELOC(TypedefType, { })
|
|
|
|
DEF_TRAVERSE_TYPELOC(TypeOfExprType, {
|
|
TRY_TO(TraverseStmt(TL.getUnderlyingExpr()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(TypeOfType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
|
|
})
|
|
|
|
// FIXME: location of underlying expr
|
|
DEF_TRAVERSE_TYPELOC(DecltypeType, {
|
|
TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(UnaryTransformType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(AutoType, {
|
|
TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(RecordType, { })
|
|
DEF_TRAVERSE_TYPELOC(EnumType, { })
|
|
DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, { })
|
|
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { })
|
|
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { })
|
|
|
|
// FIXME: use the loc for the template name?
|
|
DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, {
|
|
TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
|
|
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
|
|
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(InjectedClassNameType, { })
|
|
|
|
DEF_TRAVERSE_TYPELOC(ParenType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getInnerLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(AttributedType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getModifiedLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(ElaboratedType, {
|
|
if (TL.getQualifierLoc()) {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
|
|
}
|
|
TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(DependentNameType, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, {
|
|
if (TL.getQualifierLoc()) {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
|
|
}
|
|
|
|
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
|
|
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(PackExpansionType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getPatternLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, { })
|
|
|
|
DEF_TRAVERSE_TYPELOC(ObjCObjectType, {
|
|
// We have to watch out here because an ObjCInterfaceType's base
|
|
// type is itself.
|
|
if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr())
|
|
TRY_TO(TraverseTypeLoc(TL.getBaseLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_TYPELOC(AtomicType, {
|
|
TRY_TO(TraverseTypeLoc(TL.getValueLoc()));
|
|
})
|
|
|
|
#undef DEF_TRAVERSE_TYPELOC
|
|
|
|
// ----------------- Decl traversal -----------------
|
|
//
|
|
// For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing
|
|
// the children that come from the DeclContext associated with it.
|
|
// Therefore each Traverse* only needs to worry about children other
|
|
// than those.
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) {
|
|
if (!DC)
|
|
return true;
|
|
|
|
for (DeclContext::decl_iterator Child = DC->decls_begin(),
|
|
ChildEnd = DC->decls_end();
|
|
Child != ChildEnd; ++Child) {
|
|
// BlockDecls are traversed through BlockExprs.
|
|
if (!isa<BlockDecl>(*Child))
|
|
TRY_TO(TraverseDecl(*Child));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// This macro makes available a variable D, the passed-in decl.
|
|
#define DEF_TRAVERSE_DECL(DECL, CODE) \
|
|
template<typename Derived> \
|
|
bool RecursiveASTVisitor<Derived>::Traverse##DECL (DECL *D) { \
|
|
TRY_TO(WalkUpFrom##DECL (D)); \
|
|
{ CODE; } \
|
|
TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \
|
|
return true; \
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(AccessSpecDecl, { })
|
|
|
|
DEF_TRAVERSE_DECL(BlockDecl, {
|
|
if (TypeSourceInfo *TInfo = D->getSignatureAsWritten())
|
|
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
|
|
TRY_TO(TraverseStmt(D->getBody()));
|
|
// This return statement makes sure the traversal of nodes in
|
|
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
|
|
// is skipped - don't remove it.
|
|
return true;
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(EmptyDecl, { })
|
|
|
|
DEF_TRAVERSE_DECL(FileScopeAsmDecl, {
|
|
TRY_TO(TraverseStmt(D->getAsmString()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ImportDecl, { })
|
|
|
|
DEF_TRAVERSE_DECL(FriendDecl, {
|
|
// Friend is either decl or a type.
|
|
if (D->getFriendType())
|
|
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
|
|
else
|
|
TRY_TO(TraverseDecl(D->getFriendDecl()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(FriendTemplateDecl, {
|
|
if (D->getFriendType())
|
|
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
|
|
else
|
|
TRY_TO(TraverseDecl(D->getFriendDecl()));
|
|
for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) {
|
|
TemplateParameterList *TPL = D->getTemplateParameterList(I);
|
|
for (TemplateParameterList::iterator ITPL = TPL->begin(),
|
|
ETPL = TPL->end();
|
|
ITPL != ETPL; ++ITPL) {
|
|
TRY_TO(TraverseDecl(*ITPL));
|
|
}
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, {
|
|
TRY_TO(TraverseDecl(D->getSpecialization()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(LinkageSpecDecl, { })
|
|
|
|
DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, {
|
|
// FIXME: implement this
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(StaticAssertDecl, {
|
|
TRY_TO(TraverseStmt(D->getAssertExpr()));
|
|
TRY_TO(TraverseStmt(D->getMessage()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(TranslationUnitDecl, {
|
|
// Code in an unnamed namespace shows up automatically in
|
|
// decls_begin()/decls_end(). Thus we don't need to recurse on
|
|
// D->getAnonymousNamespace().
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(NamespaceAliasDecl, {
|
|
// We shouldn't traverse an aliased namespace, since it will be
|
|
// defined (and, therefore, traversed) somewhere else.
|
|
//
|
|
// This return statement makes sure the traversal of nodes in
|
|
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
|
|
// is skipped - don't remove it.
|
|
return true;
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(LabelDecl, {
|
|
// There is no code in a LabelDecl.
|
|
})
|
|
|
|
|
|
DEF_TRAVERSE_DECL(NamespaceDecl, {
|
|
// Code in an unnamed namespace shows up automatically in
|
|
// decls_begin()/decls_end(). Thus we don't need to recurse on
|
|
// D->getAnonymousNamespace().
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, {
|
|
// FIXME: implement
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCCategoryDecl, {
|
|
// FIXME: implement
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, {
|
|
// FIXME: implement
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCImplementationDecl, {
|
|
// FIXME: implement
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCInterfaceDecl, {
|
|
// FIXME: implement
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCProtocolDecl, {
|
|
// FIXME: implement
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCMethodDecl, {
|
|
if (D->getResultTypeSourceInfo()) {
|
|
TRY_TO(TraverseTypeLoc(D->getResultTypeSourceInfo()->getTypeLoc()));
|
|
}
|
|
for (ObjCMethodDecl::param_iterator
|
|
I = D->param_begin(), E = D->param_end(); I != E; ++I) {
|
|
TRY_TO(TraverseDecl(*I));
|
|
}
|
|
if (D->isThisDeclarationADefinition()) {
|
|
TRY_TO(TraverseStmt(D->getBody()));
|
|
}
|
|
return true;
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCPropertyDecl, {
|
|
// FIXME: implement
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(UsingDecl, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(UsingDirectiveDecl, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(UsingShadowDecl, { })
|
|
|
|
// A helper method for TemplateDecl's children.
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper(
|
|
TemplateParameterList *TPL) {
|
|
if (TPL) {
|
|
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
|
|
I != E; ++I) {
|
|
TRY_TO(TraverseDecl(*I));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// A helper method for traversing the implicit instantiations of a
|
|
// class template.
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseClassInstantiations(
|
|
ClassTemplateDecl *D) {
|
|
ClassTemplateDecl::spec_iterator end = D->spec_end();
|
|
for (ClassTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) {
|
|
ClassTemplateSpecializationDecl* SD = *it;
|
|
|
|
switch (SD->getSpecializationKind()) {
|
|
// Visit the implicit instantiations with the requested pattern.
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
TRY_TO(TraverseDecl(SD));
|
|
break;
|
|
|
|
// We don't need to do anything on an explicit instantiation
|
|
// or explicit specialization because there will be an explicit
|
|
// node for it elsewhere.
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
case TSK_ExplicitSpecialization:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(ClassTemplateDecl, {
|
|
CXXRecordDecl* TempDecl = D->getTemplatedDecl();
|
|
TRY_TO(TraverseDecl(TempDecl));
|
|
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
|
|
|
|
// By default, we do not traverse the instantiations of
|
|
// class templates since they do not appear in the user code. The
|
|
// following code optionally traverses them.
|
|
//
|
|
// We only traverse the class instantiations when we see the canonical
|
|
// declaration of the template, to ensure we only visit them once.
|
|
if (getDerived().shouldVisitTemplateInstantiations() &&
|
|
D == D->getCanonicalDecl())
|
|
TRY_TO(TraverseClassInstantiations(D));
|
|
|
|
// Note that getInstantiatedFromMemberTemplate() is just a link
|
|
// from a template instantiation back to the template from which
|
|
// it was instantiated, and thus should not be traversed.
|
|
})
|
|
|
|
// A helper method for traversing the instantiations of a
|
|
// function while skipping its specializations.
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseFunctionInstantiations(
|
|
FunctionTemplateDecl *D) {
|
|
FunctionTemplateDecl::spec_iterator end = D->spec_end();
|
|
for (FunctionTemplateDecl::spec_iterator it = D->spec_begin(); it != end;
|
|
++it) {
|
|
FunctionDecl* FD = *it;
|
|
switch (FD->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
// We don't know what kind of FunctionDecl this is.
|
|
TRY_TO(TraverseDecl(FD));
|
|
break;
|
|
|
|
// No need to visit explicit instantiations, we'll find the node
|
|
// eventually.
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
break;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(FunctionTemplateDecl, {
|
|
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
|
|
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
|
|
|
|
// By default, we do not traverse the instantiations of
|
|
// function templates since they do not appear in the user code. The
|
|
// following code optionally traverses them.
|
|
//
|
|
// We only traverse the function instantiations when we see the canonical
|
|
// declaration of the template, to ensure we only visit them once.
|
|
if (getDerived().shouldVisitTemplateInstantiations() &&
|
|
D == D->getCanonicalDecl())
|
|
TRY_TO(TraverseFunctionInstantiations(D));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, {
|
|
// D is the "T" in something like
|
|
// template <template <typename> class T> class container { };
|
|
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
|
|
if (D->hasDefaultArgument()) {
|
|
TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument()));
|
|
}
|
|
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(TemplateTypeParmDecl, {
|
|
// D is the "T" in something like "template<typename T> class vector;"
|
|
if (D->getTypeForDecl())
|
|
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
|
|
if (D->hasDefaultArgument())
|
|
TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(TypedefDecl, {
|
|
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
|
|
// We shouldn't traverse D->getTypeForDecl(); it's a result of
|
|
// declaring the typedef, not something that was written in the
|
|
// source.
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(TypeAliasDecl, {
|
|
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
|
|
// We shouldn't traverse D->getTypeForDecl(); it's a result of
|
|
// declaring the type alias, not something that was written in the
|
|
// source.
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, {
|
|
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
|
|
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, {
|
|
// A dependent using declaration which was marked with 'typename'.
|
|
// template<class T> class A : public B<T> { using typename B<T>::foo; };
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
// We shouldn't traverse D->getTypeForDecl(); it's a result of
|
|
// declaring the type, not something that was written in the
|
|
// source.
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(EnumDecl, {
|
|
if (D->getTypeForDecl())
|
|
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
|
|
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
// The enumerators are already traversed by
|
|
// decls_begin()/decls_end().
|
|
})
|
|
|
|
|
|
// Helper methods for RecordDecl and its children.
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseRecordHelper(
|
|
RecordDecl *D) {
|
|
// We shouldn't traverse D->getTypeForDecl(); it's a result of
|
|
// declaring the type, not something that was written in the source.
|
|
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
return true;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper(
|
|
CXXRecordDecl *D) {
|
|
if (!TraverseRecordHelper(D))
|
|
return false;
|
|
if (D->isCompleteDefinition()) {
|
|
for (CXXRecordDecl::base_class_iterator I = D->bases_begin(),
|
|
E = D->bases_end();
|
|
I != E; ++I) {
|
|
TRY_TO(TraverseTypeLoc(I->getTypeSourceInfo()->getTypeLoc()));
|
|
}
|
|
// We don't traverse the friends or the conversions, as they are
|
|
// already in decls_begin()/decls_end().
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(RecordDecl, {
|
|
TRY_TO(TraverseRecordHelper(D));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(CXXRecordDecl, {
|
|
TRY_TO(TraverseCXXRecordHelper(D));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ClassTemplateSpecializationDecl, {
|
|
// For implicit instantiations ("set<int> x;"), we don't want to
|
|
// recurse at all, since the instatiated class isn't written in
|
|
// the source code anywhere. (Note the instatiated *type* --
|
|
// set<int> -- is written, and will still get a callback of
|
|
// TemplateSpecializationType). For explicit instantiations
|
|
// ("template set<int>;"), we do need a callback, since this
|
|
// is the only callback that's made for this instantiation.
|
|
// We use getTypeAsWritten() to distinguish.
|
|
if (TypeSourceInfo *TSI = D->getTypeAsWritten())
|
|
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
|
|
|
|
if (!getDerived().shouldVisitTemplateInstantiations() &&
|
|
D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
|
|
// Returning from here skips traversing the
|
|
// declaration context of the ClassTemplateSpecializationDecl
|
|
// (embedded in the DEF_TRAVERSE_DECL() macro)
|
|
// which contains the instantiated members of the class.
|
|
return true;
|
|
})
|
|
|
|
template <typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper(
|
|
const TemplateArgumentLoc *TAL, unsigned Count) {
|
|
for (unsigned I = 0; I < Count; ++I) {
|
|
TRY_TO(TraverseTemplateArgumentLoc(TAL[I]));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(ClassTemplatePartialSpecializationDecl, {
|
|
// The partial specialization.
|
|
if (TemplateParameterList *TPL = D->getTemplateParameters()) {
|
|
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
|
|
I != E; ++I) {
|
|
TRY_TO(TraverseDecl(*I));
|
|
}
|
|
}
|
|
// The args that remains unspecialized.
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(
|
|
D->getTemplateArgsAsWritten(), D->getNumTemplateArgsAsWritten()));
|
|
|
|
// Don't need the ClassTemplatePartialSpecializationHelper, even
|
|
// though that's our parent class -- we already visit all the
|
|
// template args here.
|
|
TRY_TO(TraverseCXXRecordHelper(D));
|
|
|
|
// Instantiations will have been visited with the primary template.
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(EnumConstantDecl, {
|
|
TRY_TO(TraverseStmt(D->getInitExpr()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, {
|
|
// Like UnresolvedUsingTypenameDecl, but without the 'typename':
|
|
// template <class T> Class A : public Base<T> { using Base<T>::foo; };
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(IndirectFieldDecl, {})
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
if (D->getTypeSourceInfo())
|
|
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
|
|
else
|
|
TRY_TO(TraverseType(D->getType()));
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(FieldDecl, {
|
|
TRY_TO(TraverseDeclaratorHelper(D));
|
|
if (D->isBitField())
|
|
TRY_TO(TraverseStmt(D->getBitWidth()));
|
|
else if (D->hasInClassInitializer())
|
|
TRY_TO(TraverseStmt(D->getInClassInitializer()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, {
|
|
TRY_TO(TraverseDeclaratorHelper(D));
|
|
if (D->isBitField())
|
|
TRY_TO(TraverseStmt(D->getBitWidth()));
|
|
// FIXME: implement the rest.
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ObjCIvarDecl, {
|
|
TRY_TO(TraverseDeclaratorHelper(D));
|
|
if (D->isBitField())
|
|
TRY_TO(TraverseStmt(D->getBitWidth()));
|
|
// FIXME: implement the rest.
|
|
})
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
|
|
|
|
// If we're an explicit template specialization, iterate over the
|
|
// template args that were explicitly specified. If we were doing
|
|
// this in typing order, we'd do it between the return type and
|
|
// the function args, but both are handled by the FunctionTypeLoc
|
|
// above, so we have to choose one side. I've decided to do before.
|
|
if (const FunctionTemplateSpecializationInfo *FTSI =
|
|
D->getTemplateSpecializationInfo()) {
|
|
if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared &&
|
|
FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
|
|
// A specialization might not have explicit template arguments if it has
|
|
// a templated return type and concrete arguments.
|
|
if (const ASTTemplateArgumentListInfo *TALI =
|
|
FTSI->TemplateArgumentsAsWritten) {
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(),
|
|
TALI->NumTemplateArgs));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Visit the function type itself, which can be either
|
|
// FunctionNoProtoType or FunctionProtoType, or a typedef. This
|
|
// also covers the return type and the function parameters,
|
|
// including exception specifications.
|
|
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
|
|
|
|
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
// Constructor initializers.
|
|
for (CXXConstructorDecl::init_iterator I = Ctor->init_begin(),
|
|
E = Ctor->init_end();
|
|
I != E; ++I) {
|
|
TRY_TO(TraverseConstructorInitializer(*I));
|
|
}
|
|
}
|
|
|
|
if (D->isThisDeclarationADefinition()) {
|
|
TRY_TO(TraverseStmt(D->getBody())); // Function body.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(FunctionDecl, {
|
|
// We skip decls_begin/decls_end, which are already covered by
|
|
// TraverseFunctionHelper().
|
|
return TraverseFunctionHelper(D);
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(CXXMethodDecl, {
|
|
// We skip decls_begin/decls_end, which are already covered by
|
|
// TraverseFunctionHelper().
|
|
return TraverseFunctionHelper(D);
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(CXXConstructorDecl, {
|
|
// We skip decls_begin/decls_end, which are already covered by
|
|
// TraverseFunctionHelper().
|
|
return TraverseFunctionHelper(D);
|
|
})
|
|
|
|
// CXXConversionDecl is the declaration of a type conversion operator.
|
|
// It's not a cast expression.
|
|
DEF_TRAVERSE_DECL(CXXConversionDecl, {
|
|
// We skip decls_begin/decls_end, which are already covered by
|
|
// TraverseFunctionHelper().
|
|
return TraverseFunctionHelper(D);
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(CXXDestructorDecl, {
|
|
// We skip decls_begin/decls_end, which are already covered by
|
|
// TraverseFunctionHelper().
|
|
return TraverseFunctionHelper(D);
|
|
})
|
|
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) {
|
|
TRY_TO(TraverseDeclaratorHelper(D));
|
|
// Default params are taken care of when we traverse the ParmVarDecl.
|
|
if (!isa<ParmVarDecl>(D))
|
|
TRY_TO(TraverseStmt(D->getInit()));
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_DECL(VarDecl, {
|
|
TRY_TO(TraverseVarHelper(D));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ImplicitParamDecl, {
|
|
TRY_TO(TraverseVarHelper(D));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, {
|
|
// A non-type template parameter, e.g. "S" in template<int S> class Foo ...
|
|
TRY_TO(TraverseDeclaratorHelper(D));
|
|
TRY_TO(TraverseStmt(D->getDefaultArgument()));
|
|
})
|
|
|
|
DEF_TRAVERSE_DECL(ParmVarDecl, {
|
|
TRY_TO(TraverseVarHelper(D));
|
|
|
|
if (D->hasDefaultArg() &&
|
|
D->hasUninstantiatedDefaultArg() &&
|
|
!D->hasUnparsedDefaultArg())
|
|
TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg()));
|
|
|
|
if (D->hasDefaultArg() &&
|
|
!D->hasUninstantiatedDefaultArg() &&
|
|
!D->hasUnparsedDefaultArg())
|
|
TRY_TO(TraverseStmt(D->getDefaultArg()));
|
|
})
|
|
|
|
#undef DEF_TRAVERSE_DECL
|
|
|
|
// ----------------- Stmt traversal -----------------
|
|
//
|
|
// For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating
|
|
// over the children defined in children() (every stmt defines these,
|
|
// though sometimes the range is empty). Each individual Traverse*
|
|
// method only needs to worry about children other than those. To see
|
|
// what children() does for a given class, see, e.g.,
|
|
// http://clang.llvm.org/doxygen/Stmt_8cpp_source.html
|
|
|
|
// This macro makes available a variable S, the passed-in stmt.
|
|
#define DEF_TRAVERSE_STMT(STMT, CODE) \
|
|
template<typename Derived> \
|
|
bool RecursiveASTVisitor<Derived>::Traverse##STMT (STMT *S) { \
|
|
TRY_TO(WalkUpFrom##STMT(S)); \
|
|
StmtQueueAction StmtQueue(*this); \
|
|
{ CODE; } \
|
|
for (Stmt::child_range range = S->children(); range; ++range) { \
|
|
StmtQueue.queue(*range); \
|
|
} \
|
|
return true; \
|
|
}
|
|
|
|
DEF_TRAVERSE_STMT(GCCAsmStmt, {
|
|
StmtQueue.queue(S->getAsmString());
|
|
for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) {
|
|
StmtQueue.queue(S->getInputConstraintLiteral(I));
|
|
}
|
|
for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) {
|
|
StmtQueue.queue(S->getOutputConstraintLiteral(I));
|
|
}
|
|
for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) {
|
|
StmtQueue.queue(S->getClobberStringLiteral(I));
|
|
}
|
|
// children() iterates over inputExpr and outputExpr.
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(MSAsmStmt, {
|
|
// FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once
|
|
// added this needs to be implemented.
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXCatchStmt, {
|
|
TRY_TO(TraverseDecl(S->getExceptionDecl()));
|
|
// children() iterates over the handler block.
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(DeclStmt, {
|
|
for (DeclStmt::decl_iterator I = S->decl_begin(), E = S->decl_end();
|
|
I != E; ++I) {
|
|
TRY_TO(TraverseDecl(*I));
|
|
}
|
|
// Suppress the default iteration over children() by
|
|
// returning. Here's why: A DeclStmt looks like 'type var [=
|
|
// initializer]'. The decls above already traverse over the
|
|
// initializers, so we don't have to do it again (which
|
|
// children() would do).
|
|
return true;
|
|
})
|
|
|
|
|
|
// These non-expr stmts (most of them), do not need any action except
|
|
// iterating over the children.
|
|
DEF_TRAVERSE_STMT(BreakStmt, { })
|
|
DEF_TRAVERSE_STMT(CXXTryStmt, { })
|
|
DEF_TRAVERSE_STMT(CaseStmt, { })
|
|
DEF_TRAVERSE_STMT(CompoundStmt, { })
|
|
DEF_TRAVERSE_STMT(ContinueStmt, { })
|
|
DEF_TRAVERSE_STMT(DefaultStmt, { })
|
|
DEF_TRAVERSE_STMT(DoStmt, { })
|
|
DEF_TRAVERSE_STMT(ForStmt, { })
|
|
DEF_TRAVERSE_STMT(GotoStmt, { })
|
|
DEF_TRAVERSE_STMT(IfStmt, { })
|
|
DEF_TRAVERSE_STMT(IndirectGotoStmt, { })
|
|
DEF_TRAVERSE_STMT(LabelStmt, { })
|
|
DEF_TRAVERSE_STMT(AttributedStmt, { })
|
|
DEF_TRAVERSE_STMT(NullStmt, { })
|
|
DEF_TRAVERSE_STMT(ObjCAtCatchStmt, { })
|
|
DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, { })
|
|
DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, { })
|
|
DEF_TRAVERSE_STMT(ObjCAtThrowStmt, { })
|
|
DEF_TRAVERSE_STMT(ObjCAtTryStmt, { })
|
|
DEF_TRAVERSE_STMT(ObjCForCollectionStmt, { })
|
|
DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, { })
|
|
DEF_TRAVERSE_STMT(CXXForRangeStmt, { })
|
|
DEF_TRAVERSE_STMT(MSDependentExistsStmt, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
|
|
})
|
|
DEF_TRAVERSE_STMT(ReturnStmt, { })
|
|
DEF_TRAVERSE_STMT(SwitchStmt, { })
|
|
DEF_TRAVERSE_STMT(WhileStmt, { })
|
|
|
|
|
|
DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
|
|
if (S->hasExplicitTemplateArgs()) {
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(
|
|
S->getTemplateArgs(), S->getNumTemplateArgs()));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(DeclRefExpr, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(
|
|
S->getTemplateArgs(), S->getNumTemplateArgs()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
|
|
if (S->hasExplicitTemplateArgs()) {
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(
|
|
S->getExplicitTemplateArgs().getTemplateArgs(),
|
|
S->getNumTemplateArgs()));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(MemberExpr, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(
|
|
S->getTemplateArgs(), S->getNumTemplateArgs()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(ImplicitCastExpr, {
|
|
// We don't traverse the cast type, as it's not written in the
|
|
// source code.
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CStyleCastExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXConstCastExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXDynamicCastExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXStaticCastExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
|
|
})
|
|
|
|
// InitListExpr is a tricky one, because we want to do all our work on
|
|
// the syntactic form of the listexpr, but this method takes the
|
|
// semantic form by default. We can't use the macro helper because it
|
|
// calls WalkUp*() on the semantic form, before our code can convert
|
|
// to the syntactic form.
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(InitListExpr *S) {
|
|
if (InitListExpr *Syn = S->getSyntacticForm())
|
|
S = Syn;
|
|
TRY_TO(WalkUpFromInitListExpr(S));
|
|
StmtQueueAction StmtQueue(*this);
|
|
// All we need are the default actions. FIXME: use a helper function.
|
|
for (Stmt::child_range range = S->children(); range; ++range) {
|
|
StmtQueue.queue(*range);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// GenericSelectionExpr is a special case because the types and expressions
|
|
// are interleaved. We also need to watch out for null types (default
|
|
// generic associations).
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::
|
|
TraverseGenericSelectionExpr(GenericSelectionExpr *S) {
|
|
TRY_TO(WalkUpFromGenericSelectionExpr(S));
|
|
StmtQueueAction StmtQueue(*this);
|
|
StmtQueue.queue(S->getControllingExpr());
|
|
for (unsigned i = 0; i != S->getNumAssocs(); ++i) {
|
|
if (TypeSourceInfo *TS = S->getAssocTypeSourceInfo(i))
|
|
TRY_TO(TraverseTypeLoc(TS->getTypeLoc()));
|
|
StmtQueue.queue(S->getAssocExpr(i));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// PseudoObjectExpr is a special case because of the wierdness with
|
|
// syntactic expressions and opaque values.
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::
|
|
TraversePseudoObjectExpr(PseudoObjectExpr *S) {
|
|
TRY_TO(WalkUpFromPseudoObjectExpr(S));
|
|
StmtQueueAction StmtQueue(*this);
|
|
StmtQueue.queue(S->getSyntacticForm());
|
|
for (PseudoObjectExpr::semantics_iterator
|
|
i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) {
|
|
Expr *sub = *i;
|
|
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
|
|
sub = OVE->getSourceExpr();
|
|
StmtQueue.queue(sub);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, {
|
|
// This is called for code like 'return T()' where T is a built-in
|
|
// (i.e. non-class) type.
|
|
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXNewExpr, {
|
|
// The child-iterator will pick up the other arguments.
|
|
TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(OffsetOfExpr, {
|
|
// The child-iterator will pick up the expression representing
|
|
// the field.
|
|
// FIMXE: for code like offsetof(Foo, a.b.c), should we get
|
|
// making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c?
|
|
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, {
|
|
// The child-iterator will pick up the arg if it's an expression,
|
|
// but not if it's a type.
|
|
if (S->isArgumentType())
|
|
TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXTypeidExpr, {
|
|
// The child-iterator will pick up the arg if it's an expression,
|
|
// but not if it's a type.
|
|
if (S->isTypeOperand())
|
|
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXUuidofExpr, {
|
|
// The child-iterator will pick up the arg if it's an expression,
|
|
// but not if it's a type.
|
|
if (S->isTypeOperand())
|
|
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(UnaryTypeTraitExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(BinaryTypeTraitExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getLhsTypeSourceInfo()->getTypeLoc()));
|
|
TRY_TO(TraverseTypeLoc(S->getRhsTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(TypeTraitExpr, {
|
|
for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
|
|
TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(ExpressionTraitExpr, {
|
|
StmtQueue.queue(S->getQueriedExpression());
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(VAArgExpr, {
|
|
// The child-iterator will pick up the expression argument.
|
|
TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc()));
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, {
|
|
// This is called for code like 'return T()' where T is a class type.
|
|
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
// Walk only the visible parts of lambda expressions.
|
|
template<typename Derived>
|
|
bool RecursiveASTVisitor<Derived>::TraverseLambdaExpr(LambdaExpr *S) {
|
|
for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(),
|
|
CEnd = S->explicit_capture_end();
|
|
C != CEnd; ++C) {
|
|
TRY_TO(TraverseLambdaCapture(*C));
|
|
}
|
|
|
|
if (S->hasExplicitParameters() || S->hasExplicitResultType()) {
|
|
TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
|
|
if (S->hasExplicitParameters() && S->hasExplicitResultType()) {
|
|
// Visit the whole type.
|
|
TRY_TO(TraverseTypeLoc(TL));
|
|
} else if (FunctionProtoTypeLoc Proto = TL.getAs<FunctionProtoTypeLoc>()) {
|
|
if (S->hasExplicitParameters()) {
|
|
// Visit parameters.
|
|
for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I) {
|
|
TRY_TO(TraverseDecl(Proto.getArg(I)));
|
|
}
|
|
} else {
|
|
TRY_TO(TraverseTypeLoc(Proto.getResultLoc()));
|
|
}
|
|
}
|
|
}
|
|
|
|
StmtQueueAction StmtQueue(*this);
|
|
StmtQueue.queue(S->getBody());
|
|
return true;
|
|
}
|
|
|
|
DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, {
|
|
// This is called for code like 'T()', where T is a template argument.
|
|
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
|
|
})
|
|
|
|
// These expressions all might take explicit template arguments.
|
|
// We traverse those if so. FIXME: implement these.
|
|
DEF_TRAVERSE_STMT(CXXConstructExpr, { })
|
|
DEF_TRAVERSE_STMT(CallExpr, { })
|
|
DEF_TRAVERSE_STMT(CXXMemberCallExpr, { })
|
|
|
|
// These exprs (most of them), do not need any action except iterating
|
|
// over the children.
|
|
DEF_TRAVERSE_STMT(AddrLabelExpr, { })
|
|
DEF_TRAVERSE_STMT(ArraySubscriptExpr, { })
|
|
DEF_TRAVERSE_STMT(BlockExpr, {
|
|
TRY_TO(TraverseDecl(S->getBlockDecl()));
|
|
return true; // no child statements to loop through.
|
|
})
|
|
DEF_TRAVERSE_STMT(ChooseExpr, { })
|
|
DEF_TRAVERSE_STMT(CompoundLiteralExpr, { })
|
|
DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, { })
|
|
DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, { })
|
|
DEF_TRAVERSE_STMT(CXXDefaultArgExpr, { })
|
|
DEF_TRAVERSE_STMT(CXXDeleteExpr, { })
|
|
DEF_TRAVERSE_STMT(ExprWithCleanups, { })
|
|
DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, { })
|
|
DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo())
|
|
TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc()));
|
|
if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo())
|
|
TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc()));
|
|
})
|
|
DEF_TRAVERSE_STMT(CXXThisExpr, { })
|
|
DEF_TRAVERSE_STMT(CXXThrowExpr, { })
|
|
DEF_TRAVERSE_STMT(UserDefinedLiteral, { })
|
|
DEF_TRAVERSE_STMT(DesignatedInitExpr, { })
|
|
DEF_TRAVERSE_STMT(ExtVectorElementExpr, { })
|
|
DEF_TRAVERSE_STMT(GNUNullExpr, { })
|
|
DEF_TRAVERSE_STMT(ImplicitValueInitExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCEncodeExpr, {
|
|
if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo())
|
|
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
|
|
})
|
|
DEF_TRAVERSE_STMT(ObjCIsaExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCIvarRefExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCMessageExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCProtocolExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCSelectorExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, {
|
|
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
|
|
})
|
|
DEF_TRAVERSE_STMT(ParenExpr, { })
|
|
DEF_TRAVERSE_STMT(ParenListExpr, { })
|
|
DEF_TRAVERSE_STMT(PredefinedExpr, { })
|
|
DEF_TRAVERSE_STMT(ShuffleVectorExpr, { })
|
|
DEF_TRAVERSE_STMT(StmtExpr, { })
|
|
DEF_TRAVERSE_STMT(UnresolvedLookupExpr, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
if (S->hasExplicitTemplateArgs()) {
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
|
|
S->getNumTemplateArgs()));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(UnresolvedMemberExpr, {
|
|
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
|
|
if (S->hasExplicitTemplateArgs()) {
|
|
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
|
|
S->getNumTemplateArgs()));
|
|
}
|
|
})
|
|
|
|
DEF_TRAVERSE_STMT(SEHTryStmt, {})
|
|
DEF_TRAVERSE_STMT(SEHExceptStmt, {})
|
|
DEF_TRAVERSE_STMT(SEHFinallyStmt,{})
|
|
|
|
DEF_TRAVERSE_STMT(CXXOperatorCallExpr, { })
|
|
DEF_TRAVERSE_STMT(OpaqueValueExpr, { })
|
|
DEF_TRAVERSE_STMT(CUDAKernelCallExpr, { })
|
|
|
|
// These operators (all of them) do not need any action except
|
|
// iterating over the children.
|
|
DEF_TRAVERSE_STMT(BinaryConditionalOperator, { })
|
|
DEF_TRAVERSE_STMT(ConditionalOperator, { })
|
|
DEF_TRAVERSE_STMT(UnaryOperator, { })
|
|
DEF_TRAVERSE_STMT(BinaryOperator, { })
|
|
DEF_TRAVERSE_STMT(CompoundAssignOperator, { })
|
|
DEF_TRAVERSE_STMT(CXXNoexceptExpr, { })
|
|
DEF_TRAVERSE_STMT(PackExpansionExpr, { })
|
|
DEF_TRAVERSE_STMT(SizeOfPackExpr, { })
|
|
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, { })
|
|
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, { })
|
|
DEF_TRAVERSE_STMT(FunctionParmPackExpr, { })
|
|
DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, { })
|
|
DEF_TRAVERSE_STMT(AtomicExpr, { })
|
|
|
|
// These literals (all of them) do not need any action.
|
|
DEF_TRAVERSE_STMT(IntegerLiteral, { })
|
|
DEF_TRAVERSE_STMT(CharacterLiteral, { })
|
|
DEF_TRAVERSE_STMT(FloatingLiteral, { })
|
|
DEF_TRAVERSE_STMT(ImaginaryLiteral, { })
|
|
DEF_TRAVERSE_STMT(StringLiteral, { })
|
|
DEF_TRAVERSE_STMT(ObjCStringLiteral, { })
|
|
DEF_TRAVERSE_STMT(ObjCBoxedExpr, { })
|
|
DEF_TRAVERSE_STMT(ObjCArrayLiteral, { })
|
|
DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, { })
|
|
|
|
// Traverse OpenCL: AsType, Convert.
|
|
DEF_TRAVERSE_STMT(AsTypeExpr, { })
|
|
|
|
// FIXME: look at the following tricky-seeming exprs to see if we
|
|
// need to recurse on anything. These are ones that have methods
|
|
// returning decls or qualtypes or nestednamespecifier -- though I'm
|
|
// not sure if they own them -- or just seemed very complicated, or
|
|
// had lots of sub-types to explore.
|
|
//
|
|
// VisitOverloadExpr and its children: recurse on template args? etc?
|
|
|
|
// FIXME: go through all the stmts and exprs again, and see which of them
|
|
// create new types, and recurse on the types (TypeLocs?) of those.
|
|
// Candidates:
|
|
//
|
|
// http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html
|
|
// http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html
|
|
// http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html
|
|
// Every class that has getQualifier.
|
|
|
|
#undef DEF_TRAVERSE_STMT
|
|
|
|
#undef TRY_TO
|
|
|
|
} // end namespace cxindex
|
|
} // end namespace clang
|
|
|
|
#endif // LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
|